51
|
Liu C, Sun L, Tan Y, Wang Q, Luo T, Li C, Yao N, Xie Y, Yi X, Zhu Y, Guo T, Ji J. USP7 represses lineage differentiation genes in mouse embryonic stem cells by both catalytic and noncatalytic activities. SCIENCE ADVANCES 2023; 9:eade3888. [PMID: 37196079 DOI: 10.1126/sciadv.ade3888] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 04/12/2023] [Indexed: 05/19/2023]
Abstract
USP7, a ubiquitin-specific peptidase (USP), plays an important role in many cellular processes through its catalytic deubiquitination of various substrates. However, its nuclear function that shapes the transcriptional network in mouse embryonic stem cells (mESCs) remains poorly understood. We report that USP7 maintains mESC identity through both catalytic activity-dependent and -independent repression of lineage differentiation genes. Usp7 depletion attenuates SOX2 levels and derepresses lineage differentiation genes thereby compromising mESC pluripotency. Mechanistically, USP7 deubiquitinates and stabilizes SOX2 to repress mesoendodermal (ME) lineage genes. Moreover, USP7 assembles into RYBP-variant Polycomb repressive complex 1 and contributes to Polycomb chromatin-mediated repression of ME lineage genes in a catalytic activity-dependent manner. USP7 deficiency in its deubiquitination function is able to maintain RYBP binding to chromatin for repressing primitive endoderm-associated genes. Our study demonstrates that USP7 harbors both catalytic and noncatalytic activities to repress different lineage differentiation genes, thereby revealing a previously unrecognized role in controlling gene expression for maintaining mESC identity.
Collapse
Affiliation(s)
- Chao Liu
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China
| | - Lingang Sun
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yijun Tan
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qi Wang
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tao Luo
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chenlu Li
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Nan Yao
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Center for Infectious Disease Research, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, China
| | - Yuting Xie
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Center for Infectious Disease Research, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, China
| | - Xiao Yi
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Center for Infectious Disease Research, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, China
| | - Yi Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Center for Infectious Disease Research, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, China
| | - Tiannan Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Center for Infectious Disease Research, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, China
| | - Junfeng Ji
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Institute of Hematology, Zhejiang University, Hangzhou 310058, China
- Department of Geriatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Eye Center, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
52
|
Rouillon C, Eckhardt BV, Kollenstart L, Gruss F, Verkennis AE, Rondeel I, Krijger PHL, Ricci G, Biran A, van Laar T, Delvaux de Fenffe CM, Luppens G, Albanese P, Sato K, Scheltema RA, de Laat W, Knipscheer P, Dekker N, Groth A, Mattiroli F. CAF-1 deposits newly synthesized histones during DNA replication using distinct mechanisms on the leading and lagging strands. Nucleic Acids Res 2023; 51:3770-3792. [PMID: 36942484 PMCID: PMC10164577 DOI: 10.1093/nar/gkad171] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
During every cell cycle, both the genome and the associated chromatin must be accurately replicated. Chromatin Assembly Factor-1 (CAF-1) is a key regulator of chromatin replication, but how CAF-1 functions in relation to the DNA replication machinery is unknown. Here, we reveal that this crosstalk differs between the leading and lagging strand at replication forks. Using biochemical reconstitutions, we show that DNA and histones promote CAF-1 recruitment to its binding partner PCNA and reveal that two CAF-1 complexes are required for efficient nucleosome assembly under these conditions. Remarkably, in the context of the replisome, CAF-1 competes with the leading strand DNA polymerase epsilon (Polϵ) for PCNA binding. However, CAF-1 does not affect the activity of the lagging strand DNA polymerase Delta (Polδ). Yet, in cells, CAF-1 deposits newly synthesized histones equally on both daughter strands. Thus, on the leading strand, chromatin assembly by CAF-1 cannot occur simultaneously to DNA synthesis, while on the lagging strand these processes may be coupled. We propose that these differences may facilitate distinct parental histone recycling mechanisms and accommodate the inherent asymmetry of DNA replication.
Collapse
Affiliation(s)
- Clément Rouillon
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bruna V Eckhardt
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonie Kollenstart
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Fabian Gruss
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Inge Rondeel
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Giulia Ricci
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alva Biran
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Theo van Laar
- Kavli Institute of Nanoscience Delft, TU Delft, The Netherlands
| | | | - Georgiana Luppens
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pascal Albanese
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Koichi Sato
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Richard A Scheltema
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nynke H Dekker
- Kavli Institute of Nanoscience Delft, TU Delft, The Netherlands
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Francesca Mattiroli
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
53
|
Amin A, Kadam S, Mieczkowski J, Ahmed I, Bhat YA, Shah F, Tolstorukov MY, Kingston RE, Padinhateeri R, Wani AH. Disruption of polyhomeotic polymerization decreases nucleosome occupancy and alters genome accessibility. Life Sci Alliance 2023; 6:e202201768. [PMID: 36849253 PMCID: PMC9973501 DOI: 10.26508/lsa.202201768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
Chromatin attains its three-dimensional (3D) conformation by establishing contacts between different noncontiguous regions. Sterile Alpha Motif (SAM)-mediated polymerization of the polyhomeotic (PH) protein regulates subnuclear clustering of Polycomb Repressive Complex 1 (PRC1) and chromatin topology. The mutations that perturb the ability of the PH to polymerize, disrupt long-range chromatin contacts, alter Hox gene expression, and lead to developmental defects. To understand the underlying mechanism, we combined the experiments and theory to investigate the effect of this SAM domain mutation on nucleosome occupancy and accessibility on a genome wide scale. Our data show that disruption of PH polymerization because of SAM domain mutation decreases nucleosome occupancy and alters accessibility. Polymer simulations investigating the interplay between distant chromatin contacts and nucleosome occupancy, both of which are regulated by PH polymerization, suggest that nucleosome density increases when contacts between different regions of chromatin are established. Taken together, it appears that SAM domain-mediated PH polymerization biomechanically regulates the organization of chromatin at multiple scales from nucleosomes to chromosomes and we suggest that higher order organization can have a top-down causation effect on nucleosome occupancy.
Collapse
Affiliation(s)
- Adfar Amin
- Department of Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Sangram Kadam
- Department of Biosciences and Bioengineering, IIT, Bombay, India
| | - Jakub Mieczkowski
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Ikhlak Ahmed
- CIRI, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Younus A Bhat
- Department of Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Fouziya Shah
- Department of Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, India
| | | | - Robert E Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - Ajazul H Wani
- Department of Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
54
|
Zhou H, Feng W, Yu J, Shafiq TA, Paulo JA, Zhang J, Luo Z, Gygi SP, Moazed D. SENP3 and USP7 regulate Polycomb-rixosome interactions and silencing functions. Cell Rep 2023; 42:112339. [PMID: 37014752 PMCID: PMC10777863 DOI: 10.1016/j.celrep.2023.112339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/14/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
The rixosome and PRC1 silencing complexes are associated with deSUMOylating and deubiquitinating enzymes, SENP3 and USP7, respectively. How deSUMOylation and deubiquitylation contribute to rixosome- and Polycomb-mediated silencing is not fully understood. Here, we show that the enzymatic activities of SENP3 and USP7 are required for silencing of Polycomb target genes. SENP3 deSUMOylates several rixosome subunits, and this activity is required for association of the rixosome with PRC1. USP7 associates with canonical PRC1 (cPRC1) and deubiquitinates the chromodomain subunits CBX2 and CBX4, and inhibition of USP activity results in disassembly of cPRC1. Finally, both SENP3 and USP7 are required for Polycomb- and rixosome-dependent silencing at an ectopic reporter locus. These findings demonstrate that SUMOylation and ubiquitination regulate the assembly and activities of the rixosome and Polycomb complexes and raise the possibility that these modifications provide regulatory mechanisms that may be utilized during development or in response to environmental challenges.
Collapse
Affiliation(s)
- Haining Zhou
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wenzhi Feng
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Juntao Yu
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Tiasha A Shafiq
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jiuchun Zhang
- Initiative for Genome Editing and Neurodegeneration, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Zhenhua Luo
- Precision Medicine Institute, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Steven P Gygi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Danesh Moazed
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
55
|
Glancy E, Wang C, Tuck E, Healy E, Amato S, Neikes HK, Mariani A, Mucha M, Vermeulen M, Pasini D, Bracken AP. PRC2.1- and PRC2.2-specific accessory proteins drive recruitment of different forms of canonical PRC1. Mol Cell 2023; 83:1393-1411.e7. [PMID: 37030288 PMCID: PMC10168607 DOI: 10.1016/j.molcel.2023.03.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/19/2023] [Accepted: 03/16/2023] [Indexed: 04/10/2023]
Abstract
Polycomb repressive complex 2 (PRC2) mediates H3K27me3 deposition, which is thought to recruit canonical PRC1 (cPRC1) via chromodomain-containing CBX proteins to promote stable repression of developmental genes. PRC2 forms two major subcomplexes, PRC2.1 and PRC2.2, but their specific roles remain unclear. Through genetic knockout (KO) and replacement of PRC2 subcomplex-specific subunits in naïve and primed pluripotent cells, we uncover distinct roles for PRC2.1 and PRC2.2 in mediating the recruitment of different forms of cPRC1. PRC2.1 catalyzes the majority of H3K27me3 at Polycomb target genes and is sufficient to promote recruitment of CBX2/4-cPRC1 but not CBX7-cPRC1. Conversely, while PRC2.2 is poor at catalyzing H3K27me3, we find that its accessory protein JARID2 is essential for recruitment of CBX7-cPRC1 and the consequent 3D chromatin interactions at Polycomb target genes. We therefore define distinct contributions of PRC2.1- and PRC2.2-specific accessory proteins to Polycomb-mediated repression and uncover a new mechanism for cPRC1 recruitment.
Collapse
Affiliation(s)
- Eleanor Glancy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Cheng Wang
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Ellen Tuck
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Evan Healy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Simona Amato
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Hannah K Neikes
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Andrea Mariani
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Marlena Mucha
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands; The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Diego Pasini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy; Department of Health Sciences, University of Milan, Via A. di Rudini 8, 20142 Milan, Italy
| | - Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
56
|
Weigert R, Hetzel S, Bailly N, Haggerty C, Ilik IA, Yung PYK, Navarro C, Bolondi A, Kumar AS, Anania C, Brändl B, Meierhofer D, Lupiáñez DG, Müller FJ, Aktas T, Elsässer SJ, Kretzmer H, Smith ZD, Meissner A. Dynamic antagonism between key repressive pathways maintains the placental epigenome. Nat Cell Biol 2023; 25:579-591. [PMID: 37024684 PMCID: PMC10104784 DOI: 10.1038/s41556-023-01114-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 02/21/2023] [Indexed: 04/08/2023]
Abstract
DNA and Histone 3 Lysine 27 methylation typically function as repressive modifications and operate within distinct genomic compartments. In mammals, the majority of the genome is kept in a DNA methylated state, whereas the Polycomb repressive complexes regulate the unmethylated CpG-rich promoters of developmental genes. In contrast to this general framework, the extra-embryonic lineages display non-canonical, globally intermediate DNA methylation levels, including disruption of local Polycomb domains. Here, to better understand this unusual landscape's molecular properties, we genetically and chemically perturbed major epigenetic pathways in mouse trophoblast stem cells. We find that the extra-embryonic epigenome reflects ongoing and dynamic de novo methyltransferase recruitment, which is continuously antagonized by Polycomb to maintain intermediate, locally disordered methylation. Despite its disorganized molecular appearance, our data point to a highly controlled equilibrium between counteracting repressors within extra-embryonic cells, one that can seemingly persist indefinitely without bistable features typically seen for embryonic forms of epigenetic regulation.
