51
|
Labit H, Fujimitsu K, Bayin NS, Takaki T, Gannon J, Yamano H. Dephosphorylation of Cdc20 is required for its C-box-dependent activation of the APC/C. EMBO J 2012; 31:3351-62. [PMID: 22713866 PMCID: PMC3411074 DOI: 10.1038/emboj.2012.168] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 05/29/2012] [Indexed: 01/01/2023] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase is tightly regulated to ensure programmed proteolysis in cells. The activity of the APC/C is positively controlled by cyclin-dependent kinase (CDK), but a second level of control must also exist because phosphorylation inactivates Cdc20, a mitotic APC/C co-activator. How Cdc20 is dephosphorylated specifically, when CDK is high, has remained unexplained. Here, we show that phosphatases are crucial to activate the APC/C. Cdc20 is phosphorylated at six conserved residues (S50/T64/T68/T79/S114/S165) by CDK in Xenopus egg extracts. When all the threonine residues are phosphorylated, Cdc20 binding to and activation of the APC/C are inhibited. Their dephosphorylation is regulated depending on the sites and protein phosphatase 2A, active in mitosis, is essential to dephosphorylate the threonine residues and activate the APC/C. Consistently, most of the Cdc20 bound to the APC/C in anaphase evades phosphorylation at T79. Furthermore, we show that the 'activation domain' of Cdc20 associates with the Apc6 and Apc8 core subunits. Our data suggest that dephosphorylation of Cdc20 is required for its loading and activation of the APC/C ubiquitin ligase.
Collapse
Affiliation(s)
- Helene Labit
- Cell Cycle Control Group, UCL Cancer Institute, University College London, London, UK
| | - Kazuyuki Fujimitsu
- Cell Cycle Control Group, UCL Cancer Institute, University College London, London, UK
| | - N Sumru Bayin
- Cell Cycle Control Group, UCL Cancer Institute, University College London, London, UK
| | - Tohru Takaki
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, UK
| | - Julian Gannon
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, UK
| | - Hiroyuki Yamano
- Cell Cycle Control Group, UCL Cancer Institute, University College London, London, UK
| |
Collapse
|
52
|
Min M, Lindon C. Substrate targeting by the ubiquitin-proteasome system in mitosis. Semin Cell Dev Biol 2012; 23:482-91. [PMID: 22326960 DOI: 10.1016/j.semcdb.2012.01.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/11/2012] [Accepted: 01/23/2012] [Indexed: 12/15/2022]
Abstract
Both cell cycle progression and the ubiquitin-proteasome system (UPS) that drives it are precisely regulated. Enzymatically, many ubiquitylation and degradation reactions have been characterized in in vitro systems, providing insights into the fundamental mechanisms of the UPS. Biologically, a range of degradation events depending on a ubiquitin ligase called the Anaphase-Promoting Complex (APC/C), have been shown to control mitotic progression through removal of key substrates with extreme temporal precision. However we are only just beginning to understand how the different enzymatic activities of the UPS act collectively - and in cooperation with other cellular factors - for accurate temporal and spatial control of mitotic substrate levels in vivo.
Collapse
Affiliation(s)
- Mingwei Min
- University of Cambridge, Department of Genetics, Downing St., Cambridge CB2 3EH, UK
| | | |
Collapse
|
53
|
Barford D. Structural insights into anaphase-promoting complex function and mechanism. Philos Trans R Soc Lond B Biol Sci 2012; 366:3605-24. [PMID: 22084387 DOI: 10.1098/rstb.2011.0069] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The anaphase-promoting complex or cyclosome (APC/C) controls sister chromatid segregation and the exit from mitosis by catalysing the ubiquitylation of cyclins and other cell cycle regulatory proteins. This unusually large E3 RING-cullin ubiquitin ligase is assembled from 13 different proteins. Selection of APC/C targets is controlled through recognition of short destruction motifs, predominantly the D box and KEN box. APC/C-mediated coordination of cell cycle progression is achieved through the temporal regulation of APC/C activity and substrate specificity, exerted through a combination of co-activator subunits, reversible phosphorylation and inhibitory proteins and complexes. Recent structural and biochemical studies of the APC/C are beginning to reveal an understanding of the roles of individual APC/C subunits and co-activators and how they mutually interact to mediate APC/C functions. This review focuses on the findings showing how information on the structural organization of the APC/C provides insights into the role of co-activators and core APC/C subunits in mediating substrate recognition. Mechanisms of regulating and modulating substrate recognition are discussed in the context of controlling the binding of the co-activator to the APC/C, and the accessibility and conformation of the co-activator when bound to the APC/C.
Collapse
Affiliation(s)
- David Barford
- Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
54
|
Zeng X, King RW. An APC/C inhibitor stabilizes cyclin B1 by prematurely terminating ubiquitination. Nat Chem Biol 2012; 8:383-92. [PMID: 22366722 PMCID: PMC3307893 DOI: 10.1038/nchembio.801] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/13/2012] [Indexed: 02/04/2023]
Abstract
The anaphase-promoting complex/cyclosome (APC) is a ubiquitin ligase that is required for exit from mitosis. We previously showed that tosyl arginine methyl ester (TAME) inhibits APC-dependent proteolysis by competing with the C-terminal isoleucine-arginine tail of the APC activator cell division cycle 20 (Cdc20) for APC binding. Here we show that in the absence of APC substrates, TAME ejects Cdc20 from the APC by promoting Cdc20 autoubiquitination in its N-terminal region. Cyclin B1 antagonizes TAME's effect by promoting binding of free Cdc20 to the APC and by suppressing Cdc20 autoubiquitination. Nevertheless, TAME stabilizes cyclin B1 in Xenopus extracts by two mechanisms. First, it reduces the k(cat) of the APC-Cdc20-cyclin B1 complex without affecting the K(m), slowing the initial ubiquitination of unmodified cyclin B1. Second, as cyclin B1 becomes ubiquitinated, it loses its ability to promote Cdc20 binding to the APC in the presence of TAME. As a result, cyclin B1 ubiquitination terminates before reaching the threshold necessary for proteolysis.
