51
|
Soares BCC, Khine HEE, Sritularak B, Chanvorachote P, Alduina R, Sungthong R, Chaotham C. Cymensifin A: a promising pharmaceutical candidate to defeat lung cancer via cellular reactive oxygen species-mediated apoptosis. Front Pharmacol 2024; 15:1361085. [PMID: 38666017 PMCID: PMC11043475 DOI: 10.3389/fphar.2024.1361085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Background: The upgrade of natural products for cancer treatment is essential since current anticancer drugs still pose severe side effects. Cymensifin A (Cym A) isolated from an orchid Cymbidium ensifolium has shown its potential to induce the death of several cancer cells; however, its underlying molecular mechanisms are hitherto unknown. Methods: Here, we conducted a set of in vitro preliminary tests to assess the cytotoxic effects of Cym A on non-small-cell lung cancer (NSCLC) cells (A549, H23, H292, and H460). A flow cytometry system and Western blot analyses were employed to unveil molecular mechanisms underlying cancer cell apoptosis caused by Cym A. Results: Cym A at 25-50 μM caused the death of all NSCLC cells tested, and its cytotoxicity was comparable to cisplatin, a currently used anticancer drug. The compound induced apoptosis of all NSCLC cells in a dose-dependent manner (5-50 μM), proven by flow cytometry, but H460 cells showed more resistance compared to other cells tested. Cym A-treated H460 cells demonstrated increased reactive oxygen species (ROS) and downregulated antioxidants (catalase, superoxide dismutase, and thioredoxin). The compound also upregulated the tumor suppressor P53 and the pro-apoptotic protein BAX but downregulated pro-survival proteins (BCL-2 and MCL-1) and deactivated survival signals (AKT and ERK) in H460 cells. Cym A was proven to trigger cellular ROS formation, but P53 and BAX were 2-fold more activated by Cym A compared to those treated with hydrogen peroxide. Our findings also supported that Cym A exerted its roles in the downregulation of nuclear factor erythroid 2-related factor 2 (a regulator of cellular antioxidant activity) and the increased levels of cleaved poly (ADP-ribose) polymerase (PARP) and cleaved caspase 3/7 during apoptosis. Conclusion: We propose that Cym A induces lung cancer cell death via ROS-mediated apoptosis, while the modulation of cellular ROS/antioxidant activity, the upregulation of P53 and BAX, the downregulation or deactivation of BCL-2, MCL-1, AKT, and ERK, and the increased cleavage of PARP and caspase 3/7, were the elucidated underlying molecular mechanisms of this phytochemical. The compound can be a promising candidate for future anticancer drug development.
Collapse
Affiliation(s)
- Bruno Cesar Costa Soares
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Hnin Ei Ei Khine
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Rungroch Sungthong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
52
|
Yang S, Hu C, Chen X, Tang Y, Li J, Yang H, Yang Y, Ying B, Xiao X, Li SZ, Gu L, Zhu Y. Crosstalk between metabolism and cell death in tumorigenesis. Mol Cancer 2024; 23:71. [PMID: 38575922 PMCID: PMC10993426 DOI: 10.1186/s12943-024-01977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/02/2024] [Indexed: 04/06/2024] Open
Abstract
It is generally recognized that tumor cells proliferate more rapidly than normal cells. Due to such an abnormally rapid proliferation rate, cancer cells constantly encounter the limits of insufficient oxygen and nutrient supplies. To satisfy their growth needs and resist adverse environmental events, tumor cells modify the metabolic pathways to produce both extra energies and substances required for rapid growth. Realizing the metabolic characters special for tumor cells will be helpful for eliminating them during therapy. Cell death is a hot topic of long-term study and targeting cell death is one of the most effective ways to repress tumor growth. Many studies have successfully demonstrated that metabolism is inextricably linked to cell death of cancer cells. Here we summarize the recently identified metabolic characters that specifically impact on different types of cell deaths and discuss their roles in tumorigenesis.
