51
|
Ushioda R, Nagata K. Redox-Mediated Regulatory Mechanisms of Endoplasmic Reticulum Homeostasis. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033910. [PMID: 30396882 DOI: 10.1101/cshperspect.a033910] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle responsible for many cellular functions in eukaryotic cells. Proper redox conditions in the ER are necessary for the functions of many luminal pathways and the maintenance of homeostasis. The redox environment in the ER is oxidative compared with that of the cytosol, and a network of oxidoreductases centering on the protein disulfide isomerase (PDI)-Ero1α hub complex is constructed for efficient electron transfer. Although these oxidizing environments are advantageous for oxidative folding for protein maturation, electron transfer is strictly controlled by Ero1α structurally and spatially. The ER redox environment shifts to a reductive environment under certain stress conditions. In this review, we focus on the reducing reactions that maintain ER homeostasis and introduce their significance in an oxidative ER environment.
Collapse
Affiliation(s)
- Ryo Ushioda
- Laboratory of Molecular and Cellular Biology, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Kazuhiro Nagata
- Laboratory of Molecular and Cellular Biology, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto 603-8555, Japan
| |
Collapse
|
52
|
Apostolou E, Moustardas P, Iwawaki T, Tzioufas AG, Spyrou G. Ablation of the Chaperone Protein ERdj5 Results in a Sjögren's Syndrome-Like Phenotype in Mice, Consistent With an Upregulated Unfolded Protein Response in Human Patients. Front Immunol 2019; 10:506. [PMID: 30967862 PMCID: PMC6438897 DOI: 10.3389/fimmu.2019.00506] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/25/2019] [Indexed: 12/21/2022] Open
Abstract
Objective: Sjögren's syndrome (SS) is a chronic autoimmune disorder that affects mainly the exocrine glands. Endoplasmic reticulum (ER) stress proteins have been suggested to participate in autoimmune and inflammatory responses, either acting as autoantigens, or by modulating factors of inflammation. The chaperone protein ERdj5 is an ER-resident disulfide reductase, required for the translocation of misfolded proteins during ER-associated protein degradation. In this study we investigated the role of ERdj5 in the salivary glands (SGs), in association with inflammation and autoimmunity. Methods:In situ expression of ERdj5 and XBP1 activation were studied immunohistochemically in minor SG tissues from primary SS patients and non-SS sicca-complaining controls. We used the mouse model of ERdj5 ablation and characterized its features: Histopathological, serological (antinuclear antibodies and cytokine levels), and functional (saliva flow rate). Results: ERdj5 was highly expressed in the minor SGs of SS patients, with stain intensity correlated to inflammatory lesion severity and anti-SSA/Ro positivity. Moreover, SS patients demonstrated higher XBP1 activation within the SGs. Remarkably, ablation of ERdj5 in mice conveyed many of the cardinal features of SS, like spontaneous inflammation in SGs with infiltrating T and B lymphocytes, distinct cytokine signature, excessive cell death, reduced saliva flow, and production of anti-SSA/Ro and anti-SSB/La autoantibodies. Notably, these features were more pronounced in female mice. Conclusions: Our findings suggest a critical connection between the function of the ER chaperone protein ERdj5 and autoimmune inflammatory responses in the SGs and provide evidence for a new, potent animal model of SS.
Collapse
Affiliation(s)
- Eirini Apostolou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Academic Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros Moustardas
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Athanasios G Tzioufas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Academic Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Giannis Spyrou
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
53
|
Hughes S, Vrinds I, de Roo J, Francke C, Shimeld SM, Woollard A, Sato A. DnaJ chaperones contribute to canalization. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2019; 331:201-212. [PMID: 30653842 DOI: 10.1002/jez.2254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/04/2023]
Abstract
Canalization, an intrinsic robustness of development to external (environmental) or internal (genetic) perturbations, was first proposed over half a century ago. However, whether the robustness to environmental stress (environmental canalization [EC]) and to genetic variation (genetic canalization) are underpinned by the same molecular basis remains elusive. The recent discovery of the involvement of two endoplasmic reticulum (ER)-associated DnaJ genes in developmental buffering, orthologues of which are conserved across Metazoa, indicates that the role of ER-associated DnaJ genes might be conserved across the animal kingdom. To test this, we surveyed the ER-associated DnaJ chaperones in the nematode Caenorhabditis elegans. We then quantified the phenotype, in the form of variance and mean of seam cell counts, from RNA interference knockdown of DnaJs under three different temperatures. We find that seven out of eight ER-associated DnaJs are involved in either EC or microenvironmental canalization. Moreover, we also found two DnaJ genes not specifically associated with ER (DNAJC2/dnj-11 and DNAJA2/dnj-19) were involved in canalization. Protein expression pattern showed that these DnaJs are upregulated by heat stress, yet not all of them are expressed in the seam cells. Moreover, we found that most of the buffering DnaJs also control lifespan. We therefore concluded that a number of DnaJ chaperones, not limited to those associated with the ER, are involved in canalization as a part of the complex system that underlies development.
Collapse
Affiliation(s)
- Samantha Hughes
- HAN BioCentre, HAN University of Applied Science, Isnstitute of Applied Biosciences and Chemistry, Nijmegen, The Netherlands
| | - Inge Vrinds
- HAN BioCentre, HAN University of Applied Science, Isnstitute of Applied Biosciences and Chemistry, Nijmegen, The Netherlands
| | - Joris de Roo
- HAN BioCentre, HAN University of Applied Science, Isnstitute of Applied Biosciences and Chemistry, Nijmegen, The Netherlands
| | - Christof Francke
- HAN BioCentre, HAN University of Applied Science, Isnstitute of Applied Biosciences and Chemistry, Nijmegen, The Netherlands
| | | | - Alison Woollard
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Atsuko Sato
- Department of Biology, Ochanomizu University, Tokyo, Japan
- Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
54
|
Thomas R, Kermode AR. Enzyme enhancement therapeutics for lysosomal storage diseases: Current status and perspective. Mol Genet Metab 2019; 126:83-97. [PMID: 30528228 DOI: 10.1016/j.ymgme.2018.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 01/28/2023]
Abstract
Small-molecule- enzyme enhancement therapeutics (EETs) have emerged as attractive agents for the treatment of lysosomal storage diseases (LSDs), a broad group of genetic diseases caused by mutations in genes encoding lysosomal enzymes, or proteins required for lysosomal function. The underlying enzyme deficiencies characterizing LSDs cause a block in the stepwise degradation of complex macromolecules (e.g. glycosaminoglycans, glycolipids and others), such that undegraded or partially degraded substrates progressively accumulate in lysosomal and non-lysosomal compartments, a process leading to multisystem pathology via primary and secondary mechanisms. Missense mutations underlie many of the LSDs; the resultant mutant variant enzyme hydrolase is often impaired in its folding and maturation making it subject to rapid disposal by endoplasmic reticulum (ER)-associated degradation (ERAD). Enzyme deficiency in the lysosome is the result, even though the mutant enzyme may retain significant catalytic functioning. Small molecule modulators - pharmacological chaperones (PCs), or proteostasis regulators (PRs) are being identified through library screens and computational tools, as they may offer a less costly approach than enzyme replacement therapy (ERT) for LSDs, and potentially treat neuronal forms of the diseases. PCs, capable of directly stabilizing the mutant protein, and PRs, which act on other cellular elements to enhance protein maturation, both allow a proportion of the synthesized variant protein to reach the lysosome and function. Proof-of-principle for PCs and PRs as therapeutic agents has been demonstrated for several LSDs, yet definitive data of their efficacy in disease models and/or in downstream clinical studies in many cases has yet to be achieved. Basic research to understand the cellular consequences of protein misfolding such as perturbed organellar crosstalk, redox status, and calcium balance is needed. Likewise, an elucidation of the early in cellulo pathogenic events underlying LSDs is vital and may lead to the discovery of new small molecule modulators and/or to other therapeutic approaches for driving proteostasis toward protein rescue.
Collapse
Affiliation(s)
- Ryan Thomas
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby B.C. V5A 1S6, Canada
| | - Allison R Kermode
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby B.C. V5A 1S6, Canada.
| |
Collapse
|
55
|
Javitt G, Grossman‐Haham I, Alon A, Resnick E, Mutsafi Y, Ilani T, Fass D. cis-Proline mutants of quiescin sulfhydryl oxidase 1 with altered redox properties undermine extracellular matrix integrity and cell adhesion in fibroblast cultures. Protein Sci 2019; 28:228-238. [PMID: 30367560 PMCID: PMC6295897 DOI: 10.1002/pro.3537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 11/13/2022]
Abstract
The thioredoxin superfamily has expanded and diverged extensively throughout evolution such that distant members no longer show appreciable sequence homology. Nevertheless, redox-active thioredoxin-fold proteins functioning in diverse physiological contexts often share canonical amino acids near the active-site (di-)cysteine motif. Quiescin sulfhydryl oxidase 1 (QSOX1), a catalyst of disulfide bond formation secreted by fibroblasts, is a multi-domain thioredoxin superfamily enzyme with certain similarities to the protein disulfide isomerase (PDI) enzymes. Among other potential functions, QSOX1 supports extracellular matrix assembly in fibroblast cultures. We introduced mutations at a cis-proline in QSOX1 that is conserved across the thioredoxin superfamily and was previously observed to modulate redox interactions of the bacterial enzyme DsbA. The resulting QSOX1 variants showed a striking detrimental effect when added exogenously to fibroblasts: they severely disrupted the extracellular matrix and cell adhesion, even in the presence of naturally secreted, wild-type QSOX1. The specificity of this phenomenon for particular QSOX1 mutants inspired an investigation of the effects of mutation on catalytic and redox properties. For a series of QSOX1 mutants, the detrimental effect correlated with the redox potential of the first redox-active site, and an X-ray crystal structure of one of the mutants revealed the reorganization of the cis-proline loop caused by the mutations. Due to the conservation of the mutated residues across the PDI family and beyond, insights obtained in this study may be broadly applicable to a variety of physiologically important redox-active enzymes. IMPACT STATEMENT: We show that mutation of a conserved cis-proline amino acid, analogous to a mutation used to trap substrates of a bacterial disulfide catalyst, has a dramatic effect on the physiological function of the mammalian disulfide catalyst QSOX1. As the active-site region of QSOX1 is shared with the large family of protein disulfide isomerases in humans, the effects of such mutations on redox properties, enzymatic activity, and biological targeting may be relevant across the family.