Collapse
Affiliation(s)
- Xing Zeng
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
55
|
Lee SJ, Langhans SA. Anaphase-promoting complex/cyclosome protein Cdc27 is a target for curcumin-induced cell cycle arrest and apoptosis. BMC Cancer 2012; 12:44. [PMID: 22280307 PMCID: PMC3296673 DOI: 10.1186/1471-2407-12-44] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 01/26/2012] [Indexed: 12/16/2022] Open
Abstract
Background Curcumin (diferuloylmethane), the yellow pigment in the Asian spice turmeric, is a hydrophobic polyphenol from the rhizome of Curcuma longa. Because of its chemopreventive and chemotherapeutic potential with no discernable side effects, it has become one of the major natural agents being developed for cancer therapy. Accumulating evidence suggests that curcumin induces cell death through activation of apoptotic pathways and inhibition of cell growth and proliferation. The mitotic checkpoint, or spindle assembly checkpoint (SAC), is the major cell cycle control mechanism to delay the onset of anaphase during mitosis. One of the key regulators of the SAC is the anaphase promoting complex/cyclosome (APC/C) which ubiquitinates cyclin B and securin and targets them for proteolysis. Because APC/C not only ensures cell cycle arrest upon spindle disruption but also promotes cell death in response to prolonged mitotic arrest, it has become an attractive drug target in cancer therapy. Methods Cell cycle profiles were determined in control and curcumin-treated medulloblastoma and various other cancer cell lines. Pull-down assays were used to confirm curcumin binding. APC/C activity was determined using an in vitro APC activity assay. Results We identified Cdc27/APC3, a component of the APC/C, as a novel molecular target of curcumin and showed that curcumin binds to and crosslinks Cdc27 to affect APC/C function. We further provide evidence that curcumin preferably induces apoptosis in cells expressing phosphorylated Cdc27 usually found in highly proliferating cells. Conclusions We report that curcumin directly targets the SAC to induce apoptosis preferably in cells with high levels of phosphorylated Cdc27. Our studies provide a possible molecular mechanism why curcumin induces apoptosis preferentially in cancer cells and suggest that phosphorylation of Cdc27 could be used as a biomarker to predict the therapeutic response of cancer cells to curcumin.
Collapse
Affiliation(s)
- Seung Joon Lee
- Nemours/Alfred I, duPont Hospital for Children, Wilmington, DE 19803, USA
| | | |
Collapse
|
56
|
Abstract
'…in Italy, for thirty years under the Borgias, they had warfare, terror, murder and bloodshed, but they produced Michelangelo, Leonardo da Vinci and the Renaissance. In Switzerland, they had brotherly love, they had five hundred years of democracy and peace-and what did that produce? The cuckoo clock'. Orson Welles as Harry Lime: The Third Man. Orson Welles might have been a little unfair on the Swiss, after all cuckoo clocks were developed in the Schwartzwald, but, more importantly, Swiss democracy gives remarkably stable government with considerable decision-making at the local level. The alternative is the battling city-states of Renaissance Italy: culturally rich but chaotic at a higher level of organization. As our understanding of the cell cycle improves, it appears that the cell is organized more along the lines of Switzerland than Renaissance Italy, and one major challenge is to determine how local decisions are made and coordinated to produce the robust cell cycle mechanisms that we observe in the cell as a whole.
Collapse
Affiliation(s)
- Jonathon Pines
- Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Iain Hagan
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
57
|
Lara-Gonzalez P, Scott MIF, Diez M, Sen O, Taylor SS. BubR1 blocks substrate recruitment to the APC/C in a KEN-box-dependent manner. J Cell Sci 2011; 124:4332-45. [PMID: 22193957 DOI: 10.1242/jcs.094763] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The spindle assembly checkpoint (SAC) is a signalling network that delays anaphase onset until all the chromosomes are attached to the mitotic spindle through their kinetochores. The downstream target of the spindle checkpoint is the anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase that targets several anaphase inhibitors for proteolysis, including securin and cyclin B1. In the presence of unattached kinetochores, the APC/C is inhibited by the mitotic checkpoint complex (MCC), a tetrameric complex composed of three SAC components, namely BubR1, Bub3 and Mad2, and the APC/C co-activator Cdc20. The molecular mechanisms underlying exactly how unattached kinetochores catalyse MCC formation and how the MCC then inhibits the APC/C remain obscure. Here, using RNAi complementation and in vitro ubiquitylation assays, we investigate the domains in BubR1 required for APC/C inhibition. We observe that kinetochore localisation of BubR1 is required for efficient MCC assembly and SAC response. Furthermore, in contrast to previous studies, we show that the N-terminal domain of BubR1 is the only domain involved in binding to Cdc20-Mad2 and the APC/C. Within this region, an N-terminal KEN box (KEN1) is essential for these interactions. By contrast, mutation of the second KEN box (KEN2) of BubR1 does not interfere with MCC assembly or APC/C binding. However, both in cells and in vitro, the KEN2 box is required for inhibition of APC/C when activated by Cdc20 (APC/C(Cdc20)). Indeed, we show that this second KEN box promotes SAC function by blocking the recruitment of substrates to the APC/C. Thus, we propose a model in which the BubR1 KEN boxes play two very different roles, the first to promote MCC assembly and the second to block substrate recruitment to APC/C(Cdc20).
Collapse
Affiliation(s)
- Pablo Lara-Gonzalez
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | | | |
Collapse
|
58
|
Ubiquitination of Cdc20 by the APC occurs through an intramolecular mechanism. Curr Biol 2011; 21:1870-7. [PMID: 22079111 DOI: 10.1016/j.cub.2011.09.051] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/30/2011] [Accepted: 09/30/2011] [Indexed: 11/23/2022]
Abstract
BACKGROUND Cells control progression through late mitosis by regulating Cdc20 and Cdh1, the two mitotic activators of the anaphase-promoting complex (APC). The control of Cdc20 protein levels during the cell cycle is not well understood. RESULTS Here, we demonstrate that Cdc20 is degraded in budding yeast by multiple APC-dependent mechanisms. We find that the majority of Cdc20 turnover does not involve a second activator molecule but instead depends on in cis Cdc20 autoubiquitination while it is bound to its activator-binding site on the APC core. Unlike in trans ubiquitination of Cdc20 substrates, the APC ubiquitinates Cdc20 independent of APC activation by Cdc20's C box. Cdc20 turnover by this intramolecular mechanism is cell cycle regulated, contributing to the decline in Cdc20 levels that occurs after anaphase. Interestingly, high substrate levels in vitro significantly reduce Cdc20 autoubiquitination. CONCLUSION We show here that Cdc20 fluctuates through the cell cycle via a distinct form of APC-mediated ubiquitination. This in cis autoubiquitination may preferentially occur in early anaphase, following depletion of Cdc20 substrates. This suggests that distinct mechanisms are able to target Cdc20 for ubiquitination at different points during the cell cycle.