Collapse
Affiliation(s)
- Shichao Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Caden Hu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Xiaomei Chen
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Tang
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, P. R. China
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Juanjuan Li
- Department of breast and thyroid surgery, Renmin hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Hanqing Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Yang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Key Laboratory of Tumor Immunopathology, Third Military Medical University (Army Medical University, Ministry of Education of China, Chongqing, 400038, P. R. China
| | - Binwu Ying
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, P. R. China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China.
| | - Shang-Ze Li
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| | - Li Gu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Yahui Zhu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| |
Collapse
|
53
|
Fei M, Lu C, Feng B, Sun J, Wang J, Sun F, Dong B. Bioinformatics analyses and experimental validation of the role of phagocytosis in low-grade glioma. ENVIRONMENTAL TOXICOLOGY 2024; 39:2182-2196. [PMID: 38112449 DOI: 10.1002/tox.24095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/29/2023] [Accepted: 12/03/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Phagocytosis is of vital importance in tumor immune response. The alteration of phagocytosis in low-grade glioma (LGG) has not been investigated. METHODS The mRNA, copy number variation, single nucleotide variation, and methylation levels of phagocytosis-related genes were summarized in pan-cancer. Non-negative matrix factorization clustering was utilized to identify two LGG subtypes. LASSO regression analysis was performed to construct a phagocytosis-related prognostic signature (PRPS). Immune characteristics, immunotherapy response, and targeted-drug sensitivity were further explored. The phagocytosis activity in glioma was evaluated using scRNA-seq data. Multiplex immunohistochemical (m-IHC) technology was performed to identify the tumor-infiltrating immune cells in LGG. RESULTS The phagocytosis-related genes altered obviously in pan-cancer compared with corresponding normal tissues. Two LGG subtypes were obtained and the subtype with poor prognosis was combined with lower tumor purity, more active immune-related pathways, increasing infiltration of CD4+ T cells, CD8+ T cells, and natural killer (NK) cells, decreasing infiltration of macrophages, mast cells, and neutrophils, distinct pathway activity and cell death status, greater response to immunotherapy, and higher sensitivity to cyclophosphamide, erlotinib, gefitinib, lapatinib, and sorafenib. In addition, a PRPS involving 10 genes (i.e., SLC11A1, CAMK1D, PLA2G5, STAP1, ALOX15, PLCG2, SFTPD, AZU1, RAB27A, and LAMTOR2) was constructed to estimate the risk level of each LGG sample and high risk LGG patients had poor prognosis, upregulated infiltration of neutrophil, macrophage, Treg, and myeloid dendritic cell, down regulated infiltration of monocyte and NK cell, and increasing expression of large number of immune checkpoint genes. The phagocytosis activity is notably active in monocyte/macrophage. The m-IHC results confirmed increased infiltration of macrophages and neutrophils in LGG samples with high SLC11A1 expression. CONCLUSION The molecular characteristics of phagocytosis were revealed and the PRPS laid the foundation for personalized therapy in LGG.
Collapse
Affiliation(s)
- Mingyang Fei
- Department of Neurosurgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chunlin Lu
- Department of Neurosurgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Baozhi Feng
- Department of Neurosurgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jiaao Sun
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jie Wang
- Department of Neurosurgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Fei Sun
- Department of Neurosurgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Neurosurgery, Xinhua Hospital Affiliated to Dalian University, Dalian, Liaoning, China
| | - Bin Dong
- Department of Neurosurgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
54
|
Jia J, Ji W, Saliba AN, Csizmar CM, Ye K, Hu L, Peterson KL, Schneider PA, Meng XW, Venkatachalam A, Patnaik MM, Webster JA, Smith BD, Ghiaur G, Wu X, Zhong J, Pandey A, Flatten KS, Deng Q, Wang H, Kaufmann SH, Dai H. AMPK inhibition sensitizes acute leukemia cells to BH3 mimetic-induced cell death. Cell Death Differ 2024; 31:405-416. [PMID: 38538744 PMCID: PMC11043078 DOI: 10.1038/s41418-024-01283-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
BH3 mimetics, including the BCL2/BCLXL/BCLw inhibitor navitoclax and MCL1 inhibitors S64315 and tapotoclax, have undergone clinical testing for a variety of neoplasms. Because of toxicities, including thrombocytopenia after BCLXL inhibition as well as hematopoietic, hepatic and possible cardiac toxicities after MCL1 inhibition, there is substantial interest in finding agents that can safely sensitize neoplastic cells to these BH3 mimetics. Building on the observation that BH3 mimetic monotherapy induces AMP kinase (AMPK) activation in multiple acute leukemia cell lines, we report that the AMPK inhibitors (AMPKis) dorsomorphin and BAY-3827 sensitize these cells to navitoclax or MCL1 inhibitors. Cell fractionation and phosphoproteomic analyses suggest that sensitization by dorsomorphin involves dephosphorylation of the proapoptotic BCL2 family member BAD at Ser75 and Ser99, leading BAD to translocate to mitochondria and inhibit BCLXL. Consistent with these results, BAD knockout or mutation to BAD S75E/S99E abolishes the sensitizing effects of dorsomorphin. Conversely, dorsomorphin synergizes with navitoclax or the MCL1 inhibitor S63845 to induce cell death in primary acute leukemia samples ex vivo and increases the antitumor effects of navitoclax or S63845 in several xenograft models in vivo with little or no increase in toxicity in normal tissues. These results suggest that AMPK inhibition can sensitize acute leukemia to multiple BH3 mimetics, potentially allowing administration of lower doses while inducing similar antineoplastic effects.
