51
|
Xiao Z, Shen J, Zhang L, Li M, Hu W, Cho C. Therapeutic targeting of noncoding RNAs in hepatocellular carcinoma: Recent progress and future prospects. Oncol Lett 2018; 15:3395-3402. [PMID: 29467864 PMCID: PMC5796293 DOI: 10.3892/ol.2018.7758] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 10/18/2017] [Indexed: 12/12/2022] Open
Abstract
Due to the high mortality rate and unsatisfactory treatment options available, hepatocellular carcinoma (HCC) remains one of the most common malignancies and a leading cause of cancer-associated mortality. Novel therapeutic targets for HCC are urgently required. Advanced RNA sequencing technology enables the identification of considerable amounts of noncoding RNAs (ncRNAs), including small noncoding RNAs and long noncoding RNAs, which exhibit no protein-coding activities. In this respect, ncRNAs and their regulatory processes are important factors in liver tumorigenesis. The present review focuses on the characteristics and biological roles of ncRNAs in HCC. Potential therapeutic applications of ncRNAs in HCC are also evaluated.
Collapse
Affiliation(s)
- Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Lin Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wei Hu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Chihin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| |
Collapse
|
52
|
Wang W, Ashby R, Ying H, Maleszka R, Forêt S. Contrasting Sex-and Caste-Dependent piRNA Profiles in the Transposon Depleted Haplodiploid Honeybee Apis mellifera. Genome Biol Evol 2018; 9:1341-1356. [PMID: 28472327 PMCID: PMC5452642 DOI: 10.1093/gbe/evx087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2017] [Indexed: 12/12/2022] Open
Abstract
Protecting genome integrity against transposable elements is achieved by intricate molecular mechanisms involving PIWI proteins, their associated small RNAs (piRNAs), and epigenetic modifiers such as DNA methylation. Eusocial bees, in particular the Western honeybee, Apis mellifera, have one of the lowest contents of transposable elements in the animal kingdom, and, unlike other animals with a functional DNA methylation system, appear not to methylate their transposons. This raises the question of whether the PIWI machinery has been retained in this species. Using comparative genomics, mass spectrometry, and expressional profiling, we present seminal evidence that the piRNA system is conserved in honeybees. We show that honey bee piRNAs contain a 2'-O-methyl modification at the 3' end, and have a bias towards a 5' terminal U, which are signature features of their biogenesis. Both piRNA repertoire and expression levels are greater in reproductive individuals than in sterile workers. Haploid males, where the detrimental effects of transposons are dominant, have the greatest piRNA levels, but surprisingly, the highest expression of transposons. These results show that even in a transposon-depleted species, the piRNA system is required to guard the vulnerable haploid genome and reproductive castes against transposon-associated genomic instability. This also suggests that dosage plays an important role in the regulation of transposons and piRNAs expression in haplo-diploid systems.
Collapse
Affiliation(s)
- Weiwen Wang
- Research School of Biology, Australian National University, Acton, ACT, Australia
| | - Regan Ashby
- Research School of Biology, Australian National University, Acton, ACT, Australia.,Centre for Research in Therapeutic Solutions, Health Research Institute, Faculty of Education, Science, Technology and Mathematics, University of Canberra, ACT, Australia
| | - Hua Ying
- Research School of Biology, Australian National University, Acton, ACT, Australia
| | - Ryszard Maleszka
- Research School of Biology, Australian National University, Acton, ACT, Australia
| | - Sylvain Forêt
- Research School of Biology, Australian National University, Acton, ACT, Australia.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
53
|
Yamashiro H, Siomi MC. PIWI-Interacting RNA in Drosophila: Biogenesis, Transposon Regulation, and Beyond. Chem Rev 2017; 118:4404-4421. [PMID: 29281264 DOI: 10.1021/acs.chemrev.7b00393] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are germline-enriched small RNAs that control transposons to maintain genome integrity. To achieve this, upon being processed from piRNA precursors, most of which are transcripts of intergenic piRNA clusters, piRNAs bind PIWI proteins, germline-specific Argonaute proteins, to form effector complexes. The mechanism of this piRNA-mediated transposon silencing pathway is fundamentally similar to that of siRNA/miRNA-dependent gene silencing in that a small RNA guides its partner Argonaute protein to target gene transcripts for repression via RNA-RNA base pairing. However, the uniqueness of this piRNA pathway has emerged through intensive genetic, biochemical, bioinformatic, and structural investigations. Here, we review the studies that elucidated the piRNA pathway, mainly in Drosophila, by describing both historical and recent progress. Studies in other species that have made important contributions to the field are also described.