Collapse
|
59
|
Schaefer JB, Morgan DO. Protein-linked ubiquitin chain structure restricts activity of deubiquitinating enzymes. J Biol Chem 2011; 286:45186-96. [PMID: 22072716 DOI: 10.1074/jbc.m111.310094] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The attachment of lysine 48 (Lys(48))-linked polyubiquitin chains to proteins is a universal signal for degradation by the proteasome. Here, we report that long Lys(48)-linked chains are resistant to many deubiquitinating enzymes (DUBs). Representative enzymes from this group, Ubp15 from yeast and its human ortholog USP7, rapidly remove mono- and diubiquitin from substrates but are slow to remove longer Lys(48)-linked chains. This resistance is lost if the structure of Lys(48)-linked chains is disrupted by mutation of ubiquitin or if chains are linked through Lys(63). In contrast to Ubp15 and USP7, Ubp12 readily cleaves the ends of long chains, regardless of chain structure. We propose that the resistance to many DUBs of long, substrate-attached Lys(48)-linked chains helps ensure that proteins are maintained free from ubiquitin until a threshold of ubiquitin ligase activity enables degradation.
Collapse
Affiliation(s)
- Jonathan B Schaefer
- Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA
| | | |
Collapse
|
60
|
Wickliffe KE, Williamson A, Meyer HJ, Kelly A, Rape M. K11-linked ubiquitin chains as novel regulators of cell division. Trends Cell Biol 2011; 21:656-63. [PMID: 21978762 DOI: 10.1016/j.tcb.2011.08.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 08/24/2011] [Accepted: 08/31/2011] [Indexed: 02/07/2023]
Abstract
Modification of proteins with ubiquitin chains is an essential regulatory event in cell cycle control. Differences in the connectivity of ubiquitin chains are believed to result in distinct functional consequences for the modified proteins. Among eight possible homogenous chain types, canonical Lys48-linked ubiquitin chains have long been recognized to drive the proteasomal degradation of cell cycle regulators, and Lys48 is the only essential lysine residue of ubiquitin in yeast. It thus came as a surprise that in higher eukaryotes atypical K11-linked ubiquitin chains regulate the substrates of the anaphase-promoting complex and control progression through mitosis. We discuss recent findings that shed light on the assembly and function of K11-linked chains during cell division.
Collapse
Affiliation(s)
- Katherine E Wickliffe
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, USA
| | | | | | | | | |
Collapse
|
61
|
Cooper KF, Strich R. Meiotic control of the APC/C: similarities & differences from mitosis. Cell Div 2011; 6:16. [PMID: 21806783 PMCID: PMC3162515 DOI: 10.1186/1747-1028-6-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/01/2011] [Indexed: 02/06/2023] Open
Abstract
The anaphase promoting complex is a highly conserved E3 ligase complex that mediates the destruction of key regulatory proteins during both mitotic and meiotic divisions. In order to maintain ploidy, this destruction must occur after the regulatory proteins have executed their function. Thus, the regulation of APC/C activity itself is critical for maintaining ploidy during all types of cell divisions. During mitotic cell division, two conserved activator proteins called Cdc20 and Cdh1 are required for both APC/C activation and substrate selection. However, significantly less is known about how these proteins regulate APC/C activity during the specialized meiotic nuclear divisions. In addition, both budding yeast and flies utilize a third meiosis-specific activator. In Saccharomyces cerevisiae, this meiosis-specific activator is called Ama1. This review summarizes our knowledge of how Cdc20 and Ama1 coordinate APC/C activity to regulate the meiotic nuclear divisions in yeast.
Collapse
Affiliation(s)
- Katrina F Cooper
- University of Medicine and Dentistry of New Jersey, 2 Medical Center Drive, Stratford, NJ 08055, USA.
| | | |
Collapse
|
62
|
|
63
|
Smolders L, Teodoro JG. Targeting the anaphase promoting complex: common pathways for viral infection and cancer therapy. Expert Opin Ther Targets 2011; 15:767-80. [PMID: 21375465 DOI: 10.1517/14728222.2011.558008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The anaphase promoting complex/cyclosome (APC/C) is a ubiquitin ligase involved in regulation of the cell cycle through ubiquitination-dependent substrate proteolysis. Many viral proteins have been shown to interact with the APC/C, derailing cell cycle progression in order to facilitate their own replication. Induction of G(2)/M arrest by viral APC/C inhibition can lead to apoptotic cell death. Some viral proteins cause cytotoxicity specifically in tumour cells, providing evidence that targeting the APC/C could be exploited to selectively eliminate cancer cells. AREAS COVERED In this review, we provide a summary of studies from viral APC/C interactions over the last decade, as well as recent discoveries identifying the APC/C as a promising target in the context of cancer therapy. EXPERT OPINION Current therapeutic strategies inducing mitotic arrest rely on activation of the spindle assembly checkpoint (SAC) for their function. Many cancer cells have a weakened SAC and escape apoptosis through mitotic slippage. Recent evidence has demonstrated that targeting the APC/C, particularly the co-activator Cdc20, might be a better alternative. Tumour cells display greater dependency on APC/C function than normal cells and oncogenic transformation can lead to increased mitotic stress, rendering cancer cells more vulnerable to APC/C inhibition.
Collapse
Affiliation(s)
- Linda Smolders
- McGill University, Goodman Cancer Research Centre, Department of Biochemistry, 1160 Pine Avenue West, Room 616, Montreal, Quebec H3A 1A3, Canada
| | | |
Collapse
|
64
|
Izawa D, Pines J. How APC/C-Cdc20 changes its substrate specificity in mitosis. Nat Cell Biol 2011; 13:223-33. [PMID: 21336306 PMCID: PMC3059483 DOI: 10.1038/ncb2165] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/26/2010] [Indexed: 01/26/2023]
Abstract
Progress through mitosis requires that the right protein be degraded at the right time. One ubiquitin ligase, the anaphase-promoting complex or cyclosome (APC/C) targets most of the crucial mitotic regulators by changing its substrate specificity throughout mitosis. The spindle assembly checkpoint (SAC) acts on the APC/C co-activator, Cdc20 (cell division cycle 20), to block the degradation of metaphase substrates (for example, cyclin B1 and securin), but not others (for example, cyclin A). How this is achieved is unclear. Here we show that Cdc20 binds to different sites on the APC/C depending on the SAC. Cdc20 requires APC3 and APC8 to bind and activate the APC/C when the SAC is satisfied, but requires only APC8 to bind the APC/C when the SAC is active. Moreover, APC10 is crucial for the destruction of cyclin B1 and securin, but not cyclin A. We conclude that the SAC causes Cdc20 to bind to different sites on the APC/C and this alters APC/C substrate specificity.