Collapse
Affiliation(s)
- Gabriel Javitt
- Department of Structural BiologyWeizmann Institute of ScienceRehovot7610001Israel
| | - Iris Grossman‐Haham
- Department of Structural BiologyWeizmann Institute of ScienceRehovot7610001Israel
| | - Assaf Alon
- Department of Structural BiologyWeizmann Institute of ScienceRehovot7610001Israel
| | - Efrat Resnick
- Department of Structural BiologyWeizmann Institute of ScienceRehovot7610001Israel
| | - Yael Mutsafi
- Department of Structural BiologyWeizmann Institute of ScienceRehovot7610001Israel
| | - Tal Ilani
- Department of Structural BiologyWeizmann Institute of ScienceRehovot7610001Israel
| | - Deborah Fass
- Department of Structural BiologyWeizmann Institute of ScienceRehovot7610001Israel
| |
Collapse
|
56
|
Pobre KFR, Poet GJ, Hendershot LM. The endoplasmic reticulum (ER) chaperone BiP is a master regulator of ER functions: Getting by with a little help from ERdj friends. J Biol Chem 2018; 294:2098-2108. [PMID: 30563838 DOI: 10.1074/jbc.rev118.002804] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The endoplasmic reticulum (ER) represents the entry point into the secretory pathway where nascent proteins encounter a specialized environment for their folding and maturation. Inherent to these processes is a dedicated quality-control system that detects proteins that fail to mature properly and targets them for cytosolic degradation. An imbalance in protein folding and degradation can result in the accumulation of unfolded proteins in the ER, resulting in the activation of a signaling cascade that restores proper homeostasis in this organelle. The ER heat shock protein 70 (Hsp70) family member BiP is an ATP-dependent chaperone that plays a critical role in these processes. BiP interacts with specific ER-localized DnaJ family members (ERdjs), which stimulate BiP's ATP-dependent substrate interactions, with several ERdjs also binding directly to unfolded protein clients. Recent structural and biochemical studies have provided detailed insights into the allosteric regulation of client binding by BiP and have enhanced our understanding of how specific ERdjs enable BiP to perform its many functions in the ER. In this review, we discuss how BiP's functional cycle and interactions with ERdjs enable it to regulate protein homeostasis in the ER and ensure protein quality control.
Collapse
Affiliation(s)
- Kristine Faye R Pobre
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Greg J Poet
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Linda M Hendershot
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
57
|
Fujimoto T, Inaba K, Kadokura H. Methods to identify the substrates of thiol-disulfide oxidoreductases. Protein Sci 2018; 28:30-40. [PMID: 30341785 DOI: 10.1002/pro.3530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 01/08/2023]
Abstract
The formation of a disulfide bond is a critical step in the folding of numerous secretory and membrane proteins and catalyzed in vivo. A variety of mechanisms and protein structures have evolved to catalyze oxidative protein folding. Those enzymes that directly interact with a folding protein to accelerate its oxidative folding are mostly thiol-disulfide oxidoreductases that belong to the thioredoxin superfamily. The enzymes of this class often use a CXXC active-site motif embedded in their thioredoxin-like fold to promote formation, isomerization, and reduction of a disulfide bond in their target proteins. Over the past decade or so, an increasing number of substrates of the thiol-disulfide oxidoreductases that are present in the ER of mammalian cells have been discovered, revealing that the enzymes play unexpectedly diverse physiological functions. However, functions of some of these enzymes still remain unclear due to the lack of information on their substrates. Here, we review the methods used by researchers to identify the substrates of these enzymes and provide data that show the importance of using trichloroacetic acid in sample preparation for the substrate identification, hoping to aid future studies. We particularly focus on successful studies that have uncovered physiological substrates and functions of the enzymes in the periplasm of Gram-negative bacteria and the endoplasmic reticulum of mammalian cells. Similar approaches should be applicable to enzymes in other cellular compartments or in other organisms.
Collapse
Affiliation(s)
- Takushi Fujimoto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Hiroshi Kadokura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| |
Collapse
|
58
|
Fujimoto T, Nakamura O, Saito M, Tsuru A, Matsumoto M, Kohno K, Inaba K, Kadokura H. Identification of the physiological substrates of PDIp, a pancreas-specific protein-disulfide isomerase family member. J Biol Chem 2018; 293:18421-18433. [PMID: 30315102 DOI: 10.1074/jbc.ra118.003694] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/10/2018] [Indexed: 11/06/2022] Open
Abstract
About 20 members of the protein-disulfide isomerase (PDI) family are present in the endoplasmic reticulum of mammalian cells. They are thought to catalyze thiol-disulfide exchange reactions within secretory or membrane proteins to assist in their folding or to regulate their functions. PDIp is a PDI family member highly expressed in the pancreas and known to bind estrogen in vivo and in vitro However, the physiological functions of PDIp remained unclear. In this study, we set out to identify its physiological substrates. By combining acid quenching and thiol alkylation, we stabilized and purified the complexes formed between endogenous PDIp and its target proteins from the mouse pancreas. MS analysis of these complexes helped identify the disulfide-linked PDIp targets in vivo, revealing that PDIp interacts directly with a number of pancreatic digestive enzymes. Interestingly, when pancreatic elastase, one of the identified proteins, was expressed alone in cultured cells, its proenzyme formed disulfide-linked aggregates within cells. However, when pancreatic elastase was co-expressed with PDIp, the latter prevented the formation of these aggregates and enhanced the production and secretion of proelastase in a form that could be converted to an active enzyme upon trypsin treatment. These findings indicate that the main targets of PDIp are digestive enzymes and that PDIp plays an important role in the biosynthesis of a digestive enzyme by assisting with the proper folding of the proenzyme within cells.
Collapse
Affiliation(s)
- Takushi Fujimoto
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Orie Nakamura
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Michiko Saito
- the Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.,the Bio-science Research Center, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607-8412, Japan
| | - Akio Tsuru
- the Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Masaki Matsumoto
- the Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kenji Kohno
- the Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.,the Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan, and
| | - Kenji Inaba
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,CREST, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Hiroshi Kadokura
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan,
| |
Collapse
|
59
|
Chawsheen HA, Ying Q, Jiang H, Wei Q. A critical role of the thioredoxin domain containing protein 5 (TXNDC5) in redox homeostasis and cancer development. Genes Dis 2018; 5:312-322. [PMID: 30591932 PMCID: PMC6303481 DOI: 10.1016/j.gendis.2018.09.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022] Open
Abstract
Correct folding of nascent peptides occurs in the endoplasmic reticulum (ER). It is a complicate process primarily accomplished by the coordination of multiple redox proteins including members of the protein disulfide isomerase (PDI) family. As a critical member of the PDI family, thioredoxin domain containing protein 5 (TXNDC5) assists the folding of newly synthesized peptides to their mature form through series of disulfide bond exchange reactions. Interestingly, TXNDC5 is frequently found overexpressed in specimens of many human diseases including various types of cancer. In this review, we summarized the biochemical function of TXNDC5 in mammalian cells and the recent progress on the understanding of its role and molecular mechanisms in cancer development. Findings of TXNDC5 in the activation of intracellular signaling pathways, stimulation of cell growth & proliferation, facilitation of cell survival and modulation of extracellular matrix to affect cancer cell invasion and metastasis are reviewed. These published studies suggest that strategies of targeting TXNDC5 can be developed as potentially valuable methods for the treatment of certain types of cancer in patients.
Collapse
Affiliation(s)
- Hedy A Chawsheen
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Qi Ying
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Hong Jiang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Qiou Wei
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA.,Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
60
|
The reductase TMX1 contributes to ERAD by preferentially acting on membrane-associated folding-defective polypeptides. Biochem Biophys Res Commun 2018; 503:938-943. [DOI: 10.1016/j.bbrc.2018.06.099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/19/2018] [Indexed: 11/22/2022]
|
61
|
Roberts BS, Babilonia-Rosa MA, Broadwell LJ, Wu MJ, Neher SB. Lipase maturation factor 1 affects redox homeostasis in the endoplasmic reticulum. EMBO J 2018; 37:embj.201797379. [PMID: 30068531 DOI: 10.15252/embj.201797379] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 11/09/2022] Open
Abstract
Lipoprotein lipase (LPL) is a secreted lipase that clears triglycerides from the blood. Proper LPL folding and exit from the endoplasmic reticulum (ER) require lipase maturation factor 1 (LMF1), an ER-resident transmembrane protein, but the mechanism involved is unknown. We used proteomics to identify LMF1-binding partners necessary for LPL secretion in HEK293 cells and found these to include oxidoreductases and lectin chaperones, suggesting that LMF1 facilitates the formation of LPL's five disulfide bonds. In accordance with this role, we found that LPL aggregates in LMF1-deficient cells due to the formation of incorrect intermolecular disulfide bonds. Cells lacking LMF1 were hypersensitive to depletion of glutathione, but not DTT treatment, suggesting that LMF1 helps reduce the ER Accordingly, we found that loss of LMF1 results in a more oxidized ER Our data show that LMF1 has a broader role than simply folding lipases, and we identified fibronectin and the low-density lipoprotein receptor (LDLR) as novel LMF1 clients that contain multiple, non-sequential disulfide bonds. We conclude that LMF1 is needed for secretion of some ER client proteins that require reduction of non-native disulfides during their folding.
Collapse
Affiliation(s)
- Benjamin S Roberts
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa A Babilonia-Rosa
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lindsey J Broadwell
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ming Jing Wu
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Saskia B Neher
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
62
|
Abstract
The protein disulfide isomerase (PDI) family is a group of multifunctional endoplasmic reticulum (ER) enzymes that mediate the formation of disulfide bonds, catalyze the cysteine-based redox reactions and assist the quality control of client proteins. Recent structural and functional studies have demonstrated that PDI members not only play an essential role in the proteostasis in the ER but also exert diverse effects in numerous human disorders including cancer and neurodege-nerative diseases. Increasing evidence suggests that PDI is actively involved in the proliferation, survival, and metastasis of several types of cancer cells. Although the molecular mechanism by which PDI contributes to tumorigenesis and metastasis remains to be understood, PDI is now emerging as a new therapeutic target for cancer treatment. In fact, several attempts have been made to develop PDI inhibitors as anti-cancer drugs. In this review, we discuss the properties and diverse functions of human PDI proteins and focus on recent findings regarding their roles in the state of diseases including cancer and neurodegeneration.