Collapse
Affiliation(s)
- Haruna Yamashiro
- Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo 113-0032 , Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo 113-0032 , Japan
| |
Collapse
|
54
|
Sakakibara K, Siomi MC. The PIWI-Interacting RNA Molecular Pathway: Insights From Cultured Silkworm Germline Cells. Bioessays 2017; 40. [DOI: 10.1002/bies.201700068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/26/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Kazuhiro Sakakibara
- Department of Biological Sciences; Graduate School of Science; The University of Tokyo; Tokyo 113-0032 Japan
| | - Mikiko C. Siomi
- Department of Biological Sciences; Graduate School of Science; The University of Tokyo; Tokyo 113-0032 Japan
| |
Collapse
|
55
|
Ernst C, Odom DT, Kutter C. The emergence of piRNAs against transposon invasion to preserve mammalian genome integrity. Nat Commun 2017; 8:1411. [PMID: 29127279 PMCID: PMC5681665 DOI: 10.1038/s41467-017-01049-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/14/2017] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs) contribute to the large amount of repetitive sequences in mammalian genomes and have been linked to species-specific genome innovations by rewiring regulatory circuitries. However, organisms need to restrict TE activity to ensure genome integrity, especially in germline cells to protect the transmission of genetic information to the next generation. This review features our current understandings of mammalian PIWI-interacting RNAs (piRNAs) and their role in TE regulation in spermatogenesis. Here we discuss functional implication and explore additional molecular mechanisms that inhibit transposon activity and altogether illustrate the paradoxical arms race between genome evolution and stability.
Collapse
Affiliation(s)
- Christina Ernst
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Duncan T Odom
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Nobels väg 16, 171 77, Stockholm, Sweden.
| |
Collapse
|
56
|
Rogers AK, Situ K, Perkins EM, Toth KF. Zucchini-dependent piRNA processing is triggered by recruitment to the cytoplasmic processing machinery. Genes Dev 2017; 31:1858-1869. [PMID: 29021243 PMCID: PMC5695087 DOI: 10.1101/gad.303214.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/13/2017] [Indexed: 11/24/2022]
Abstract
Here, Rogers et al. investigated how piRNA precursors are selected and channeled into the endonuclease Zucchini (Zuc)-dependent processing pathway in Drosophila germ cells. They engineered a modular system that can induce primary piRNA biogenesis at an arbitrary locus even in the absence of native piRNA precursors. They also established a subcellular compartmentalization as a key factor in RNA processing. The piRNA pathway represses transposable elements in the gonads and thereby plays a vital role in protecting the integrity of germline genomes of animals. Mature piRNAs are processed from longer transcripts, piRNA precursors (pre-piRNAs). In Drosophila, processing of pre-piRNAs is initiated by piRNA-guided Slicer cleavage or the endonuclease Zucchini (Zuc). As Zuc does not have any sequence or structure preferences in vitro, it is not known how piRNA precursors are selected and channeled into the Zuc-dependent processing pathway. We show that a heterologous RNA that lacks complementary piRNAs is processed into piRNAs upon recruitment of several piRNA pathway factors. This processing requires Zuc and the helicase Armitage (Armi). Aubergine (Aub), Argonaute 3 (Ago3), and components of the nuclear RDC complex, which are required for normal piRNA biogenesis in germ cells, are dispensable. Our approach allows discrimination of proteins involved in the transcription and export of piRNA precursors from components required for the cytoplasmic processing steps. piRNA processing correlates with localization of the substrate RNA to nuage, a distinct membraneless cytoplasmic compartment, which surrounds the nucleus of germ cells, suggesting that sequestration of RNA to this subcellular compartment is both necessary and sufficient for selecting piRNA biogenesis substrates.
Collapse
Affiliation(s)
- Alicia K Rogers
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Kathy Situ
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Edward M Perkins
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Katalin Fejes Toth
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
57
|
Romano G, Veneziano D, Acunzo M, Croce CM. Small non-coding RNA and cancer. Carcinogenesis 2017; 38:485-491. [PMID: 28449079 DOI: 10.1093/carcin/bgx026] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/09/2017] [Indexed: 12/14/2022] Open
Abstract
The ENCODE project has reported that at least 80% of the human genome is biologically active, yet only a small part of human DNA encodes for protein. The massive amount of RNA transcribed but not translated into protein can be classified as housekeeping RNA (such as rRNA, tRNA) and regulatory RNA (such as miRNA, piRNA, lncRNA). Small non-coding RNAs, in particular, have been the focus of many studies in the last 20 years and their fundamental role in many human diseases is currently well established. Inter alia, their role in cancer development and progression, as well as in drug resistance, is being increasingly investigated. In this review, focusing our attention on recent research results, we provide an overview of the four large classes of small non-coding RNAs, namely, miRNAs, piRNAs, snoRNA and the new class of tRNA-derived fragments, highlighting their fundamental role in cancer and their potential as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Giulia Romano
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Dario Veneziano
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Mario Acunzo
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
58
|
Abstract
Piwi proteins and their bound Piwi-interacting RNAs (piRNAs) are predominantly expressed in the germline and play crucial roles in germline development by silencing transposons and other targets. Bombyx mori BmN4 cells are culturable germ cells that equip the piRNA pathway. Because of the scarcity of piRNA-expressing culturable cells, BmN4 cells are being utilized for the analyses of piRNA biogenesis. We here report that the piRNA biogenesis in BmN4 cells is regulated by cell density. As cell density increased, the abundance of Piwi proteins and piRNA biogenesis factors was commonly upregulated, resulting in an increased number of perinuclear nuage-like granules where Piwi proteins localize. Along with these phenomena, the abundance of mature piRNAs also globally increased, whereas levels of long piRNA precursor and transposons decreased, suggesting that increasing cell density promotes piRNA biogenesis pathway and that the resultant accumulation of mature piRNAs is functionally significant for transposon silencing. Our study reveals a previously uncharacterized link between cell density and piRNA biogenesis, designates cell density as a critical variable in piRNA studies using BmN4 cell system, and suggests the alteration of cell density as a useful tool to monitor piRNA biogenesis and function.