Collapse
Affiliation(s)
- Daisuke Izawa
- Gurdon Institute and Department of Zoology, Tennis Court Road,Cambridge CB2 1QN, UK
| | | |
Collapse
|
65
|
Schreiber A, Stengel F, Zhang Z, Enchev RI, Kong EH, Morris EP, Robinson CV, da Fonseca PCA, Barford D. Structural basis for the subunit assembly of the anaphase-promoting complex. Nature 2011; 470:227-32. [PMID: 21307936 DOI: 10.1038/nature09756] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 12/14/2010] [Indexed: 12/18/2022]
Abstract
The anaphase-promoting complex or cyclosome (APC/C) is an unusually large E3 ubiquitin ligase responsible for regulating defined cell cycle transitions. Information on how its 13 constituent proteins are assembled, and how they interact with co-activators, substrates and regulatory proteins is limited. Here, we describe a recombinant expression system that allows the reconstitution of holo APC/C and its sub-complexes that, when combined with electron microscopy, mass spectrometry and docking of crystallographic and homology-derived coordinates, provides a precise definition of the organization and structure of all essential APC/C subunits, resulting in a pseudo-atomic model for 70% of the APC/C. A lattice-like appearance of the APC/C is generated by multiple repeat motifs of most APC/C subunits. Three conserved tetratricopeptide repeat (TPR) subunits (Cdc16, Cdc23 and Cdc27) share related superhelical homo-dimeric architectures that assemble to generate a quasi-symmetrical structure. Our structure explains how this TPR sub-complex, together with additional scaffolding subunits (Apc1, Apc4 and Apc5), coordinate the juxtaposition of the catalytic and substrate recognition module (Apc2, Apc11 and Apc10 (also known as Doc1)), and TPR-phosphorylation sites, relative to co-activator, regulatory proteins and substrates.
Collapse
Affiliation(s)
- Anne Schreiber
- Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
McLean JR, Chaix D, Ohi MD, Gould KL. State of the APC/C: organization, function, and structure. Crit Rev Biochem Mol Biol 2011; 46:118-36. [PMID: 21261459 DOI: 10.3109/10409238.2010.541420] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The ubiquitin-proteasome protein degradation system is involved in many essential cellular processes including cell cycle regulation, cell differentiation, and the unfolded protein response. The anaphase-promoting complex/cyclosome (APC/C), an evolutionarily conserved E3 ubiquitin ligase, was discovered 15 years ago because of its pivotal role in cyclin degradation and mitotic progression. Since then, we have learned that the APC/C is a very large, complex E3 ligase composed of 13 subunits, yielding a molecular machine of approximately 1 MDa. The intricate regulation of the APC/C is mediated by the Cdc20 family of activators, pseudosubstrate inhibitors, protein kinases and phosphatases and the spindle assembly checkpoint. The large size, complexity, and dynamic nature of the APC/C represent significant obstacles toward high-resolution structural techniques; however, over the last decade, there have been a number of lower resolution APC/C structures determined using single particle electron microscopy. These structures, when combined with data generated from numerous genetic and biochemical studies, have begun to shed light on how APC/C activity is regulated. Here, we discuss the most recent developments in the APC/C field concerning structure, substrate recognition, and catalysis.
Collapse
Affiliation(s)
- Janel R McLean
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
67
|
Zhang L, Rahbari R, He M, Kebebew E. CDC23 regulates cancer cell phenotype and is overexpressed in papillary thyroid cancer. Endocr Relat Cancer 2011; 18:731-42. [PMID: 21990323 PMCID: PMC6959529 DOI: 10.1530/erc-11-0181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer gender disparities have been observed for a variety of human malignancies. Thyroid cancer is one such example where there is a dramatic difference in the incidence, aggressiveness, and death rate by gender. The molecular basis for gender disparity is poorly understood. To address this, we performed genome-wide gene expression profiling in matched papillary thyroid cancer (PTC) samples and identified nine candidate genes differentially expressed by gender. One of these genes was CDC23 that was upregulated in PTC in men compared with women. Because the function and expression of CDC23 is unknown in eukaryotic cells, we further characterized the expression of CDC23 in normal, hyperplastic, and PTC tissue samples. We found CDC23 was overexpressed in PTC and absent in normal and hyperplastic thyroid tissue. In thyroid cancer cells, functional knockdown of CDC23 resulted in an increase in the number of cells in both the S and G(2)M phases of the cell cycle, and an inhibition of cellular proliferation, tumor spheroid formation, and anchorage-independent growth. Cellular arrest in both S and G(2)M phases was associated with significant cyclin B1 and securin protein accumulation after CDC23 knockdown. Moreover, the effect of CDC23 on cellular proliferation and cell cycle progression was reversed on triple knockdown studies of CDC23, cyclin B1, and securin. Our data taken together suggests CDC23 has important biologic effects on cell proliferation and cell cycle progression. The effect of CDC23 on cellular proliferation and cell cycle progression is mediated, at least in part, by cyclin B1 and securin protein levels. Therefore, we propose that CDC23 is a critical regulator of cell cycle and cell growth, and may be involved in thyroid cancer initiation and progression, and may explain the different tumor biology observed by gender.
Collapse
Affiliation(s)
- Lisa Zhang
- Endocrine Oncology Section, Surgery Branch, National Cancer Institute, NIH, HHS, Clinical Research Center, Building 10-CRC, Room 3-3940, 10 Center Drive, MSC 1201, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
68
|
Buschhorn BA, Petzold G, Galova M, Dube P, Kraft C, Herzog F, Stark H, Peters JM. Substrate binding on the APC/C occurs between the coactivator Cdh1 and the processivity factor Doc1. Nat Struct Mol Biol 2010; 18:6-13. [PMID: 21186364 PMCID: PMC4300845 DOI: 10.1038/nsmb.1979] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 11/17/2010] [Indexed: 12/21/2022]
Abstract
The anaphase–promoting complex/cyclosome (APC/C) is a 22 S ubiquitin ligase complex that initiates chromosome segregation and mitotic exit. We have used biochemical and electron microscopic analyses of Saccharomyces cerevisiae and human APC/C to address how the APC/C subunit Doc1 contributes to recruitment and processive ubiquitylation of APC/C substrates, and to understand how APC/C monomers interact to form a 36 S dimeric form. We show that Doc1 interacts with Cdc27, Cdc16 and Apc1, and is located in vicinity of the cullin–RING module Apc2–Apc11 in the inner cavity of the APC/C. Substrate proteins also bind in the inner cavity, in close proximity to DOC1 and the co–activator CDH1, and induce conformational changes in APC2–APC11. Our results suggest that substrates are recruited to the APC/C by binding to a bipartite substrate receptor composed of a co–activator protein and Doc1.
