51
|
Shen C, Wang K, Deng X, Chen J. DNA N 6-methyldeoxyadenosine in mammals and human disease. Trends Genet 2022; 38:454-467. [PMID: 34991904 PMCID: PMC9007851 DOI: 10.1016/j.tig.2021.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 01/07/2023]
Abstract
N6-methyladenine (6mA) is the most prevalent DNA modification in prokaryotes. However, its presence and significance in eukaryotes remain elusive. Recently, with methodology advances in detection and sequencing of 6mA in eukaryotes, 6mA is back in the spotlight. Although multiple studies have reported that 6mA is an important epigenetic mark in eukaryotes and plays a regulatory role in DNA transcription, transposon activation, stress response, and other bioprocesses, there are some discrepancies in the current literature. We review the recent advances in 6mA research in eukaryotes, especially in mammals. In particular, we describe the abundance/distribution of 6mA, its potential role in regulating gene expression, identified regulators, and pathological roles in human diseases, especially in cancer. The limitations faced by the field and future perspectives in 6mA research are also discussed.
Collapse
Affiliation(s)
- Chao Shen
- Department of Systems Biology, City of Hope, Monrovia 91007, USA
| | - Kitty Wang
- Department of Systems Biology, City of Hope, Monrovia 91007, USA
| | - Xiaolan Deng
- Department of Systems Biology, City of Hope, Monrovia 91007, USA
| | - Jianjun Chen
- Department of Systems Biology, City of Hope, Monrovia 91007, USA
| |
Collapse
|
52
|
Sheng Y, Zhou M, You C, Dai X. Dynamics and biological relevance of epigenetic N6-methyladenine DNA modification in eukaryotic cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
53
|
Lyu C, Niu Y, Lai W, Wang Y, Wang Y, Dai P, Ma C, Chen S, Li Y, Jiang G, Liang Z, Ma W, Gao Z, Tong WM, Wang H. Rare and misincorporated DNA N 6-methyladenine is a hallmark of cytotoxic stresses for selectively stimulating the stemness and proliferation of glioblastoma cells. Cell Discov 2022; 8:39. [PMID: 35501312 PMCID: PMC9061847 DOI: 10.1038/s41421-022-00399-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/14/2022] [Indexed: 12/03/2022] Open
Abstract
The entity of DNA N6-methyladenine (6mA) in mammals remains elusive and subsequently its roles in diseases are poorly understood. Here we exploited a bacterial DNA contamination-free and ultrasensitive UHPLC-MS/MS assay to reassess DNA 6mA in human glioblastomas and unveiled that DNA 6mA (~0.08 ppm) is extremely rare. By the use of two independent heavy stable isotope-labeling strategies, we further prove that the observed 6mA is solely generated by DNA polymerase-mediated misinocorporation. In vitro experiments point toward that the generation of misincorporated DNA 6mA is associated with the cellular stresses-caused release of RNA N6-methyladenine (m6A) nucleoside, which is profoundly inhibited by hypoxia milieu. Consistently, compared with normal brain tissues, DNA 6mA decreases in hypoxic human gliomas. Our data also strongly support that rare DNA 6mA rather than relatively abundant DNA 5-methylcytosine and 5-hydroxymethylcytosine is a hallmark of poor prognosis of IDH1/2 mutation-absent glioblastoma patients, reflecting the incidence of cytotoxic stresses and subsequent release of m6A nucleoside. The released m6A nucleoside may selectively preserve a subset of the glioblastoma cells and stimulate their stemness and proliferation. Noteworthily, demethylation-inhibiting IDH1 mutation increases the DNA 6mA content in human gliomas, but the depletion of the demethylase candidate ALKBH1 fails to do so, together suggesting the presence of other unknown 6mA demethylase for erasing misincorporated DNA 6mA. This is the first report on the identification of the misincorporated 6mA together with its origin and roles in diseases.
Collapse
Affiliation(s)
- Cong Lyu
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Weiyi Lai
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaning Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peibin Dai
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China
- Department of neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunhui Ma
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Shaokun Chen
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yao Li
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guibin Jiang
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Liang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhengliang Gao
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China.
- Department of neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Wei-Min Tong
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
| | - Hailin Wang
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
54
|
Zuidhof HR, Calkhoven CF. Oncogenic and tumor-suppressive functions of the RNA demethylase FTO. Cancer Res 2022; 82:2201-2212. [PMID: 35303057 DOI: 10.1158/0008-5472.can-21-3710] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022]
Abstract
The epitranscriptome represents the more than 140 types of chemically varying and reversable RNA modifications affecting RNA fate. Among these, the most relevant for this review are the mRNA-modifications N6-methyladenosine (m6A) and N6,2'-O-dimethyladenosine (m6Am). Epitranscriptomic mRNA biology involves RNA methyltransferases (so called "writers"), RNA demethylases ("erasers"), and RNA-binding proteins ("readers") that interact with methylation sites to determine the functional outcome of the modification. In this review, we discuss the role of a specific RNA demethylase encoded by the fat mass and obesity associated gene (FTO) in cancer. FTO initially became known as the strongest genetic link for human obesity. Only in 2010, 16 years after its discovery, was its enzymatic function as a demethylase clarified, and only recently has its role in the development of cancer been revealed. FTO functions are challenging to study and interpret because of its genome-wide effects on transcript turnover and translation. We review the discovery of FTO and its enzymatic function, the tumor-promoting and suppressive roles of FTO in selected cancer types, and its potential as a therapeutic target.
Collapse
|
55
|
Boulias K, Greer EL. Means, mechanisms and consequences of adenine methylation in DNA. Nat Rev Genet 2022; 23:411-428. [PMID: 35256817 PMCID: PMC9354840 DOI: 10.1038/s41576-022-00456-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 12/29/2022]
Abstract
N6-methyl-2'-deoxyadenosine (6mA or m6dA) has been reported in the DNA of prokaryotes and eukaryotes ranging from unicellular protozoa and algae to multicellular plants and mammals. It has been proposed to modulate DNA structure and transcription, transmit information across generations and have a role in disease, among other functions. However, its existence in more recently evolved eukaryotes remains a topic of debate. Recent technological advancements have facilitated the identification and quantification of 6mA even when the modification is exceptionally rare, but each approach has limitations. Critical assessment of existing data, rigorous design of future studies and further development of methods will be required to confirm the presence and biological functions of 6mA in multicellular eukaryotes.
Collapse
|
56
|
Bacterial N4-methylcytosine as an epigenetic mark in eukaryotic DNA. Nat Commun 2022; 13:1072. [PMID: 35228526 PMCID: PMC8885841 DOI: 10.1038/s41467-022-28471-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/21/2022] [Indexed: 01/04/2023] Open
Abstract
DNA modifications are used to regulate gene expression and defend against invading genetic elements. In eukaryotes, modifications predominantly involve C5-methylcytosine (5mC) and occasionally N6-methyladenine (6mA), while bacteria frequently use N4-methylcytosine (4mC) in addition to 5mC and 6mA. Here we report that 4mC can serve as an epigenetic mark in eukaryotes. Bdelloid rotifers, tiny freshwater invertebrates with transposon-poor genomes rich in foreign genes, lack canonical eukaryotic C5-methyltransferases for 5mC addition, but encode an amino-methyltransferase, N4CMT, captured from bacteria >60 Mya. N4CMT deposits 4mC at active transposons and certain tandem repeats, and fusion to a chromodomain shapes its “histone-read-DNA-write” architecture recognizing silent chromatin marks. Furthermore, amplification of SETDB1 H3K9me3 histone methyltransferases yields variants preferentially binding 4mC-DNA, suggesting “DNA-read-histone-write” partnership to maintain chromatin-based silencing. Our results show how non-native DNA methyl groups can reshape epigenetic systems to silence transposons and demonstrate the potential of horizontal gene transfer to drive regulatory innovation in eukaryotes. Eukaryotic DNA can be methylated as 5-methylcytosine and N6-methyladenine, but whether other forms of DNA methylation occur has been controversial. Here the authors show that a bacterial DNA methyltransferase was acquired >60 Mya in bdelloid rotifers that catalyzes N4-methylcytosine addition and is involved in suppression of transposon proliferation.
Collapse
|
57
|
The enhanced genomic 6 mA metabolism contributes to the proliferation and migration of TSCC cells. Int J Oral Sci 2022; 14:11. [PMID: 35177638 PMCID: PMC8854414 DOI: 10.1038/s41368-022-00161-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/27/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022] Open
Abstract
In contrast to the well-established genomic 5-methylcytosine (5mC), the existence of N6-methyladenine (6 mA) in eukaryotic genomes was discovered only recently. Initial studies found that it was actively regulated in cancer cells, suggesting its involvement in the process of carcinogenesis. However, the contribution of 6 mA in tongue squamous cell carcinoma (TSCC) still remains uncharacterized. In this study, a pan-cancer type analysis was first performed, which revealed enhanced 6 mA metabolism in diverse cancer types. The study was then focused on the regulation of 6 mA metabolism, as well as its effects on TSCC cells. To these aspects, genome 6 mA level was found greatly increased in TSCC tissues and cultured cells. By knocking down 6 mA methylases N6AMT1 and METTL4, the level of genomic 6 mA was decreased in TSCC cells. This led to suppressed colony formation and cell migration. By contrast, knockdown of 6 mA demethylase ALKBH1 resulted in an increased 6 mA level, enhanced colony formation, and cell migration. Further study suggested that regulation of the NF-κB pathway might contribute to the enhanced migration of TSCC cells. Therefore, in the case of TSCC, we have shown that genomic 6 mA modification is involved in the proliferation and migration of cancer cells.