Collapse
|
59
|
Abstract
Many computational tools have been proposed during the two last decades for predicting piRNAs, which are molecules with important role in post-transcriptional gene regulation. However, these tools are mostly based on only one feature that is generally related to the sequence. Discoveries in the domain of piRNAs are still in their beginning stages, and recent publications have shown many new properties. Here, we propose an integrative approach for piRNA prediction in which several types of genomic and epigenomic properties that can be used to characterize these molecules are examined. We reviewed and extracted a large number of piRNA features from the literature that have been observed experimentally in several species. These features are represented by different kernels, in a Multiple Kernel Learning based approach, implemented within an object-oriented framework. The obtained tool, called IpiRId, shows prediction results that attain more than 90% of accuracy on different tested species (human, mouse and fly), outperforming all existing tools. Besides, our method makes it possible to study the validity of each given feature in a given species. Finally, the developed tool is modular and easily extensible, and can be adapted for predicting other types of ncRNAs. The IpiRId software and the user-friendly web-based server of our tool are now freely available to academic users at: https://evryrna.ibisc.univ-evry.fr/evryrna/.
Collapse
|
60
|
Shoji K, Suzuki Y, Sugano S, Shimada T, Katsuma S. Artificial "ping-pong" cascade of PIWI-interacting RNA in silkworm cells. RNA (NEW YORK, N.Y.) 2017; 23:86-97. [PMID: 27777367 PMCID: PMC5159652 DOI: 10.1261/rna.058875.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/15/2016] [Indexed: 05/19/2023]
Abstract
PIWI-interacting RNAs (piRNAs) play essential roles in the defense system against selfish elements in animal germline cells by cooperating with PIWI proteins. A subset of piRNAs is predicted to be generated via the "ping-pong" cascade, which is mainly controlled by two different PIWI proteins. Here we established a cell-based artificial piRNA production system using a silkworm ovarian cultured cell line that is believed to possess a complete piRNA pathway. In addition, we took advantage of a unique silkworm sex-determining one-to-one ping-pong piRNA pair, which enabled us to precisely monitor the behavior of individual artificial piRNAs. With this novel strategy, we successfully generated artificial piRNAs against endogenous protein-coding genes via the expected back-and-forth traveling mechanism. Furthermore, we detected "primary" piRNAs from the upstream region of the artificial "ping-pong" site in the endogenous gene. This artificial piRNA production system experimentally confirms the existence of the "ping-pong" cascade of piRNAs. Also, this system will enable us to identify the factors involved in both, or each, of the "ping" and "pong" cascades and the sequence features that are required for efficient piRNA production.
Collapse
Affiliation(s)
- Keisuke Shoji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
| | - Sumio Sugano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Toru Shimada
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
61
|
Abstract
Vector mosquitoes are responsible for transmission of the majority of arthropod-borne (arbo-) viruses. Virus replication in these vectors needs to be sufficiently high to permit efficient virus transfer to vertebrate hosts. The mosquito immune response therefore is a key determinant for arbovirus transmission. Mosquito antiviral immunity is primarily mediated by the small interfering RNA pathway. Besides this well-established antiviral machinery, the PIWI-interacting RNA (piRNA) pathway processes viral RNA into piRNAs. In recent years, significant progress has been made in characterizing the biogenesis and function of these viral piRNAs. In this review, we discuss these developments, identify knowledge gaps, and suggest directions for future research.
Collapse
|
62
|
Abstract
piRNA guides the action of PIWI proteins to silence deleterious transposons in animal reproductive tissues. Biogenesis of piRNA-induced silencing complex (piRISC) involves a multi-step process. In this issue, Matsumoto et al. report the first crystal structure of a PIWI-clade protein displaying a guide RNA, ready for action.
Collapse
Affiliation(s)
- Yibei Xiao
- Department of Molecular Biology and Genetics, Cornell University, 251 Biotechnology Building, Ithaca, NY 14853, USA
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, 251 Biotechnology Building, Ithaca, NY 14853, USA.