Collapse
Affiliation(s)
- Bettina A Buschhorn
- Research Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | - Georg Petzold
- Research Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | - Marta Galova
- Research Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | - Prakash Dube
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Claudine Kraft
- Research Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | - Franz Herzog
- Research Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | - Holger Stark
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany.,Department of Molecular 3D Electron Cryomicroscopy, Institute of Microbiology and Genetics, Georg-August University Göttingen, Justus-von-Liebig Weg 11, D-37077 Göttingen, Germany
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| |
Collapse
|
69
|
Tan GS, Magurno J, Cooper KF. Ama1p-activated anaphase-promoting complex regulates the destruction of Cdc20p during meiosis II. Mol Biol Cell 2010; 22:315-26. [PMID: 21118994 PMCID: PMC3031463 DOI: 10.1091/mbc.e10-04-0360] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
During meiosis, the APC/C is activated by either Cdc20 or the meiosis-specific activator Ama1. Upon exit from meiosis II, APC/CAma1 mediates Cdc20 destruction using Db1 and GxEN degrons. The amino terminus of Ama1, which contains the Cdc20-binding domain, is sufficient for Cdc20 degradation but not spore formation. The execution of meiotic divisions in Saccharomyces cerevisiae is regulated by anaphase-promoting complex/cyclosome (APC/C)–mediated protein degradation. During meiosis, the APC/C is activated by association with Cdc20p or the meiosis-specific activator Ama1p. We present evidence that, as cells exit from meiosis II, APC/CAma1 mediates Cdc20p destruction. APC/CAma1 recognizes two degrons on Cdc20p, the destruction box and destruction degron, with either domain being sufficient to mediate Cdc20p destruction. Cdc20p does not need to associate with the APC/C to bind Ama1p or be destroyed. Coimmunoprecipitation analyses showed that the diverged amino-terminal region of Ama1p recognizes both Cdc20p and Clb1p, a previously identified substrate of APC/CAma1. Domain swap experiments revealed that the C-terminal WD region of Cdh1p, when fused to the N-terminal region of Ama1p, could direct most of Ama1p functions, although at a reduced level. In addition, this fusion protein cannot complement the spore wall defect in ama1Δ strains, indicating that substrate specificity is also derived from the WD repeat domain. These findings provide a mechanism to temporally down-regulate APC/CCdc20 activity as the cells complete meiosis II and form spores.
Collapse
Affiliation(s)
- Grace S Tan
- Department of Biochemistry and Molecular Biology, Drexel Medical School, Philadelphia, PA 19102, USA
| | | | | |
Collapse
|
70
|
da Fonseca PCA, Kong EH, Zhang Z, Schreiber A, Williams MA, Morris EP, Barford D. Structures of APC/C(Cdh1) with substrates identify Cdh1 and Apc10 as the D-box co-receptor. Nature 2010; 470:274-8. [PMID: 21107322 PMCID: PMC3037847 DOI: 10.1038/nature09625] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 11/01/2010] [Indexed: 01/13/2023]
Abstract
The ubiquitylation of cell-cycle regulatory proteins by the large multimeric anaphase-promoting complex (APC/C) controls sister chromatid segregation and the exit from mitosis. Selection of APC/C targets is achieved through recognition of destruction motifs, predominantly the destruction (D)-box and KEN (Lys-Glu-Asn)-box. Although this process is known to involve a co-activator protein (either Cdc20 or Cdh1) together with core APC/C subunits, the structural basis for substrate recognition and ubiquitylation is not understood. Here we investigate budding yeast APC/C using single-particle electron microscopy and determine a cryo-electron microscopy map of APC/C in complex with the Cdh1 co-activator protein (APC/C(Cdh1)) bound to a D-box peptide at ∼10 Å resolution. We find that a combined catalytic and substrate-recognition module is located within the central cavity of the APC/C assembled from Cdh1, Apc10--a core APC/C subunit previously implicated in substrate recognition--and the cullin domain of Apc2. Cdh1 and Apc10, identified from difference maps, create a co-receptor for the D-box following repositioning of Cdh1 towards Apc10. Using NMR spectroscopy we demonstrate specific D-box-Apc10 interactions, consistent with a role for Apc10 in directly contributing towards D-box recognition by the APC/C(Cdh1) complex. Our results rationalize the contribution of both co-activator and core APC/C subunits to D-box recognition and provide a structural framework for understanding mechanisms of substrate recognition and catalysis by the APC/C.
Collapse
Affiliation(s)
- Paula C A da Fonseca
- Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
AbstractThe complex molecular events responsible for coordinating chromosome replication and segregation with cell division and growth are collectively known as the cell cycle. Progression through the cell cycle is orchestrated by the interplay between controlled protein synthesis and degradation and protein phosphorylation. Protein degradation is primarily regulated through the ubiquitin proteasome system, mediated by two related E3 protein ubiquitin ligases, the Skp1 cullin F-box (SCF) and the anaphase promoting complex (also known as the cyclosome) (APC/C). The APC/C is a multi-subunit cullin-RING E3 ubiquitin ligase that regulates progression through the mitotic phase of the cell cycle and controls entry into S phase by catalysing the ubiquitylation of cyclins and other cell cycle regulatory proteins. Selection of APC/C targets is controlled through recognition of short destruction motifs, predominantly the D-box and KEN-box. APC/C-mediated coordination of cell cycle progression is achieved through the temporal regulation of APC/C activity and substrate specificity, exerted through a combination of co-activator subunits, reversible phosphorylation and inhibitory proteins and complexes. The aim of this article is to discuss the APC/C from a structural and mechanistic perspective. Although an atomic structure of the APC/C is still lacking, a combination of genetic, biochemical, electron microscopy studies of intact APC/C and crystallographic analysis of individual subunits, together with analogies to evolutionarily related E3 ligases of the RING family, has provided deep insights into the molecular mechanisms of catalysis and substrate recognition, and structural organisation of the APC/C.