Collapse
Affiliation(s)
- Eunyoug Lee
- Department of Bio and Environmental Technology, Seoul Women's University, Seoul 01797, Korea
| | - Do Hee Lee
- Department of Bio and Environmental Technology, Seoul Women's University, Seoul 01797, Korea
| |
Collapse
|
63
|
Redox crosstalk at endoplasmic reticulum (ER) membrane contact sites (MCS) uses toxic waste to deliver messages. Cell Death Dis 2018; 9:331. [PMID: 29491367 PMCID: PMC5832433 DOI: 10.1038/s41419-017-0033-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 12/17/2022]
Abstract
Many cellular redox reactions housed within mitochondria, peroxisomes and the endoplasmic reticulum (ER) generate hydrogen peroxide (H2O2) and other reactive oxygen species (ROS). The contribution of each organelle to the total cellular ROS production is considerable, but varies between cell types and also over time. Redox-regulatory enzymes are thought to assemble at a “redox triangle” formed by mitochondria, peroxisomes and the ER, assembling “redoxosomes” that sense ROS accumulations and redox imbalances. The redoxosome enzymes use ROS, potentially toxic by-products made by some redoxosome members themselves, to transmit inter-compartmental signals via chemical modifications of downstream proteins and lipids. Interestingly, important components of the redoxosome are ER chaperones and oxidoreductases, identifying ER oxidative protein folding as a key ROS producer and controller of the tri-organellar membrane contact sites (MCS) formed at the redox triangle. At these MCS, ROS accumulations could directly facilitate inter-organellar signal transmission, using ROS transporters. In addition, ROS influence the flux of Ca2+ ions, since many Ca2+ handling proteins, including inositol 1,4,5 trisphosphate receptors (IP3Rs), SERCA pumps or regulators of the mitochondrial Ca2+ uniporter (MCU) are redox-sensitive. Fine-tuning of these redox and ion signaling pathways might be difficult in older organisms, suggesting a dysfunctional redox triangle may accompany the aging process.
Collapse
|
64
|
Ellgaard L, Sevier CS, Bulleid NJ. How Are Proteins Reduced in the Endoplasmic Reticulum? Trends Biochem Sci 2018; 43:32-43. [PMID: 29153511 PMCID: PMC5751730 DOI: 10.1016/j.tibs.2017.10.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022]
Abstract
The reversal of thiol oxidation in proteins within the endoplasmic reticulum (ER) is crucial for protein folding, degradation, chaperone function, and the ER stress response. Our understanding of this process is generally poor but progress has been made. Enzymes performing the initial reduction of client proteins, as well as the ultimate electron donor in the pathway, have been identified. Most recently, a role for the cytosol in ER protein reduction has been revealed. Nevertheless, how reducing equivalents are transferred from the cytosol to the ER lumen remains an open question. We review here why proteins are reduced in the ER, discuss recent data on catalysis of steps in the pathway, and consider the implications for redox homeostasis within the early secretory pathway.
Collapse
Affiliation(s)
- Lars Ellgaard
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Carolyn S Sevier
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-2703, USA.
| | - Neil J Bulleid
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
65
|
Rocha S, Freitas A, Guimaraes SC, Vitorino R, Aroso M, Gomez-Lazaro M. Biological Implications of Differential Expression of Mitochondrial-Shaping Proteins in Parkinson's Disease. Antioxidants (Basel) 2017; 7:E1. [PMID: 29267236 PMCID: PMC5789311 DOI: 10.3390/antiox7010001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/17/2022] Open
Abstract
It has long been accepted that mitochondrial function and morphology is affected in Parkinson's disease, and that mitochondrial function can be directly related to its morphology. So far, mitochondrial morphological alterations studies, in the context of this neurodegenerative disease, have been performed through microscopic methodologies. The goal of the present work is to address if the modifications in the mitochondrial-shaping proteins occurring in this disorder have implications in other cellular pathways, which might constitute important pathways for the disease progression. To do so, we conducted a novel approach through a thorough exploration of the available proteomics-based studies in the context of Parkinson's disease. The analysis provided insight into the altered biological pathways affected by changes in the expression of mitochondrial-shaping proteins via different bioinformatic tools. Unexpectedly, we observed that the mitochondrial-shaping proteins altered in the context of Parkinson's disease are, in the vast majority, related to the organization of the mitochondrial cristae. Conversely, in the studies that have resorted to microscopy-based techniques, the most widely reported alteration in the context of this disorder is mitochondria fragmentation. Cristae membrane organization is pivotal for mitochondrial ATP production, and changes in their morphology have a direct impact on the organization and function of the oxidative phosphorylation (OXPHOS) complexes. To understand which biological processes are affected by the alteration of these proteins we analyzed the binding partners of the mitochondrial-shaping proteins that were found altered in Parkinson's disease. We showed that the binding partners fall into seven different cellular components, which include mitochondria, proteasome, and endoplasmic reticulum (ER), amongst others. It is noteworthy that, by evaluating the biological process in which these modified proteins are involved, we showed that they are related to the production and metabolism of ATP, immune response, cytoskeleton alteration, and oxidative stress, amongst others. In summary, with our bioinformatics approach using the data on the modified proteins in Parkinson's disease patients, we were able to relate the alteration of mitochondrial-shaping proteins to modifications of crucial cellular pathways affected in this disease.
Collapse
Affiliation(s)
- Sara Rocha
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Ana Freitas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
- FMUP-Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal.
| | - Sofia C Guimaraes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Universidade do Porto, 4200-319 Porto, Portugal.
| | - Miguel Aroso
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Maria Gomez-Lazaro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
66
|
Delaunay-Moisan A, Ponsero A, Toledano MB. Reexamining the Function of Glutathione in Oxidative Protein Folding and Secretion. Antioxid Redox Signal 2017; 27:1178-1199. [PMID: 28791880 DOI: 10.1089/ars.2017.7148] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Disturbance of glutathione (GSH) metabolism is a hallmark of numerous diseases, yet GSH functions are poorly understood. One key to this question is to consider its functional compartmentation. GSH is present in the endoplasmic reticulum (ER), where it competes with substrates for oxidation by the oxidative folding machinery, composed in eukaryotes of the thiol oxidase Ero1 and proteins from the disulfide isomerase family (protein disulfide isomerase). Yet, whether GSH is required for proper ER oxidative protein folding is a highly debated question. Recent Advances: Oxidative protein folding has been thoroughly dissected over the past decades, and its actors and their mode of action elucidated. Genetically encoded GSH probes have recently provided an access to subcellular redox metabolism, including the ER. CRITICAL ISSUES Of the few often-contradictory models of the role of GSH in the ER, the most popular suggest it serves as reducing power. Yet, as a reductant, GSH also activates Ero1, which questions how GSH can nevertheless support protein reduction. Hence, whether GSH operates in the ER as a reductant, an oxidant, or just as a "blank" compound mirroring ER/periplasm redox activity is a highly debated question, which is further stimulated by the puzzling occurrence of GSH in the Escherichia coli periplasmic "secretory" compartment, aside from the Dsb thiol-reducing and oxidase pathways. FUTURE DIRECTIONS Addressing the mechanisms controlling GSH traffic in and out of the ER/periplasm and its recycling will help address GSH function in secretion. In addition, as thioredoxin reductase was recently implicated in ER oxidative protein folding, the relative contribution of each of these two reducing pathways should now be addressed. Antioxid. Redox Signal. 27, 1178-1199.
Collapse
Affiliation(s)
- Agnès Delaunay-Moisan
- Institute for Integrative Biology of the Cell (I2BC), LSOC, SBIGEM, CEA, CNRS, Université Paris-Sud , Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alise Ponsero
- Institute for Integrative Biology of the Cell (I2BC), LSOC, SBIGEM, CEA, CNRS, Université Paris-Sud , Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michel B Toledano
- Institute for Integrative Biology of the Cell (I2BC), LSOC, SBIGEM, CEA, CNRS, Université Paris-Sud , Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
67
|
Matsuo Y, Hirota K. Transmembrane thioredoxin-related protein TMX1 is reversibly oxidized in response to protein accumulation in the endoplasmic reticulum. FEBS Open Bio 2017; 7:1768-1777. [PMID: 29123984 PMCID: PMC5666389 DOI: 10.1002/2211-5463.12319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/21/2022] Open
Abstract
Numerous secretory and membrane proteins undergo post‐translational modifications in the endoplasmic reticulum (ER), and the formation of disulfide bonds is a modification that is critical for proper protein folding. The mammalian ER contains a large family of oxidoreductases that are considered to catalyze thiol/disulfide exchange and ensure the maintenance of a redox environment within the ER. Disruption of ER homeostasis causes an accumulation of misfolded and unfolded proteins, a condition termed ER stress. Despite advances in our understanding of the ER stress response and its downstream signaling pathway, it remains unclear how ER redox balance is controlled and restored in the stressed ER. In this study, we determined that brefeldin A (BFA)‐induced protein accumulation in the ER triggers reversible oxidation of transmembrane thioredoxin‐related protein 1 (TMX1). Conversion of TMX1 to the oxidized state preceded the induction of immunoglobulin‐binding protein, a downstream marker of ER stress. Oxidized TMX1 reverted to the basal reduced state after BFA removal, and our results suggest that glutathione is involved in maintaining TMX1 in the reduced form. These findings provide evidence for a redox imbalance caused by protein overload, and demonstrate the existence of a pathway that helps restore ER homeostasis during poststress recovery.
Collapse
Affiliation(s)
- Yoshiyuki Matsuo
- Department of Human Stress Response Science Institute of Biomedical Science Kansai Medical University Japan
| | - Kiichi Hirota
- Department of Human Stress Response Science Institute of Biomedical Science Kansai Medical University Japan
| |
Collapse
|
68
|
Gutiérrez T, Simmen T. Endoplasmic reticulum chaperones tweak the mitochondrial calcium rheostat to control metabolism and cell death. Cell Calcium 2017; 70:64-75. [PMID: 28619231 DOI: 10.1016/j.ceca.2017.05.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 12/16/2022]
Abstract
The folding of secretory proteins is a well-understood mechanism, based on decades of research on endoplasmic reticulum (ER) chaperones. These chaperones interact with newly imported polypeptides close to the ER translocon. Classic examples for these proteins include the immunoglobulin binding protein (BiP/GRP78), and the lectins calnexin and calreticulin. Although not considered chaperones per se, the ER oxidoreductases of the protein disulfide isomerase (PDI) family complete the folding job by catalyzing the formation of disulfide bonds through cysteine oxidation. Research from the past decade has demonstrated that ER chaperones are multifunctional proteins. The regulation of ER-mitochondria Ca2+ crosstalk is one of their additional functions, as shown for calnexin, BiP/GRP78 or the oxidoreductases Ero1α and TMX1. This function depends on interactions of this group of proteins with the ER Ca2+ handling machinery. This novel function makes perfect sense for two reasons: i. It allows ER chaperones to control mitochondrial apoptosis instantly without a lengthy bypass involving the upregulation of pro-apoptotic transcription factors via the unfolded protein response (UPR); and ii. It allows the ER protein folding machinery to fine-tune ATP import via controlling the speed of mitochondrial oxidative phosphorylation. Therefore, the role of ER chaperones in regulating ER-mitochondria Ca2+ flux identifies the progression of secretory protein folding as a central regulator of cell survival and death, at least in cell types that secrete large amount of proteins. In other cell types, ER protein folding might serve as a sentinel mechanism that monitors cellular well-being to control cell metabolism and apoptosis. The selenoprotein SEPN1 is a classic example for such a role. Through the control of ER-mitochondria Ca2+-flux, ER chaperones and folding assistants guide cellular apoptosis and mitochondrial metabolism.