| |
Collapse
|
63
|
Small RNAs from a Big Genome: The piRNA Pathway and Transposable Elements in the Salamander Species Desmognathus fuscus. J Mol Evol 2016; 83:126-136. [PMID: 27743003 DOI: 10.1007/s00239-016-9759-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 10/06/2016] [Indexed: 01/26/2023]
Abstract
Most of the largest vertebrate genomes are found in salamanders, a clade of amphibians that includes 686 species. Salamander genomes range in size from 14 to 120 Gb, reflecting the accumulation of large numbers of transposable element (TE) sequences from all three TE classes. Although DNA loss rates are slow in salamanders relative to other vertebrates, high levels of TE insertion are also likely required to explain such high TE loads. Across the Tree of Life, novel TE insertions are suppressed by several pathways involving small RNA molecules. In most known animals, TE activity in the germline is primarily regulated by the Piwi-interacting RNA (piRNA) pathway. In this study, we test the hypothesis that salamanders' unusually high TE loads reflect the loss of the ancestral piRNA-mediated TE-silencing machinery. We characterized the small RNA pool in the female and male adult gonads, testing for the presence of small RNA molecules that bear the characteristics of TE-targeting piRNAs. We also analyzed the amino acid sequences of piRNA pathway proteins from salamanders and other vertebrates, testing whether the overall patterns of sequence divergence are consistent with conserved pathway function across the vertebrate clade. Our results do not support the hypothesis of piRNA pathway loss; instead, they suggest that the piRNA pathway is expressed in salamanders. Given these results, we propose hypotheses to explain how the extraordinary TE loads in salamander genomes could have accumulated, despite the expression of TE-silencing machinery.
Collapse
|
64
|
Matsumoto N, Nishimasu H, Sakakibara K, Nishida KM, Hirano T, Ishitani R, Siomi H, Siomi MC, Nureki O. Crystal Structure of Silkworm PIWI-Clade Argonaute Siwi Bound to piRNA. Cell 2016; 167:484-497.e9. [DOI: 10.1016/j.cell.2016.09.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
|
65
|
Czech B, Hannon GJ. One Loop to Rule Them All: The Ping-Pong Cycle and piRNA-Guided Silencing. Trends Biochem Sci 2016; 41:324-337. [PMID: 26810602 PMCID: PMC4819955 DOI: 10.1016/j.tibs.2015.12.008] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 01/06/2023]
Abstract
The PIWI-interacting RNA (piRNA) pathway is a conserved defense mechanism that protects the genetic information of animal germ cells from the deleterious effects of molecular parasites, such as transposons. Discovered nearly a decade ago, this small RNA silencing system comprises PIWI-clade Argonaute proteins and their associated RNA-binding partners, the piRNAs. In this review, we highlight recent work that has advanced our understanding of how piRNAs preserve genome integrity across generations. We discuss the mechanism of piRNA biogenesis, give an overview of common themes as well as differences in piRNA-mediated silencing between species, and end by highlighting known and emerging functions of piRNAs.
Collapse
Affiliation(s)
- Benjamin Czech
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE, UK.
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE, UK.
| |
Collapse
|
66
|
Kobayashi H, Tomari Y. RISC assembly: Coordination between small RNAs and Argonaute proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:71-81. [DOI: 10.1016/j.bbagrm.2015.08.007] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/11/2015] [Accepted: 08/20/2015] [Indexed: 12/18/2022]
|
67
|
piRNA biogenesis in the germline: From transcription of piRNA genomic sources to piRNA maturation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:82-92. [DOI: 10.1016/j.bbagrm.2015.09.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/25/2015] [Accepted: 09/01/2015] [Indexed: 12/22/2022]
|
68
|
Wang W, Han BW, Tipping C, Ge DT, Zhang Z, Weng Z, Zamore PD. Slicing and Binding by Ago3 or Aub Trigger Piwi-Bound piRNA Production by Distinct Mechanisms. Mol Cell 2015; 59:819-30. [PMID: 26340424 DOI: 10.1016/j.molcel.2015.08.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/08/2015] [Accepted: 08/12/2015] [Indexed: 12/11/2022]
Abstract
In Drosophila ovarian germ cells, PIWI-interacting RNAs (piRNAs) direct Aubergine and Argonaute3 to cleave transposon transcripts and instruct Piwi to repress transposon transcription, thereby safeguarding the germline genome. Here, we report that RNA cleavage by Argonaute3 initiates production of most Piwi-bound piRNAs. We find that the cardinal function of Argonaute3, whose piRNA guides predominantly correspond to sense transposon sequences, is to produce antisense piRNAs that direct transcriptional silencing by Piwi, rather than to make piRNAs that guide post-transcriptional silencing by Aubergine. We also find that the Tudor domain protein Qin prevents Aubergine's cleavage products from becoming Piwi-bound piRNAs, ensuring that antisense piRNAs guide Piwi. Although Argonaute3 slicing is required to efficiently trigger phased piRNA production, an alternative, slicing-independent pathway suffices to generate Piwi-bound piRNAs that repress transcription of a subset of transposon families. This alternative pathway may help flies silence newly acquired transposons for which they lack extensively complementary piRNAs.
Collapse
Affiliation(s)
- Wei Wang
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA; RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Bo W Han
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Cindy Tipping
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Daniel Tianfang Ge
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Zhao Zhang
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| | - Phillip D Zamore
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
69
|
Lim RSM, Kai T. A piece of the pi(e): The diverse roles of animal piRNAs and their PIWI partners. Semin Cell Dev Biol 2015; 47-48:17-31. [PMID: 26582251 DOI: 10.1016/j.semcdb.2015.10.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Small non-coding RNAs are indispensable to many biological processes. A class of endogenous small RNAs, termed PIWI-interacting RNAs (piRNAs) because of their association with PIWI proteins, has known roles in safeguarding the genome against inordinate transposon mobilization, embryonic development, and stem cell regulation, among others. This review discusses the biogenesis of animal piRNAs and their diverse functions together with their PIWI protein partners, both in the germline and in somatic cells, and highlights the evolutionarily conserved aspects of these molecular players in animal biology.