Collapse
Affiliation(s)
- Raha Weigert
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Medical Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Nina Bailly
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Chuck Haggerty
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ibrahim A Ilik
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Philip Yuk Kwong Yung
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Carmen Navarro
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Adriano Bolondi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Abhishek Sampath Kumar
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Chiara Anania
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Björn Brändl
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Universitätsklinikum Schleswig-Holstein Campus Kiel, Zentrum für Integrative Psychiatrie gGmbH, Kiel, Germany
| | - David Meierhofer
- Mass Spectrometry Joint Facilities Scientific Service, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Franz-Josef Müller
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Universitätsklinikum Schleswig-Holstein Campus Kiel, Zentrum für Integrative Psychiatrie gGmbH, Kiel, Germany
| | - Tugce Aktas
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Simon J Elsässer
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, US.
| |
Collapse
|
57
|
Flury V, Reverón-Gómez N, Alcaraz N, Stewart-Morgan KR, Wenger A, Klose RJ, Groth A. Recycling of modified H2A-H2B provides short-term memory of chromatin states. Cell 2023; 186:1050-1065.e19. [PMID: 36750094 PMCID: PMC9994263 DOI: 10.1016/j.cell.2023.01.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/11/2022] [Accepted: 01/06/2023] [Indexed: 02/08/2023]
Abstract
Chromatin landscapes are disrupted during DNA replication and must be restored faithfully to maintain genome regulation and cell identity. The histone H3-H4 modification landscape is restored by parental histone recycling and modification of new histones. How DNA replication impacts on histone H2A-H2B is currently unknown. Here, we measure H2A-H2B modifications and H2A.Z during DNA replication and across the cell cycle using quantitative genomics. We show that H2AK119ub1, H2BK120ub1, and H2A.Z are recycled accurately during DNA replication. Modified H2A-H2B are segregated symmetrically to daughter strands via POLA1 on the lagging strand, but independent of H3-H4 recycling. Post-replication, H2A-H2B modification and variant landscapes are quickly restored, and H2AK119ub1 guides accurate restoration of H3K27me3. This work reveals epigenetic transmission of parental H2A-H2B during DNA replication and identifies cross talk between H3-H4 and H2A-H2B modifications in epigenome propagation. We propose that rapid short-term memory of recycled H2A-H2B modifications facilitates restoration of stable H3-H4 chromatin states.
Collapse
Affiliation(s)
- Valentin Flury
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nazaret Reverón-Gómez
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nicolas Alcaraz
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kathleen R Stewart-Morgan
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alice Wenger
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
58
|
H2A Ubiquitination Alters H3-tail Dynamics on Linker-DNA to Enhance H3K27 Methylation. J Mol Biol 2023; 435:167936. [PMID: 36610636 DOI: 10.1016/j.jmb.2022.167936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023]
Abstract
Polycomb repressive complex 1 (PRC1) and PRC2 are responsible for epigenetic gene regulation. PRC1 ubiquitinates histone H2A (H2Aub), which subsequently promotes PRC2 to introduce the H3 lysine 27 tri-methyl (H3K27me3) repressive chromatin mark. Although this mechanism provides a link between the two key transcriptional repressors, PRC1 and PRC2, it is unknown how histone-tail dynamics contribute to this process. Here, we have examined the effect of H2A ubiquitination and linker-DNA on H3-tail dynamics and H3K27 methylation by PRC2. In naïve nucleosomes, the H3-tail dynamically contacts linker DNA in addition to core DNA, and the linker-DNA is as important for H3K27 methylation as H2A ubiquitination. H2A ubiquitination alters contacts between the H3-tail and DNA to improve the methyltransferase activity of the PRC2-AEBP2-JARID2 complex. Collectively, our data support a model in which H2A ubiquitination by PRC1 synergizes with linker-DNA to hold H3 histone tails poised for their methylation by PRC2-AEBP2-JARID2.
Collapse
|
59
|
Hughes AL, Szczurek AT, Kelley JR, Lastuvkova A, Turberfield AH, Dimitrova E, Blackledge NP, Klose RJ. A CpG island-encoded mechanism protects genes from premature transcription termination. Nat Commun 2023; 14:726. [PMID: 36759609 PMCID: PMC9911701 DOI: 10.1038/s41467-023-36236-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Transcription must be tightly controlled to regulate gene expression and development. However, our understanding of the molecular mechanisms that influence transcription and how these are coordinated in cells to ensure normal gene expression remains rudimentary. Here, by dissecting the function of the SET1 chromatin-modifying complexes that bind to CpG island-associated gene promoters, we discover that they play a specific and essential role in enabling the expression of low to moderately transcribed genes. Counterintuitively, this effect can occur independently of SET1 complex histone-modifying activity and instead relies on an interaction with the RNA Polymerase II-binding protein WDR82. Unexpectedly, we discover that SET1 complexes enable gene expression by antagonising premature transcription termination by the ZC3H4/WDR82 complex at CpG island-associated genes. In contrast, at extragenic sites of transcription, which typically lack CpG islands and SET1 complex occupancy, we show that the activity of ZC3H4/WDR82 is unopposed. Therefore, we reveal a gene regulatory mechanism whereby CpG islands are bound by a protein complex that specifically protects genic transcripts from premature termination, effectively distinguishing genic from extragenic transcription and enabling normal gene expression.
Collapse
Affiliation(s)
- Amy L Hughes
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | - Anna Lastuvkova
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | | | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
60
|
Sparbier CE, Gillespie A, Gomez J, Kumari N, Motazedian A, Chan KL, Bell CC, Gilan O, Chan YC, Popp S, Gough DJ, Eckersley-Maslin MA, Dawson SJ, Lehner PJ, Sutherland KD, Ernst P, McGeehan GM, Lam EYN, Burr ML, Dawson MA. Targeting Menin disrupts the KMT2A/B and polycomb balance to paradoxically activate bivalent genes. Nat Cell Biol 2023; 25:258-272. [PMID: 36635503 PMCID: PMC7614190 DOI: 10.1038/s41556-022-01056-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2022] [Indexed: 01/14/2023]
Abstract
Precise control of activating H3K4me3 and repressive H3K27me3 histone modifications at bivalent promoters is essential for normal development and frequently corrupted in cancer. By coupling a cell surface readout of bivalent MHC class I gene expression with whole-genome CRISPR-Cas9 screens, we identify specific roles for MTF2-PRC2.1, PCGF1-PRC1.1 and Menin-KMT2A/B complexes in maintaining bivalency. Genetic loss or pharmacological inhibition of Menin unexpectedly phenocopies the effects of polycomb disruption, resulting in derepression of bivalent genes in both cancer cells and pluripotent stem cells. While Menin and KMT2A/B contribute to H3K4me3 at active genes, a separate Menin-independent function of KMT2A/B maintains H3K4me3 and opposes polycomb-mediated repression at bivalent genes. Release of KMT2A from active genes following Menin targeting alters the balance of polycomb and KMT2A at bivalent genes, facilitating gene activation. This functional partitioning of Menin-KMT2A/B complex components reveals therapeutic opportunities that can be leveraged through inhibition of Menin.
Collapse
Affiliation(s)
- Christina E Sparbier
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrea Gillespie
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Juliana Gomez
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Nishi Kumari
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ali Motazedian
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kah Lok Chan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Charles C Bell
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Omer Gilan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Yih-Chih Chan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Sarah Popp
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel J Gough
- Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Melanie A Eckersley-Maslin
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Sarah-Jane Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Kate D Sutherland
- ACRF Cancer Biology and Stem Cells Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Patricia Ernst
- Section of Hematology, Oncology and Bone Marrow Transplant, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Enid Y N Lam
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Marian L Burr
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.
- Department of Anatomical Pathology, ACT Pathology, Canberra Health Services, Canberra, Australian Capital Territory, Australia.
| | - Mark A Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia.
- Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
61
|
Changes in PRC1 activity during interphase modulate lineage transition in pluripotent cells. Nat Commun 2023; 14:180. [PMID: 36635295 PMCID: PMC9837203 DOI: 10.1038/s41467-023-35859-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
The potential of pluripotent cells to respond to developmental cues and trigger cell differentiation is enhanced during the G1 phase of the cell cycle, but the molecular mechanisms involved are poorly understood. Variations in polycomb activity during interphase progression have been hypothesized to regulate the cell-cycle-phase-dependent transcriptional activation of differentiation genes during lineage transition in pluripotent cells. Here, we show that recruitment of Polycomb Repressive Complex 1 (PRC1) and associated molecular functions, ubiquitination of H2AK119 and three-dimensional chromatin interactions, are enhanced during S and G2 phases compared to the G1 phase. In agreement with the accumulation of PRC1 at target promoters upon G1 phase exit, cells in S and G2 phases show firmer transcriptional repression of developmental regulator genes that is drastically perturbed upon genetic ablation of the PRC1 catalytic subunit RING1B. Importantly, depletion of RING1B during retinoic acid stimulation interferes with the preference of mouse embryonic stem cells (mESCs) to induce the transcriptional activation of differentiation genes in G1 phase. We propose that incremental enrolment of polycomb repressive activity during interphase progression reduces the tendency of cells to respond to developmental cues during S and G2 phases, facilitating activation of cell differentiation in the G1 phase of the pluripotent cell cycle.
Collapse
|
62
|
Oxidative Stress and Nuclear Reprogramming: A Pilot Study of the Effects of Reactive Oxygen Species on Architectural and Epigenetic Landscapes. Int J Mol Sci 2022; 24:ijms24010153. [PMID: 36613595 PMCID: PMC9820425 DOI: 10.3390/ijms24010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Cell genome integrity is continuously threatened by various sources, both endogenous and exogenous. Oxidative stress causes a multitude of damages, severely affecting cell viability, fidelity of genetic information inheritance, and determining profound alterations in gene expression. Epigenetics represents a major form of gene expression modulation, influencing DNA accessibility to transcription factors and the overall nuclear architecture. When assessing the stress-induced epigenome reprogramming, widely diffused biochemical and molecular approaches commonly fail to incorporate analyses such as architectural chromatin alterations and target molecules precise spatial localization. Unveiling the significance of the nuclear response to the oxidative stress, as well as the functional effects over the chromatin organization, may reveal targets and strategies for approaches aiming at limiting the impact on cellular stability. For these reasons, we utilized potassium bromate treatment, a stressor able to induce DNA damages without altering the cellular microenvironment, hence purely modeling nuclear oxidative stress. By means of high-resolution techniques, we described profound alterations in DNA and histone epigenetic modifications and in chromatin organization in response to the reactive oxygen species.