Collapse
Affiliation(s)
- Jia Jia
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Wenbo Ji
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Antoine N Saliba
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Clifford M Csizmar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kaiqin Ye
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Lei Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Kevin L Peterson
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Paula A Schneider
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - X Wei Meng
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Annapoorna Venkatachalam
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jonathan A Webster
- Adult Leukemia Program, Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, MD, 21287, USA
| | - B Douglas Smith
- Adult Leukemia Program, Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, MD, 21287, USA
| | - Gabriel Ghiaur
- Adult Leukemia Program, Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, MD, 21287, USA
| | - Xinyan Wu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jun Zhong
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Akhilesh Pandey
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Manipal Academy of Higher Education, Manipal, 576104, Kamataka, India
| | - Karen S Flatten
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Qingmei Deng
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Scott H Kaufmann
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Haiming Dai
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
55
|
Shkarina K, Broz P. Selective induction of programmed cell death using synthetic biology tools. Semin Cell Dev Biol 2024; 156:74-92. [PMID: 37598045 DOI: 10.1016/j.semcdb.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/21/2023]
Abstract
Regulated cell death (RCD) controls the removal of dispensable, infected or malignant cells, and is thus essential for development, homeostasis and immunity of multicellular organisms. Over the last years different forms of RCD have been described (among them apoptosis, necroptosis, pyroptosis and ferroptosis), and the cellular signaling pathways that control their induction and execution have been characterized at the molecular level. It has also become apparent that different forms of RCD differ in their capacity to elicit inflammation or an immune response, and that RCD pathways show a remarkable plasticity. Biochemical and genetic studies revealed that inhibition of a given pathway often results in the activation of back-up cell death mechanisms, highlighting close interconnectivity based on shared signaling components and the assembly of multivalent signaling platforms that can initiate different forms of RCD. Due to this interconnectivity and the pleiotropic effects of 'classical' cell death inducers, it is challenging to study RCD pathways in isolation. This has led to the development of tools based on synthetic biology that allow the targeted induction of RCD using chemogenetic or optogenetic methods. Here we discuss recent advances in the development of such toolset, highlighting their advantages and limitations, and their application for the study of RCD in cells and animals.
Collapse
Affiliation(s)
- Kateryna Shkarina
- Institute of Innate Immunity, University Hospital Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Switzerland.
| |
Collapse
|
56
|
Lawlor KE, Murphy JM, Vince JE. Gasdermin and MLKL necrotic cell death effectors: Signaling and diseases. Immunity 2024; 57:429-445. [PMID: 38479360 DOI: 10.1016/j.immuni.2024.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/29/2023] [Accepted: 02/14/2024] [Indexed: 01/22/2025]
Abstract
Diverse inflammatory conditions, from infections to autoimmune disease, are often associated with cellular damage and death. Apoptotic cell death has evolved to minimize its inflammatory potential. By contrast, necrotic cell death via necroptosis and pyroptosis-driven by membrane-damaging MLKL and gasdermins, respectively-can both initiate and propagate inflammatory responses. In this review, we provide insights into the function and regulation of MLKL and gasdermin necrotic effector proteins and drivers of plasma membrane rupture. We evaluate genetic evidence that MLKL- and gasdermin-driven necrosis may either provide protection against, or contribute to, disease states in a context-dependent manner. These cumulative insights using gene-targeted mice underscore the necessity for future research examining pyroptotic and necroptotic cell death in human tissue, as a basis for developing specific necrotic inhibitors with the potential to benefit a spectrum of pathological conditions.