Collapse
|
58
|
O’Brown ZK, Greer EL. N6-methyladenine: A Rare and Dynamic DNA Mark. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:177-210. [DOI: 10.1007/978-3-031-11454-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
59
|
Abakir A, Alenezi F, Ruzov A. Detecting and Mapping N6-Methyladenosine on RNA/DNA Hybrids. Methods Mol Biol 2022; 2528:329-344. [PMID: 35704202 DOI: 10.1007/978-1-0716-2477-7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
N6-methyladenosine (m6A) is an RNA modification essential for posttranscriptional regulation of gene expression in eukaryotes. We recently demonstrated that m6A decorates the RNA components of R-loops, specific nucleic acid structures consisting of an RNA/DNA hybrid and a single strand of non-template DNA, that represent a major source of genetic instability and, at the same time, contribute to regulation of gene expression in mammalian cells. According to growing body of experimental evidence, adenosine methylation affects stability of these structures and potentially influences various aspects of their metabolism. Here, we present two methods for detection and analysis of m6A-containing RNA/DNA hybrids: an immunostaining protocol allowing investigation of their spatial distribution in eukaryotic cells and m6A-DNA immunoprecipitation (DIP), an antibody-based technique that permits their genome mapping and locus-specific analysis. In addition to the m6A-focused studies, these methodologies can also contribute to elucidating the functional roles of other RNA modifications in R-loop biology.
Collapse
Affiliation(s)
| | - Fahad Alenezi
- General Department of Criminal Evidence, Ministry of Interior Affairs, Al-Dajeej, Kuwait
| | - Alexey Ruzov
- Institute of Bioengineering, Research Centre of Biotechnology RAS, Moscow, Russia.
| |
Collapse
|
60
|
Yu K, Qi TF, Miao W, Liu X, Wang Y. Quantitative proteomics revealed new functions of ALKBH4. Proteomics 2021; 22:e2100231. [PMID: 34951099 DOI: 10.1002/pmic.202100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/11/2022]
Abstract
ALKBH4 is a versatile demethylase capable of catalyzing the demethylation of monomethylated lysine-84 on actin and N6 -methyladenine in DNA. In this study, we conducted a quantitative proteomic experiment to reveal the altered expression of proteins in HEK293T cells upon genetic ablation of ALKBH4. Our results showed markedly diminished levels of GSTP1 and HSPB1 proteins in ALKBH4-depleted cells, which emanate from an augmented expression level of DNA (cytosine-5)-methyltransferase 1 (DNMT1) and the ensuing elevated cytosine methylation in the promoter regions of GSTP1 and HSPB1 genes. Together, our results revealed a role of ALKBH4 in modulating DNA cytosine methylation through regulating the expression level of DNMT1 protein. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Tianyu F Qi
- Environmental Toxicology Graduate Program, University of California, Riverside, California, 92521, USA
| | | | | | | |
Collapse
|
61
|
Schöller E, Marks J, Marchand V, Bruckmann A, Powell CA, Reichold M, Mutti CD, Dettmer K, Feederle R, Hüttelmaier S, Helm M, Oefner P, Minczuk M, Motorin Y, Hafner M, Meister G. Balancing of mitochondrial translation through METTL8-mediated m 3C modification of mitochondrial tRNAs. Mol Cell 2021; 81:4810-4825.e12. [PMID: 34774131 PMCID: PMC11214777 DOI: 10.1016/j.molcel.2021.10.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/19/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023]
Abstract
Mitochondria contain a specific translation machinery for the synthesis of mitochondria-encoded respiratory chain components. Mitochondrial tRNAs (mt-tRNAs) are also generated from the mitochondrial DNA and, similar to their cytoplasmic counterparts, are post-transcriptionally modified. Here, we find that the RNA methyltransferase METTL8 is a mitochondrial protein that facilitates 3-methyl-cytidine (m3C) methylation at position C32 of the mt-tRNASer(UCN) and mt-tRNAThr. METTL8 knockout cells show a reduction in respiratory chain activity, whereas overexpression increases activity. In pancreatic cancer, METTL8 levels are high, which correlates with lower patient survival and an enhanced respiratory chain activity. Mitochondrial ribosome profiling uncovered mitoribosome stalling on mt-tRNASer(UCN)- and mt-tRNAThr-dependent codons. Further analysis of the respiratory chain complexes using mass spectrometry revealed reduced incorporation of the mitochondrially encoded proteins ND6 and ND1 into complex I. The well-balanced translation of mt-tRNASer(UCN)- and mt-tRNAThr-dependent codons through METTL8-mediated m3C32 methylation might, therefore, facilitate the optimal composition and function of the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Eva Schöller
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - James Marks
- RNA Molecular Biology Group, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core facility, 54000 Nancy, France
| | - Astrid Bruckmann
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Christopher A Powell
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Markus Reichold
- Medical Cell Biology, Institute of Physiology, University of Regensburg, 93053 Regensburg, Germany
| | - Christian Daniel Mutti
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, 93053 Regensburg, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Peter Oefner
- Institute of Functional Genomics, University of Regensburg, 93053 Regensburg, Germany
| | - Michal Minczuk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core facility, 54000 Nancy, France; Université de Lorraine, CNRS, UMR7365 IMoPA, 54000 Nancy, France
| | - Markus Hafner
- RNA Molecular Biology Group, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
62
|
Cao K, Feng Z, Gao F, Zang W, Liu J. Mitoepigenetics: An intriguing regulatory layer in aging and metabolic-related diseases. Free Radic Biol Med 2021; 177:337-346. [PMID: 34715295 DOI: 10.1016/j.freeradbiomed.2021.10.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/06/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022]
Abstract
As a key organelle in eukaryotic cells, mitochondria play a central role in maintaining normal cellular functions. Mitochondrial dysfunction is reported to be closely related with aging and various diseases. Epigenetic modifications in nuclear genome provide a substantial layer for the modulation of nuclear-encoded gene expression. However, whether mitochondria could also be subjected to such similar epigenetic alterations and the involved mechanisms remain largely obscure and controversial. Recently, accumulating evidence has suggested that mitochondrial epigenetics, also known as mitoepigenetics may serve as an intriguing regulatory layer in mitochondrial DNA (mtDNA)-encoded gene expression. Given the potential regulatory role of mitoepigenetics, mitochondrial dysfunction derived from mitoepigenetics-induced abnormal gene expression could also be closely associated with aging and disease development. In this review, we summarized the recent advances in mitoepigenetics, with a special focus on mtDNA methylation in aging and metabolic-related diseases as well as the new methods and technologies for the study of mitoepigenetics. Uncovering the regulatory role of mitoepigenetics will help to understand the underlying mechanisms of mitochondrial dysfunction and provide novel strategies for delaying aging and preventing metabolic-related diseases.
Collapse
Affiliation(s)
- Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Feng Gao
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Weijin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| |
Collapse
|
63
|
Perry GS, Das M, Woon ECY. Inhibition of AlkB Nucleic Acid Demethylases: Promising New Epigenetic Targets. J Med Chem 2021; 64:16974-17003. [PMID: 34792334 DOI: 10.1021/acs.jmedchem.1c01694] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The AlkB family of nucleic acid demethylases is currently of intense chemical, biological, and medical interest because of its critical roles in several key cellular processes, including epigenetic gene regulation, RNA metabolism, and DNA repair. Emerging evidence suggests that dysregulation of AlkB demethylases may underlie the pathogenesis of several human diseases, particularly obesity, diabetes, and cancer. Hence there is strong interest in developing selective inhibitors for these enzymes to facilitate their mechanistic and functional studies and to validate their therapeutic potential. Herein we review the remarkable advances made over the past 20 years in AlkB demethylase inhibition research. We discuss the rational design of reported inhibitors, their mode-of-binding, selectivity, cellular activity, and therapeutic opportunities. We further discuss unexplored structural elements of the AlkB subfamilies and propose potential strategies to enable subfamily selectivity. It is hoped that this perspective will inspire novel inhibitor design and advance drug discovery research in this field.