Collapse
Affiliation(s)
- Tomas Gutiérrez
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, T6G2H7, Canada
| | - Thomas Simmen
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, T6G2H7, Canada,.
| |
Collapse
|
69
|
Maegawa KI, Watanabe S, Noi K, Okumura M, Amagai Y, Inoue M, Ushioda R, Nagata K, Ogura T, Inaba K. The Highly Dynamic Nature of ERdj5 Is Key to Efficient Elimination of Aberrant Protein Oligomers through ER-Associated Degradation. Structure 2017; 25:846-857.e4. [PMID: 28479060 DOI: 10.1016/j.str.2017.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/08/2017] [Accepted: 04/10/2017] [Indexed: 12/12/2022]
Abstract
ERdj5, composed of an N-terminal J domain followed by six thioredoxin-like domains, is the largest protein disulfide isomerase family member and functions as an ER-localized disulfide reductase that enhances ER-associated degradation (ERAD). Our previous studies indicated that ERdj5 comprises two regions, the N- and C-terminal clusters, separated by a linker loop and with distinct functional roles in ERAD. We here present a new crystal structure of ERdj5 with a largely different cluster arrangement relative to that in the original crystal structure. Single-molecule observation by high-speed atomic force microscopy visualized rapid cluster movement around the flexible linker loop, indicating the highly dynamic nature of ERdj5 in solution. ERdj5 mutants with a fixed-cluster orientation compromised the ERAD enhancement activity, likely because of less-efficient reduction of aberrantly formed disulfide bonds and prevented substrate transfer in the ERdj5-mediated ERAD pathway. We propose a significant role of ERdj5 conformational dynamics in ERAD of disulfide-linked oligomers.
Collapse
Affiliation(s)
- Ken-Ichi Maegawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; CREST, JST, Japan
| | - Satoshi Watanabe
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; CREST, JST, Japan
| | - Kentaro Noi
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan; CREST, JST, Japan
| | - Masaki Okumura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Yuta Amagai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Michio Inoue
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; CREST, JST, Japan
| | - Ryo Ushioda
- Department of Molecular Biosciences, Kyoto Sangyo University, Kyoto 603-8455, Japan; CREST, JST, Japan
| | - Kazuhiro Nagata
- Department of Molecular Biosciences, Kyoto Sangyo University, Kyoto 603-8455, Japan; CREST, JST, Japan
| | - Teru Ogura
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan; CREST, JST, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; CREST, JST, Japan.
| |
Collapse
|
70
|
Reitberger S, Haimerl P, Aschenbrenner I, Esser-von Bieren J, Feige MJ. Assembly-induced folding regulates interleukin 12 biogenesis and secretion. J Biol Chem 2017; 292:8073-8081. [PMID: 28325840 DOI: 10.1074/jbc.m117.782284] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/17/2017] [Indexed: 12/17/2022] Open
Abstract
Members of the IL-12 family perform essential functions in immunoregulation by connecting innate and adaptive immunity and are emerging therapeutic targets. They are unique among other interleukins in forming heterodimers that arise from extensive subunit sharing within the family, leading to the production of at least four functionally distinct heterodimers from only five subunits. This raises important questions about how the assembly of IL-12 family members is regulated and controlled in the cell. Here, using cell-biological approaches, we have dissected basic principles that underlie the biogenesis of the founding member of the family, IL-12. Within the native IL-12 heterodimer, composed of IL-12α and IL-12β, IL-12α possesses three intramolecular and one intermolecular disulfide bridges. We show that, in isolation, IL-12α fails to form its native structure but, instead, misfolds, forming incorrect disulfide bonds. Co-expression of its β subunit inhibits misfolding and thus allows secretion of biologically active heterodimeric IL-12. On the basis of these findings, we identified the disulfide bonds in IL-12α that are critical for assembly-induced secretion and biological activity of IL-12 versus misfolding and degradation of IL-12α. Surprisingly, two of the three disulfide bridges in IL-12α are dispensable for IL-12 secretion, stability, and biological activity. Extending our findings, we show that misfolding also occurs for IL-23α, another IL-12 family protein. Our results indicate that assembly-induced folding is key in IL-12 family biogenesis and secretion. The identification of essential disulfide bonds that underlie this process lays the basis for a simplified yet functional IL-12 cytokine.
Collapse
Affiliation(s)
- Susanne Reitberger
- From the Center for Integrated Protein Science at the Department of Chemistry and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany and
| | - Pascal Haimerl
- the Center of Allergy and Environment, Technical University of Munich and Helmholtz Zentrum München, 80802 Munich, Germany
| | - Isabel Aschenbrenner
- From the Center for Integrated Protein Science at the Department of Chemistry and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany and
| | - Julia Esser-von Bieren
- the Center of Allergy and Environment, Technical University of Munich and Helmholtz Zentrum München, 80802 Munich, Germany
| | - Matthias J Feige
- From the Center for Integrated Protein Science at the Department of Chemistry and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany and
| |
Collapse
|
71
|
Regulation of Calcium Homeostasis by ER Redox: A Close-Up of the ER/Mitochondria Connection. J Mol Biol 2017; 429:620-632. [PMID: 28137421 DOI: 10.1016/j.jmb.2017.01.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 01/17/2023]
Abstract
Calcium signaling plays an important role in cell survival by influencing mitochondria-related processes such as energy production and apoptosis. The endoplasmic reticulum (ER) is the main storage compartment for cell calcium (Ca2+; ~60-500μM), and the Ca2+ released by the ER has a prompt effect on the homeostasis of the juxtaposed mitochondria. Recent findings have highlighted a close connection between ER redox and Ca2+ signaling that is mediated by Ca2+-handling proteins. This paper describes the redox-regulated mediators and mechanisms that orchestrate Ca2+ signals from the ER to mitochondria.
Collapse
|
72
|
Poet GJ, Oka OB, van Lith M, Cao Z, Robinson PJ, Pringle MA, Arnér ES, Bulleid NJ. Cytosolic thioredoxin reductase 1 is required for correct disulfide formation in the ER. EMBO J 2017; 36:693-702. [PMID: 28093500 PMCID: PMC5331760 DOI: 10.15252/embj.201695336] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 11/09/2022] Open
Abstract
Folding of proteins entering the secretory pathway in mammalian cells frequently requires the insertion of disulfide bonds. Disulfide insertion can result in covalent linkages found in the native structure as well as those that are not, so-called non-native disulfides. The pathways for disulfide formation are well characterized, but our understanding of how non-native disulfides are reduced so that the correct or native disulfides can form is poor. Here, we use a novel assay to demonstrate that the reduction in non-native disulfides requires NADPH as the ultimate electron donor, and a robust cytosolic thioredoxin system, driven by thioredoxin reductase 1 (TrxR1 or TXNRD1). Inhibition of this reductive pathway prevents the correct folding and secretion of proteins that are known to form non-native disulfides during their folding. Hence, we have shown for the first time that mammalian cells have a pathway for transferring reducing equivalents from the cytosol to the ER, which is required to ensure correct disulfide formation in proteins entering the secretory pathway.
Collapse
Affiliation(s)
- Greg J Poet
- The Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow, UK
| | - Ojore Bv Oka
- The Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow, UK
| | - Marcel van Lith
- The Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow, UK
| | - Zhenbo Cao
- The Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow, UK
| | - Philip J Robinson
- The Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow, UK
| | - Marie Anne Pringle
- The Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow, UK
| | - Elias Sj Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, Stockholm, Sweden
| | - Neil J Bulleid
- The Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow, UK
| |
Collapse
|
73
|
Araki K, Ushioda R, Kusano H, Tanaka R, Hatta T, Fukui K, Nagata K, Natsume T. A crosslinker-based identification of redox relay targets. Anal Biochem 2016; 520:22-26. [PMID: 28048978 DOI: 10.1016/j.ab.2016.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/16/2016] [Accepted: 12/30/2016] [Indexed: 12/23/2022]
Abstract
Thiol-based redox control is among the most important mechanisms for maintaining cellular redox homeostasis, with essential participation of cysteine thiols of oxidoreductases. To explore cellular redox regulatory networks, direct interactions among active cysteine thiols of oxidoreductases and their targets must be clarified. We applied a recently described thiol-ene crosslinking-based strategy, named divinyl sulfone (DVSF) method, enabling identification of new potential redox relay partners of the cytosolic oxidoreductases thioredoxin (TXN) and thioredoxin domain containing 17 (TXNDC17). Applying multiple methods, including classical substrate-trapping techniques, will increase understanding of redox regulatory mechanisms in cells.
Collapse
Affiliation(s)
- Kazutaka Araki
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan.
| | - Ryo Ushioda
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-Ku, Kyoto 603-8555, Japan
| | - Hidewo Kusano
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Riko Tanaka
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | | | - Kazuhiko Fukui
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Kazuhiro Nagata
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-Ku, Kyoto 603-8555, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan; Robotic Biology Institute, Inc., Tokyo 135-0064, Japan
| |
Collapse
|
74
|
Soares Moretti AI, Martins Laurindo FR. Protein disulfide isomerases: Redox connections in and out of the endoplasmic reticulum. Arch Biochem Biophys 2016; 617:106-119. [PMID: 27889386 DOI: 10.1016/j.abb.2016.11.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022]
Abstract
Protein disulfide isomerases are thiol oxidoreductase chaperones from thioredoxin superfamily. As redox folding catalysts from the endoplasmic reticulum (ER), their roles in ER-related redox homeostasis and signaling are well-studied. PDIA1 exerts thiol oxidation/reduction and isomerization, plus chaperone effects. Also, substantial evidence indicates that PDIs regulate thiol-disulfide switches in other cell locations such as cell surface and possibly cytosol. Subcellular PDI translocation routes remain unclear and seem Golgi-independent. The list of signaling and structural proteins reportedly regulated by PDIs keeps growing, via thiol switches involving oxidation, reduction and isomerization, S-(de)nytrosylation, (de)glutathyonylation and protein oligomerization. PDIA1 is required for agonist-triggered Nox NADPH oxidase activation and cell migration in vascular cells and macrophages, while PDIA1-dependent cytoskeletal regulation appears a converging pathway. Extracellularly, PDIs crucially regulate thiol redox signaling of thrombosis/platelet activation, e.g., integrins, and PDIA1 supports expansive caliber remodeling during injury repair via matrix/cytoskeletal organization. Some proteins display regulatory PDI-like motifs. PDI effects are orchestrated by expression levels or post-translational modifications. PDI is redox-sensitive, although probably not a mass-effect redox sensor due to kinetic constraints. Rather, the "all-in-one" organization of its peculiar redox/chaperone properties likely provide PDIs with precision and versatility in redox signaling, making them promising therapeutic targets.