Collapse
Affiliation(s)
- Robyn S M Lim
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Toshie Kai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
70
|
Senti KA, Jurczak D, Sachidanandam R, Brennecke J. piRNA-guided slicing of transposon transcripts enforces their transcriptional silencing via specifying the nuclear piRNA repertoire. Genes Dev 2015; 29:1747-62. [PMID: 26302790 PMCID: PMC4561483 DOI: 10.1101/gad.267252.115] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this study, Senti et al investigate how cytoplasmic post-transcriptional silencing influences transcriptional silencing in the nucleus. They show that Piwi-bound piRNA populations depend almost exclusively on prior piRNA-guided transcript slicing, thus providing further insight into the regulation of piRNA biogenesis in the developing Drosophila ovary. PIWI clade Argonaute proteins silence transposon expression in animal gonads. Their target specificity is defined by bound ∼23- to 30-nucleotide (nt) PIWI-interacting RNAs (piRNAs) that are processed from single-stranded precursor transcripts via two distinct pathways. Primary piRNAs are defined by the endonuclease Zucchini, while biogenesis of secondary piRNAs depends on piRNA-guided transcript cleavage and results in piRNA amplification. Here, we analyze the interdependencies between these piRNA biogenesis pathways in developing Drosophila ovaries. We show that secondary piRNA-guided target slicing is the predominant mechanism that specifies transcripts—including those from piRNA clusters—as primary piRNA precursors and defines the spectrum of Piwi-bound piRNAs in germline cells. Post-transcriptional silencing in the cytoplasm therefore enforces nuclear transcriptional target silencing, which ensures the tight suppression of transposons during oogenesis. As target slicing also defines the nuclear piRNA pool during mouse spermatogenesis, our findings uncover an unexpected conceptual similarity between the mouse and fly piRNA pathways.
Collapse
Affiliation(s)
- Kirsten-André Senti
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Daniel Jurczak
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Ravi Sachidanandam
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
71
|
Yao C, Sasaki HM, Ueda T, Tomari Y, Tadakuma H. Single-Molecule Analysis of the Target Cleavage Reaction by the Drosophila RNAi Enzyme Complex. Mol Cell 2015; 59:125-32. [PMID: 26140368 DOI: 10.1016/j.molcel.2015.05.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/02/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
Abstract
Small interfering RNAs (siRNAs) direct cleavage of complementary target RNAs via an RNA-induced silencing complex (RISC) that contains Argonatute2 protein at its core. However, what happens after target cleavage remains unclear. Here we analyzed the cleavage reaction by Drosophila Argonaute2-RISC using single-molecule imaging and revealed a series of intermediate states in target recognition, cleavage, and product release. Our data suggest that, after cleavage, RISC generally releases the 5' cleavage fragment from the guide 3' supplementary region first and then the 3' fragment from the seed region, highlighting the reinforcement of the seed pairing in RISC. However, this order can be reversed by extreme stabilization of the 3' supplementary region or mismatches in the seed region. Therefore, the release order of the two cleavage fragments is influenced by the stability in each region, in contrast to the unidirectional base pairing propagation from the seed to the 3' supplementary region upon target recognition.
Collapse
Affiliation(s)
- Chunyan Yao
- Graduate School of Frontier Science, The University of Tokyo, Chiba 277-8562, Japan; Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Hiroshi M Sasaki
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Takuya Ueda
- Graduate School of Frontier Science, The University of Tokyo, Chiba 277-8562, Japan
| | - Yukihide Tomari
- Graduate School of Frontier Science, The University of Tokyo, Chiba 277-8562, Japan; Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan.