Collapse
Affiliation(s)
- Gemma S Perry
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Mohua Das
- Lab of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Esther C Y Woon
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| |
Collapse
|
64
|
Guo Y, Liu Q, Mallette E, Caba C, Hou F, Fux J, LaPlante G, Dong A, Zhang Q, Zheng H, Tong Y, Zhang W. Structural and functional characterization of ubiquitin variant inhibitors for the JAMM-family deubiquitinases STAMBP and STAMBPL1. J Biol Chem 2021; 297:101107. [PMID: 34425109 PMCID: PMC8449267 DOI: 10.1016/j.jbc.2021.101107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 01/23/2023] Open
Abstract
Ubiquitination is a crucial posttranslational protein modification involved in a myriad of biological pathways. This modification is reversed by deubiquitinases (DUBs) that deconjugate the single ubiquitin (Ub) moiety or poly-Ub chains from substrates. In the past decade, tremendous efforts have been focused on targeting DUBs for drug discovery. However, most chemical compounds with inhibitory activity for DUBs suffer from mild potency and low selectivity. To overcome these obstacles, we developed a phage display-based protein engineering strategy for generating Ub variant (UbV) inhibitors, which was previously successfully applied to the Ub-specific protease (USP) family of cysteine proteases. In this work, we leveraged the UbV platform to selectively target STAMBP, a member of the JAB1/MPN/MOV34 (JAMM) metalloprotease family of DUB enzymes. We identified two UbVs (UbVSP.1 and UbVSP.3) that bind to STAMBP with high affinity but differ in their selectivity for the closely related paralog STAMBPL1. We determined the STAMBPL1-UbVSP.1 complex structure by X-ray crystallography, revealing hotspots of the JAMM-UbV interaction. Finally, we show that UbVSP.1 and UbVSP.3 are potent inhibitors of STAMBP isopeptidase activity, far exceeding the reported small-molecule inhibitor BC-1471. This work demonstrates that UbV technology is suitable to develop molecules as tools to target metalloproteases, which can be used to further understand the cellular function of JAMM family DUBs.
Collapse
Affiliation(s)
- Yusong Guo
- Fisheries College, Guangdong Ocean University, Guangdong, China; Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Qi Liu
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Canada
| | - Evan Mallette
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Canada
| | - Cody Caba
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
| | - Feng Hou
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Julia Fux
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Canada
| | - Gabriel LaPlante
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Qi Zhang
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Hui Zheng
- Jiangsu Key Laboratory of Infection and Immunity, International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yufeng Tong
- Structural Genomics Consortium, University of Toronto, Toronto, Canada; Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada.
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Canada; CIFAR Azrieli Global Scholars Program, Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
65
|
Liang Z, Kidwell RL, Deng H, Xie Q. Epigenetic N6-methyladenosine modification of RNA and DNA regulates cancer. Cancer Biol Med 2021; 17:9-19. [PMID: 32296573 PMCID: PMC7142843 DOI: 10.20892/j.issn.2095-3941.2019.0347] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/02/2020] [Indexed: 12/29/2022] Open
Abstract
The biological roles of N6 methylation of nucleic acids have been extensively studied. Adenine methylation of RNA is the most prevalent RNA modification and has widespread effects on RNA splicing, translation, localization, and stability. Aberrant dynamic regulation of RNA N6-methyladenosine (m6A) has been reported in numerous human diseases, including several cancers. In recent years, eukaryotic DNA N6-methyladenosine (6mA) has also been reported and implicated in cancer progression and tumorigenesis. In this review, we summarize the contributions of N6-methyladenosine modification to cancer biology and pathogenesis in the context of both RNA and DNA. We also highlight the clinical relevance of targeting these modifications as a therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Zhixian Liang
- School of Life Sciences, Westlake University, Hangzhou 310024, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Reilly L Kidwell
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, San Diego, CA 92037, USA.,University of California San Diego, School of Medicine, La Jolla, CA 92037, USA
| | - Haijing Deng
- School of Life Sciences, Westlake University, Hangzhou 310024, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Qi Xie
- School of Life Sciences, Westlake University, Hangzhou 310024, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
66
|
Wong JM, Eirin-Lopez JM. Evolution of methyltransferase like (METTL) proteins in Metazoa: A complex gene family involved in epitranscriptomic regulation and other epigenetic processes. Mol Biol Evol 2021; 38:5309-5327. [PMID: 34480573 PMCID: PMC8662637 DOI: 10.1093/molbev/msab267] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The methyltransferase-like (METTL) proteins constitute a family of seven-beta-strand methyltransferases with S-adenosyl methionine-binding domains that modify DNA, RNA, and proteins. Methylation by METTL proteins contributes to the epigenetic, and in the case of RNA modifications, epitranscriptomic regulation of a variety of biological processes. Despite their functional importance, most investigations of the substrates and functions of METTLs within metazoans have been restricted to model vertebrate taxa. In the present work, we explore the evolutionary mechanisms driving the diversification and functional differentiation of 33 individual METTL proteins across Metazoa. Our results show that METTLs are nearly ubiquitous across the animal kingdom, with most having arisen early in metazoan evolution (i.e., occur in basal metazoan phyla). Individual METTL lineages each originated from single independent ancestors, constituting monophyletic clades, which suggests that each METTL was subject to strong selective constraints driving its structural and/or functional specialization. Interestingly, a similar process did not extend to the differentiation of nucleoside-modifying and protein-modifying METTLs (i.e., each METTL type did not form a unique monophyletic clade). The members of these two types of METTLs also exhibited differences in their rates of evolution. Overall, we provide evidence that the long-term evolution of METTL family members was driven by strong purifying selection, which in combination with adaptive selection episodes, led to the functional specialization of individual METTL lineages. This work contributes useful information regarding the evolution of a gene family that fulfills a variety of epigenetic functions, and can have profound influences on molecular processes and phenotypic traits.
Collapse
Affiliation(s)
- Juliet M Wong
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, FL, United States
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, FL, United States
| |
Collapse
|
67
|
Rasheed M, Khan V, Harripaul R, Siddiqui M, Malik MA, Ullah Z, Zahid M, Vincent JB, Ansar M. Exome sequencing identifies novel and known mutations in families with intellectual disability. BMC Med Genomics 2021; 14:211. [PMID: 34452636 PMCID: PMC8399827 DOI: 10.1186/s12920-021-01066-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/25/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Intellectual disability (ID) is a phenotypically and genetically heterogeneous disorder. METHODS In this study, genome wide SNP microarray and whole exome sequencing are used for the variant identification in eight Pakistani families with ID. Beside ID, most of the affected individuals had speech delay, facial dysmorphism and impaired cognitive abilities. Repetitive behavior was observed in MRID143, while seizures were reported in affected individuals belonging to MRID137 and MRID175. RESULTS In two families (MRID137b and MRID175), we identified variants in the genes CCS and ELFN1, which have not previously been reported to cause ID. In four families, variants were identified in ARX, C5orf42, GNE and METTL4. A copy number variation (CNV) was identified in IL1RAPL1 gene in MRID165. CONCLUSION These findings expand the existing knowledge of variants and genes implicated in autosomal recessive and X linked ID.
Collapse
Affiliation(s)
- Memoona Rasheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Valeed Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Ricardo Harripaul
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Maimoona Siddiqui
- Division of Neurology, Shifa College of Medicine, H-8/1, Islamabad, Pakistan
| | - Madiha Amin Malik
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Zahid Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Zahid
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - John B Vincent
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Muhammad Ansar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
68
|
Li X, Zhang Z, Luo X, Schrier J, Yang AD, Wu TP. The exploration of N6-deoxyadenosine methylation in mammalian genomes. Protein Cell 2021; 12:756-768. [PMID: 34405377 PMCID: PMC8464638 DOI: 10.1007/s13238-021-00866-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/12/2021] [Indexed: 11/11/2022] Open
Abstract
N6-methyladenine (N6-mA, m6dA, or 6mA), a prevalent DNA modification in prokaryotes, has recently been identified in higher eukaryotes, including mammals. Although 6mA has been well-studied in prokaryotes, the function and regulatory mechanism of 6mA in eukaryotes are still poorly understood. Recent studies indicate that 6mA can serve as an epigenetic mark and play critical roles in various biological processes, from transposable-element suppression to environmental stress response. Here, we review the significant advances in methodology for 6mA detection and major progress in understanding the regulation and function of this non-canonical DNA methylation in eukaryotes, predominantly mammals.
Collapse
Affiliation(s)
- Xuwen Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zijian Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xinlong Luo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jacob Schrier
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrew D Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tao P Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA. .,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
69
|
Case Study of the Response of N 6-Methyladenine DNA Modification to Environmental Stressors in the Unicellular Eukaryote Tetrahymena thermophila. mSphere 2021; 6:e0120820. [PMID: 34047647 PMCID: PMC8265677 DOI: 10.1128/msphere.01208-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Rediscovered as a potential epigenetic mark, N6-methyladenine DNA modification (6mA) was recently reported to be sensitive to environmental stressors in several multicellular eukaryotes. As 6mA distribution and function differ significantly in multicellular and unicellular organisms, whether and how 6mA in unicellular eukaryotes responds to environmental stress remains elusive. Here, we characterized the dynamic changes of 6mA under starvation in the unicellular model organism Tetrahymena thermophila. Single-molecule, real-time (SMRT) sequencing reveals that DNA 6mA levels in starved cells are significantly reduced, especially symmetric 6mA, compared to those in vegetatively growing cells. Despite a global 6mA reduction, the fraction of asymmetric 6mA with a high methylation level was increased, which might be the driving force for stronger nucleosome positioning in starved cells. Starvation affects expression of many metabolism-related genes, the expression level change of which is associated with the amount of 6mA change, thereby linking 6mA with global transcription and starvation adaptation. The reduction of symmetric 6mA and the increase of asymmetric 6mA coincide with the downregulation of AMT1 and upregulation of AMT2 and AMT5, which are supposedly the MT-A70 methyltransferases required for symmetric and asymmetric 6mA, respectively. These results demonstrated that a regulated 6mA response to environmental cues is evolutionarily conserved in eukaryotes. IMPORTANCE Increasing evidence indicated that 6mA could respond to environmental stressors in multicellular eukaryotes. As 6mA distribution and function differ significantly in multicellular and unicellular organisms, whether and how 6mA in unicellular eukaryotes responds to environmental stress remains elusive. In the present work, we characterized the dynamic changes of 6mA under starvation in the unicellular model organism Tetrahymena thermophila. Our results provide insights into how Tetrahymena fine-tunes its 6mA level and composition upon starvation, suggesting that a regulated 6mA response to environmental cues is evolutionarily conserved in eukaryotes.