Collapse
Affiliation(s)
- Ana Iochabel Soares Moretti
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | | |
Collapse
|
75
|
Mapping wild-type and R345W fibulin-3 intracellular interactomes. Exp Eye Res 2016; 153:165-169. [PMID: 27777122 DOI: 10.1016/j.exer.2016.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/17/2016] [Accepted: 10/20/2016] [Indexed: 12/17/2022]
Abstract
Fibulin-3 (F3) is an important, disulfide-rich, extracellular matrix glycoprotein that has been associated with a number of diseases ranging from cancer to retinal degeneration. An Arg345Trp (R345W) mutation in F3 causes the rare, autosomal dominant macular dystrophy, Malattia Leventinese. The purpose of this study was to identify and validate novel intracellular interacting partners of wild-type (WT) and R345W F3 in retinal pigment epithelium cells. We used stable isotope labeling by amino acids in cell culture (SILAC) to generate 'heavy' and 'light' isotopically labeled ARPE-19 cell populations which were subsequently infected with adenovirus encoding for FLAG-tagged WT or R345W F3. After immunoprecipitation, interacting proteins were identified by multidimensional protein identification technology (MudPIT). We identified sixteen new intracellular F3 interacting partners, the vast majority of which are involved in protein folding and/or degradation in the endoplasmic reticulum (ER). Eight of these interactions (ANXA5, ERdj5, PDIA4, P4HB, PDIA6, RCN1, SDF2L1, and TXNDC5) were verified at the western blotting level. These F3 interactome results can serve as the basis for pursuing targeted genetic or pharmacologic approaches in an effort to alter the fate of either WT or mutant F3.
Collapse
|
76
|
Yuan L, Song Z, Deng X, Zheng W, Guo Y, Yang Z, Deng H. Systematic analysis of genetic variants in Han Chinese patients with sporadic Parkinson's disease. Sci Rep 2016; 6:33850. [PMID: 27653456 PMCID: PMC5032117 DOI: 10.1038/srep33850] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/05/2016] [Indexed: 01/21/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders. Accumulated evidence confirms that genetic factors play a considerable role in PD pathogenesis. To examine whether point variants or haplotypes are associated with PD development, genotyping of 35 variants in 22 PD-related genes was performed in a well-characterized cohort of 512 Han Chinese PD patients and 512 normal controls. Both Pearson's χ2 test and haplotype analysis were used to evaluate whether variants or their haplotypes were associated with PD in this cohort. The only statistically significant differences in genotypic and allelic frequencies between the patients and the controls were in the DnaJ heat shock protein family (Hsp40) member C10 gene (DNAJC10) variant rs13414223 (P = 0.004 and 0.002, respectively; odds ratio = 0.652, 95% confidence interval: 0.496-0.857). No other variants or haplotypes exhibited any significant differences between these two groups (all corrected P > 0.05). Our findings indicate that the variant rs13414223 in the DNAJC10 gene, a paralog of PD-related genes DNAJC6 and DNAJC13, may play a protective role in PD. This suggests it may be a PD-associated gene.
Collapse
Affiliation(s)
- Lamei Yuan
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Wen Zheng
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Yi Guo
- Department of Medical Information, Information Security and Big Data Research Institute, Central South University, Changsha, China
| | - Zhijian Yang
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
77
|
Zhang L, Wang HH. The essential functions of endoplasmic reticulum chaperones in hepatic lipid metabolism. Dig Liver Dis 2016; 48:709-16. [PMID: 27133206 DOI: 10.1016/j.dld.2016.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 03/06/2016] [Accepted: 03/22/2016] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is an essential organelle for protein and lipid synthesis in hepatocytes. ER homeostasis is vital to maintain normal hepatocyte physiology. Perturbed ER functions causes ER stress associated with accumulation of unfolded protein in the ER that activates a series of adaptive signalling pathways, termed unfolded protein response (UPR). The UPR regulates ER chaperone levels to preserve ER protein-folding environment to protect the cell from ER stress. Recent findings reveal an array of ER chaperones that alter the protein-folding environment in the ER of hepatocytes and contribute to dysregulation of hepatocyte lipid metabolism and liver disease. In this review, we will discuss the specific functions of these chaperones in regulation of lipid metabolism, especially de novo lipogenesis and lipid transport and demonstrate their homeostatic role not only for ER-protein synthesis but also for lipid metabolism in hepatocyte.
Collapse
Affiliation(s)
- LiChun Zhang
- Department of Emergency, Shengjing Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Hong-Hui Wang
- College of Biology, Hunan University, Changsha, Hunan Province, China.
| |
Collapse
|
78
|
Ellgaard L, McCaul N, Chatsisvili A, Braakman I. Co- and Post-Translational Protein Folding in the ER. Traffic 2016; 17:615-38. [PMID: 26947578 DOI: 10.1111/tra.12392] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/26/2016] [Accepted: 03/03/2016] [Indexed: 12/19/2022]
Abstract
The biophysical rules that govern folding of small, single-domain proteins in dilute solutions are now quite well understood. The mechanisms underlying co-translational folding of multidomain and membrane-spanning proteins in complex cellular environments are often less clear. The endoplasmic reticulum (ER) produces a plethora of membrane and secretory proteins, which must fold and assemble correctly before ER exit - if these processes fail, misfolded species accumulate in the ER or are degraded. The ER differs from other cellular organelles in terms of the physicochemical environment and the variety of ER-specific protein modifications. Here, we review chaperone-assisted co- and post-translational folding and assembly in the ER and underline the influence of protein modifications on these processes. We emphasize how method development has helped advance the field by allowing researchers to monitor the progression of folding as it occurs inside living cells, while at the same time probing the intricate relationship between protein modifications during folding.
Collapse
Affiliation(s)
- Lars Ellgaard
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas McCaul
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Anna Chatsisvili
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
79
|
Feleciano DR, Arnsburg K, Kirstein J. Interplay between redox and protein homeostasis. WORM 2016; 5:e1170273. [PMID: 27386166 DOI: 10.1080/21624054.2016.1170273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/20/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
Abstract
The subcellular compartments of eukaryotic cells are characterized by different redox environments. Whereas the cytosol, nucleus and mitochondria are more reducing, the endoplasmic reticulum represents a more oxidizing environment. As the redox level controls the formation of intra- and inter-molecular disulfide bonds, the folding of proteins is tightly linked to its environment. The proteostasis network of each compartment needs to be adapted to the compartmental redox properties. In addition to chaperones, also members of the thioredoxin superfamily can influence the folding of proteins by regulation of cysteine reduction/oxidation. This review will focus on thioredoxin superfamily members and chaperones of C. elegans, which play an important role at the interface between redox and protein homeostasis. Additionally, this review will highlight recent methodological developments on in vivo and in vitro assessment of the redox state and their application to provide insights into the high complexity of redox and proteostasis networks of C. elegans.
Collapse
Affiliation(s)
- Diogo R Feleciano
- Leibniz-Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. , Berlin, Germany
| | - Kristin Arnsburg
- Leibniz-Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. , Berlin, Germany
| | - Janine Kirstein
- Leibniz-Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. , Berlin, Germany
| |
Collapse
|
80
|
Abstract
Thyroglobulin (Tg) is a vertebrate secretory protein synthesized in the thyrocyte endoplasmic reticulum (ER), where it acquires N-linked glycosylation and conformational maturation (including formation of many disulfide bonds), leading to homodimerization. Its primary functions include iodide storage and thyroid hormonogenesis. Tg consists largely of repeating domains, and many tyrosyl residues in these domains become iodinated to form monoiodo- and diiodotyrosine, whereas only a small portion of Tg structure is dedicated to hormone formation. Interestingly, evolutionary ancestors, dependent upon thyroid hormone for development, synthesize thyroid hormones without the complete Tg protein architecture. Nevertheless, in all vertebrates, Tg follows a strict pattern of region I, II-III, and the cholinesterase-like (ChEL) domain. In vertebrates, Tg first undergoes intracellular transport through the secretory pathway, which requires the assistance of thyrocyte ER chaperones and oxidoreductases, as well as coordination of distinct regions of Tg, to achieve a native conformation. Curiously, regions II-III and ChEL behave as fully independent folding units that could function as successful secretory proteins by themselves. However, the large Tg region I (bearing the primary T4-forming site) is incompetent by itself for intracellular transport, requiring the downstream regions II-III and ChEL to complete its folding. A combination of nonsense mutations, frameshift mutations, splice site mutations, and missense mutations in Tg occurs spontaneously to cause congenital hypothyroidism and thyroidal ER stress. These Tg mutants are unable to achieve a native conformation within the ER, interfering with the efficiency of Tg maturation and export to the thyroid follicle lumen for iodide storage and hormonogenesis.
Collapse
Affiliation(s)
- Bruno Di Jeso
- Laboratorio di Patologia Generale (B.D.J.), Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy; and Division of Metabolism, Endocrinology, and Diabetes (P.A.), University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Peter Arvan
- Laboratorio di Patologia Generale (B.D.J.), Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy; and Division of Metabolism, Endocrinology, and Diabetes (P.A.), University of Michigan Medical School, Ann Arbor, Michigan 48105
| |
Collapse
|
81
|
Khachatoorian R, French SW. Chaperones in hepatitis C virus infection. World J Hepatol 2016; 8:9-35. [PMID: 26783419 PMCID: PMC4705456 DOI: 10.4254/wjh.v8.i1.9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/01/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV) infects approximately 3% of the world population or more than 185 million people worldwide. Each year, an estimated 350000-500000 deaths occur worldwide due to HCV-associated diseases including cirrhosis and hepatocellular carcinoma. HCV is the most common indication for liver transplantation in patients with cirrhosis worldwide. HCV is an enveloped RNA virus classified in the genus Hepacivirus in the Flaviviridae family. The HCV viral life cycle in a cell can be divided into six phases: (1) binding and internalization; (2) cytoplasmic release and uncoating; (3) viral polyprotein translation and processing; (4) RNA genome replication; (5) encapsidation (packaging) and assembly; and (6) virus morphogenesis (maturation) and secretion. Many host factors are involved in the HCV life cycle. Chaperones are an important group of host cytoprotective molecules that coordinate numerous cellular processes including protein folding, multimeric protein assembly, protein trafficking, and protein degradation. All phases of the viral life cycle require chaperone activity and the interaction of viral proteins with chaperones. This review will present our current knowledge and understanding of the role of chaperones in the HCV life cycle. Analysis of chaperones in HCV infection will provide further insights into viral/host interactions and potential therapeutic targets for both HCV and other viruses.