Collapse
|
72
|
Zeng X, Sigoillot F, Gaur S, Choi S, Pfaff KL, Oh DC, Hathaway N, Dimova N, Cuny GD, King RW. Pharmacologic inhibition of the anaphase-promoting complex induces a spindle checkpoint-dependent mitotic arrest in the absence of spindle damage. Cancer Cell 2010; 18:382-95. [PMID: 20951947 PMCID: PMC2957475 DOI: 10.1016/j.ccr.2010.08.010] [Citation(s) in RCA: 242] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 07/01/2010] [Accepted: 08/10/2010] [Indexed: 12/13/2022]
Abstract
Microtubule inhibitors are important cancer drugs that induce mitotic arrest by activating the spindle assembly checkpoint (SAC), which, in turn, inhibits the ubiquitin ligase activity of the anaphase-promoting complex (APC). Here, we report a small molecule, tosyl-L-arginine methyl ester (TAME), which binds to the APC and prevents its activation by Cdc20 and Cdh1. A prodrug of TAME arrests cells in metaphase without perturbing the spindle, but nonetheless the arrest is dependent on the SAC. Metaphase arrest induced by a proteasome inhibitor is also SAC dependent, suggesting that APC-dependent proteolysis is required to inactivate the SAC. We propose that mutual antagonism between the APC and the SAC yields a positive feedback loop that amplifies the ability of TAME to induce mitotic arrest.
Collapse
Affiliation(s)
- Xing Zeng
- Department of Cell Biology, 240 Longwood Ave, Harvard Medical School, Boston, MA
| | - Frederic Sigoillot
- Department of Cell Biology, 240 Longwood Ave, Harvard Medical School, Boston, MA
| | - Shantanu Gaur
- Department of Cell Biology, 240 Longwood Ave, Harvard Medical School, Boston, MA
| | - Sungwoon Choi
- Laboratory for Drug Discovery in Neurodegeneration, Brigham & Women's Hospital and Harvard Medical School, 65 Landsdowne St, Cambridge, MA
| | - Kathleen L. Pfaff
- Department of Cell Biology, 240 Longwood Ave, Harvard Medical School, Boston, MA
| | - Dong-Chan Oh
- Department of Biological Chemistry and Molecular Pharmacology, 240 Longwood Ave, Harvard Medical School, Boston, MA
- Natural Products Research Institute, College of Pharmacy, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Nathaniel Hathaway
- Department of Cell Biology, 240 Longwood Ave, Harvard Medical School, Boston, MA
| | - Nevena Dimova
- Department of Cell Biology, 240 Longwood Ave, Harvard Medical School, Boston, MA
| | - Gregory D. Cuny
- Laboratory for Drug Discovery in Neurodegeneration, Brigham & Women's Hospital and Harvard Medical School, 65 Landsdowne St, Cambridge, MA
| | - Randall W. King
- Department of Cell Biology, 240 Longwood Ave, Harvard Medical School, Boston, MA
- Correspondence:
| |
Collapse
|
73
|
The APC/C subunit Cdc16/Cut9 is a contiguous tetratricopeptide repeat superhelix with a homo-dimer interface similar to Cdc27. EMBO J 2010; 29:3733-44. [PMID: 20924356 DOI: 10.1038/emboj.2010.247] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 09/14/2010] [Indexed: 12/20/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase responsible for controlling cell cycle transitions, is a multisubunit complex assembled from 13 different proteins. Numerous APC/C subunits incorporate multiple copies of the tetratricopeptide repeat (TPR). Here, we report the crystal structure of Schizosaccharomyces pombe Cut9 (Cdc16/Apc6) in complex with Hcn1 (Cdc26), showing that Cdc16/Cut9 is a contiguous TPR superhelix of 14 TPR units. A C-terminal block of TPR motifs interacts with Hcn1, whereas an N-terminal TPR block mediates Cdc16/Cut9 self-association through a homotypic interface. This dimer interface is structurally related to the N-terminal dimerization domain of Cdc27, demonstrating that both Cdc16/Cut9 and Cdc27 form homo-dimers through a conserved mechanism. The acetylated N-terminal Met residue of Hcn1 is enclosed within a chamber created from the Cut9 TPR superhelix. Thus, in complex with Cdc16/Cut9, the N-acetyl-Met residue of Hcn1, a putative degron for the Doa10 E3 ubiquitin ligase, is inaccessible for Doa10 recognition, protecting Hcn1/Cdc26 from ubiquitin-dependent degradation. This finding may provide a structural explanation for a mechanism to control the stoichiometry of proteins participating in multisubunit complexes.
Collapse
|
74
|
van Zon W, Ogink J, ter Riet B, Medema RH, te Riele H, Wolthuis RMF. The APC/C recruits cyclin B1-Cdk1-Cks in prometaphase before D box recognition to control mitotic exit. ACTA ACUST UNITED AC 2010; 190:587-602. [PMID: 20733055 PMCID: PMC2928021 DOI: 10.1083/jcb.200912084] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Prior associations with the APC/C complex during prometaphase makes cyclin B1 a better substrate for the cell cycle–regulating ubiquitin ligase in metaphase (see also a related paper by Di Fiore et al. in this issue). The ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) is activated at prometaphase by mitotic phosphorylation and binding of its activator, Cdc20. This initiates cyclin A degradation, whereas cyclin B1 is stabilized by the spindle checkpoint. Upon checkpoint release, the RXXL destruction box (D box) was proposed to direct cyclin B1 to core APC/C or Cdc20. In this study, we report that endogenous cyclin B1–Cdk1 is recruited to checkpoint-inhibited, phosphorylated APC/C in prometaphase independently of Cdc20 or the cyclin B1 D box. Like cyclin A, cyclin B1 binds the APC/C by the Cdk cofactor Cks and the APC3 subunit. Prior binding to APC/CCdc20 makes cyclin B1 a better APC/C substrate in metaphase, driving mitotic exit and cytokinesis. We conclude that in prometaphase, the phosphorylated APC/C can recruit both cyclin A and cyclin B1 in a Cks-dependent manner. This suggests that the spindle checkpoint blocks D box recognition of APC/C-bound cyclin B1, whereas distinctive complexes between the N terminus of cyclin A and Cdc20 evade checkpoint control.