Collapse
|
70
|
Fernandes SB, Grova N, Roth S, Duca RC, Godderis L, Guebels P, Mériaux SB, Lumley AI, Bouillaud-Kremarik P, Ernens I, Devaux Y, Schroeder H, Turner JD. N 6-Methyladenine in Eukaryotic DNA: Tissue Distribution, Early Embryo Development, and Neuronal Toxicity. Front Genet 2021; 12:657171. [PMID: 34108991 PMCID: PMC8181416 DOI: 10.3389/fgene.2021.657171] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/12/2021] [Indexed: 01/09/2023] Open
Abstract
DNA methylation is one of the most important epigenetic modifications and is closely related with several biological processes such as regulation of gene transcription and the development of non-malignant diseases. The prevailing dogma states that DNA methylation in eukaryotes occurs essentially through 5-methylcytosine (5mC) but recently adenine methylation was also found to be present in eukaryotes. In mouse embryonic stem cells, 6-methyladenine (6mA) was associated with the repression and silencing of genes, particularly in the X-chromosome, known to play an important role in cell fate determination. Here, we have demonstrated that 6mA is a ubiquitous eukaryotic epigenetic modification that is put in place during epigenetically sensitive periods such as embryogenesis and fetal development. In somatic cells there are clear tissue specificity in 6mA levels, with the highest 6mA levels being observed in the brain. In zebrafish, during the first 120 h of embryo development, from a single pluripotent cell to an almost fully formed individual, 6mA levels steadily increase. An identical pattern was observed over embryonic days 7–21 in the mouse. Furthermore, exposure to a neurotoxic environmental pollutant during the same early life period may led to a decrease in the levels of this modification in female rats. The identification of the periods during which 6mA epigenetic marks are put in place increases our understanding of this mammalian epigenetic modification, and raises the possibility that it may be associated with developmental processes.
Collapse
Affiliation(s)
- Sara B Fernandes
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Belval, Luxembourg
| | - Nathalie Grova
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Calbinotox, EA7488, Faculty of Science and Technology, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Sarah Roth
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Radu Corneliu Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, National Health Laboratory (LNS), Dudelange, Luxembourg.,Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Lode Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium.,IDEWE, External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - Pauline Guebels
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Sophie B Mériaux
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Andrew I Lumley
- Cardiovascular Research Unit, Department of Public Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | | | - Isabelle Ernens
- Cardiovascular Research Unit, Department of Public Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Public Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Henri Schroeder
- Calbinotox, EA7488, Faculty of Science and Technology, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Jonathan D Turner
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
71
|
Pillai A, Gungi A, Reddy PC, Galande S. Epigenetic Regulation in Hydra: Conserved and Divergent Roles. Front Cell Dev Biol 2021; 9:663208. [PMID: 34041242 PMCID: PMC8141815 DOI: 10.3389/fcell.2021.663208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Transitions in gene regulatory processes responsible for the emergence of specialized cell types and spatiotemporal regulation of developmental signaling prior to the divergence of Cnidaria and Bilateria are poorly understood. As a sister group of Bilateria, the phylum Cnidaria can provide significant insights into these processes. Among the cnidarians, hydrae have been studied for >250 years to comprehend the mechanisms underlying their unique immortality and robust regenerative capacity. Studies on Hydra spp. and other pre-bilaterians alike have advanced our understanding of the evolutionary underpinnings governing eumetazoan tissue development, homeostasis, and regeneration. In addition to its regenerative potential, Hydra exhibits continuously active axial patterning due to its peculiar tissue dynamics. These distinctive physiological processes necessitate large scale gene expression changes that are governed by the multitude of epigenetic mechanisms operating in cells. This review highlights the contemporary knowledge of epigenetic regulation in Hydra with contemporary studies from other members of Cnidaria, as well as the interplay between regulatory mechanisms wherever demonstrated. The studies covered in the scope of this review reveal both ancestral and divergent roles played by conserved epigenetic mechanisms with emphasis on transcriptional regulation. Additionally, single-cell transcriptomics data was mined to predict the physiological relevance of putative gene regulatory components, which is in agreement with published findings and yielded insights into the possible functions of the gene regulatory mechanisms that are yet to be deciphered in Hydra, such as DNA methylation. Finally, we delineate potentially rewarding epigenetics research avenues that can further leverage the unique biology of Hydra.
Collapse
Affiliation(s)
| | | | - Puli Chandramouli Reddy
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
72
|
Lee KK, Rajagopalan D, Bhatia SS, Tirado-Magallanes R, Chng WJ, Jha S. The oncogenic E3 ligase TRIP12 suppresses epithelial-mesenchymal transition (EMT) and mesenchymal traits through ZEB1/2. Cell Death Discov 2021; 7:95. [PMID: 33963176 PMCID: PMC8105346 DOI: 10.1038/s41420-021-00479-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/20/2021] [Accepted: 03/24/2021] [Indexed: 01/02/2023] Open
Abstract
Thyroid hormone receptor interactor 12 (TRIP12) is an E3 ligase most notably involved in the proteolytic degradation of the tumor suppressor p14ARF. Through this process, it is proposed that TRIP12 plays an oncogenic role in tumor initiation and growth. However, its role in other cancer processes is unknown. In this study, using publicly available cancer patient datasets, we found TRIP12 to be associated with distant metastasis-free survival in breast cancer, suggesting an inhibitory role in metastasis. Following TRIP12 depletion, an epithelial-mesenchymal transition (EMT) shift occurred with concomitant changes in EMT cell adhesion markers identified through RNA-seq. In line with EMT changes, TRIP12-depleted cells gained mesenchymal traits such as loss of cell polarity, dislodgement from bulk cells at a higher frequency, and increased cellular motility. Furthermore, ectopic TRIP12 expression sensitized cells to anoikis. Mechanistically, TRIP12 suppresses EMT through inhibiting ZEB1/2 gene expression, and ZEB1/2 depletion rescues EMT markers and mesenchymal behavior. Overall, our study delineates TRIP12's role in inhibition of EMT and implies a potential suppressive role in breast cancer metastasis.
Collapse
Affiliation(s)
- Kwok Kin Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
| | - Deepa Rajagopalan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shreshtha Sailesh Bhatia
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Roberto Tirado-Magallanes
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore.,Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Singapore
| | - Sudhakar Jha
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore. .,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
73
|
Jingushi K, Aoki M, Ueda K, Kogaki T, Tanimoto M, Monoe Y, Ando M, Matsumoto T, Minami K, Ueda Y, Kitae K, Hase H, Nagata T, Harada-Takeda A, Yamamoto M, Kawahara K, Tabata K, Furukawa T, Sato M, Tsujikawa K. ALKBH4 promotes tumourigenesis with a poor prognosis in non-small-cell lung cancer. Sci Rep 2021; 11:8677. [PMID: 33883577 PMCID: PMC8060266 DOI: 10.1038/s41598-021-87763-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/31/2021] [Indexed: 12/22/2022] Open
Abstract
The human AlkB homolog family (ALKBH) of proteins play a critical role in some types of cancer. However, the expression and function of the lysine demethylase ALKBH4 in cancer are poorly understood. Here, we examined the expression and function of ALKBH4 in non-small-cell lung cancer (NSCLC) and found that ALKBH4 was highly expressed in NSCLC, as compared to that in adjacent normal lung tissues. ALKBH4 knockdown significantly induced the downregulation of NSCLC cell proliferation via cell cycle arrest at the G1 phase of in vivo tumour growth. ALKBH4 knockdown downregulated E2F transcription factor 1 (E2F1) and its target gene expression in NSCLC cells. ALKBH4 and E2F1 expression was significantly correlated in NSCLC clinical specimens. Moreover, patients with high ALKBH4 expression showed a poor prognosis, suggesting that ALKBH4 plays a pivotal tumour-promoting role in NSCLC.