| | - Hisashi Tadakuma
- Graduate School of Frontier Science, The University of Tokyo, Chiba 277-8562, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
72
|
Gebert D, Rosenkranz D. RNA-based regulation of transposon expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:687-708. [DOI: 10.1002/wrna.1310] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/08/2015] [Accepted: 09/13/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Daniel Gebert
- Institute of Anthropology; Johannes Gutenberg University; Mainz Germany
| | - David Rosenkranz
- Institute of Anthropology; Johannes Gutenberg University; Mainz Germany
| |
Collapse
|
73
|
Parrish NF, Fujino K, Shiromoto Y, Iwasaki YW, Ha H, Xing J, Makino A, Kuramochi-Miyagawa S, Nakano T, Siomi H, Honda T, Tomonaga K. piRNAs derived from ancient viral processed pseudogenes as transgenerational sequence-specific immune memory in mammals. RNA (NEW YORK, N.Y.) 2015; 21:1691-1703. [PMID: 26283688 PMCID: PMC4574747 DOI: 10.1261/rna.052092.115] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/08/2015] [Indexed: 06/04/2023]
Abstract
Endogenous bornavirus-like nucleoprotein elements (EBLNs) are sequences within vertebrate genomes derived from reverse transcription and integration of ancient bornaviral nucleoprotein mRNA via the host retrotransposon machinery. While species with EBLNs appear relatively resistant to bornaviral disease, the nature of this association is unclear. We hypothesized that EBLNs could give rise to antiviral interfering RNA in the form of PIWI-interacting RNAs (piRNAs), a class of small RNA known to silence transposons but not exogenous viruses. We found that in both rodents and primates, which acquired their EBLNs independently some 25-40 million years ago, EBLNs are present within piRNA-generating regions of the genome far more often than expected by chance alone (ℙ = 8 × 10(-3)-6 × 10(-8)). Three of the seven human EBLNs fall within annotated piRNA clusters and two marmoset EBLNs give rise to bona fide piRNAs. In both rats and mice, at least two of the five EBLNs give rise to abundant piRNAs in the male gonad. While no EBLNs are syntenic between rodent and primate, some of the piRNA clusters containing EBLNs are; thus we deduce that EBLNs were integrated into existing piRNA clusters. All true piRNAs derived from EBLNs are antisense relative to the proposed ancient bornaviral nucleoprotein mRNA. These observations are consistent with a role for EBLN-derived piRNA-like RNAs in interfering with ancient bornaviral infection. They raise the hypothesis that retrotransposon-dependent virus-to-host gene flow could engender RNA-mediated, sequence-specific antiviral immune memory in metazoans analogous to the CRISPR/Cas system in prokaryotes.
Collapse
Affiliation(s)
- Nicholas F Parrish
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Kan Fujino
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Yusuke Shiromoto
- Department of Pathology, Medical School and Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Yuka W Iwasaki
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hongseok Ha
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Akiko Makino
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan Center for Emerging Virus Research, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Satomi Kuramochi-Miyagawa
- Department of Pathology, Medical School and Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Toru Nakano
- Department of Pathology, Medical School and Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tomoyuki Honda
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan Department of Tumor Viruses, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Keizo Tomonaga
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan Department of Tumor Viruses, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
74
|
Schirle NT, Sheu-Gruttadauria J, Chandradoss SD, Joo C, MacRae IJ. Water-mediated recognition of t1-adenosine anchors Argonaute2 to microRNA targets. eLife 2015; 4. [PMID: 26359634 PMCID: PMC4606517 DOI: 10.7554/elife.07646] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 09/10/2015] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs) direct post-transcriptional regulation of human genes by guiding Argonaute proteins to complementary sites in messenger RNAs (mRNAs) targeted for repression. An enigmatic feature of many conserved mammalian miRNA target sites is that an adenosine (A) nucleotide opposite miRNA nucleotide-1 confers enhanced target repression independently of base pairing potential to the miRNA. In this study, we show that human Argonaute2 (Ago2) possesses a solvated surface pocket that specifically binds adenine nucleobases in the 1 position (t1) of target RNAs. t1A nucleotides are recognized indirectly through a hydrogen-bonding network of water molecules that preferentially interacts with the N6 amine on adenine. t1A nucleotides are not utilized during the initial binding of Ago2 to its target, but instead function by increasing the dwell time on target RNA. We also show that N6 adenosine methylation blocks t1A recognition, revealing a possible mechanism for modulation of miRNA target site potency. DOI:http://dx.doi.org/10.7554/eLife.07646.001 Stretches of DNA known as genes provide the instructions to make the proteins and RNA molecules a cell needs to work. To make a protein, the gene is used as a template to make a type of RNA molecule called messenger RNA (mRNA), which is subsequently ‘translated’ into a protein. Most genes do not need to produce proteins all of the time, and so cells have several ways of stopping proteins from being made. For example, the Argonaute family of proteins prevents mRNA molecules from being translated into proteins. Argonautes are guided to their targets by short RNA molecules called microRNAs. RNA molecules are made up of a sequence of building blocks known as nucleotides, each of which can only bind to one other type of nucleotide. If part of the nucleotide sequence of a microRNA molecule corresponds with part of the nucleotide sequence of the mRNA, the two RNA molecules will bind to each other. This enables the microRNA and the Argonaute protein to prevent the mRNA being translated. If the mRNA has an adenine nucleotide in a particular position (called ‘t1’) near the binding region in the mRNA sequence, Argonaute proteins will prevent translation more effectively. An adenine nucleotide in the t1 position is also known as a t1A nucleotide. In 2014, researchers revealed the structure of a human Argonaute protein called Argonaute2 when it is bound to a microRNA-mRNA pair. This revealed that t1A nucleotides—but not other nucleotide types in the t1 position—interact with a ‘pocket’ in the Argonaute protein. However, it was not clear how the adenine nucleotide is recognized. Now, Schirle et al.