Collapse
|
63
|
Farley SJ, Grishok A, Zeldich E. Shaking up the silence: consequences of HMGN1 antagonizing PRC2 in the Down syndrome brain. Epigenetics Chromatin 2022; 15:39. [PMID: 36463299 PMCID: PMC9719135 DOI: 10.1186/s13072-022-00471-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
Intellectual disability is a well-known hallmark of Down Syndrome (DS) that results from the triplication of the critical region of human chromosome 21 (HSA21). Major studies were conducted in recent years to gain an understanding about the contribution of individual triplicated genes to DS-related brain pathology. Global transcriptomic alterations and widespread changes in the establishment of neural lineages, as well as their differentiation and functional maturity, suggest genome-wide chromatin organization alterations in trisomy. High Mobility Group Nucleosome Binding Domain 1 (HMGN1), expressed from HSA21, is a chromatin remodeling protein that facilitates chromatin decompaction and is associated with acetylated lysine 27 on histone H3 (H3K27ac), a mark correlated with active transcription. Recent studies causatively linked overexpression of HMGN1 in trisomy and the development of DS-associated B cell acute lymphoblastic leukemia (B-ALL). HMGN1 has been shown to antagonize the activity of the Polycomb Repressive Complex 2 (PRC2) and prevent the deposition of histone H3 lysine 27 trimethylation mark (H3K27me3), which is associated with transcriptional repression and gene silencing. However, the possible ramifications of the increased levels of HMGN1 through the derepression of PRC2 target genes on brain cell pathology have not gained attention. In this review, we discuss the functional significance of HMGN1 in brain development and summarize accumulating reports about the essential role of PRC2 in the development of the neural system. Mechanistic understanding of how overexpression of HMGN1 may contribute to aberrant brain cell phenotypes in DS, such as altered proliferation of neural progenitors, abnormal cortical architecture, diminished myelination, neurodegeneration, and Alzheimer's disease-related pathology in trisomy 21, will facilitate the development of DS therapeutic approaches targeting chromatin.
Collapse
Affiliation(s)
- Sean J. Farley
- grid.189504.10000 0004 1936 7558Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Alla Grishok
- grid.189504.10000 0004 1936 7558Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA ,grid.189504.10000 0004 1936 7558Boston University Genome Science Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Ella Zeldich
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
64
|
RINGs, DUBs and Abnormal Brain Growth-Histone H2A Ubiquitination in Brain Development and Disease. EPIGENOMES 2022; 6:epigenomes6040042. [PMID: 36547251 PMCID: PMC9778336 DOI: 10.3390/epigenomes6040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
During mammalian neurodevelopment, signaling pathways converge upon transcription factors (TFs) to establish appropriate gene expression programmes leading to the production of distinct neural and glial cell types. This process is partially regulated by the dynamic modulation of chromatin states by epigenetic systems, including the polycomb group (PcG) family of co-repressors. PcG proteins form multi-subunit assemblies that sub-divide into distinct, yet functionally related families. Polycomb repressive complexes 1 and 2 (PRC1 and 2) modify the chemical properties of chromatin by covalently modifying histone tails via H2A ubiquitination (H2AK119ub1) and H3 methylation, respectively. In contrast to the PRCs, the Polycomb repressive deubiquitinase (PR-DUB) complex removes H2AK119ub1 from chromatin through the action of the C-terminal hydrolase BAP1. Genetic screening has identified several PcG mutations that are causally associated with a range of congenital neuropathologies associated with both localised and/or systemic growth abnormalities. As PRC1 and PR-DUB hold opposing functions to control H2AK119ub1 levels across the genome, it is plausible that such neurodevelopmental disorders arise through a common mechanism. In this review, we will focus on advancements regarding the composition and opposing molecular functions of mammalian PRC1 and PR-DUB, and explore how their dysfunction contributes to the emergence of neurodevelopmental disorders.
Collapse
|
65
|
Takano J, Ito S, Dong Y, Sharif J, Nakajima-Takagi Y, Umeyama T, Han YW, Isono K, Kondo T, Iizuka Y, Miyai T, Koseki Y, Ikegaya M, Sakihara M, Nakayama M, Ohara O, Hasegawa Y, Hashimoto K, Arner E, Klose RJ, Iwama A, Koseki H, Ikawa T. PCGF1-PRC1 links chromatin repression with DNA replication during hematopoietic cell lineage commitment. Nat Commun 2022; 13:7159. [PMID: 36443290 PMCID: PMC9705430 DOI: 10.1038/s41467-022-34856-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
Polycomb group proteins (PcG), polycomb repressive complexes 1 and 2 (PRC1 and 2), repress lineage inappropriate genes during development to maintain proper cellular identities. It has been recognized that PRC1 localizes at the replication fork, however, the precise functions of PRC1 during DNA replication are elusive. Here, we reveal that a variant PRC1 containing PCGF1 (PCGF1-PRC1) prevents overloading of activators and chromatin remodeling factors on nascent DNA and thereby mediates proper deposition of nucleosomes and correct downstream chromatin configurations in hematopoietic stem and progenitor cells (HSPCs). This function of PCGF1-PRC1 in turn facilitates PRC2-mediated repression of target genes such as Hmga2 and restricts premature myeloid differentiation. PCGF1-PRC1, therefore, maintains the differentiation potential of HSPCs by linking proper nucleosome configuration at the replication fork with PcG-mediated gene silencing to ensure life-long hematopoiesis.
Collapse
Affiliation(s)
- Junichiro Takano
- grid.509459.40000 0004 0472 0267Laboratory for Immune Regeneration, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), Yokohama, Kanagawa Japan ,grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan ,grid.136304.30000 0004 0370 1101Department of Cellular and Molecular Medicine, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Shinsuke Ito
- grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan
| | - Yixing Dong
- grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan
| | - Jafar Sharif
- grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan
| | - Yaeko Nakajima-Takagi
- grid.26999.3d0000 0001 2151 536XDivision of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Taichi Umeyama
- grid.7597.c0000000094465255Laboratory for Microbiome Sciences, RIKEN-IMS, Yokohama, Kanagawa Japan
| | - Yong-Woon Han
- grid.7597.c0000000094465255Laboratory for Integrative Genomics, RIKEN-IMS, Yokohama, Kanagawa Japan
| | - Kyoichi Isono
- grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan ,grid.412857.d0000 0004 1763 1087Laboratory Animal Center, Wakayama Medical University, Wakayama, Japan
| | - Takashi Kondo
- grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan
| | - Yusuke Iizuka
- grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan
| | - Tomohiro Miyai
- grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan
| | - Yoko Koseki
- grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan
| | - Mika Ikegaya
- grid.509459.40000 0004 0472 0267Laboratory for Immune Regeneration, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), Yokohama, Kanagawa Japan ,grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan
| | - Mizuki Sakihara
- grid.143643.70000 0001 0660 6861Division of Immunology and Allergy, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Manabu Nakayama
- grid.410858.00000 0000 9824 2470Chromosome Engineering Team, Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Osamu Ohara
- grid.410858.00000 0000 9824 2470Chromosome Engineering Team, Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Yoshinori Hasegawa
- grid.410858.00000 0000 9824 2470Chromosome Engineering Team, Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Kosuke Hashimoto
- grid.136593.b0000 0004 0373 3971Laboratory of Computational Biology, Institute for Protein Research, Osaka University Osaka, Japan ,grid.7597.c0000000094465255Laboratory for Transcriptome Technology, RIKEN-IMS, Yokohama, Kanagawa Japan
| | - Erik Arner
- grid.7597.c0000000094465255Laboratory for Applied Regulatory Genomics Network Analysis, RIKEN-IMS, Yokohama, Kanagawa Japan
| | - Robert J. Klose
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, Oxford, UK
| | - Atsushi Iwama
- grid.26999.3d0000 0001 2151 536XDivision of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Haruhiko Koseki
- grid.509459.40000 0004 0472 0267Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa Japan ,grid.136304.30000 0004 0370 1101Department of Cellular and Molecular Medicine, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tomokatsu Ikawa
- grid.509459.40000 0004 0472 0267Laboratory for Immune Regeneration, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), Yokohama, Kanagawa Japan ,grid.143643.70000 0001 0660 6861Division of Immunology and Allergy, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
66
|
Gong L, Liu X, Jiao L, Yang X, Lemoff A, Liu X. CK2-mediated phosphorylation of SUZ12 promotes PRC2 function by stabilizing enzyme active site. Nat Commun 2022; 13:6781. [PMID: 36351927 PMCID: PMC9645763 DOI: 10.1038/s41467-022-34431-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) plays a key role in maintaining cell identity during differentiation. Methyltransferase activity of PRC2 on histone H3 lysine 27 is regulated by diverse cellular mechanisms, including posttranslational modification. Here, we report a unique phosphorylation-dependent mechanism stimulating PRC2 enzymatic activity. Residue S583 of SUZ12 is phosphorylated by casein kinase 2 (CK2) in cells. A crystal structure captures phosphorylation in action: the flexible phosphorylation-dependent stimulation loop harboring S583 becomes engaged with the catalytic SET domain through a phosphoserine-centered interaction network, stabilizing the enzyme active site and in particular S-adenosyl-methionine (SAM)-binding pocket. CK2-mediated S583 phosphorylation promotes catalysis by enhancing PRC2 binding to SAM and nucleosomal substrates and facilitates reporter gene repression. Loss of S583 phosphorylation impedes PRC2 recruitment and H3K27me3 deposition in pluripotent mESCs and compromises the ability of PRC2 to maintain differentiated cell identity.