Collapse
Affiliation(s)
- Kentaro Jingushi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Masaya Aoki
- Department of General Thoracic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8520, Japan
| | - Kazuhiro Ueda
- Department of General Thoracic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8520, Japan
| | - Takahiro Kogaki
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masaya Tanimoto
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuya Monoe
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masayuki Ando
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takuya Matsumoto
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kentaro Minami
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| | - Yuko Ueda
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kaori Kitae
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroaki Hase
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshiyuki Nagata
- Department of General Thoracic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8520, Japan
| | - Aya Harada-Takeda
- Department of General Thoracic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8520, Japan
| | - Masatatsu Yamamoto
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| | - Kohichi Kawahara
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| | - Kazuhiro Tabata
- Human Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, 890-8544, Japan
| | - Tatsuhiko Furukawa
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| | - Masami Sato
- Department of General Thoracic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8520, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
74
|
Lin YH, Liang Y, Wang H, Tung LT, Förster M, Subramani PG, Di Noia JM, Clare S, Langlais D, Nijnik A. Regulation of B Lymphocyte Development by Histone H2A Deubiquitinase BAP1. Front Immunol 2021; 12:626418. [PMID: 33912157 PMCID: PMC8072452 DOI: 10.3389/fimmu.2021.626418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/12/2021] [Indexed: 01/08/2023] Open
Abstract
BAP1 is a deubiquitinase (DUB) of the Ubiquitin C-terminal Hydrolase (UCH) family that regulates gene expression and other cellular processes, via deubiquitination of histone H2AK119ub and other substrates. BAP1 is an important tumor suppressor in human, expressed and functional across many cell-types and tissues, including those of the immune system. B lymphocytes are the mediators of humoral immune response, however the role of BAP1 in B cell development and physiology remains poorly understood. Here we characterize a mouse line with a selective deletion of BAP1 within the B cell lineage (Bap1fl/fl mb1-Cre) and establish a cell intrinsic role of BAP1 in the regulation of B cell development. We demonstrate a depletion of large pre-B cells, transitional B cells, and mature B cells in Bap1fl/fl mb1-Cre mice. We characterize broad transcriptional changes in BAP1-deficient pre-B cells, map BAP1 binding across the genome, and analyze the effects of BAP1-loss on histone H2AK119ub levels and distribution. Overall, our work establishes a cell intrinsic role of BAP1 in B lymphocyte development, and suggests its contribution to the regulation of the transcriptional programs of cell cycle progression, via the deubiquitination of histone H2AK119ub.
Collapse
Affiliation(s)
- Yun Hsiao Lin
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Yue Liang
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, Montreal, QC, Canada
| | - Lin Tze Tung
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Michael Förster
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Poorani Ganesh Subramani
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Javier M. Di Noia
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Biochemistry & Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - Simon Clare
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - David Langlais
- McGill Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| |
Collapse
|
75
|
Gehring NH, Roignant JY. Anything but Ordinary – Emerging Splicing Mechanisms in Eukaryotic Gene Regulation. Trends Genet 2021; 37:355-372. [DOI: 10.1016/j.tig.2020.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
|
76
|
Structural insight into HEMK2-TRMT112-mediated glutamine methylation. Biochem J 2021; 477:3833-3838. [PMID: 32969463 DOI: 10.1042/bcj20200594] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 02/02/2023]
Abstract
Post-translational modifications play important roles in mediating protein functions in a wide variety of cellular events in vivo. HEMK2-TRMT112 heterodimer has been reported to be responsible for both histone lysine methylation and eukaryotic release factor 1 (eRF1) glutamine methylation. However, how HEMK2-TRMT112 complex recognizes and catalyzes eRF1 glutamine methylation is largely unknown. Here, we present two structures of HEMK2-TRMT112, with one bound to SAM and the other bound with SAH and methylglutamine (Qme). Structural analyses of the post-catalytic complex, complemented by mass spectrometry experiments, indicate that the HEMK2 utilizes a specific pocket to accommodate the substrate glutamine and catalyzes the subsequent methylation. Therefore, our work not only throws light on the protein glutamine methylation mechanism, but also reveals the dual activity of HEMK2 by catalyzing the methylation of both Lys and Gln residues.
Collapse
|
77
|
Singh S, Ng J, Sivaraman J. Exploring the "Other" subfamily of HECT E3-ligases for therapeutic intervention. Pharmacol Ther 2021; 224:107809. [PMID: 33607149 DOI: 10.1016/j.pharmthera.2021.107809] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/13/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022]
Abstract
The HECT E3 ligase family regulates key cellular signaling pathways, with its 28 members divided into three subfamilies: NEDD4 subfamily (9 members), HERC subfamily (6 members) and "Other" subfamily (13 members). Here, we focus on the less-explored "Other" subfamily and discuss the recent findings pertaining to their biological roles. The N-terminal regions preceding the conserved HECT domains are significantly diverse in length and sequence composition, and are mostly unstructured, except for short regions that incorporate known substrate-binding domains. In some of the better-characterized "Other" members (e.g., HUWE1, AREL1 and UBE3C), structure analysis shows that the extended region (~ aa 50) adjacent to the HECT domain affects the stability and activity of the protein. The enzymatic activity is also influenced by interactions with different adaptor proteins and inter/intramolecular interactions. Primarily, the "Other" subfamily members assemble atypical ubiquitin linkages, with some cooperating with E3 ligases from the other subfamilies to form branched ubiquitin chains on substrates. Viruses and pathogenic bacteria target and hijack the activities of "Other" subfamily members to evade host immune responses and cause diseases. As such, these HECT E3 ligases have emerged as potential candidates for therapeutic drug development.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore
| | - Joel Ng
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore
| | - J Sivaraman
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore.
| |
Collapse
|
78
|
Kaiho-Soma A, Akizuki Y, Igarashi K, Endo A, Shoda T, Kawase Y, Demizu Y, Naito M, Saeki Y, Tanaka K, Ohtake F. TRIP12 promotes small-molecule-induced degradation through K29/K48-branched ubiquitin chains. Mol Cell 2021; 81:1411-1424.e7. [PMID: 33567268 DOI: 10.1016/j.molcel.2021.01.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/13/2020] [Accepted: 01/20/2021] [Indexed: 12/19/2022]
Abstract
Targeted protein degradation is an emerging therapeutic paradigm. Small-molecule degraders such as proteolysis-targeting chimeras (PROTACs) induce the degradation of neo-substrates by hijacking E3 ubiquitin ligases. Although ubiquitylation of endogenous substrates has been extensively studied, the mechanism underlying forced degradation of neo-substrates is less well understood. We found that the ubiquitin ligase TRIP12 promotes PROTAC-induced and CRL2VHL-mediated degradation of BRD4 but is dispensable for the degradation of the endogenous CRL2VHL substrate HIF-1α. TRIP12 associates with BRD4 via CRL2VHL and specifically assembles K29-linked ubiquitin chains, facilitating the formation of K29/K48-branched ubiquitin chains and accelerating the assembly of K48 linkage by CRL2VHL. Consequently, TRIP12 promotes the PROTAC-induced apoptotic response. TRIP12 also supports the efficiency of other degraders that target CRABP2 or TRIM24 or recruit CRBN. These observations define TRIP12 and K29/K48-branched ubiquitin chains as accelerators of PROTAC-directed targeted protein degradation, revealing a cooperative mechanism of branched ubiquitin chain assembly unique to the degradation of neo-substrates.
Collapse
Affiliation(s)
- Ai Kaiho-Soma
- Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yoshino Akizuki
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Katsuhide Igarashi
- Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Akinori Endo
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Takuji Shoda
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki city, Kanagawa 210-9501, Japan
| | - Yasuko Kawase
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki city, Kanagawa 210-9501, Japan
| | - Mikihiko Naito
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki city, Kanagawa 210-9501, Japan; Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki city, Kanagawa 210-9501, Japan
| | - Yasushi Saeki
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Keiji Tanaka
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Fumiaki Ohtake
- Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
79
|
Hasan MM, Shoombuatong W, Kurata H, Manavalan B. Critical evaluation of web-based DNA N6-methyladenine site prediction tools. Brief Funct Genomics 2021; 20:258-272. [PMID: 33491072 DOI: 10.1093/bfgp/elaa028] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Methylation of DNA N6-methyladenosine (6mA) is a type of epigenetic modification that plays pivotal roles in various biological processes. The accurate genome-wide identification of 6mA is a challenging task that leads to understanding the biological functions. For the last 5 years, a number of bioinformatics approaches and tools for 6mA site prediction have been established, and some of them are easily accessible as web application. Nevertheless, the accurate genome-wide identification of 6mA is still one of the challenging works that lead to understanding the biological functions. Especially in practical applications, these tools have implemented diverse encoding schemes, machine learning algorithms and feature selection methods, whereas few systematic performance comparisons of 6mA site predictors have been reported. In this review, 11 publicly available 6mA predictors evaluated with seven different species-specific datasets (Arabidopsis thaliana, Tolypocladium, Diospyros lotus, Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans and Escherichia coli). Of those, few species are close homologs, and the remaining datasets are distant sequences. Our independent, validation tests demonstrated that Meta-i6mA and MM-6mAPred models for A. thaliana, Tolypocladium, S. cerevisiae and D. melanogaster achieved excellent overall performance when compared with their counterparts. However, none of the existing methods were suitable for E. coli, C. elegans and D. lotus. A feasibility of the existing predictors is also discussed for the seven species. Our evaluation provides useful guidelines for the development of 6mA site predictors and helps biologists selecting suitable prediction tools.