Collapse
Affiliation(s)
- Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
57
|
Gu X, Pan J, Li Y, Feng L. A programmed cell death-related gene signature to predict prognosis and therapeutic responses in liver hepatocellular carcinoma. Discov Oncol 2024; 15:71. [PMID: 38466483 DOI: 10.1007/s12672-024-00924-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Programmed cell death (PCD) functions critically in cancers and PCD-related genes are associated with tumor microenvironment (TME), prognosis and therapeutic responses of cancer patients. This study stratified hepatocellular carcinoma (HCC) patients and develop a prognostic model for predicting prognosis and therapeutic responses. METHODS Consensus clustering analysis was performed to subtype HCC patients in The Cancer Genome Atlas (TCGA) database. Differentially expressed genes (DEGs) among the subtypes were filtered and subjected to the least absolute shrinkage and selection operator (LASSO) regression analysis and univariate Cox regression analysis to filter prognostic genes. A PCD-related prognostic gene signature in TCGA was constructed and validated in ICGC-LIRI-JP and GSE14520 datasets. TME was analyzed using CIBERSORT, MCP-counter, TIMER and EPIC algorithms. Drug sensitivity was predicted by oncoPredict package. Spearman analysis was used to detect correlation. RESULTS Four molecular subtypes were categorized based on PCD-related genes. Subtype C1 showed the poorest prognosis, the most infiltration of Fibroblasts, dentritic cell (DC) and cancer-associated fibroblasts (CAFs), and the highest TIDE score. C4 had a better prognosis survival outcome, and lowest immune cell infiltration. The survival outcomes of C2 and C3 were intermediate. Next, a total of 69 co-DEGs were screened among the four subtypes and subsequently we identified five prognostic genes (MCM2, SPP1, S100A9, MSC and EPO) for developing the prognostic model. High-risk patients not only had unfavorable prognosis, higher clinical stage and grade, and more inflammatory pathway enrichment, but also possessed higher possibility of immune escape and were more sensitive to Cisplatin and 5. Fluorouracil. The robustness of the prognostic model was validated in external datasets. CONCLUSION This study provides new insights into clinical subtyping and the PCD-related prognostic signature may serve as a useful tool to predict prognosis and guide treatments for patients with HCC.
Collapse
Affiliation(s)
- Xinyu Gu
- College of Clinical Medicine, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, 471000, China.
| | - Jie Pan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yanle Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Liushun Feng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
58
|
Xu H, Cui H, Weng S, Zhang Y, Wang L, Xing Z, Han X, Liu Z. Crosstalk of cell death pathways unveils an autophagy-related gene AOC3 as a critical prognostic marker in colorectal cancer. Commun Biol 2024; 7:296. [PMID: 38461356 PMCID: PMC10924944 DOI: 10.1038/s42003-024-05980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/27/2024] [Indexed: 03/11/2024] Open
Abstract
The intricate crosstalk of various cell death forms was recently implicated in cancers, laying a foundation for exploring the association between cell death and cancers. Recent evidence has demonstrated that biological networks outperform snapshot gene expression profiles at discovering promising biomarkers or heterogenous molecular subtypes across different cancer types. In order to investigate the behavioral patterns of cell death-related interaction perturbation in colorectal cancer (CRC), this study constructed the interaction-perturbation network with 11 cell death pathways and delineated four cell death network (CDN) derived heterogeneous subtypes (CDN1-4) with distinct molecular characteristics and clinical outcomes. Specifically, we identified a subtype (CDN4) endowed with high autophagy activity and the worst prognosis. Furthermore, AOC3 was identified as a potential autophagy-related biomarker, which demonstrated exceptional predictive performance for CDN4 and significant prognostic value. Overall, this study sheds light on the complex interplay of various cell death forms and reveals an autophagy-related gene AOC3 as a critical prognostic marker in CRC.
Collapse
Affiliation(s)
- Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China
| | - Haiyang Cui
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
59
|
Shao Y, Yesseyeva G, Zhi Y, Zhou J, Zong J, Zhou X, Fan X, Li S, Huang L, Zhang S, Dong F, Yang X, Zheng M, Sun J, Ma J. Comprehensive multi-omics analysis and experimental verification reveal PFDN5 is a novel prognostic and therapeutic biomarker for gastric cancer. Genomics 2024; 116:110821. [PMID: 38447684 DOI: 10.1016/j.ygeno.2024.110821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Prefoldin Subunit 5 (PFDN5) plays a critical role as a member of the prefoldins (PFDNs) in maintaining a finely tuned equilibrium between protein production and degradation. However, there has been no comprehensive analysis specifically focused on PFDN5 thus far. Here, a comprehensive multi-omics (transcriptomics, genomics, and proteomics) analysis, systematic molecular biology experiments (in vitro and in vivo), transcriptome sequencing and PCR Array were performed for identifying the value of PFDN5 in pan-cancer, especially in Gastric Cancer (GC). We found PFDN5 had the potential to serve as a prognostic and therapeutic biomarker in GC. And PFDN5 could promote the proliferation of GC cells, primarily by affecting the cell cycle, cell death and immune process etc. These findings provide novel insights into the molecular mechanisms and precise treatments of in GC.