Collapse
|
82
|
Chaperone-Assisted Protein Folding Is Critical for Yellow Fever Virus NS3/4A Cleavage and Replication. J Virol 2016; 90:3212-28. [PMID: 26739057 DOI: 10.1128/jvi.03077-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/04/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED DNAJC14, a heat shock protein 40 (Hsp40) cochaperone, assists with Hsp70-mediated protein folding. Overexpressed DNAJC14 is targeted to sites of yellow fever virus (YFV) replication complex (RC) formation, where it interacts with viral nonstructural (NS) proteins and inhibits viral RNA replication. How RCs are assembled and the roles of chaperones in this coordinated process are largely unknown. We hypothesized that chaperones are diverted from their normal cellular protein quality control function to play similar roles during viral infection. Here, we show that DNAJC14 overexpression affects YFV polyprotein processing and alters RC assembly. We monitored YFV NS2A-5 polyprotein processing by the viral NS2B-3 protease in DNAJC14-overexpressing cells. Notably, DNAJC14 mutants that did not inhibit YFV replication had minimal effects on polyprotein processing, while overexpressed wild-type DNAJC14 affected the NS3/4A and NS4A/2K cleavage sites, resulting in altered NS3-to-NS3-4A ratios. This suggests that DNAJC14's folding activity normally modulates NS3/4A/2K cleavage events to liberate appropriate levels of NS3 and NS4A and promote RC formation. We introduced amino acid substitutions at the NS3/4A site to alter the levels of the NS3 and NS4A products and examined their effects on YFV replication. Residues with reduced cleavage efficiency did not support viral RNA replication, and only revertant viruses with a restored wild-type arginine or lysine residue at the NS3/4A site were obtained. We conclude that DNAJC14 inhibition of RC formation upon DNAJC14 overexpression is likely due to chaperone dysregulation and that YFV probably utilizes DNAJC14's cochaperone function to modulate processing at the NS3/4A site as a mechanism ensuring virus replication. IMPORTANCE Flaviviruses are single-stranded RNA viruses that cause a wide range of illnesses. Upon host cell entry, the viral genome is translated on endoplasmic reticulum (ER) membranes to produce a single polyprotein, which is cleaved by host and viral proteases to generate viral proteins required for genome replication and virion production. Several studies suggest a role for molecular chaperones during these processes. While the details of chaperone roles have been elusive, in this report we show that overexpression of the ER-resident cochaperone DNAJC14 affects YFV polyprotein processing at the NS3/4A site. This work reveals that DNAJC14 modulation of NS3/4A site processing is an important mechanism to ensure virus replication. Our work highlights the importance of finely regulating flavivirus polyprotein processing. In addition, it suggests future studies to address similarities and/or differences among flaviviruses and to interrogate the precise mechanisms employed for polyprotein processing, a critical step that can ultimately be targeted for novel drug development.
Collapse
|
83
|
Malattia Leventinese/Doyne Honeycomb Retinal Dystrophy: Similarities to Age-Related Macular Degeneration and Potential Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:153-8. [PMID: 26427406 DOI: 10.1007/978-3-319-17121-0_21] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Fibulin-3 (F3) is a secreted, disulfide-rich glycoprotein which is expressed in a variety of tissues within the body, including the retina. An Arg345Trp (R345W) mutation in F3 was identified as the cause of a rare retinal dystrophy, Malattia Leventinese/Doyne Honeycomb Retinal Dystrophy (ML/DHRD). ML/DHRD shares many phenotypic similarities with age-related macular degeneration (AMD). The most prominent feature of ML/DHRD is the development of radial or honeycomb patterns of drusen which can develop as early as adolescence. Two independent mouse models of ML/DHRD show evidence of complement activation as well as retinal pigment epithelium (RPE) atrophy, strengthening the phenotypic connection with AMD. Because of its similarities with AMD, ML/DHRD is receiving increasing interest as a potential surrogate disease to study the underpinnings of AMD. This mini-review summarizes the current knowledge of F3 and points toward potential therapeutic strategies which directly or indirectly target cellular dysfunction associated with R345W F3.
Collapse
|
84
|
Pisoni GB, Ruddock LW, Bulleid N, Molinari M. Division of labor among oxidoreductases: TMX1 preferentially acts on transmembrane polypeptides. Mol Biol Cell 2015; 26:3390-400. [PMID: 26246604 PMCID: PMC4591685 DOI: 10.1091/mbc.e15-05-0321] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/29/2015] [Indexed: 01/18/2023] Open
Abstract
The mammalian ER contains 23 members of the PDI superfamily. Their substrate specificity is largely unknown. TMX1 shows a preference for membrane-bound, cysteine-containing polypeptides. The endoplasmic reticulum (ER) is the site of maturation for secretory and membrane proteins in eukaryotic cells. The lumen of the mammalian ER contains >20 members of the protein disulfide isomerase (PDI) superfamily, which ensure formation of the correct set of intramolecular and intermolecular disulfide bonds as crucial, rate-limiting reactions of the protein folding process. Components of the PDI superfamily may also facilitate dislocation of misfolded polypeptides across the ER membrane for ER-associated degradation (ERAD). The reasons for the high redundancy of PDI family members and the substrate features required for preferential engagement of one or the other are poorly understood. Here we show that TMX1, one of the few transmembrane members of the family, forms functional complexes with the ER lectin calnexin and preferentially intervenes during maturation of cysteine-containing, membrane-associated proteins while ignoring the same cysteine-containing ectodomains if not anchored at the ER membrane. As such, TMX1 is the first example of a topology-specific client protein redox catalyst in living cells.
Collapse
Affiliation(s)
- Giorgia Brambilla Pisoni
- Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland Università della Svizzera Italiana, CH-6900 Lugano, Switzerland
| | - Lloyd W Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Neil Bulleid
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Maurizio Molinari
- Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland Università della Svizzera Italiana, CH-6900 Lugano, Switzerland Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, CH-1015 Lausanne, Switzerland
| |
Collapse
|
85
|
Martínez-Oliván J, Fraga H, Arias-Moreno X, Ventura S, Sancho J. Intradomain Confinement of Disulfides in the Folding of Two Consecutive Modules of the LDL Receptor. PLoS One 2015; 10:e0132141. [PMID: 26168158 PMCID: PMC4500599 DOI: 10.1371/journal.pone.0132141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/10/2015] [Indexed: 01/26/2023] Open
Abstract
The LDL receptor internalizes circulating LDL and VLDL particles for degradation. Its extracellular binding domain contains ten (seven LA and three EGF) cysteine-rich modules, each bearing three disulfide bonds. Despite the enormous number of disulfide combinations possible, LDLR oxidative folding leads to a single native species with 30 unique intradomain disulfides. Previous folding studies of the LDLR have shown that non native disulfides are initially formed that lead to compact species. Accordingly, the folding of the LDLR has been described as a "coordinated nonvectorial” reaction, and it has been proposed that early compaction funnels the reaction toward the native structure. Here we analyze the oxidative folding of LA4 and LA5, the modules critical for ApoE binding, isolated and in the LA45 tandem. Compared to LA5, LA4 folding is slow and inefficient, resembling that of LA5 disease-linked mutants. Without Ca++, it leads to a mixture of many two-disulfide scrambled species and, with Ca++, to the native form plus two three-disulfide intermediates. The folding of the LA45 tandem seems to recapitulate that of the individual repeats. Importantly, although the folding of the LA45 tandem takes place through formation of scrambled isomers, no interdomain disulfides are detected, i.e. the two adjacent modules fold independently without the assistance of interdomain covalent interactions. Reduction of incredibly large disulfide combinatorial spaces, such as that in the LDLR, by intradomain confinement of disulfide bond formation might be also essential for the efficient folding of other homologous disulfide-rich receptors.
Collapse
Affiliation(s)
- Juan Martínez-Oliván
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Hugo Fraga
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departamento de Bioquimica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Xabier Arias-Moreno
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
- * E-mail: (SV); (JS)
| | - Javier Sancho
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
- * E-mail: (SV); (JS)
| |
Collapse
|
86
|
Margittai É, Enyedi B, Csala M, Geiszt M, Bánhegyi G. Composition of the redox environment of the endoplasmic reticulum and sources of hydrogen peroxide. Free Radic Biol Med 2015; 83:331-40. [PMID: 25678412 DOI: 10.1016/j.freeradbiomed.2015.01.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/30/2015] [Accepted: 01/31/2015] [Indexed: 12/22/2022]
Abstract
The endoplasmic reticulum (ER) is a metabolically active organelle, which has a central role in proteostasis by translating, modifying, folding, and occasionally degrading secretory and membrane proteins. The lumen of the ER represents a separate compartment of the eukaryotic cell, with a characteristic proteome and metabolome. Although the redox metabolome and proteome of the compartment have not been holistically explored, it is evident that proper redox conditions are necessary for the functioning of many luminal pathways. These redox conditions are defined by local oxidoreductases and the membrane transport of electron donors and acceptors. The main electron carriers of the compartment are identical with those of the other organelles: glutathione, pyridine and flavin nucleotides, ascorbate, and others. However, their composition, concentration, and redox state in the ER lumen can be different from those observed in other compartments. The terminal oxidases of oxidative protein folding generate and maintain an "oxidative environment" by oxidizing protein thiols and producing hydrogen peroxide. ER-specific mechanisms reutilize hydrogen peroxide as an electron acceptor of oxidative folding. These mechanisms, together with membrane and kinetic barriers, guarantee that redox systems in the reduced or oxidized state can be present simultaneously in the lumen. The present knowledge on the in vivo conditions of ER redox is rather limited; development of new genetically encoded targetable sensors for the measurement of the luminal state of redox systems other than thiol/disulfide will contribute to a better understanding of ER redox homeostasis.