Collapse
Affiliation(s)
- Lihu Gong
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiuli Liu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lianying Jiao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Xin Yang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xin Liu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
67
|
Sijm A, Atlasi Y, van der Knaap JA, Wolf van der Meer J, Chalkley GE, Bezstarosti K, Dekkers DHW, Doff WAS, Ozgur Z, van IJcken WFJ, Demmers JAA, Verrijzer CP. USP7 regulates the ncPRC1 Polycomb axis to stimulate genomic H2AK119ub1 deposition uncoupled from H3K27me3. SCIENCE ADVANCES 2022; 8:eabq7598. [PMID: 36332031 PMCID: PMC9635827 DOI: 10.1126/sciadv.abq7598] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/16/2022] [Indexed: 05/29/2023]
Abstract
Ubiquitin-specific protease 7 (USP7) has been implicated in cancer progression and neurodevelopment. However, its molecular targets remain poorly characterized. We combined quantitative proteomics, transcriptomics, and epigenomics to define the core USP7 network. Our multi-omics analysis reveals USP7 as a control hub that links genome regulation, tumor suppression, and histone H2A ubiquitylation (H2AK119ub1) by noncanonical Polycomb-repressive complexes (ncPRC1s). USP7 strongly stabilizes ncPRC1.6 and, to a lesser extent, ncPRC1.1. Moreover, USP7 represses expression of AUTS2, which suppresses H2A ubiquitylation by ncPRC1.3/5. Collectively, these USP7 activities promote the genomic deposition of H2AK119ub1 by ncPRC1, especially at transcriptionally repressed loci. Notably, USP7-dependent changes in H2AK119ub1 levels are uncoupled from H3K27me3. Even complete loss of the PRC1 catalytic core and H2AK119ub1 has only a limited effect on H3K27me3. Besides defining the USP7 regulome, our results reveal that H2AK119ub1 dosage is largely disconnected from H3K27me3.
Collapse
Affiliation(s)
- Ayestha Sijm
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Yaser Atlasi
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, UK
| | - Jan A. van der Knaap
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Gillian E. Chalkley
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Karel Bezstarosti
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Proteomics Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dick H. W. Dekkers
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Proteomics Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Wouter A. S. Doff
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Proteomics Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Zeliha Ozgur
- Center for Biomics, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Jeroen A. A. Demmers
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Proteomics Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - C. Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
68
|
Abstract
Polycomb group (PcG) proteins are crucial chromatin regulators that maintain repression of lineage-inappropriate genes and are therefore required for stable cell fate. Recent advances show that PcG proteins form distinct multi-protein complexes in various cellular environments, such as in early development, adult tissue maintenance and cancer. This surprising compositional diversity provides the basis for mechanistic diversity. Understanding this complexity deepens and refines the principles of PcG complex recruitment, target-gene repression and inheritance of memory. We review how the core molecular mechanism of Polycomb complexes operates in diverse developmental settings and propose that context-dependent changes in composition and mechanism are essential for proper epigenetic regulation in development.
Collapse
Affiliation(s)
- Jongmin J Kim
- Department of Molecular Biology and MGH Research Institute, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Robert E Kingston
- Department of Molecular Biology and MGH Research Institute, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
69
|
Bonnet J, Boichenko I, Kalb R, Le Jeune M, Maltseva S, Pieropan M, Finkl K, Fierz B, Müller J. PR-DUB preserves Polycomb repression by preventing excessive accumulation of H2Aub1, an antagonist of chromatin compaction. Genes Dev 2022; 36:1046-1061. [PMID: 36357125 PMCID: PMC9744231 DOI: 10.1101/gad.350014.122] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022]
Abstract
The Polycomb repressive complexes PRC1, PRC2, and PR-DUB repress target genes by modifying their chromatin. In Drosophila, PRC1 compacts chromatin and monoubiquitinates histone H2A at lysine 118 (H2Aub1), whereas PR-DUB is a major H2Aub1 deubiquitinase, but how H2Aub1 levels must be balanced for Polycomb repression remains unclear. We show that in early embryos, H2Aub1 is enriched at Polycomb target genes, where it facilitates H3K27me3 deposition by PRC2 to mark genes for repression. During subsequent stages of development, H2Aub1 becomes depleted from these genes and is no longer enriched when Polycomb maintains them repressed. Accordingly, Polycomb targets remain repressed in H2Aub1-deficient animals. In PR-DUB catalytic mutants, high levels of H2Aub1 accumulate at Polycomb target genes, and Polycomb repression breaks down. These high H2Aub1 levels do not diminish Polycomb protein complex binding or H3K27 trimethylation but increase DNA accessibility. We show that H2Aub1 interferes with nucleosome stacking and chromatin fiber folding in vitro. Consistent with this, Polycomb repression defects in PR-DUB mutants are exacerbated by reducing PRC1 chromatin compaction activity, but Polycomb repression is restored if PRC1 E3 ligase activity is removed. PR-DUB therefore acts as a rheostat that removes excessive H2Aub1 that, although deposited by PRC1, antagonizes PRC1-mediated chromatin compaction.
Collapse
Affiliation(s)
- Jacques Bonnet
- Laboratory of Chromatin Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Iulia Boichenko
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Reinhard Kalb
- Laboratory of Chromatin Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Mathilde Le Jeune
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Svetlana Maltseva
- Laboratory of Chromatin Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Mattia Pieropan
- Laboratory of Chromatin Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Katja Finkl
- Laboratory of Chromatin Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Beat Fierz
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Jürg Müller
- Laboratory of Chromatin Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
70
|
Medina EA, Delma CR, Yang FC. ASXL1/2 mutations and myeloid malignancies. J Hematol Oncol 2022; 15:127. [PMID: 36068610 PMCID: PMC9450349 DOI: 10.1186/s13045-022-01336-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Myeloid malignancies develop through the accumulation of genetic and epigenetic alterations that dysregulate hematopoietic stem cell (HSC) self-renewal, stimulate HSC proliferation and result in differentiation defects. The polycomb group (PcG) and trithorax group (TrxG) of epigenetic regulators act antagonistically to regulate the expression of genes key to stem cell functions. The genes encoding these proteins, and the proteins that interact with them or affect their occupancy at chromatin, are frequently mutated in myeloid malignancies. PcG and TrxG proteins are regulated by Enhancers of Trithorax and Polycomb (ETP) proteins. ASXL1 and ASXL2 are ETP proteins that assemble chromatin modification complexes and transcription factors. ASXL1 mutations frequently occur in myeloid malignancies and are associated with a poor prognosis, whereas ASXL2 mutations frequently occur in AML with t(8;21)/RUNX1-RUNX1T1 and less frequently in other subtypes of myeloid malignancies. Herein, we review the role of ASXL1 and ASXL2 in normal and malignant hematopoiesis by summarizing the findings of mouse model systems and discussing their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Edward A Medina
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| | - Caroline R Delma
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Feng-Chun Yang
- Department of Cell Systems and Anatomy, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
71
|
Newar K, Abdulla AZ, Salari H, Fanchon E, Jost D. Dynamical modeling of the H3K27 epigenetic landscape in mouse embryonic stem cells. PLoS Comput Biol 2022; 18:e1010450. [PMID: 36054209 PMCID: PMC9477427 DOI: 10.1371/journal.pcbi.1010450] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/15/2022] [Accepted: 07/28/2022] [Indexed: 01/02/2023] Open
Abstract
The Polycomb system via the methylation of the lysine 27 of histone H3 (H3K27) plays central roles in the silencing of many lineage-specific genes during development. Recent experimental evidence suggested that the recruitment of histone modifying enzymes like the Polycomb repressive complex 2 (PRC2) at specific sites and their spreading capacities from these sites are key to the establishment and maintenance of a proper epigenomic landscape around Polycomb-target genes. Here, to test whether such mechanisms, as a minimal set of qualitative rules, are quantitatively compatible with data, we developed a mathematical model that can predict the locus-specific distributions of H3K27 modifications based on previous biochemical knowledge. Within the biological context of mouse embryonic stem cells, our model showed quantitative agreement with experimental profiles of H3K27 acetylation and methylation around Polycomb-target genes in wild-type and mutants. In particular, we demonstrated the key role of the reader-writer module of PRC2 and of the competition between the binding of activating and repressing enzymes in shaping the H3K27 landscape around transcriptional start sites. The predicted dynamics of establishment and maintenance of the repressive trimethylated H3K27 state suggest a slow accumulation, in perfect agreement with experiments. Our approach represents a first step towards a quantitative description of PcG regulation in various cellular contexts and provides a generic framework to better characterize epigenetic regulation in normal or disease situations.
Collapse
Affiliation(s)
- Kapil Newar
- Univ Grenoble Alpes, CNRS, TIMC laboratory, UMR 5525, Grenoble, France
| | - Amith Zafal Abdulla
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Lyon, France
| | - Hossein Salari
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Lyon, France
| | - Eric Fanchon
- Univ Grenoble Alpes, CNRS, TIMC laboratory, UMR 5525, Grenoble, France
| | - Daniel Jost
- Univ Grenoble Alpes, CNRS, TIMC laboratory, UMR 5525, Grenoble, France
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Lyon, France
- * E-mail:
| |
Collapse
|
72
|
Millán-Zambrano G, Burton A, Bannister AJ, Schneider R. Histone post-translational modifications - cause and consequence of genome function. Nat Rev Genet 2022; 23:563-580. [PMID: 35338361 DOI: 10.1038/s41576-022-00468-7] [Citation(s) in RCA: 489] [Impact Index Per Article: 163.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 12/16/2022]
Abstract
Much has been learned since the early 1960s about histone post-translational modifications (PTMs) and how they affect DNA-templated processes at the molecular level. This understanding has been bolstered in the past decade by the identification of new types of histone PTM, the advent of new genome-wide mapping approaches and methods to deposit or remove PTMs in a locally and temporally controlled manner. Now, with the availability of vast amounts of data across various biological systems, the functional role of PTMs in important processes (such as transcription, recombination, replication, DNA repair and the modulation of genomic architecture) is slowly emerging. This Review explores the contribution of histone PTMs to the regulation of genome function by discussing when these modifications play a causative (or instructive) role in DNA-templated processes and when they are deposited as a consequence of such processes, to reinforce and record the event. Important advances in the field showing that histone PTMs can exert both direct and indirect effects on genome function are also presented.
Collapse
Affiliation(s)
- Gonzalo Millán-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Adam Burton
- Institute of Epigenetics and Stem Cells, Helmholtz Center Munich, Munich, Germany
| | - Andrew J Bannister
- Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Center Munich, Munich, Germany.
- Faculty of Biology, Ludwig Maximilian University (LMU) of Munich, Munich, Germany.
| |
Collapse
|
73
|
Doyle EJ, Morey L, Conway E. Know when to fold 'em: Polycomb complexes in oncogenic 3D genome regulation. Front Cell Dev Biol 2022; 10:986319. [PMID: 36105358 PMCID: PMC9464936 DOI: 10.3389/fcell.2022.986319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatin is spatially and temporally regulated through a series of orchestrated processes resulting in the formation of 3D chromatin structures such as topologically associating domains (TADs), loops and Polycomb Bodies. These structures are closely linked to transcriptional regulation, with loss of control of these processes a frequent feature of cancer and developmental syndromes. One such oncogenic disruption of the 3D genome is through recurrent dysregulation of Polycomb Group Complex (PcG) functions either through genetic mutations, amplification or deletion of genes that encode for PcG proteins. PcG complexes are evolutionarily conserved epigenetic complexes. They are key for early development and are essential transcriptional repressors. PcG complexes include PRC1, PRC2 and PR-DUB which are responsible for the control of the histone modifications H2AK119ub1 and H3K27me3. The spatial distribution of the complexes within the nuclear environment, and their associated modifications have profound effects on the regulation of gene transcription and the 3D genome. Nevertheless, how PcG complexes regulate 3D chromatin organization is still poorly understood. Here we glean insights into the role of PcG complexes in 3D genome regulation and compaction, how these processes go awry during tumorigenesis and the therapeutic implications that result from our insights into these mechanisms.