Collapse
Affiliation(s)
- Wouter van Zon
- Division of Molecular Biology and 2 Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | | | | | | | | |
Collapse
|
75
|
Tang W, Wu JQ, Chen C, Yang CS, Guo JY, Freel CD, Kornbluth S. Emi2-mediated inhibition of E2-substrate ubiquitin transfer by the anaphase-promoting complex/cyclosome through a D-box-independent mechanism. Mol Biol Cell 2010; 21:2589-97. [PMID: 20534816 PMCID: PMC2912346 DOI: 10.1091/mbc.e09-08-0708] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) inhibitor Emi2 contains a destruction box (D-box) found in APC/C substrates, but does not appear to inhibit the APC/C by a “pseudosubstrate” mechanism. Rather, it inhibits transfer of ubiquitin from the E2 to substrates. The D-box promotes Emi2-APC/C association, but the zinc-binding region plays the critical role in APC/C inhibition. Vertebrate eggs are arrested at Metaphase II by Emi2, the meiotic anaphase-promoting complex/cyclosome (APC/C) inhibitor. Although the importance of Emi2 during oocyte maturation has been widely recognized and its regulation extensively studied, its mechanism of action remained elusive. Many APC/C inhibitors have been reported to act as pseudosubstrates, inhibiting the APC/C by preventing substrate binding. Here we show that a previously identified zinc-binding region is critical for the function of Emi2, whereas the D-box is largely dispensable. We further demonstrate that instead of acting through a “pseudosubstrate” mechanism as previously hypothesized, Emi2 can inhibit Cdc20-dependent activation of the APC/C substoichiometrically, blocking ubiquitin transfer from the ubiquitin-charged E2 to the substrate. These findings provide a novel mechanism of APC/C inhibition wherein the final step of ubiquitin transfer is targeted and raise the interesting possibility that APC/C is inhibited by Emi2 in a catalytic manner.
Collapse
Affiliation(s)
- Wanli Tang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
76
|
Kops GJPL, van der Voet M, van der Voet M, Manak MS, van Osch MHJ, Naini SM, Brear A, McLeod IX, Hentschel DM, Yates JR, van den Heuvel S, Shah JV. APC16 is a conserved subunit of the anaphase-promoting complex/cyclosome. J Cell Sci 2010; 123:1623-33. [PMID: 20392738 DOI: 10.1242/jcs.061549] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Error-free chromosome segregation depends on timely activation of the multi-subunit E3 ubiquitin ligase APC/C. Activation of the APC/C initiates chromosome segregation and mitotic exit by targeting critical cell-cycle regulators for destruction. The APC/C is the principle target of the mitotic checkpoint, which prevents segregation while chromosomes are unattached to spindle microtubules. We now report the identification and characterization of APC16, a conserved subunit of the APC/C. APC16 was found in association with tandem-affinity-purified mitotic checkpoint complex protein complexes. APC16 is a bona fide subunit of human APC/C: it is present in APC/C complexes throughout the cell cycle, the phenotype of APC16-depleted cells copies depletion of other APC/C subunits, and APC16 is important for APC/C activity towards mitotic substrates. APC16 sequence homologues can be identified in metazoans, but not fungi, by four conserved primary sequence stretches. We provide evidence that the C. elegans gene K10D2.4 and the D. rerio gene zgc:110659 are functional equivalents of human APC16. Our findings show that APC/C is composed of previously undescribed subunits, and raise the question of why metazoan APC/C is molecularly different from unicellular APC/C.
Collapse
Affiliation(s)
- Geert J P L Kops
- Department of Physiological Chemistry and Cancer Genomics Centre, UMC Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Zhang Z, Roe SM, Diogon M, Kong E, El Alaoui H, Barford D. Molecular structure of the N-terminal domain of the APC/C subunit Cdc27 reveals a homo-dimeric tetratricopeptide repeat architecture. J Mol Biol 2010; 397:1316-28. [PMID: 20206185 DOI: 10.1016/j.jmb.2010.02.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 02/19/2010] [Accepted: 02/24/2010] [Indexed: 01/20/2023]
Abstract
The anaphase promoting complex/cyclosome (APC/C) is a large multi-subunit E3 ubiquitin ligase that targets specific cell cycle regulatory proteins for ubiquitin-dependent degradation, thereby controlling cell cycle events such as the metaphase to anaphase transition and the exit from mitosis. Biochemical and genetic studies are consistent with the notion that subunits of APC/C are organised into two distinct sub-complexes; a catalytic sub-complex including the cullin domain and RING finger subunits Apc2 and Apc11, respectively, and a tetratricopeptide repeat (TPR) sub-complex composed of the TPR subunits Cdc16, Cdc23 and Cdc27 (Apc3). Here, we describe the crystal structure of the N-terminal domain of Encephalitozoon cuniculi Cdc27 (Cdc27(Nterm)), revealing a homo-dimeric structure, composed predominantly of successive TPR motifs. Mutation of the Cdc27(Nterm) dimer interface destabilises the protein, disrupts dimerisation in solution, and abolishes the capacity of E. cuniculi Cdc27 to complement Saccharomyces cerevisiae Cdc27 in vivo. These results establish the existence of functional APC/C genes in E. cuniculi, the evolutionarily conserved dimeric properties of Cdc27, and provide a framework for understanding the architecture of full-length Cdc27.
Collapse
Affiliation(s)
- Ziguo Zhang
- Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | | | | | | | | | | |
Collapse
|
78
|
Xu Y, Cao H, Chong K. APC-targeted RAA1 degradation mediates the cell cycle and root development in plants. PLANT SIGNALING & BEHAVIOR 2010; 5:218-23. [PMID: 20037474 PMCID: PMC2881264 DOI: 10.4161/psb.5.3.10661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Protein degradation by the ubiquitin-proteasome system is necessary for a normal cell cycle. As compared with knowledge of the mechanism in animals and yeast, that in plants is less known. Here we summarize research into the regulatory mechanism of protein degradation in the cell cycle in plants. Anaphase-promoting complex/cyclosome (APC), in the E3 family of enzymes, plays an important role in maintaining normal mitosis. APC activation and substrate specificity is determined by its activators, which can recognize the destruction box (D-box) in APC target proteins. Oryza sativa root architecture-associated 1 (OsRAA1) with GTP-binding activity was originally cloned from rice. Overexpression of of OsRAA1 inhibits the growth of primary roots in rice. Knockdown lines showed reduced height of seedlings because of abnormal cell division. OsRAA1 transgenic rice and fission yeast show a higher proportion of metaphase cells than that of controls, which suggests a blocked transition from metaphase to anaphase during mitosis. OsRAA1 co-localizes with spindle tubulin. It contains the D-box motif and interacts with OsRPT4 of the regulatory particle of 26S proteasome. OsRAA1 may be a cell cycle inhibitor that can be degraded by the ubiquitin-proteasome system, and its disruption is necessary for the transition from metaphase to anaphase during root growth in rice.