Collapse
Affiliation(s)
| | - Watshara Shoombuatong
- Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics in the Kyushu Institute of Technology, Japan
| | | |
Collapse
|
80
|
He PC, He C. m 6 A RNA methylation: from mechanisms to therapeutic potential. EMBO J 2021; 40:e105977. [PMID: 33470439 DOI: 10.15252/embj.2020105977] [Citation(s) in RCA: 360] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/06/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
RNA carries a diverse array of chemical modifications that play important roles in the regulation of gene expression. N6 -methyladenosine (m6 A), installed onto mRNA by the METTL3/METTL14 methyltransferase complex, is the most prevalent mRNA modification. m6 A methylation regulates gene expression by influencing numerous aspects of mRNA metabolism, including pre-mRNA processing, nuclear export, decay, and translation. The importance of m6 A methylation as a mode of post-transcriptional gene expression regulation is evident in the crucial roles m6 A-mediated gene regulation plays in numerous physiological and pathophysiological processes. Here, we review current knowledge on the mechanisms by which m6 A exerts its functions and discuss recent advances that underscore the multifaceted role of m6 A in the regulation of gene expression. We highlight advances in our understanding of the regulation of m6 A deposition on mRNA and its context-dependent effects on mRNA decay and translation, the role of m6 A methylation of non-coding chromosomal-associated RNA species in regulating transcription, and the activities of the RNA demethylase FTO on diverse substrates. We also discuss emerging evidence for the therapeutic potential of targeting m6 A regulators in disease.
Collapse
Affiliation(s)
- P Cody He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.,Committee on Immunology, The University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.,Committee on Immunology, The University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
81
|
Nakamura M, Gao Y, Dominguez AA, Qi LS. CRISPR technologies for precise epigenome editing. Nat Cell Biol 2021; 23:11-22. [PMID: 33420494 DOI: 10.1038/s41556-020-00620-7] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/30/2020] [Indexed: 01/29/2023]
Abstract
The epigenome involves a complex set of cellular processes governing genomic activity. Dissecting this complexity necessitates the development of tools capable of specifically manipulating these processes. The repurposing of prokaryotic CRISPR systems has allowed for the development of diverse technologies for epigenome engineering. Here, we review the state of currently achievable epigenetic manipulations along with corresponding applications. With future optimization, CRISPR-based epigenomic editing stands as a set of powerful tools for understanding and controlling biological function.
Collapse
Affiliation(s)
- Muneaki Nakamura
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Yuchen Gao
- Department of Bioengineering, Stanford University, Stanford, CA, USA.,Cancer Biology Program, Stanford University, Stanford, CA, USA.,Mammoth Biosciences, South San Francisco, CA, USA
| | - Antonia A Dominguez
- Department of Bioengineering, Stanford University, Stanford, CA, USA.,Sana Biotechnology, South San Francisco, CA, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA. .,Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA. .,Stanford ChEM-H Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
82
|
Liu X, Lai W, Li Y, Chen S, Liu B, Zhang N, Mo J, Lyu C, Zheng J, Du YR, Jiang G, Xu GL, Wang H. N 6-methyladenine is incorporated into mammalian genome by DNA polymerase. Cell Res 2021; 31:94-97. [PMID: 32355286 PMCID: PMC7853133 DOI: 10.1038/s41422-020-0317-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/04/2020] [Indexed: 11/09/2022] Open
Affiliation(s)
- Xiaoling Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Weiyi Lai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaokun Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baodong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ning Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jiezhen Mo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cong Lyu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Rui Du
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science/Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guo-Liang Xu
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science/Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute of Environment and Health, Jianghan University, Wuhan, Hubei, 430056, China.
| |
Collapse
|
83
|
The epigenetic roles of DNA N6-Methyladenine (6mA) modification in eukaryotes. Cancer Lett 2020; 494:40-46. [DOI: 10.1016/j.canlet.2020.08.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022]
|
84
|
Bochtler M, Fernandes H. DNA adenine methylation in eukaryotes: Enzymatic mark or a form of DNA damage? Bioessays 2020; 43:e2000243. [PMID: 33244833 DOI: 10.1002/bies.202000243] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022]
Abstract
6-methyladenine (6mA) is fairly abundant in nuclear DNA of basal fungi, ciliates and green algae. In these organisms, 6mA is maintained near transcription start sites in ApT context by a parental-strand instruction dependent maintenance methyltransferase and is positively associated with transcription. In animals and plants, 6mA levels are high only in organellar DNA. The 6mA levels in nuclear DNA are very low. They are attributable to nucleotide salvage and the activity of otherwise mitochondrial METTL4, and may be considered as a price that cells pay for adenine methylation in RNA and/or organellar DNA. Cells minimize this price by sanitizing dNTP pools to limit 6mA incorporation, and by converting 6mA that has been incorporated into DNA back to adenine. Hence, 6mA in nuclear DNA should be described as an epigenetic mark only in basal fungi, ciliates and green algae, but not in animals and plants.
Collapse
Affiliation(s)
- Matthias Bochtler
- International Institute of Molecular and Cell Biology, Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Humberto Fernandes
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
85
|
Polycomb group-mediated histone H2A monoubiquitination in epigenome regulation and nuclear processes. Nat Commun 2020; 11:5947. [PMID: 33230107 PMCID: PMC7683540 DOI: 10.1038/s41467-020-19722-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 10/12/2020] [Indexed: 12/19/2022] Open
Abstract
Histone posttranslational modifications are key regulators of chromatin-associated processes including gene expression, DNA replication and DNA repair. Monoubiquitinated histone H2A, H2Aub (K118 in Drosophila or K119 in vertebrates) is catalyzed by the Polycomb group (PcG) repressive complex 1 (PRC1) and reversed by the PcG-repressive deubiquitinase (PR-DUB)/BAP1 complex. Here we critically assess the current knowledge regarding H2Aub deposition and removal, its crosstalk with PcG repressive complex 2 (PRC2)-mediated histone H3K27 methylation, and the recent attempts toward discovering its readers and solving its enigmatic functions. We also discuss mounting evidence of the involvement of H2A ubiquitination in human pathologies including cancer, while highlighting some knowledge gaps that remain to be addressed. Histone H2A monoubiquitination on lysine 119 in vertebrate and lysine 118 in Drosophila (H2Aub) is an epigenomic mark usually associated with gene repression by Polycomb group factors. Here the authors review the current knowledge on the deposition and removal of H2Aub, its function in transcription and other DNA-associated processes as well as its relevance to human disease.
Collapse
|
86
|
Brunet M, Vargas C, Larrieu D, Torrisani J, Dufresne M. E3 Ubiquitin Ligase TRIP12: Regulation, Structure, and Physiopathological Functions. Int J Mol Sci 2020; 21:ijms21228515. [PMID: 33198194 PMCID: PMC7697007 DOI: 10.3390/ijms21228515] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
The Thyroid hormone Receptor Interacting Protein 12 (TRIP12) protein belongs to the 28-member Homologous to the E6-AP C-Terminus (HECT) E3 ubiquitin ligase family. First described as an interactor of the thyroid hormone receptor, TRIP12’s biological importance was revealed by the embryonic lethality of a murine model bearing an inactivating mutation in the TRIP12 gene. Further studies showed the participation of TRIP12 in the regulation of major biological processes such as cell cycle progression, DNA damage repair, chromatin remodeling, and cell differentiation by an ubiquitination-mediated degradation of key protein substrates. Moreover, alterations of TRIP12 expression have been reported in cancers that can serve as predictive markers of therapeutic response. The TRIP12 gene is also referenced as a causative gene associated to intellectual disorders such as Clark–Baraitser syndrome and is clearly implicated in Autism Spectrum Disorder. The aim of the review is to provide an exhaustive and integrated overview of the different aspects of TRIP12 ranging from its regulation, molecular functions and physio-pathological implications.
Collapse
Affiliation(s)
- Manon Brunet
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1037, Centre de Recherches en Cancérologie de Toulouse, CEDEX 1, 31 037 Toulouse, France; (M.B.); (C.V.); (D.L.)
- Université Toulouse III-Paul Sabatier, CEDEX 9, 31 062 Toulouse, France
| | - Claire Vargas
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1037, Centre de Recherches en Cancérologie de Toulouse, CEDEX 1, 31 037 Toulouse, France; (M.B.); (C.V.); (D.L.)
- Université Toulouse III-Paul Sabatier, CEDEX 9, 31 062 Toulouse, France
| | - Dorian Larrieu
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1037, Centre de Recherches en Cancérologie de Toulouse, CEDEX 1, 31 037 Toulouse, France; (M.B.); (C.V.); (D.L.)
- Université Toulouse III-Paul Sabatier, CEDEX 9, 31 062 Toulouse, France
| | - Jérôme Torrisani
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1037, Centre de Recherches en Cancérologie de Toulouse, CEDEX 1, 31 037 Toulouse, France; (M.B.); (C.V.); (D.L.)