Collapse
Affiliation(s)
- Emma J. Doyle
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Lluis Morey
- Sylvester Comprehensive Cancer Centre, Miami, FL, United States
- Department of Human Genetics, Biomedical Research Building, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Eric Conway
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
74
|
Chen JJ, Stermer D, Tanny JC. Decoding histone ubiquitylation. Front Cell Dev Biol 2022; 10:968398. [PMID: 36105353 PMCID: PMC9464978 DOI: 10.3389/fcell.2022.968398] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Histone ubiquitylation is a critical part of both active and repressed transcriptional states, and lies at the heart of DNA damage repair signaling. The histone residues targeted for ubiquitylation are often highly conserved through evolution, and extensive functional studies of the enzymes that catalyze the ubiquitylation and de-ubiquitylation of histones have revealed key roles linked to cell growth and division, development, and disease in model systems ranging from yeast to human cells. Nonetheless, the downstream consequences of these modifications have only recently begun to be appreciated on a molecular level. Here we review the structure and function of proteins that act as effectors or “readers” of histone ubiquitylation. We highlight lessons learned about how ubiquitin recognition lends specificity and function to intermolecular interactions in the context of transcription and DNA repair, as well as what this might mean for how we think about histone modifications more broadly.
Collapse
|
75
|
Bauer M, Payer B, Filion GJ. Causality in transcription and genome folding: Insights from X inactivation. Bioessays 2022; 44:e2200105. [PMID: 36028473 DOI: 10.1002/bies.202200105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022]
Abstract
The spatial organization of genomes is becoming increasingly understood. In mammals, where it is most investigated, this organization ties in with transcription, so an important research objective is to understand whether gene activity is a cause or a consequence of genome folding in space. In this regard, the phenomena of X-chromosome inactivation and reactivation open a unique window of investigation because of the singularities of the inactive X chromosome. Here we focus on the cause-consequence nexus between genome conformation and transcription and explain how recent results about the structural changes associated with inactivation and reactivation of the X chromosome shed light on this problem.
Collapse
Affiliation(s)
- Moritz Bauer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Guillaume J Filion
- Dept. Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
76
|
Hernández-Romero IA, Valdes VJ. De Novo Polycomb Recruitment and Repressive Domain Formation. EPIGENOMES 2022; 6:25. [PMID: 35997371 PMCID: PMC9397058 DOI: 10.3390/epigenomes6030025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
Every cell of an organism shares the same genome; even so, each cellular lineage owns a different transcriptome and proteome. The Polycomb group proteins (PcG) are essential regulators of gene repression patterning during development and homeostasis. However, it is unknown how the repressive complexes, PRC1 and PRC2, identify their targets and elicit new Polycomb domains during cell differentiation. Classical recruitment models consider the pre-existence of repressive histone marks; still, de novo target binding overcomes the absence of both H3K27me3 and H2AK119ub. The CpG islands (CGIs), non-core proteins, and RNA molecules are involved in Polycomb recruitment. Nonetheless, it is unclear how de novo targets are identified depending on the physiological context and developmental stage and which are the leading players stabilizing Polycomb complexes at domain nucleation sites. Here, we examine the features of de novo sites and the accessory elements bridging its recruitment and discuss the first steps of Polycomb domain formation and transcriptional regulation, comprehended by the experimental reconstruction of the repressive domains through time-resolved genomic analyses in mammals.
Collapse
Affiliation(s)
| | - Victor Julian Valdes
- Department of Cell Biology and Development, Institute of Cellular Physiology (IFC), National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
77
|
The Role of Polycomb Proteins in Cell Lineage Commitment and Embryonic Development. EPIGENOMES 2022; 6:epigenomes6030023. [PMID: 35997369 PMCID: PMC9397020 DOI: 10.3390/epigenomes6030023] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Embryonic development is a highly intricate and complex process. Different regulatory mechanisms cooperatively dictate the fate of cells as they progress from pluripotent stem cells to terminally differentiated cell types in tissues. A crucial regulator of these processes is the Polycomb Repressive Complex 2 (PRC2). By catalyzing the mono-, di-, and tri-methylation of lysine residues on histone H3 tails (H3K27me3), PRC2 compacts chromatin by cooperating with Polycomb Repressive Complex 1 (PRC1) and represses transcription of target genes. Proteomic and biochemical studies have revealed two variant complexes of PRC2, namely PRC2.1 which consists of the core proteins (EZH2, SUZ12, EED, and RBBP4/7) interacting with one of the Polycomb-like proteins (MTF2, PHF1, PHF19), and EPOP or PALI1/2, and PRC2.2 which contains JARID2 and AEBP2 proteins. MTF2 and JARID2 have been discovered to have crucial roles in directing and recruiting PRC2 to target genes for repression in embryonic stem cells (ESCs). Following these findings, recent work in the field has begun to explore the roles of different PRC2 variant complexes during different stages of embryonic development, by examining molecular phenotypes of PRC2 mutants in both in vitro (2D and 3D differentiation) and in vivo (knock-out mice) assays, analyzed with modern single-cell omics and biochemical assays. In this review, we discuss the latest findings that uncovered the roles of different PRC2 proteins during cell-fate and lineage specification and extrapolate these findings to define a developmental roadmap for different flavors of PRC2 regulation during mammalian embryonic development.
Collapse
|
78
|
Lan X, Ding S, Zhang T, Yi Y, Li C, Jin W, Chen J, Liang K, Wang H, Jiang W. PCGF6 controls neuroectoderm specification of human pluripotent stem cells by activating SOX2 expression. Nat Commun 2022; 13:4601. [PMID: 35933409 PMCID: PMC9357003 DOI: 10.1038/s41467-022-32295-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 07/25/2022] [Indexed: 11/28/2022] Open
Abstract
Polycomb group (PcG) proteins are known to repress developmental genes during embryonic development and tissue homeostasis. Here, we report that PCGF6 controls neuroectoderm specification of human pluripotent stem cells (PSCs) by activating SOX2 gene. Human PSCs with PCGF6 depletion display impaired neuroectoderm differentiation coupled with increased mesendoderm outcomes. Transcriptome analysis reveals that de-repression of the WNT/β-catenin signaling pathway is responsible for the differentiation of PSC toward the mesendodermal lineage. Interestingly, PCGF6 and MYC directly interact and co-occupy a distal regulatory element of SOX2 to activate SOX2 expression, which likely accounts for the regulation in neuroectoderm differentiation. Supporting this notion, genomic deletion of the SOX2-regulatory element phenocopies the impaired neuroectoderm differentiation, while overexpressing SOX2 rescues the neuroectoderm phenotype caused by PCGF6-depletion. Together, our study reveals that PCGF6 can function as lineage switcher between mesendoderm and neuroectoderm in human PSCs by both suppression and activation mechanisms.
Collapse
Affiliation(s)
- Xianchun Lan
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, RNA Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Song Ding
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, RNA Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Tianzhe Zhang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, RNA Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Ying Yi
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, RNA Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Conghui Li
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wenwen Jin
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, RNA Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Jian Chen
- Chinese Institute for Brain Research (Beijing), Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, 102206, Beijing, China
| | - Kaiwei Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Hengbin Wang
- Department of Internal Medicine, Division of Hematology, Oncology, and Palliative Care, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, RNA Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| |
Collapse
|
79
|
Oss-Ronen L, Sarusi T, Cohen I. Histone Mono-Ubiquitination in Transcriptional Regulation and Its Mark on Life: Emerging Roles in Tissue Development and Disease. Cells 2022; 11:cells11152404. [PMID: 35954248 PMCID: PMC9368181 DOI: 10.3390/cells11152404] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023] Open
Abstract
Epigenetic regulation plays an essential role in driving precise transcriptional programs during development and homeostasis. Among epigenetic mechanisms, histone mono-ubiquitination has emerged as an important post-transcriptional modification. Two major histone mono-ubiquitination events are the mono-ubiquitination of histone H2A at lysine 119 (H2AK119ub), placed by Polycomb repressive complex 1 (PRC1), and histone H2B lysine 120 mono-ubiquitination (H2BK120ub), placed by the heteromeric RNF20/RNF40 complex. Both of these events play fundamental roles in shaping the chromatin epigenetic landscape and cellular identity. In this review we summarize the current understandings of molecular concepts behind histone mono-ubiquitination, focusing on their recently identified roles in tissue development and pathologies.
Collapse
Affiliation(s)
| | | | - Idan Cohen
- Correspondence: ; Tel.: +972-8-6477593; Fax: +972-8-6477626
| |
Collapse
|
80
|
Abstract
Dramatic nuclear reorganization occurs during early development to convert terminally differentiated gametes to a totipotent zygote, which then gives rise to an embryo. Aberrant epigenome resetting severely impairs embryo development and even leads to lethality. How the epigenomes are inherited, reprogrammed, and reestablished in this critical developmental period has gradually been unveiled through the rapid development of technologies including ultrasensitive chromatin analysis methods. In this review, we summarize the latest findings on epigenetic reprogramming in gametogenesis and embryogenesis, and how it contributes to gamete maturation and parental-to-zygotic transition. Finally, we highlight the key questions that remain to be answered to fully understand chromatin regulation and nuclear reprogramming in early development.
Collapse
Affiliation(s)
- Zhenhai Du
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ke Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
81
|
Nuclear Vav3 is required for polycomb repression complex-1 activity in B-cell lymphoblastic leukemogenesis. Nat Commun 2022; 13:3056. [PMID: 35650206 PMCID: PMC9160250 DOI: 10.1038/s41467-022-30651-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/10/2022] [Indexed: 12/23/2022] Open
Abstract
Acute B-cell lymphoblastic leukemia (B-ALL) results from oligo-clonal evolution of B-cell progenitors endowed with initiating and propagating leukemia properties. The activation of both the Rac guanine nucleotide exchange factor (Rac GEF) Vav3 and Rac GTPases is required for leukemogenesis mediated by the oncogenic fusion protein BCR-ABL. Vav3 expression becomes predominantly nuclear upon expression of BCR-ABL signature. In the nucleus, Vav3 interacts with BCR-ABL, Rac, and the polycomb repression complex (PRC) proteins Bmi1, Ring1b and Ezh2. The GEF activity of Vav3 is required for the proliferation, Bmi1-dependent B-cell progenitor self-renewal, nuclear Rac activation, protein interaction with Bmi1, mono-ubiquitination of H2A(K119) (H2AK119Ub) and repression of PRC-1 (PRC1) downstream target loci, of leukemic B-cell progenitors. Vav3 deficiency results in de-repression of negative regulators of cell proliferation and repression of oncogenic transcriptional factors. Mechanistically, we show that Vav3 prevents the Phlpp2-sensitive and Akt (S473)-dependent phosphorylation of Bmi1 on the regulatory residue S314 that, in turn, promotes the transcriptional factor reprogramming of leukemic B-cell progenitors. These results highlight the importance of non-canonical nuclear Rho GTPase signaling in leukemogenesis. Ph+ and Ph-like B-ALL remain poor prognosis leukemias. VAV3, a guanine nucleotide exchange factor, is activated and overexpressed in these leukemias. Here the authors reveal that leukemic VAV3 is predominantly nuclear. Nuclear VAV3, through its guanine nucleotide exchange factor and its effector nuclear RAC2, controls the repressive transcriptional activity of the polycomb repression complex-1 via nuclear AKT/PHLPP2 regulated BMI1.