Collapse
Affiliation(s)
- Yunyuan Xu
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| | | | | |
Collapse
|
79
|
Matyskiela ME, Rodrigo-Brenni MC, Morgan DO. Mechanisms of ubiquitin transfer by the anaphase-promoting complex. J Biol 2010; 8:92. [PMID: 19874575 PMCID: PMC2790831 DOI: 10.1186/jbiol184] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The anaphase-promoting complex (APC) is a ubiquitin-protein ligase required for the completion of mitosis in all eukaryotes. Recent mechanistic studies reveal how this remarkable enzyme combines specificity in substrate binding with flexibility in ubiquitin transfer, thereby allowing the modification of multiple lysines on the substrate as well as specific lysines on ubiquitin itself.
Collapse
Affiliation(s)
- Mary E Matyskiela
- Department of Physiology, University of California, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
80
|
Sigl R, Wandke C, Rauch V, Kirk J, Hunt T, Geley S. Loss of the mammalian APC/C activator FZR1 shortens G1 and lengthens S phase but has little effect on exit from mitosis. J Cell Sci 2009; 122:4208-17. [DOI: 10.1242/jcs.054197] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is essential for progression through mitosis. At anaphase onset, the APC/C requires the activator protein CDC20 to target securin and cyclin B1 for proteasome-dependent degradation, but then depends on the CDC20-related protein FZR1 (also known as CDH1) to remain active until the onset of the next S phase. To investigate the role of FZR1 in mammalian cells, we used RNAi in human cell lines and conditional gene targeting in mouse embryonic fibroblasts. In neither case was FZR1 required for exit from mitosis, but in cells lacking FZR1, the G1 phase was shortened and the S phase was prolonged. In several normal and transformed human cell lines, loss of FZR1 function induced DNA-damage responses and impaired proliferation independently of the p53 status. Constitutive knockdown of p53 in U2OS cells with inducible FZR1 siRNA also failed to restore their proliferative capacity. Thus, the proliferation defects are a direct consequence of the genetic damage inflicted by loss of FZR1 function and are largely independent of p53. In summary, mammalian FZR1 is not required for the completion of mitosis, but is an important regulator of G1 phase and is required for efficient DNA replication in human and mouse somatic cells.
Collapse
Affiliation(s)
- Reinhard Sigl
- Division of Molecular Pathophysiology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Cornelia Wandke
- Division of Molecular Pathophysiology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Veronika Rauch
- Division of Molecular Pathophysiology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Jane Kirk
- Clare Hall Laboratories, Cancer Research UK, South Mimms, England, UK
| | - Tim Hunt
- Clare Hall Laboratories, Cancer Research UK, South Mimms, England, UK
| | - Stephan Geley
- Division of Molecular Pathophysiology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
81
|
Wang J, Dye BT, Rajashankar KR, Kurinov I, Schulman BA. Insights into anaphase promoting complex TPR subdomain assembly from a CDC26-APC6 structure. Nat Struct Mol Biol 2009; 16:987-9. [PMID: 19668213 PMCID: PMC2759704 DOI: 10.1038/nsmb.1645] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 06/29/2009] [Indexed: 12/15/2022]
Abstract
The multi-subunit Anaphase Promoting Complex (APC) is an essential cell cycle regulator. Although CDC26 is known to play a role in APC assembly, its molecular function has remained unclear. Biophysical, structural, and genetic studies presented here reveal that CDC26 stabilizes the structure of APC6, a core TPR protein required for APC integrity. Interestingly, CDC26–APC6 association involves an intermolecular TPR mimic composed of one helix from each protein.
Collapse
Affiliation(s)
- Jing Wang
- Departments of Structural Biology and Genetics/Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | | |
Collapse
|
82
|
Abstract
In a recent issue of Molecular Cell, Matyskiela and Morgan (2009) identify the sites on the APC/C that are required for activation and substrate binding, providing insights into how the APC/C works, with implications for the spindle assembly checkpoint that regulates it.
Collapse
|
83
|
Rape M. Ubiquitin, infinitely seductive: symposium on the many faces of ubiquitin. EMBO Rep 2009; 10:558-62. [PMID: 19465892 DOI: 10.1038/embor.2009.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 04/16/2009] [Indexed: 11/09/2022] Open
Affiliation(s)
- Michael Rape
- Department of Molecular and Cell Biology, 522 Barker Hall, University of California at Berkeley, Berkeley, California 94720-3202, USA.
| |
Collapse
|
84
|
Venturini L, You J, Stadler M, Galien R, Lallemand V, Koken MH, Mattei MG, Ganser A, Chambon P, Losson R, de Thé H. TIF1gamma, a novel member of the transcriptional intermediary factor 1 family. Oncogene 1999; 32:4622-33. [PMID: 23160376 PMCID: PMC3882591 DOI: 10.1038/onc.2012.501] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 09/20/2012] [Accepted: 09/21/2012] [Indexed: 12/23/2022]
Abstract
The Anaphase-Promoting Complex/Cyclosome (APC/C) is an ubiquitin ligase that functions during mitosis. Here we identify the transcriptional regulator, Transcriptional Intermediary Factor 1γ, TIF1γ as an APC/C-interacting protein that regulates APC/C function. TIF1γ is not a substrate for APC/C-dependent ubiquitylation but instead, associates specifically with the APC/C holoenzyme and Cdc20 to affect APC/C activity and progression through mitosis. RNA interference studies indicate that TIF1γ knockdown results in a specific reduction in APC/C ubiquitin ligase activity, the stabilization of APC/C substrates, and an increase in the time taken for cells to progress through mitosis from nuclear envelope breakdown (NEBD) to anaphase. TIF1γ knockdown cells are also characterized by the inappropriate presence of cyclin A at metaphase, and an increase in the number of cells that fail to undergo metaphase-to-anaphase transition. Expression of a siRNA-resistant TIF1γ species relieves the mitotic phenotype imposed by TIF1γ knockdown and allows for mitotic progression. Binding studies indicate that TIF1γ is also a component of the APC/C-Mitotic Checkpoint Complex (MCC), but is not required for MCC dissociation from the APC/C once the Spindle Assembly Checkpoint (SAC) is satisfied. TIF1γ inactivation also results in chromosome misalignment at metaphase, and SAC activation; inactivation of the SAC relieves the mitotic block imposed by TIF1γ knockdown. Together these data define novel functions for TIF1γ during mitosis and suggest that a reduction in APC/C ubiquitin ligase activity promotes SAC activation.
Collapse
Affiliation(s)
- L Venturini
- Centre National de la Recherche Scientifique, Unité Propre de Recherche 9051, Laboratoire Associé au Comité de Paris de la Ligue contre le Cancer, Hôpital St. Louis, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|