Collapse
Affiliation(s)
- Éva Margittai
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest 1444, Hungary
| | - Balázs Enyedi
- Department of Physiology, Semmelweis University, Budapest 1444, Hungary
| | - Miklós Csala
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest 1444, Hungary
| | - Miklós Geiszt
- Department of Physiology, Semmelweis University, Budapest 1444, Hungary; "Lendület" Peroxidase Enzyme Research Group of Semmelweis University and the Hungarian Academy of Sciences, Semmelweis University, Budapest 1444, Hungary
| | - Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest 1444, Hungary.
| |
Collapse
|
87
|
Okumura M, Kadokura H, Inaba K. Structures and functions of protein disulfide isomerase family members involved in proteostasis in the endoplasmic reticulum. Free Radic Biol Med 2015; 83:314-22. [PMID: 25697777 DOI: 10.1016/j.freeradbiomed.2015.02.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/22/2015] [Accepted: 02/09/2015] [Indexed: 12/16/2022]
Abstract
The endoplasmic reticulum (ER) is an essential cellular compartment in which an enormous number of secretory and cell surface membrane proteins are synthesized and subjected to cotranslational or posttranslational modifications, such as glycosylation and disulfide bond formation. Proper maintenance of ER protein homeostasis (sometimes termed proteostasis) is essential to avoid cellular stresses and diseases caused by abnormal proteins. Accumulating knowledge of cysteine-based redox reactions catalyzed by members of the protein disulfide isomerase (PDI) family has revealed that these enzymes play pivotal roles in productive protein folding accompanied by disulfide formation, as well as efficient ER-associated degradation accompanied by disulfide reduction. Each of PDI family members forms a protein-protein interaction with a preferential partner to fulfill a distinct function. Multiple redox pathways that utilize PDIs appear to function synergistically to attain the highest quality and productivity of the ER, even under various stress conditions. This review describes the structures, physiological functions, and cooperative actions of several essential PDIs, and provides important insights into the elaborate proteostatic mechanisms that have evolved in the extremely active and stress-sensitive ER.
Collapse
Affiliation(s)
- Masaki Okumura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Hiroshi Kadokura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.
| |
Collapse
|
88
|
Thiol-disulfide exchange between the PDI family of oxidoreductases negates the requirement for an oxidase or reductase for each enzyme. Biochem J 2015; 469:279-88. [PMID: 25989104 PMCID: PMC4613490 DOI: 10.1042/bj20141423] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/19/2015] [Indexed: 01/20/2023]
Abstract
The PDI family form disulfide bridges in substrates via thiol-disulfide exchange reactions. We show in the present study that disulfide exchange can occur directly between individual PDI proteins. Implication is that only certain members need to be oxidized or reduced to maintain function. The formation of disulfides in proteins entering the secretory pathway is catalysed by the protein disulfide isomerase (PDI) family of enzymes. These enzymes catalyse the introduction, reduction and isomerization of disulfides. To function continuously they require an oxidase to reform the disulfide at their active site. To determine how each family member can be recycled to catalyse disulfide exchange, we have studied whether disulfides are transferred between individual PDI family members. We studied disulfide exchange either between purified proteins or by identifying mixed disulfide formation within cells grown in culture. We show that disulfide exchange occurs efficiently and reversibly between specific PDIs. These results have allowed us to define a hierarchy for members of the PDI family, in terms of ability to act as electron acceptors or donors during thiol-disulfide exchange reactions and indicate that there is no kinetic barrier to the exchange of disulfides between several PDI proteins. Such promiscuous disulfide exchange negates the necessity for each enzyme to be oxidized by Ero1 (ER oxidoreductin 1) or reduced by a reductive system. The lack of kinetic separation of the oxidative and reductive pathways in mammalian cells contrasts sharply with the equivalent systems for native disulfide formation within the bacterial periplasm.
Collapse
|
89
|
Abstract
The efficient folding, assembly and secretion of proteins from mammalian cells is a critically important process for normal cell physiology. Breakdown of the ability of cells to secrete functional proteins leads to disease pathologies caused by a lack of protein function or by cell death resulting from an aggravated stress response. Central to the folding of secreted proteins is the formation of disulfides which both aid folding and provide stability to the protein structure. For disulfides to form correctly necessitates the appropriate redox environment within the endoplasmic reticulum: too reducing and disulfides will not form, too oxidizing and non-native disulfides will not be resolved. How the endoplasmic reticulum maintains the correct redox balance is unknown. Although we have a good appreciation of the processes leading to a more oxidizing environment, our understanding of how any counterbalancing reductive pathway operates is limited. The present review looks at potential mechanisms for introducing reducing equivalents into the endoplasmic reticulum and discusses an approach to test these hypotheses.
Collapse
|
90
|
Avezov E, Konno T, Zyryanova A, Chen W, Laine R, Crespillo-Casado A, Melo EP, Ushioda R, Nagata K, Kaminski CF, Harding HP, Ron D. Retarded PDI diffusion and a reductive shift in poise of the calcium depleted endoplasmic reticulum. BMC Biol 2015; 13:2. [PMID: 25575667 PMCID: PMC4316587 DOI: 10.1186/s12915-014-0112-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/23/2014] [Indexed: 11/26/2022] Open
Abstract
Background Endoplasmic reticulum (ER) lumenal protein thiol redox balance resists dramatic variation in unfolded protein load imposed by diverse physiological challenges including compromise in the key upstream oxidases. Lumenal calcium depletion, incurred during normal cell signaling, stands out as a notable exception to this resilience, promoting a rapid and reversible shift towards a more reducing poise. Calcium depletion induced ER redox alterations are relevant to physiological conditions associated with calcium signaling, such as the response of pancreatic cells to secretagogues and neuronal activity. The core components of the ER redox machinery are well characterized; however, the molecular basis for the calcium-depletion induced shift in redox balance is presently obscure. Results In vitro, the core machinery for generating disulfides, consisting of ERO1 and the oxidizing protein disulfide isomerase, PDI1A, was indifferent to variation in calcium concentration within the physiological range. However, ER calcium depletion in vivo led to a selective 2.5-fold decline in PDI1A mobility, whereas the mobility of the reducing PDI family member, ERdj5 was unaffected. In vivo, fluorescence resonance energy transfer measurements revealed that declining PDI1A mobility correlated with formation of a complex with the abundant ER chaperone calreticulin, whose mobility was also inhibited by calcium depletion and the calcium depletion-mediated reductive shift was attenuated in cells lacking calreticulin. Measurements with purified proteins confirmed that the PDI1A-calreticulin complex dissociated as Ca2+ concentrations approached those normally found in the ER lumen ([Ca2+]K0.5max = 190 μM). Conclusions Our findings suggest that selective sequestration of PDI1A in a calcium depletion-mediated complex with the abundant chaperone calreticulin attenuates the effective concentration of this major lumenal thiol oxidant, providing a plausible and simple mechanism for the observed shift in ER lumenal redox poise upon physiological calcium depletion. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0112-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Edward Avezov
- University of Cambridge, Cambridge Institute for Medical Research, Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, United Kingdom.
| | - Tasuku Konno
- University of Cambridge, Cambridge Institute for Medical Research, Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, United Kingdom.
| | - Alisa Zyryanova
- University of Cambridge, Cambridge Institute for Medical Research, Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, United Kingdom.
| | - Weiyue Chen
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB2 3RA, UK.
| | - Romain Laine
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB2 3RA, UK.
| | - Ana Crespillo-Casado
- University of Cambridge, Cambridge Institute for Medical Research, Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, United Kingdom.
| | - Eduardo Pinho Melo
- Center for Biomedical Research, Universidade do Algarve, Faro, Portugal.
| | - Ryo Ushioda
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-Ku, Kyoto-City, 603-8555, Japan.
| | - Kazuhiro Nagata
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-Ku, Kyoto-City, 603-8555, Japan.
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB2 3RA, UK.
| | - Heather P Harding
- University of Cambridge, Cambridge Institute for Medical Research, Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, United Kingdom.
| | - David Ron
- University of Cambridge, Cambridge Institute for Medical Research, Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, United Kingdom.
| |
Collapse
|
91
|
Abstract
In mammalian cells, the rough endoplasmic reticulum or ER plays a central role in the biogenesis of most extracellular plus many organellar proteins and in cellular calcium homeostasis. Therefore, this organelle comprises molecular chaperones that are involved in import, folding/assembly, export, and degradation of polypeptides in millimolar concentrations. In addition, there are calcium channels/pumps and signal transduction components present in the ER membrane that affect and are affected by these processes. The ER lumenal Hsp70, termed immunoglobulin-heavy chain binding protein or BiP, is the central player in all these activities and involves up to seven different co-chaperones, i.e. ER-membrane integrated as well as ER-lumenal Hsp40s, which are termed ERj or ERdj, and two nucleotide exchange factors.
Collapse
|
92
|
Affiliation(s)
- Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and
| | - Patricia L Clark
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
93
|
Hulleman JD, Kelly JW. Genetic ablation of N-linked glycosylation reveals two key folding pathways for R345W fibulin-3, a secreted protein associated with retinal degeneration. FASEB J 2014; 29:565-75. [PMID: 25389134 DOI: 10.1096/fj.14-255414] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An R345W mutation in the N-glycoprotein, fibulin-3 (F3), results in inefficient F3 folding/secretion and higher intracellular F3 levels. Inheritance of this mutation causes the retinal dystrophy malattia leventinese. N-Linked glycosylation is a common cotranslational protein modification that can regulate protein folding efficiency and energetics. Therefore, we explored how N-glycosylation alters the protein homeostasis or proteostasis of wild-type (WT) and R345W F3 in ARPE-19 cells. Enzymatic and lectin binding assays confirmed that WT and R345W F3 are both primarily N-glycosylated at Asn249. Tunicamycin treatment selectively reduced R345W F3 secretion by 87% (vs. WT F3). Genetic elimination of F3 N-glycosylation (via an N249Q mutation) caused R345W F3 to aggregate intracellularly and adopt an altered secreted conformation. The endoplasmic reticulum (ER) chaperones GRP78 (glucose-regulated protein 78) and GRP94 (glucose-regulated protein 94), and the ER lectins calnexin and calreticulin were identified as F3 binding partners by immunoprecipitation. Significantly more N249Q and N249Q/R345W F3 interacted with GRP94, while substantially less N249Q and N249Q/R345W interacted with the ER lectins than their N-glycosylated counterparts. Inhibition of GRP94 ATPase activity reduced only N249Q/R345W F3 secretion (by 62%), demonstrating this variant's unique reliance on GRP94 for secretion. These observations suggest that R345W F3, but not WT F3, requires N-glycosylation to acquire a stable, native-like structure.
Collapse
Affiliation(s)
- John D Hulleman
- Departments of Chemistry and the Skaggs Institute for Chemical Biology andMolecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Jeffery W Kelly
- Departments of Chemistry and the Skaggs Institute for Chemical Biology andMolecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
94
|
Chambers JE, Marciniak SJ. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 2. Protein misfolding and ER stress. Am J Physiol Cell Physiol 2014; 307:C657-70. [PMID: 24944205 DOI: 10.1152/ajpcell.00183.2014] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) is a major site of protein synthesis, most strikingly in the specialized secretory cells of metazoans, which can produce their own weight in proteins daily. Cells possess a diverse machinery to ensure correct folding, assembly, and secretion of proteins from the ER. When this machinery is overwhelmed, the cell is said to experience ER stress, a result of the accumulation of unfolded or misfolded proteins in the lumen of the organelle. Here we discuss the causes of ER stress and the mechanisms by which cells elicit a response, with an emphasis on recent discoveries.