—including several of the researchers involved in the 2014 work—use a technique called X-ray crystallography to examine how the t1A nucleotide interacts with Argonaute2 in more detail. This revealed that the Argonaute2 pocket contains many water molecules that form an organized network. This network interacts with part of the t1A nucleotide and helps to lock Argonaute2 onto its microRNA target sites. The discovery of the pocket and how t1A is recognized may now be used to design more effective ‘anti-miRs’—synthetic microRNA inhibitors that can treat diseases in which microRNAs work incorrectly, a feature common to many forms of cancer. DOI:http://dx.doi.org/10.7554/eLife.07646.002
Collapse
Affiliation(s)
- Nicole T Schirle
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
| | - Jessica Sheu-Gruttadauria
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
| | - Stanley D Chandradoss
- Kavli Institute of NanoScience, Department of BioNanoScience, Delft University of Technology, Delft, Netherlands
| | - Chirlmin Joo
- Kavli Institute of NanoScience, Department of BioNanoScience, Delft University of Technology, Delft, Netherlands
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
75
|
Barckmann B, Pierson S, Dufourt J, Papin C, Armenise C, Port F, Grentzinger T, Chambeyron S, Baronian G, Desvignes JP, Curk T, Simonelig M. Aubergine iCLIP Reveals piRNA-Dependent Decay of mRNAs Involved in Germ Cell Development in the Early Embryo. Cell Rep 2015; 12:1205-16. [PMID: 26257181 PMCID: PMC4626872 DOI: 10.1016/j.celrep.2015.07.030] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/17/2015] [Accepted: 07/14/2015] [Indexed: 11/25/2022] Open
Abstract
The Piwi-interacting RNA (piRNA) pathway plays an essential role in the repression of transposons in the germline. Other functions of piRNAs such as post-transcriptional regulation of mRNAs are now emerging. Here, we perform iCLIP with the PIWI protein Aubergine (Aub) and identify hundreds of maternal mRNAs interacting with Aub in the early Drosophila embryo. Gene expression profiling reveals that a proportion of these mRNAs undergo Aub-dependent destabilization during the maternal-to-zygotic transition. Strikingly, Aub-dependent unstable mRNAs encode germ cell determinants. iCLIP with an Aub mutant that is unable to bind piRNAs confirms piRNA-dependent binding of Aub to mRNAs. Base pairing between piRNAs and mRNAs can induce mRNA cleavage and decay that are essential for embryonic development. These results suggest general regulation of maternal mRNAs by Aub and piRNAs, which plays a key developmental role in the embryo through decay and localization of mRNAs encoding germ cell determinants. Aub binds to maternal mRNAs in early Drosophila embryos Interaction between Aub and maternal mRNAs depends on piRNAs aub mutants are defective in mRNA decay during the MZT Aub-dependent unstable mRNAs encode germ cell determinants
Collapse
Affiliation(s)
- Bridlin Barckmann
- mRNA Regulation and Development, Institut de Génétique Humaine, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Stéphanie Pierson
- mRNA Regulation and Development, Institut de Génétique Humaine, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Jérémy Dufourt
- mRNA Regulation and Development, Institut de Génétique Humaine, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Catherine Papin
- mRNA Regulation and Development, Institut de Génétique Humaine, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Claudia Armenise
- RNA Silencing and Control of Transposition, Institut de Génétique Humaine, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Fillip Port
- Division of Cell Biology, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Thomas Grentzinger
- RNA Silencing and Control of Transposition, Institut de Génétique Humaine, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Séverine Chambeyron
- RNA Silencing and Control of Transposition, Institut de Génétique Humaine, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Grégory Baronian
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, 141 rue de la cardonille, 34094 Montpellier Cedex 5, France
| | - Jean-Pierre Desvignes
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, 141 rue de la cardonille, 34094 Montpellier Cedex 5, France
| | - Tomaz Curk
- Faculty of Computer and Information Science, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Martine Simonelig
- mRNA Regulation and Development, Institut de Génétique Humaine, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| |
Collapse
|
76
|
Salomon WE, Jolly SM, Moore MJ, Zamore PD, Serebrov V. Single-Molecule Imaging Reveals that Argonaute Reshapes the Binding Properties of Its Nucleic Acid Guides. Cell 2015; 162:84-95. [PMID: 26140592 PMCID: PMC4503223 DOI: 10.1016/j.cell.2015.06.029] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/01/2015] [Accepted: 06/09/2015] [Indexed: 02/05/2023]
Abstract
Argonaute proteins repress gene expression and defend against foreign nucleic acids using short RNAs or DNAs to specify the correct target RNA or DNA sequence. We have developed single-molecule methods to analyze target binding and cleavage mediated by the Argonaute:guide complex, RISC. We find that both eukaryotic and prokaryotic Argonaute proteins reshape the fundamental properties of RNA:RNA, RNA:DNA, and DNA:DNA hybridization—a small RNA or DNA bound to Argonaute as a guide no longer follows the well-established rules by which oligonucleotides find, bind, and dissociate from complementary nucleic acid sequences. Argonautes distinguish substrates from targets with similar complementarity. Mouse AGO2, for example, binds tighter to miRNA targets than its RNAi cleavage product, even though the cleaved product contains more base pairs. By re-writing the rules for nucleic acid hybridization, Argonautes allow oligonucleotides to serve as specificity determinants with thermodynamic and kinetic properties more typical of RNA-binding proteins than of RNA or DNA.