Collapse
|
82
|
Kumar B, Navarro C, Winblad N, Schell JP, Zhao C, Weltner J, Baqué-Vidal L, Salazar Mantero A, Petropoulos S, Lanner F, Elsässer SJ. Polycomb repressive complex 2 shields naïve human pluripotent cells from trophectoderm differentiation. Nat Cell Biol 2022; 24:845-857. [PMID: 35637409 PMCID: PMC9203276 DOI: 10.1038/s41556-022-00916-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
Abstract
The first lineage choice in human embryo development separates trophectoderm from the inner cell mass. Naïve human embryonic stem cells are derived from the inner cell mass and offer possibilities to explore how lineage integrity is maintained. Here, we discover that polycomb repressive complex 2 (PRC2) maintains naïve pluripotency and restricts differentiation to trophectoderm and mesoderm lineages. Through quantitative epigenome profiling, we found that a broad gain of histone H3 lysine 27 trimethylation (H3K27me3) is a distinct feature of naïve pluripotency. We define shared and naïve-specific bivalent promoters featuring PRC2-mediated H3K27me3 concomitant with H3K4me3. Naïve bivalency maintains key trophectoderm and mesoderm transcription factors in a transcriptionally poised state. Inhibition of PRC2 forces naïve human embryonic stem cells into an 'activated' state, characterized by co-expression of pluripotency and lineage-specific transcription factors, followed by differentiation into either trophectoderm or mesoderm lineages. In summary, PRC2-mediated repression provides a highly adaptive mechanism to restrict lineage potential during early human development.
Collapse
Affiliation(s)
- Banushree Kumar
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Carmen Navarro
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Nerges Winblad
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - John P Schell
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Cheng Zhao
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Jere Weltner
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Laura Baqué-Vidal
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Angelo Salazar Mantero
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Sophie Petropoulos
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
- Département de Médecine, Université de Montréal, Montreal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montreal, Canada
| | - Fredrik Lanner
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden.
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden.
| | - Simon J Elsässer
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
83
|
Chen Y, Zhou D, Yao Y, Sun Y, Yao F, Ma L. Monoubiquitination in Homeostasis and Cancer. Int J Mol Sci 2022; 23:ijms23115925. [PMID: 35682605 PMCID: PMC9180643 DOI: 10.3390/ijms23115925] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Monoubiquitination is a post-translational modification (PTM), through which a single ubiquitin molecule is covalently conjugated to a lysine residue of the target protein. Monoubiquitination regulates the activity, subcellular localization, protein-protein interactions, or endocytosis of the substrate. In doing so, monoubiquitination is implicated in diverse cellular processes, including gene transcription, endocytosis, signal transduction, cell death, and DNA damage repair, which in turn regulate cell-cycle progression, survival, proliferation, and stress response. In this review, we summarize the functions of monoubiquitination and discuss how this PTM modulates homeostasis and cancer.
Collapse
Affiliation(s)
- Yujie Chen
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
| | - Dandan Zhou
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
| | - Yinan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- Correspondence: (F.Y.); (L.M.)
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Correspondence: (F.Y.); (L.M.)
| |
Collapse
|
84
|
Chan J, Kumar A, Kono H. RNAPII driven post-translational modifications of nucleosomal histones. Trends Genet 2022; 38:1076-1095. [PMID: 35618507 DOI: 10.1016/j.tig.2022.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022]
Abstract
The current understanding of how specific distributions of histone post-translational modifications (PTMs) are achieved throughout the chromatin remains incomplete. This review focuses on the role of RNA polymerase II (RNAPII) in establishing H2BK120/K123 ubiquitination and H3K4/K36 methylation distribution. The rate of RNAPII transcription is mainly a function of the RNAPII elongation and recruitment rates. Two major mechanisms link RNAPII's transcription rate to the distribution of PTMs. First, the phosphorylation patterns of Ser2P/Ser5P in the C-terminal domain of RNAPII change as a function of time, since the start of elongation, linking them to the elongation rate. Ser2P/Ser5P recruits specific histone PTM enzymes/activators to the nucleosome. Second, multiple rounds of binding and catalysis by the enzymes are required to establish higher methylations (H3K4/36me3). Thus, methylation states are determined by the transcription rate. In summary, the first mechanism determines the location of methylations in the gene, while the second mechanism determines the methylation state.
Collapse
Affiliation(s)
- Justin Chan
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Amarjeet Kumar
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Hidetoshi Kono
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan.
| |
Collapse
|
85
|
Xist-mediated silencing requires additive functions of SPEN and Polycomb together with differentiation-dependent recruitment of SmcHD1. Cell Rep 2022; 39:110830. [PMID: 35584662 DOI: 10.1016/j.celrep.2022.110830] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/17/2022] [Accepted: 04/26/2022] [Indexed: 11/20/2022] Open
Abstract
X chromosome inactivation (XCI) is mediated by the non-coding RNA Xist, which directs chromatin modification and gene silencing in cis. The RNA binding protein SPEN and associated corepressors have a central role in Xist-mediated gene silencing. Other silencing factors, notably the Polycomb system, have been reported to function downstream of SPEN. In recent work, we found that SPEN has an additional role in correct localization of Xist RNA in cis, indicating that its contribution to chromatin-mediated gene silencing needs to be reappraised. Making use of a SPEN separation-of-function mutation, we show that SPEN and Polycomb pathways, in fact, function in parallel to establish gene silencing. We also find that differentiation-dependent recruitment of the chromosomal protein SmcHD1 is required for silencing many X-linked genes. Our results provide important insights into the mechanism of X inactivation and the coordination of chromatin-based gene regulation with cellular differentiation and development.
Collapse
|
86
|
Deng S, Feng Y, Pauklin S. 3D chromatin architecture and transcription regulation in cancer. J Hematol Oncol 2022; 15:49. [PMID: 35509102 PMCID: PMC9069733 DOI: 10.1186/s13045-022-01271-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/21/2022] [Indexed: 12/18/2022] Open
Abstract
Chromatin has distinct three-dimensional (3D) architectures important in key biological processes, such as cell cycle, replication, differentiation, and transcription regulation. In turn, aberrant 3D structures play a vital role in developing abnormalities and diseases such as cancer. This review discusses key 3D chromatin structures (topologically associating domain, lamina-associated domain, and enhancer-promoter interactions) and corresponding structural protein elements mediating 3D chromatin interactions [CCCTC-binding factor, polycomb group protein, cohesin, and Brother of the Regulator of Imprinted Sites (BORIS) protein] with a highlight of their associations with cancer. We also summarise the recent development of technologies and bioinformatics approaches to study the 3D chromatin interactions in gene expression regulation, including crosslinking and proximity ligation methods in the bulk cell population (ChIA-PET and HiChIP) or single-molecule resolution (ChIA-drop), and methods other than proximity ligation, such as GAM, SPRITE, and super-resolution microscopy techniques.
Collapse
Affiliation(s)
- Siwei Deng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK
| | - Yuliang Feng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK
| | - Siim Pauklin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK.
| |
Collapse
|
87
|
Melo GA, Calôba C, Brum G, Passos TO, Martinez GJ, Pereira RM. Epigenetic regulation of T cells by Polycomb group proteins. J Leukoc Biol 2022; 111:1253-1267. [DOI: 10.1002/jlb.2ri0122-039r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Guilherme A. Melo
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| | - Carolina Calôba
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| | - Gabrielle Brum
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| | - Thaís O. Passos
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| | - Gustavo J. Martinez
- Center for Cancer Cell Biology, Immunology and Infection, Discipline of Microbiology and Immunology Rosalind Franklin University of Medicine and Science Chicago Illinois USA
| | - Renata M. Pereira
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| |
Collapse
|
88
|
Liao S, Wang K, Zhang L, Shi G, Wang Z, Chen Z, Zhu P, He Q. PRC1 and RACGAP1 are Diagnostic Biomarkers of Early HCC and PRC1 Drives Self-Renewal of Liver Cancer Stem Cells. Front Cell Dev Biol 2022; 10:864051. [PMID: 35445033 PMCID: PMC9014962 DOI: 10.3389/fcell.2022.864051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 11/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths across the world. Due to the lack of reliable markers for early HCC detection, most HCC patients are diagnosed in middle/late stages. Liver cancer stem cells (CSCs), which are drivers of liver tumorigenesis, usually emerge in the early HCC stage and are also termed as liver tumor initiation cells (TIC). Liver CSCs contribute to initiation, propagation, and metastasis of HCC and also play a key role in tumor therapy. Taking advantage of online-available data sets, bioinformatic analyses, and experimental confirmation, here we have screened out PRC1 and RACGAP1 as reliable markers for early HCC detection. PRC1 or RACGAP1 knockdown dramatically inhibited the proliferation, migration, and invasion capacities of HCC cells, conferring PRC1 and RACGAP1 as predominant modulators for HCC propagation and metastasis. Moreover, the sphere formation capacity of HCC cells was impaired after PRC1 knockdown, revealing the function of PRC1 as a modulator for liver CSC self-renewal. Furthermore, the inhibitor of PRC1 had same phenotypes as PRC1 knockdown in HCC cells. Altogether, PRC1 and RACGAP1 are identified both as prognosis markers for early HCC detection and therapeutic targets for liver cancer and liver CSCs, adding additional layers for the early prognosis and therapy of HCC.