Collapse
Affiliation(s)
- Joseph E Chambers
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, United Kingdom
| | - Stefan J Marciniak
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, United Kingdom
| |
Collapse
|
95
|
Shishkin SS, Eremina LS, Kovalev LI, Kovaleva MA. AGR2, ERp57/GRP58, and some other human protein disulfide isomerases. BIOCHEMISTRY (MOSCOW) 2014; 78:1415-30. [PMID: 24490732 DOI: 10.1134/s000629791313004x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review considers the major features of human proteins AGR2 and ERp57/GRP58 and of other members of the protein disulfide isomerase (PDI) family. The ability of both AGR2 and ERp57/GRP58 to catalyze the formation of disulfide bonds in proteins is the parameter most important for assigning them to a PDI family. Moreover, these proteins and also other members of the PDI family have specific structural features (thioredoxin-like domains, special C-terminal motifs characteristic for proteins localized in the endoplasmic reticulum, etc.) that are necessary for their assignment to a PDI family. Data demonstrating the role of these two proteins in carcinogenesis are analyzed. Special attention is given to data indicating the presence of biomarker features in AGR2 and ERp57/GRP58. It is now thought that there is sufficient reason for studies of AGR2 and ERp57/GRP58 for possible use of these proteins in diagnosis of tumors. There are also prospects for studies on AGR2 and ERp57/GRP58 leading to developments in chemotherapy. Thus, we suppose that further studies on different members of the PDI family using modern postgenomic technologies will broaden current concepts about functions of these proteins, and this will be helpful for solution of urgent biomedical problems.
Collapse
Affiliation(s)
- S S Shishkin
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | | | |
Collapse
|
96
|
Balancing oxidative protein folding: The influences of reducing pathways on disulfide bond formation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1383-90. [DOI: 10.1016/j.bbapap.2014.02.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/31/2014] [Accepted: 02/07/2014] [Indexed: 11/20/2022]
|
97
|
Onda Y, Kobori Y. Differential activity of rice protein disulfide isomerase family members for disulfide bond formation and reduction. FEBS Open Bio 2014; 4:730-4. [PMID: 25161881 PMCID: PMC4141933 DOI: 10.1016/j.fob.2014.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 07/25/2014] [Accepted: 07/25/2014] [Indexed: 11/30/2022] Open
Abstract
PDIL1;1 efficiently catalyzed both disulfide bond formation and disulfide bond reduction. Two redox-active sites of PDIL1;1 were involved in disulfide reduction. Disulfide reduction activity of PDIL1;1 increased with increasing GSH concentration.
Protein disulfide isomerases (PDIs), a family of thiol-disulfide oxidoreductases that are ubiquitous in all eukaryotes, are the principal catalysts for disulfide bond formation. Here, we investigated three rice (Oryza sativa) PDI family members (PDIL1;1, PDIL1;4, and PDIL2;3) and found that PDIL1;1 exhibited the highest catalytic activity for both disulfide bond formation and disulfide bond reduction. The activity of PDIL1;1-catalyzed disulfide bond reduction, in which two redox-active sites were involved, was enhanced by increasing the glutathione concentration. These results suggest that PDIL1;1 plays primary roles in both disulfide bond formation and disulfide bond reduction, which allow for redox control of protein quality and packaging.
Collapse
Affiliation(s)
- Yayoi Onda
- Department of Food and Applied Life Sciences, Yamagata University, 1-23 Wakaba-Machi, Tsuruoka, Yamagata 997-8555, Japan
| | - Yohei Kobori
- Department of Food and Applied Life Sciences, Yamagata University, 1-23 Wakaba-Machi, Tsuruoka, Yamagata 997-8555, Japan
| |
Collapse
|
98
|
Tsunoda S, Avezov E, Zyryanova A, Konno T, Mendes-Silva L, Pinho Melo E, Harding HP, Ron D. Intact protein folding in the glutathione-depleted endoplasmic reticulum implicates alternative protein thiol reductants. eLife 2014; 3:e03421. [PMID: 25073928 PMCID: PMC4109312 DOI: 10.7554/elife.03421] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/03/2014] [Indexed: 12/16/2022] Open
Abstract
Protein folding homeostasis in the endoplasmic reticulum (ER) requires efficient protein thiol oxidation, but also relies on a parallel reductive process to edit disulfides during the maturation or degradation of secreted proteins. To critically examine the widely held assumption that reduced ER glutathione fuels disulfide reduction, we expressed a modified form of a cytosolic glutathione-degrading enzyme, ChaC1, in the ER lumen. ChaC1(CtoS) purged the ER of glutathione eliciting the expected kinetic defect in oxidation of an ER-localized glutathione-coupled Grx1-roGFP2 optical probe, but had no effect on the disulfide editing-dependent maturation of the LDL receptor or the reduction-dependent degradation of misfolded alpha-1 antitrypsin. Furthermore, glutathione depletion had no measurable effect on induction of the unfolded protein response (UPR); a sensitive measure of ER protein folding homeostasis. These findings challenge the importance of reduced ER glutathione and suggest the existence of alternative electron donor(s) that maintain the reductive capacity of the ER.DOI: http://dx.doi.org/10.7554/eLife.03421.001.
Collapse
Affiliation(s)
- Satoshi Tsunoda
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom Wellcome Trust MRC Institute of Metabolic Science, Cambridge, United Kingdom NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Edward Avezov
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom Wellcome Trust MRC Institute of Metabolic Science, Cambridge, United Kingdom NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Alisa Zyryanova
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom Wellcome Trust MRC Institute of Metabolic Science, Cambridge, United Kingdom NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Tasuku Konno
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom Wellcome Trust MRC Institute of Metabolic Science, Cambridge, United Kingdom NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Leonardo Mendes-Silva
- Centre for Molecular and Structural Biomedicine, Universidade do Algarve, Faro, Portugal
| | - Eduardo Pinho Melo
- Centre for Molecular and Structural Biomedicine, Universidade do Algarve, Faro, Portugal
| | - Heather P Harding
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom Wellcome Trust MRC Institute of Metabolic Science, Cambridge, United Kingdom NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - David Ron
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom Wellcome Trust MRC Institute of Metabolic Science, Cambridge, United Kingdom NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| |
Collapse
|
99
|
Athanasiou D, Bevilacqua D, Aguila M, McCulley C, Kanuga N, Iwawaki T, Chapple JP, Cheetham ME. The co-chaperone and reductase ERdj5 facilitates rod opsin biogenesis and quality control. Hum Mol Genet 2014; 23:6594-606. [PMID: 25055872 PMCID: PMC4240209 DOI: 10.1093/hmg/ddu385] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mutations in rhodopsin, the light-sensitive protein of rod cells, are the most common cause of autosomal dominant retinitis pigmentosa (ADRP). Many rod opsin mutations, such as P23H, lead to misfolding of rod opsin with detrimental effects on photoreceptor function and viability. Misfolded P23H rod opsin and other mutations in the intradiscal domain are characterized by the formation of an incorrect disulphide bond between C185 and C187, as opposed to the correct and highly conserved C110–C187 disulphide bond. Therefore, we tested the hypothesis that incorrect disulphide bond formation might be a factor that affects the biogenesis of rod opsin by studying wild-type (WT) or P23H rod opsin in combination with amino acid substitutions that prevent the formation of incorrect disulphide bonds involving C185. These mutants had altered traffic dynamics, suggesting a requirement for regulation of disulphide bond formation/reduction during rod opsin biogenesis. Here, we show that the BiP co-chaperone and reductase protein ERdj5 (DNAJC10) regulates this process. ERdj5 overexpression promoted the degradation, improved the endoplasmic reticulum mobility and prevented the aggregation of P23H rod opsin. ERdj5 reduction by shRNA delayed rod opsin degradation and promoted aggregation. The reductase and co-chaperone activity of ERdj5 were both required for these effects on P23H rod opsin. Furthermore, mutations in these functional domains acted as dominant negatives that affected WT rod opsin biogenesis. Collectively, these data identify ERdj5 as a member of the proteostasis network that regulates rod opsin biogenesis and supports a role for disulphide bond formation/reduction in rod opsin biogenesis and disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Takao Iwawaki
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma 371-8511, Japan and
| | - J Paul Chapple
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | | |
Collapse
|
100
|
Stocki P, Chapman DC, Beach LA, Williams DB. Depletion of cyclophilins B and C leads to dysregulation of endoplasmic reticulum redox homeostasis. J Biol Chem 2014; 289:23086-23096. [PMID: 24990953 DOI: 10.1074/jbc.m114.570911] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Protein folding within the endoplasmic reticulum is assisted by molecular chaperones and folding catalysts that include members of the protein-disulfide isomerase and peptidyl-prolyl isomerase families. In this report, we examined the contributions of the cyclophilin subset of peptidyl-prolyl isomerases to protein folding and identified cyclophilin C as an endoplasmic reticulum (ER) cyclophilin in addition to cyclophilin B. Using albumin and transferrin as models of cis-proline-containing proteins in human hepatoma cells, we found that combined knockdown of cyclophilins B and C delayed transferrin secretion but surprisingly resulted in more efficient oxidative folding and secretion of albumin. Examination of the oxidation status of ER protein-disulfide isomerase family members revealed a shift to a more oxidized state. This was accompanied by a >5-fold elevation in the ratio of oxidized to total glutathione. This "hyperoxidation" phenotype could be duplicated by incubating cells with the cyclophilin inhibitor cyclosporine A, a treatment that triggered efficient ER depletion of cyclophilins B and C by inducing their secretion to the medium. To identify the pathway responsible for ER hyperoxidation, we individually depleted several enzymes that are known or suspected to deliver oxidizing equivalents to the ER: Ero1αβ, VKOR, PRDX4, or QSOX1. Remarkably, none of these enzymes contributed to the elevated oxidized to total glutathione ratio induced by cyclosporine A treatment. These findings establish cyclophilin C as an ER cyclophilin, demonstrate the novel involvement of cyclophilins B and C in ER redox homeostasis, and suggest the existence of an additional ER oxidative pathway that is modulated by ER cyclophilins.
Collapse
Affiliation(s)
- Pawel Stocki
- Department of Biochemistry, University of Toronto, Toronto M5S 1A8, Canada
| | - Daniel C Chapman
- Department of Biochemistry, University of Toronto, Toronto M5S 1A8, Canada
| | - Lori A Beach
- Department of Biochemistry, University of Toronto, Toronto M5S 1A8, Canada
| | - David B Williams
- Department of Biochemistry, University of Toronto, Toronto M5S 1A8, Canada.
| |
Collapse
|