- Université Toulouse III-Paul Sabatier, CEDEX 9, 31 062 Toulouse, France
- Correspondence: (J.T.); (M.D.); Tel.: +33-582-741-644 (J.T.); +33-582-741-643 (M.D.)
| | - Marlène Dufresne
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1037, Centre de Recherches en Cancérologie de Toulouse, CEDEX 1, 31 037 Toulouse, France; (M.B.); (C.V.); (D.L.)
- Université Toulouse III-Paul Sabatier, CEDEX 9, 31 062 Toulouse, France
- Correspondence: (J.T.); (M.D.); Tel.: +33-582-741-644 (J.T.); +33-582-741-643 (M.D.)
| |
Collapse
|
87
|
Woodcock CB, Horton JR, Zhang X, Blumenthal RM, Cheng X. Beta class amino methyltransferases from bacteria to humans: evolution and structural consequences. Nucleic Acids Res 2020; 48:10034-10044. [PMID: 32453412 PMCID: PMC7544214 DOI: 10.1093/nar/gkaa446] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 01/09/2023] Open
Abstract
S-adenosyl-l-methionine dependent methyltransferases catalyze methyl transfers onto a wide variety of target molecules, including DNA and RNA. We discuss a family of methyltransferases, those that act on the amino groups of adenine or cytosine in DNA, have conserved motifs in a particular order in their amino acid sequence, and are referred to as class beta MTases. Members of this class include M.EcoGII and M.EcoP15I from Escherichia coli, Caulobacter crescentus cell cycle-regulated DNA methyltransferase (CcrM), the MTA1-MTA9 complex from the ciliate Oxytricha, and the mammalian MettL3-MettL14 complex. These methyltransferases all generate N6-methyladenine in DNA, with some members having activity on single-stranded DNA as well as RNA. The beta class of methyltransferases has a unique multimeric feature, forming either homo- or hetero-dimers, allowing the enzyme to use division of labor between two subunits in terms of substrate recognition and methylation. We suggest that M.EcoGII may represent an ancestral form of these enzymes, as its activity is independent of the nucleic acid type (RNA or DNA), its strandedness (single or double), and its sequence (aside from the target adenine).
Collapse
Affiliation(s)
- Clayton B Woodcock
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
88
|
Goh YT, Koh CWQ, Sim DY, Roca X, Goh WSS. METTL4 catalyzes m6Am methylation in U2 snRNA to regulate pre-mRNA splicing. Nucleic Acids Res 2020; 48:9250-9261. [PMID: 32813009 PMCID: PMC7498333 DOI: 10.1093/nar/gkaa684] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/23/2020] [Accepted: 08/04/2020] [Indexed: 01/06/2023] Open
Abstract
N6-methylation of 2′-O-methyladenosine (Am) in RNA occurs in eukaryotic cells to generate N6,2′-O-dimethyladenosine (m6Am). Identification of the methyltransferase responsible for m6Am catalysis has accelerated studies on the function of m6Am in RNA processing. While m6Am is generally found in the first transcribed nucleotide of mRNAs, the modification is also found internally within U2 snRNA. However, the writer required for catalyzing internal m6Am formation had remained elusive. By sequencing transcriptome-wide RNA methylation at single-base-resolution, we identified human METTL4 as the writer that directly methylates Am at U2 snRNA position 30 into m6Am. We found that METTL4 localizes to the nucleus and its conserved methyltransferase catalytic site is required for U2 snRNA methylation. By sequencing human cells with overexpressed Mettl4, we determined METTL4’s in vivo target RNA motif specificity. In the absence of Mettl4 in human cells, U2 snRNA lacks m6Am thereby affecting a subset of splicing events that exhibit specific features such as 3′ splice-site weakness and an increase in exon inclusion. These findings suggest that METTL4 methylation of U2 snRNA regulates splicing of specific pre-mRNA transcripts.
Collapse
Affiliation(s)
- Yeek Teck Goh
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Casslynn W Q Koh
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Donald Yuhui Sim
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - W S Sho Goh
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| |
Collapse
|
89
|
Zhang X, Blumenthal RM, Cheng X. A Role for N6-Methyladenine in DNA Damage Repair. Trends Biochem Sci 2020; 46:175-183. [PMID: 33077363 DOI: 10.1016/j.tibs.2020.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022]
Abstract
The leading cause of mutation due to oxidative damage is 8-oxo-2'-deoxyguanosine (8-oxoG) mispairing with adenine (Ade), which can occur in two ways. First, guanine of a G:C DNA base pair can be oxidized. If not repaired in time, DNA polymerases can mispair Ade with 8-oxoG in the template. This 8-oxoG:A can be repaired by enzymes that remove Ade opposite to template 8-oxoG, or 8-oxoG opposite to Cyt. Second, free 8-oxo-dGTP can be misincorporated by DNA polymerases into DNA opposite template Ade. However, there is no known repair activity that removes 8-oxoG opposite to template Ade. We suggest that a major role of N6-methyladenine in mammalian DNA is minimizing incorporation of 8-oxoG opposite to Ade by DNA polymerases following adduct formation.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
90
|
Woodcock CB, Horton JR, Zhou J, Bedford MT, Blumenthal RM, Zhang X, Cheng X. Biochemical and structural basis for YTH domain of human YTHDC1 binding to methylated adenine in DNA. Nucleic Acids Res 2020; 48:10329-10341. [PMID: 32663306 PMCID: PMC7544203 DOI: 10.1093/nar/gkaa604] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
The recently characterized mammalian writer (methyltransferase) and eraser (demethylase) of the DNA N6-methyladenine (N6mA) methyl mark act on single-stranded (ss) and transiently-unpaired DNA. As YTH domain-containing proteins bind N6mA-containing RNA in mammalian cells, we investigated whether mammalian YTH domains are also methyl mark readers of N6mA DNA. Here, we show that the YTH domain of YTHDC1 (known to localize in the nucleus) binds ssDNA containing N6mA, with a 10 nM dissociation constant. This binding is stronger by a factor of 5 than in an RNA context, tested under the same conditions. However, the YTH domains of YTHDF2 and YTHDF1 (predominantly cytoplasmic) exhibited the opposite effect with ∼1.5-2× stronger binding to ssRNA containing N6mA than to the corresponding DNA. We determined two structures of the YTH domain of YTHDC1 in complex with N6mA-containing ssDNA, which illustrated that YTHDC1 binds the methylated adenine in a single-stranded region flanked by duplexed DNA. We discuss the hypothesis that the writer-reader-eraser of N6mA-containining ssDNA is associated with maintaining genome stability. Structural comparison of YTH and SRA domains (the latter a DNA 5-methylcytosine reader) revealed them to be diverse members of a larger family of DNA/RNA modification readers, apparently having originated from bacterial modification-dependent restriction enzymes.
Collapse
Affiliation(s)
- Clayton B Woodcock
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
91
|
Xiao MZ, Liu JM, Xian CL, Chen KY, Liu ZQ, Cheng YY. Therapeutic potential of ALKB homologs for cardiovascular disease. Biomed Pharmacother 2020; 131:110645. [PMID: 32942149 DOI: 10.1016/j.biopha.2020.110645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/05/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading causes of human death. Recently, ALKB homologs, including ALKBH1-8 and FTO, have been found to have a variety of biological functions, such as histone demethylation, RNA demethylation, and DNA demethylation. These functions may regulate the physiological and pathological processes of CVDs, including inflammation, oxidative stress, cell apoptosis, and mitochondrial, endothelial, and fat metabolism dysfunction. In the present review, we summarize the biological functions of ALKB homologs and the relationship between the ALKB homologs and CVDs. Importantly, we discuss the roles of ALKB homologs in the regulation of oxidative stress, inflammation, autophagy, and DNA damage in CVDs, as well as the practical applications of ALKB homologs inhibitors or agonists in treating CVDs. In conclusion, the ALKBH family might be a promising target for CVDs therapy.
Collapse
Affiliation(s)
- Ming-Zhu Xiao
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jia-Ming Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Cui-Ling Xian
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Keng-Yu Chen
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; The Second Affiliated Hospital of Guangdong Pharmaceutical University, Yunfu, 527300, China
| | - Zhong-Qiu Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Yuan-Yuan Cheng
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
92
|
Epigenetic Clock: DNA Methylation in Aging. Stem Cells Int 2020; 2020:1047896. [PMID: 32724310 PMCID: PMC7366189 DOI: 10.1155/2020/1047896] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/11/2020] [Accepted: 06/20/2020] [Indexed: 02/07/2023] Open
Abstract
Aging, which is accompanied by decreased organ function and increased disease incidence, limits human lifespan and has attracted investigators for thousands of years. In recent decades, with the rapid development of biology, scientists have shown that epigenetic modifications, especially DNA methylation, are key regulators involved in this process. Regular fluctuations in global DNA methylation levels have been shown to accurately estimate biological age and disease prognosis. In this review, we discuss recent findings regarding the relationship between variations in DNA methylation level patterns and aging. In addition, we introduce the known mechanisms by which DNA methylation regulators affect aging and related diseases. As more studies uncover the mechanisms by which DNA methylation regulates aging, antiaging interventions and treatments for related diseases may be developed that enable human life extension.