Collapse
Affiliation(s)
- Shixin Liao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Kaili Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Lulu Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Gaoli Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhiwei Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Qiankun He
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
89
|
Zhou H, Stein CB, Shafiq TA, Shipkovenska G, Kalocsay M, Paulo JA, Zhang J, Luo Z, Gygi SP, Adelman K, Moazed D. Rixosomal RNA degradation contributes to silencing of Polycomb target genes. Nature 2022; 604:167-174. [PMID: 35355014 PMCID: PMC8986528 DOI: 10.1038/s41586-022-04598-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 02/28/2022] [Indexed: 01/01/2023]
Abstract
Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) are histone-modifying and -binding complexes that mediate the formation of facultative heterochromatin and are required for silencing of developmental genes and maintenance of cell fate1–3. Multiple pathways of RNA decay work together to establish and maintain heterochromatin in fission yeast, including a recently identified role for a conserved RNA-degradation complex known as the rixosome or RIX1 complex4–6. Whether RNA degradation also has a role in the stability of mammalian heterochromatin remains unknown. Here we show that the rixosome contributes to silencing of many Polycomb targets in human cells. The rixosome associates with human PRC complexes and is enriched at promoters of Polycomb target genes. Depletion of either the rixosome or Polycomb results in accumulation of paused and elongating RNA polymerase at Polycomb target genes. We identify point mutations in the RING1B subunit of PRC1 that disrupt the interaction between PRC1 and the rixosome and result in diminished silencing, suggesting that direct recruitment of the rixosome to chromatin is required for silencing. Finally, we show that the RNA endonuclease and kinase activities of the rixosome and the downstream XRN2 exoribonuclease, which degrades RNAs with 5′ monophosphate groups generated by the rixosome, are required for silencing. Our findings suggest that rixosomal degradation of nascent RNA is conserved from fission yeast to human, with a primary role in RNA degradation at facultative heterochromatin in human cells. The rixosome associates with Polycomb repressive complexes and chromatin and has a role in silencing of Polycomb target gene expression in human cells via degradation of nascent RNA transcripts.
Collapse
Affiliation(s)
- Haining Zhou
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Chad B Stein
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Tiasha A Shafiq
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Gergana Shipkovenska
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Marian Kalocsay
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jiuchun Zhang
- Initiative for Genome Editing and Neurodegeneration, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Zhenhua Luo
- Precision Medicine Institute, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Steven P Gygi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Danesh Moazed
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
90
|
Schaefer EJ, Wang HC, Karp HQ, Meyer CA, Cejas P, Gearhart MD, Adelman ER, Fares I, Apffel A, Lim K, Xie Y, Gibson CJ, Schenone M, Murdock HM, Wang ES, Gondek LP, Carroll MP, Vedula RS, Winer ES, Garcia JS, Stone RM, Luskin MR, Carr SA, Long HW, Bardwell VJ, Figueroa ME, Lindsley RC. BCOR and BCORL1 Mutations Drive Epigenetic Reprogramming and Oncogenic Signaling by Unlinking PRC1.1 from Target Genes. Blood Cancer Discov 2022; 3:116-135. [PMID: 35015684 PMCID: PMC9414116 DOI: 10.1158/2643-3230.bcd-21-0115] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/06/2021] [Accepted: 12/10/2021] [Indexed: 02/02/2023] Open
Abstract
Polycomb repressive epigenetic complexes are recurrently dysregulated in cancer. Unlike polycomb repressive complex 2 (PRC2), the role of PRC1 in oncogenesis and therapy resistance is not well-defined. Here, we demonstrate that highly recurrent mutations of the PRC1 subunits BCOR and BCORL1 in leukemia disrupt assembly of a noncanonical PRC1.1 complex, thereby selectively unlinking the RING-PCGF enzymatic core from the chromatin-targeting auxiliary subcomplex. As a result, BCOR-mutated PRC1.1 is localized to chromatin but lacks repressive activity, leading to epigenetic reprogramming and transcriptional activation at target loci. We define a set of functional targets that drive aberrant oncogenic signaling programs in PRC1.1-mutated cells and primary patient samples. Activation of these PRC1.1 targets in BCOR-mutated cells confers acquired resistance to treatment while sensitizing to targeted kinase inhibition. Our study thus reveals a novel epigenetic mechanism that explains PRC1.1 tumor-suppressive activity and identifies a therapeutic strategy in PRC1.1-mutated cancer. SIGNIFICANCE We demonstrate that BCOR and BCORL1 mutations in leukemia unlink PRC1.1 repressive function from target genes, resulting in epigenetic reprogramming and activation of aberrant cell signaling programs that mediate treatment resistance. Our study provides mechanistic insights into the pathogenesis of PRC1.1-mutated leukemia that inform novel therapeutic approaches. This article is highlighted in the In This Issue feature, p. 85.
Collapse
Affiliation(s)
- Eva J. Schaefer
- Department of Medical Oncology, Division of Hematologic Neoplasia, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Helen C. Wang
- Department of Medical Oncology, Division of Hematologic Neoplasia, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hannah Q. Karp
- Department of Medical Oncology, Division of Hematologic Neoplasia, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Clifford A. Meyer
- Department of Data Science, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Paloma Cejas
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Micah D. Gearhart
- Developmental Biology Center, Masonic Cancer Center, and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - Emmalee R. Adelman
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, Florida.,Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Iman Fares
- Department of Medical Oncology, Division of Hematologic Neoplasia, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Annie Apffel
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Klothilda Lim
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yingtian Xie
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Christopher J. Gibson
- Department of Medical Oncology, Division of Hematologic Neoplasia, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Monica Schenone
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - H. Moses Murdock
- Department of Medical Oncology, Division of Hematologic Neoplasia, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Eunice S. Wang
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Lukasz P. Gondek
- Division of Molecular Pathology, Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Martin P. Carroll
- Department of Medicine, Perelman Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rahul S. Vedula
- Department of Medical Oncology, Division of Hematologic Neoplasia, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Eric S. Winer
- Department of Medical Oncology, Division of Hematologic Neoplasia, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jacqueline S. Garcia
- Department of Medical Oncology, Division of Hematologic Neoplasia, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Richard M. Stone
- Department of Medical Oncology, Division of Hematologic Neoplasia, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marlise R. Luskin
- Department of Medical Oncology, Division of Hematologic Neoplasia, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Steven A. Carr
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Henry W. Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Vivian J. Bardwell
- Developmental Biology Center, Masonic Cancer Center, and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - Maria E. Figueroa
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, Florida
| | - R. Coleman Lindsley
- Department of Medical Oncology, Division of Hematologic Neoplasia, Dana-Farber Cancer Institute, Boston, Massachusetts.,Corresponding Author: R. Coleman Lindsley, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215. Phone: 617-632-6649; E-mail:
| |
Collapse
|
91
|
Parreno V, Martinez AM, Cavalli G. Mechanisms of Polycomb group protein function in cancer. Cell Res 2022; 32:231-253. [PMID: 35046519 PMCID: PMC8888700 DOI: 10.1038/s41422-021-00606-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/10/2021] [Indexed: 02/01/2023] Open
Abstract
Cancer arises from a multitude of disorders resulting in loss of differentiation and a stem cell-like phenotype characterized by uncontrolled growth. Polycomb Group (PcG) proteins are members of multiprotein complexes that are highly conserved throughout evolution. Historically, they have been described as essential for maintaining epigenetic cellular memory by locking homeotic genes in a transcriptionally repressed state. What was initially thought to be a function restricted to a few target genes, subsequently turned out to be of much broader relevance, since the main role of PcG complexes is to ensure a dynamically choregraphed spatio-temporal regulation of their numerous target genes during development. Their ability to modify chromatin landscapes and refine the expression of master genes controlling major switches in cellular decisions under physiological conditions is often misregulated in tumors. Surprisingly, their functional implication in the initiation and progression of cancer may be either dependent on Polycomb complexes, or specific for a subunit that acts independently of other PcG members. In this review, we describe how misregulated Polycomb proteins play a pleiotropic role in cancer by altering a broad spectrum of biological processes such as the proliferation-differentiation balance, metabolism and the immune response, all of which are crucial in tumor progression. We also illustrate how interfering with PcG functions can provide a powerful strategy to counter tumor progression.
Collapse
Affiliation(s)
- Victoria Parreno
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| |
Collapse
|
92
|
Fischer S, Weber LM, Liefke R. Evolutionary adaptation of the Polycomb repressive complex 2. Epigenetics Chromatin 2022; 15:7. [PMID: 35193659 PMCID: PMC8864842 DOI: 10.1186/s13072-022-00439-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/08/2022] [Indexed: 12/31/2022] Open
Abstract
The Polycomb repressive complex 2 (PRC2) is an essential chromatin regulatory complex involved in repressing the transcription of diverse developmental genes. PRC2 consists of a core complex; possessing H3K27 methyltransferase activity and various associated factors that are important to modulate its function. During evolution, the composition of PRC2 and the functionality of PRC2 components have changed considerably. Here, we compare the PRC2 complex members of Drosophila and mammals and describe their adaptation to altered biological needs. We also highlight how the PRC2.1 subcomplex has gained multiple novel functions and discuss the implications of these changes for the function of PRC2 in chromatin regulation.
Collapse
Affiliation(s)
- Sabrina Fischer
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043, Marburg, Germany
| | - Lisa Marie Weber
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043, Marburg, Germany
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043, Marburg, Germany. .,Department of Hematology, Oncology, and Immunology, University Hospital Giessen and Marburg, 35043, Marburg, Germany.
| |
Collapse
|
93
|
RYBP regulates Pax6 during in vitro neural differentiation of mouse embryonic stem cells. Sci Rep 2022; 12:2364. [PMID: 35149723 PMCID: PMC8837790 DOI: 10.1038/s41598-022-06228-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/19/2022] [Indexed: 12/05/2022] Open
Abstract
We have previously reported that RING1 and YY1 binding protein (RYBP) is important for central nervous system development in mice and that Rybp null mutant (Rybp−/−) mouse embryonic stem (ES) cells form more progenitors and less terminally differentiated neural cells than the wild type cells in vitro. Accelerated progenitor formation coincided with a high level of Pax6 expression in the Rybp−/− neural cultures. Since Pax6 is a retinoic acid (RA) inducible gene, we have analyzed whether altered RA signaling contributes to the accelerated progenitor formation and impaired differentiation ability of the Rybp−/− cells. Results suggested that elevated Pax6 expression was driven by the increased activity of the RA signaling pathway in the Rybp−/− neural cultures. RYBP was able to repress Pax6 through its P1 promoter. The repression was further attenuated when RING1, a core member of ncPRC1s was also present. According to this, RYBP and PAX6 were rarely localized in the same wild type cells during in vitro neural differentiation. These results suggest polycomb dependent regulation of Pax6 by RYBP during in vitro neural differentiation. Our results thus provide novel insights on the dynamic regulation of Pax6 and RA signaling by RYBP during mouse neural development.
Collapse
|
94
|
Cain JA, Montibus B, Oakey RJ. Intragenic CpG Islands and Their Impact on Gene Regulation. Front Cell Dev Biol 2022; 10:832348. [PMID: 35223855 PMCID: PMC8873577 DOI: 10.3389/fcell.2022.832348] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
The mammalian genome is depleted in CG dinucleotides, except at protected regions where they cluster as CpG islands (CGIs). CGIs are gene regulatory hubs and serve as transcription initiation sites and are as expected, associated with gene promoters. Advances in genomic annotations demonstrate that a quarter of CGIs are found within genes. Such intragenic regions are repressive environments, so it is surprising that CGIs reside here and even more surprising that some resist repression and are transcriptionally active within a gene. Hence, intragenic CGI positioning within genes is not arbitrary and is instead, selected for. As a wealth of recent studies demonstrate, intragenic CGIs are embedded within genes and consequently, influence ‘host’ gene mRNA isoform length and expand transcriptome diversity.