Collapse
Affiliation(s)
- William E Salomon
- RNA Therapeutics Institute, Howard Hughes Medical Institute, and Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Samson M Jolly
- RNA Therapeutics Institute, Howard Hughes Medical Institute, and Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Melissa J Moore
- RNA Therapeutics Institute, Howard Hughes Medical Institute, and Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Phillip D Zamore
- RNA Therapeutics Institute, Howard Hughes Medical Institute, and Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Victor Serebrov
- RNA Therapeutics Institute, Howard Hughes Medical Institute, and Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
77
|
Goh WSS, Falciatori I, Tam OH, Burgess R, Meikar O, Kotaja N, Hammell M, Hannon GJ. piRNA-directed cleavage of meiotic transcripts regulates spermatogenesis. Genes Dev 2015; 29:1032-44. [PMID: 25995188 PMCID: PMC4441051 DOI: 10.1101/gad.260455.115] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/28/2015] [Indexed: 11/25/2022]
Abstract
MIWI catalytic activity is required for spermatogenesis, indicating that piRNA-guided cleavage is critical for germ cell development. To identify meiotic piRNA targets, we augmented the mouse piRNA repertoire by introducing a human meiotic piRNA cluster. This triggered a spermatogenesis defect by inappropriately targeting the piRNA machinery to mouse mRNAs essential for germ cell development. Analysis of such de novo targets revealed a signature for pachytene piRNA target recognition. This enabled identification of both transposable elements and meiotically expressed protein-coding genes as targets of native piRNAs. Cleavage of genic targets began at the pachytene stage and resulted in progressive repression through meiosis, driven at least in part via the ping-pong cycle. Our data support the idea that meiotic piRNA populations must be strongly selected to enable successful spermatogenesis, both driving the response away from essential genes and directing the pathway toward mRNA targets that are regulated by small RNAs in meiotic cells.
Collapse
Affiliation(s)
- Wee Siong Sho Goh
- Howard Hughes Medical Institute, Cold Spring Harbor, New York 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | - Ilaria Falciatori
- Howard Hughes Medical Institute, Cold Spring Harbor, New York 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Oliver H Tam
- Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | - Ralph Burgess
- Howard Hughes Medical Institute, Cold Spring Harbor, New York 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | - Oliver Meikar
- Institute of Biomedicine, Department of Physiology, University of Turku, Turku FI-20520, Finland
| | - Noora Kotaja
- Institute of Biomedicine, Department of Physiology, University of Turku, Turku FI-20520, Finland
| | - Molly Hammell
- Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | - Gregory J Hannon
- Howard Hughes Medical Institute, Cold Spring Harbor, New York 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK;
| |
Collapse
|
78
|
Han BW, Wang W, Li C, Weng Z, Zamore PD. Noncoding RNA. piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production. Science 2015; 348:817-21. [PMID: 25977554 PMCID: PMC4545291 DOI: 10.1126/science.aaa1264] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PIWI-interacting RNAs (piRNAs) protect the animal germ line by silencing transposons. Primary piRNAs, generated from transcripts of genomic transposon "junkyards" (piRNA clusters), are amplified by the "ping-pong" pathway, yielding secondary piRNAs. We report that secondary piRNAs, bound to the PIWI protein Ago3, can initiate primary piRNA production from cleaved transposon RNAs. The first ~26 nucleotides (nt) of each cleaved RNA becomes a secondary piRNA, but the subsequent ~26 nt become the first in a series of phased primary piRNAs that bind Piwi, allowing piRNAs to spread beyond the site of RNA cleavage. The ping-pong pathway increases only the abundance of piRNAs, whereas production of phased primary piRNAs from cleaved transposon RNAs adds sequence diversity to the piRNA pool, allowing adaptation to changes in transposon sequence.
Collapse
Affiliation(s)
- Bo W Han
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA. Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Wei Wang
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA. Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA. Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Chengjian Li
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA. Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Zhiping Weng
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA. Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| | - Phillip D Zamore
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA. Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
79
|
Mohn F, Handler D, Brennecke J. Noncoding RNA. piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis. Science 2015; 348:812-817. [PMID: 25977553 PMCID: PMC4988486 DOI: 10.1126/science.aaa1039] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In animal gonads, PIWI-clade Argonaute proteins repress transposons sequence-specifically via bound Piwi-interacting RNAs (piRNAs). These are processed from single-stranded precursor RNAs by largely unknown mechanisms. Here we show that primary piRNA biogenesis is a 3'-directed and phased process that, in the Drosophila germ line, is initiated by secondary piRNA-guided transcript cleavage. Phasing results from consecutive endonucleolytic cleavages catalyzed by Zucchini, implying coupled formation of 3' and 5' ends of flanking piRNAs. Unexpectedly, Zucchini also participates in 3' end formation of secondary piRNAs. Its function can, however, be bypassed by downstream piRNA-guided precursor cleavages coupled to exonucleolytic trimming. Our data uncover an evolutionarily conserved piRNA biogenesis mechanism in which Zucchini plays a central role in defining piRNA 5' and 3' ends.
Collapse
Affiliation(s)
- Fabio Mohn
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Dominik Handler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohrgasse 3, 1030 Vienna, Austria
| |
Collapse
|