Collapse
|
93
|
Gu L, Wang L, Chen H, Hong J, Shen Z, Dhall A, Lao T, Liu C, Wang Z, Xu Y, Tang HW, Chakraborty D, Chen J, Liu Z, Rogulja D, Perrimon N, Wu H, Shi Y. CG14906 (mettl4) mediates m 6A methylation of U2 snRNA in Drosophila. Cell Discov 2020; 6:44. [PMID: 32637152 PMCID: PMC7324582 DOI: 10.1038/s41421-020-0178-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/09/2020] [Indexed: 01/01/2023] Open
Affiliation(s)
- Lei Gu
- Department of Medicine, Division of Newborn Medicine and Epigenetics Programe, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| | - Longfei Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Hao Chen
- Department of Medicine, Division of Newborn Medicine and Epigenetics Programe, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| | - Jiaxu Hong
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, 200031 Shanghai, China
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004 China
| | - Zhangfei Shen
- Department of Medicine, Division of Newborn Medicine and Epigenetics Programe, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| | - Abhinav Dhall
- Department of Medicine, Division of Newborn Medicine and Epigenetics Programe, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| | - Taotao Lao
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA 02129 USA
| | - Chaozhong Liu
- Department of Medicine, Division of Newborn Medicine and Epigenetics Programe, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| | - Zheng Wang
- Department of Medicine, Division of Newborn Medicine and Epigenetics Programe, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| | - Yifan Xu
- Department of Medicine, Division of Newborn Medicine and Epigenetics Programe, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| | - Hong-Wen Tang
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115 USA
| | - Damayanti Chakraborty
- Department of Medicine, Division of Newborn Medicine and Epigenetics Programe, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510530 China
| | - Zhihua Liu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
| | - Dragana Rogulja
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115 USA
- Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115 USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Yang Shi
- Department of Medicine, Division of Newborn Medicine and Epigenetics Programe, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
94
|
Wang J, Wang WA, Zhang A, Liu HB. Molecular mechanism of methyltransferase-like protein family: Relationship with gastric cancer. Shijie Huaren Xiaohua Zazhi 2020; 28:428-434. [DOI: 10.11569/wcjd.v28.i11.428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Methyltransferase-like proteins (METTL) are part of a large protein family, which is characterized by the presence of an S-adenosylmethionine (SAM; a common substrate for methylation reactions) binding domain. Although members of this protein family have been shown or predicted as methyltransferases of RNA, DNA, or proteins, most methyltransferases are still poorly characterized. Identifying the complexes where these potential enzymes work can help to understand their function and substrate specificity. The METTL protein family is closely related to the occurrence and development of gastric cancer (GC), and its relationship with GC is of great importance in the diagnosis, treatment, and prognosis of GC. Here we give a systematic and comprehensive review of the mechanism of METTL protein family and its relationship with GC, with an aim to provide important resources for further research on these potential new methyltransferases and the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Jing Wang
- Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Wen-An Wang
- Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - An Zhang
- Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hong-Bin Liu
- People's Liberation Army Joint Logistics Support Unit 940 Hospital, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
95
|
Musheev MU, Baumgärtner A, Krebs L, Niehrs C. The origin of genomic N6-methyl-deoxyadenosine in mammalian cells. Nat Chem Biol 2020; 16:630-634. [DOI: 10.1038/s41589-020-0504-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 02/18/2020] [Indexed: 11/09/2022]
|
96
|
Karanthamalai J, Chodon A, Chauhan S, Pandi G. DNA N 6-Methyladenine Modification in Plant Genomes-A Glimpse into Emerging Epigenetic Code. PLANTS (BASEL, SWITZERLAND) 2020; 9:E247. [PMID: 32075056 PMCID: PMC7076483 DOI: 10.3390/plants9020247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 02/08/2023]
Abstract
N6-methyladenine (6mA) is a DNA base modification at the 6th nitrogen position; recently, it has been resurfaced as a potential reversible epigenetic mark in eukaryotes. Despite its existence, 6mA was considered to be absent due to its undetectable level. However, with the new advancements in methods, considerable 6mA distribution is identified across the plant genome. Unlike 5-methylcytosine (5mC) in the gene promoter, 6mA does not have a definitive role in repression but is exposed to have divergent regulation in gene expression. Though 6mA information is less known, the available evidences suggest its function in plant development, tissue differentiation, and regulations in gene expression. The current review article emphasizes the research advances in DNA 6mA modifications, identification, available databases, analysis tools and its significance in plant development, cellular functions and future perspectives of research.
Collapse
Affiliation(s)
| | | | | | - Gopal Pandi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai625021, Tamil Nadu, India; (J.K.); (A.C.); (S.C.)
| |
Collapse
|
97
|
Larrieu D, Brunet M, Vargas C, Hanoun N, Ligat L, Dagnon L, Lulka H, Pommier RM, Selves J, Jády BE, Bartholin L, Cordelier P, Dufresne M, Torrisani J. The E3 ubiquitin ligase TRIP12 participates in cell cycle progression and chromosome stability. Sci Rep 2020; 10:789. [PMID: 31964993 PMCID: PMC6972862 DOI: 10.1038/s41598-020-57762-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/03/2020] [Indexed: 12/29/2022] Open
Abstract
Several studies have linked the E3 ubiquitin ligase TRIP12 (Thyroid hormone Receptor Interacting Protein 12) to the cell cycle. However, the regulation and the implication of this protein during the cell cycle are largely unknown. In this study, we show that TRIP12 expression is regulated during the cell cycle, which correlates with its nuclear localization. We identify an euchromatin-binding function of TRIP12 mediated by a N-terminal intrinsically disordered region. We demonstrate the functional implication of TRIP12 in the mitotic entry by controlling the duration of DNA replication that is independent from its catalytic activity. We also show the requirement of TRIP12 in the mitotic progression and chromosome stability. Altogether, our findings show that TRIP12 is as a new chromatin-associated protein with several implications in the cell cycle progression and in the maintenance of genome integrity.
Collapse
Affiliation(s)
- D Larrieu
- Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - M Brunet
- Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - C Vargas
- Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - N Hanoun
- Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - L Ligat
- Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - L Dagnon
- Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - H Lulka
- Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - R M Pommier
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, 69008, France
| | - J Selves
- Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - B E Jády
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, Centre de Biologie Intégrative, Université Toulouse III-Paul Sabatier, Toulouse, Cedex 9, France
| | - L Bartholin
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, 69008, France
| | - P Cordelier
- Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - M Dufresne
- Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - J Torrisani
- Université de Toulouse, INSERM, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.
| |
Collapse
|
98
|
Chen H, Gu L, Orellana EA, Wang Y, Guo J, Liu Q, Wang L, Shen Z, Wu H, Gregory RI, Xing Y, Shi Y. METTL4 is an snRNA m 6Am methyltransferase that regulates RNA splicing. Cell Res 2020; 30:544-547. [PMID: 31913360 DOI: 10.1038/s41422-019-0270-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/22/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Hao Chen
- Division of Newborn Medicine and Program in Epigenetics, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Lei Gu
- Division of Newborn Medicine and Program in Epigenetics, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Esteban A Orellana
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Yuanyuan Wang
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jiaojiao Guo
- College of Science, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, USA
| | - Qi Liu
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Longfei Wang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Zhangfei Shen
- Division of Newborn Medicine and Program in Epigenetics, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Richard I Gregory
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Yi Xing
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yang Shi
- Division of Newborn Medicine and Program in Epigenetics, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
99
|
Human MettL3-MettL14 complex is a sequence-specific DNA adenine methyltransferase active on single-strand and unpaired DNA in vitro. Cell Discov 2019; 5:63. [PMID: 31885874 PMCID: PMC6928010 DOI: 10.1038/s41421-019-0136-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/03/2022] Open
|
100
|
Armstrong MJ, Jin Y, Allen EG, Jin P. Diverse and dynamic DNA modifications in brain and diseases. Hum Mol Genet 2019; 28:R241-R253. [PMID: 31348493 PMCID: PMC6872432 DOI: 10.1093/hmg/ddz179] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022] Open
Abstract
DNA methylation is a class of epigenetic modification essential for coordinating gene expression timing and magnitude throughout normal brain development and for proper brain function following development. Aberrant methylation changes are associated with changes in chromatin architecture, transcriptional alterations and a host of neurological disorders and diseases. This review highlights recent advances in our understanding of the methylome's functionality and covers potential new roles for DNA methylation, their readers, writers, and erasers. Additionally, we examine novel insights into the relationship between the methylome, DNA-protein interactions, and their contribution to neurodegenerative diseases. Lastly, we outline the gaps in our knowledge that will likely be filled through the widespread use of newer technologies that provide greater resolution into how individual cell types are affected by disease and the contribution of each individual modification site to disease pathogenicity.
Collapse
Affiliation(s)
- Matthew J Armstrong
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Yulin Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Emily G Allen
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|