Collapse
|
95
|
Downes DJ, Smith AL, Karpinska MA, Velychko T, Rue-Albrecht K, Sims D, Milne TA, Davies JOJ, Oudelaar AM, Hughes JR. Capture-C: a modular and flexible approach for high-resolution chromosome conformation capture. Nat Protoc 2022; 17:445-475. [PMID: 35121852 PMCID: PMC7613269 DOI: 10.1038/s41596-021-00651-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/27/2021] [Indexed: 12/16/2022]
Abstract
Chromosome conformation capture (3C) methods measure the spatial proximity between DNA elements in the cell nucleus. Many methods have been developed to sample 3C material, including the Capture-C family of protocols. Capture-C methods use oligonucleotides to enrich for interactions of interest from sequencing-ready 3C libraries. This approach is modular and has been adapted and optimized to work for sampling of disperse DNA elements (NuTi Capture-C), including from low cell inputs (LI Capture-C), as well as to generate Hi-C like maps for specific regions of interest (Tiled-C) and to interrogate multiway interactions (Tri-C). We present the design, experimental protocol and analysis pipeline for NuTi Capture-C in addition to the variations for generation of LI Capture-C, Tiled-C and Tri-C data. The entire procedure can be performed in 3 weeks and requires standard molecular biology skills and equipment, access to a next-generation sequencing platform, and basic bioinformatic skills. Implemented with other sequencing technologies, these methods can be used to identify regulatory interactions and to compare the structural organization of the genome in different cell types and genetic models.
Collapse
Affiliation(s)
- Damien J Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Alastair L Smith
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Taras Velychko
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Kevin Rue-Albrecht
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - David Sims
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Haematology Theme, Oxford, UK
| | - James O J Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
96
|
Impaired KDM2B-mediated PRC1 recruitment to chromatin causes defective neural stem cell self-renewal and ASD/ID-like behaviors. iScience 2022; 25:103742. [PMID: 35128353 PMCID: PMC8800019 DOI: 10.1016/j.isci.2022.103742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/01/2021] [Accepted: 01/05/2022] [Indexed: 01/19/2023] Open
|
97
|
Allen JM, Balagtas M, Barajas E, Cano Macip C, Alvarez Zepeda S, Iberkleid I, Duncan EM, Zayas RM. RNAi Screen of RING/U-Box Domain Ubiquitin Ligases Identifies Critical Regulators of Tissue Regeneration in Planarians. Front Cell Dev Biol 2022; 9:803419. [PMID: 35127720 PMCID: PMC8807557 DOI: 10.3389/fcell.2021.803419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
Regenerative processes depend on the interpretation of signals to coordinate cell behaviors. The role of ubiquitin-mediated signaling is known to be important in many cellular and biological contexts, but its role in regeneration is not well understood. To investigate how ubiquitylation impacts tissue regeneration in vivo, we are studying planarians that are capable of regenerating after nearly any injury using a population of stem cells. Here we used RNAi to screen RING/U-box E3 ubiquitin ligases that are highly expressed in planarian stem cells and stem cell progeny. RNAi screening identified nine genes with functions in regeneration, including the spliceosomal factor prpf19 and histone modifier rnf2; based on their known roles in developmental processes, we further investigated these two genes. We found that prpf19 was required for animal survival but not for stem cell maintenance, suggesting a role in promoting cell differentiation. Because RNF2 is the catalytic subunit of the Polycomb Repressive Complex 1 (PRC1), we also examined other putative members of this complex (CBX and PHC). We observed a striking phenotype of regional tissue misspecification in cbx and phc RNAi planarians. To identify genes regulated by PRC1, we performed RNA-seq after knocking down rnf2 or phc. Although these proteins are predicted to function in the same complex, we found that the set of genes differentially expressed in rnf2 versus phc RNAi were largely non-overlapping. Using in situ hybridization, we showed that rnf2 regulates gene expression levels within a tissue type, whereas phc is necessary for the spatial restriction of gene expression, findings consistent with their respective in vivo phenotypes. This work not only uncovered roles for RING/U-box E3 ligases in stem cell regulation and regeneration, but also identified differential gene targets for two putative PRC1 factors required for maintaining cell-type-specific gene expression in planarians.
Collapse
Affiliation(s)
- John M Allen
- Department of Biology, San Diego State University, San Diego, CA, United States
- Deparment of Biology, University of Kentucky, Lexington, KY, United States
| | - Madison Balagtas
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Elizabeth Barajas
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Carolina Cano Macip
- Department of Biology, San Diego State University, San Diego, CA, United States
| | | | - Ionit Iberkleid
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Elizabeth M Duncan
- Deparment of Biology, University of Kentucky, Lexington, KY, United States
| | - Ricardo M Zayas
- Department of Biology, San Diego State University, San Diego, CA, United States
| |
Collapse
|
98
|
Baile F, Gómez-Zambrano Á, Calonje M. Roles of Polycomb complexes in regulating gene expression and chromatin structure in plants. PLANT COMMUNICATIONS 2022; 3:100267. [PMID: 35059633 PMCID: PMC8760139 DOI: 10.1016/j.xplc.2021.100267] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 05/16/2023]
Abstract
The evolutionary conserved Polycomb Group (PcG) repressive system comprises two central protein complexes, PcG repressive complex 1 (PRC1) and PRC2. These complexes, through the incorporation of histone modifications on chromatin, have an essential role in the normal development of eukaryotes. In recent years, a significant effort has been made to characterize these complexes in the different kingdoms, and despite there being remarkable functional and mechanistic conservation, some key molecular principles have diverged. In this review, we discuss current views on the function of plant PcG complexes. We compare the composition of PcG complexes between animals and plants, highlight the role of recently identified plant PcG accessory proteins, and discuss newly revealed roles of known PcG partners. We also examine the mechanisms by which the repression is achieved and how these complexes are recruited to target genes. Finally, we consider the possible role of some plant PcG proteins in mediating local and long-range chromatin interactions and, thus, shaping chromatin 3D architecture.
Collapse
Affiliation(s)
- Fernando Baile
- Institute of Plant Biochemistry and Photosynthesis (IBVF-CSIC-US), Avenida Américo Vespucio 49, 41092 Seville, Spain
| | - Ángeles Gómez-Zambrano
- Institute of Plant Biochemistry and Photosynthesis (IBVF-CSIC-US), Avenida Américo Vespucio 49, 41092 Seville, Spain
| | - Myriam Calonje
- Institute of Plant Biochemistry and Photosynthesis (IBVF-CSIC-US), Avenida Américo Vespucio 49, 41092 Seville, Spain
| |
Collapse
|
99
|
Hickey GJM, Wike CL, Nie X, Guo Y, Tan M, Murphy PJ, Cairns BR. Establishment of developmental gene silencing by ordered polycomb complex recruitment in early zebrafish embryos. eLife 2022; 11:e67738. [PMID: 34982026 PMCID: PMC8769650 DOI: 10.7554/elife.67738] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Vertebrate embryos achieve developmental competency during zygotic genome activation (ZGA) by establishing chromatin states that silence yet poise developmental genes for subsequent lineage-specific activation. Here, we reveal the order of chromatin states in establishing developmental gene poising in preZGA zebrafish embryos. Poising is established at promoters and enhancers that initially contain open/permissive chromatin with 'Placeholder' nucleosomes (bearing H2A.Z, H3K4me1, and H3K27ac), and DNA hypomethylation. Silencing is initiated by the recruitment of polycomb repressive complex 1 (PRC1), and H2Aub1 deposition by catalytic Rnf2 during preZGA and ZGA stages. During postZGA, H2Aub1 enables Aebp2-containing PRC2 recruitment and H3K27me3 deposition. Notably, preventing H2Aub1 (via Rnf2 inhibition) eliminates recruitment of Aebp2-PRC2 and H3K27me3, and elicits transcriptional upregulation of certain developmental genes during ZGA. However, upregulation is independent of H3K27me3 - establishing H2Aub1 as the critical silencing modification at ZGA. Taken together, we reveal the logic and mechanism for establishing poised/silent developmental genes in early vertebrate embryos.
Collapse
Affiliation(s)
- Graham JM Hickey
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUnited States
| | - Candice L Wike
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUnited States
| | - Xichen Nie
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUnited States
| | - Yixuan Guo
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUnited States
| | - Mengyao Tan
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUnited States
| | - Patrick J Murphy
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUnited States
- Department of Biomedical Genetics, Wilmot Cancer Center, University of Rochester School of MedicineRochesterUnited States
| | - Bradley R Cairns
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUnited States
| |
Collapse
|
100
|
Zhu Y, Yu J, Rong Y, Wu YW, Li Y, Zhang L, Pan Y, Fan HY, Shen L. Genomewide decoupling of H2AK119ub1 and H3K27me3 in early mouse development. Sci Bull (Beijing) 2021; 66:2489-2497. [PMID: 36654208 DOI: 10.1016/j.scib.2021.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/10/2021] [Accepted: 06/03/2021] [Indexed: 02/03/2023]
Abstract
Polycomb group (PcG) proteins are crucial chromatin regulators during development. H2AK119ub1 (H2Aub) and H3K27me3 are catalyzed by Polycomb-repressive complex 1 and 2 (PRC1/2) respectively, and they largely overlap in the genome due to mutual recruitment of the two complexes. However, it is unclear whether PRC1/H2Aub and PRC2/H3K27me3 can also function independently. By developing an ultra-sensitive carrier-DNA-assisted chromatin immunoprecipitation sequencing method termed CATCH-Seq, we generated allelic H2Aub profiles in mouse gametes and early embryos. Our results revealed an unexpected genomewide decoupling of H2Aub and H3K27me3 in mouse preimplantation embryos, where H2Aub but not H3K27me3 was enriched at PcG targets while only H3K27me3 was deposited in the broad distal domains associated with DNA methylation-independent non-canonical imprinting. These observations suggest that H2Aub represses future bivalent genes during early embryogenesis without H3K27me3, but it is not required for the maintenance of non-canonical imprinting, which is mediated by maternal H3K27me3. Thus, our study reveals the distinct depositions and independent functions of H2Aub and H3K27me3 during early mammalian development.
Collapse
Affiliation(s)
- Yezhang Zhu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jiali Yu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yan Rong
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yun-Wen Wu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yang Li
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Lejiao Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yinghao Pan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Heng-Yu Fan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; Hangzhou Innovation Center, Zhejiang University, Hangzhou 311215, China.
| |
Collapse
|