Collapse
Affiliation(s)
- Yanfei Shao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Galiya Yesseyeva
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihao Zhi
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajie Zhou
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiasheng Zong
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueliang Zhou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Fan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuchun Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Huang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Dong
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junjun Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
60
|
Jin Y, Huang S, Zhou H, Wang Z, Zhou Y. Multi-omics comprehensive analyses of programmed cell death patterns to regulate the immune characteristics of head and neck squamous cell carcinoma. Transl Oncol 2024; 41:101862. [PMID: 38237211 PMCID: PMC10825548 DOI: 10.1016/j.tranon.2023.101862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/17/2023] [Accepted: 12/09/2023] [Indexed: 02/02/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous cancer with high morbidity and mortality. Triggering the programmed cell death (PCD) to enhance the anti-tumor therapies is being applied in multiple cancers. However, the limited understanding of genetic heterogeneity in HNSCC severely hampers the clinical efficacy. We systematically analyzed 14 types of PCD in HNSCC from The Cancer Genome Atlas (TCGA). We utilized ssGSEA to calculate the PCD scores and classify patients into two clusters. Subsequently, we displayed the genomic alteration landscape to unravel the significant differences in copy number alterations and gene mutations. Furthermore, we calculated the IC50 values of targeted drugs to predict the differences in sensitivity. To identify the immune-related prognostic types, we comprehensively estimated the relationship between immune indicators and all prognostic PCD in three datasets (TCGA, GSE65858, GSE41613). Finally, 7 regulators were filtered. Subsequently, we integrated 10 machine learning algorithms and 101 algorithm combinations to test the clinical predictive efficacy. Using WGCNA as a basis, we built a weighted co-expression network to identify modules involved in the immune landscape with different colors. Meanwhile, our results indicated that blue and red modules containing crucial regulators closely related to the CD4+, CD8+ T cells, TMB or PD-L1. FCGR2A from blue module, CSF2, INHBA, and THBS1 from the red module were determined. After verifying in vivo experiments, FCGR2A was identified as hub gene. In conclusion, our findings suggest a potential role of PCD in HNSCC, offering new insights into effective immunotherapy and anti-tumor therapies in HNSCC.
Collapse
Affiliation(s)
- Yi Jin
- Department of Radiation Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China.
| | - Siwei Huang
- School of Humanities and Management, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Hongyu Zhou
- Department of Radiation Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Zhanwang Wang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China.
| | - Yonghong Zhou
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
61
|
Peng Y, Ouyang C, Wu Y, Ma R, Li H, Li Y, Jing J, Sun L. A novel PCDscore based on programmed cell death-related genes can effectively predict prognosis and therapy responses of colon adenocarcinoma. Comput Biol Med 2024; 170:107933. [PMID: 38217978 DOI: 10.1016/j.compbiomed.2024.107933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/06/2023] [Accepted: 01/01/2024] [Indexed: 01/15/2024]
Abstract
Emerging evidence suggests a correlation between oncogenesis and programmed cell death (PCD). However, comprehensive studies that incorporate all identified PCD-related genes to guide colon adenocarcinoma (COAD) prognosis and precision treatment strategies are lacking. In this study, a series of bioinformatics analyses were comprehensively conducted using data from the TCGA-COAD, GSE17538, and GSE39582 cohorts. A total of 21 PCD-associated prognostic genes were identified through univariate Cox analysis. LASSO and multivariate Cox methods were employed to establish a prognostic gene signature (ALOX12, HSPA1A, IL13, MID2, RFFL, and SLC39A8) and the corresponding scoring system, termed PCDscore, which exhibited robust predictive ability. The ssGSEA and ESTIMATE algorithms were utilized to evaluate the tumor microenvironment of COAD. The high PCDscore group demonstrated a poorer prognosis, characterized by lower CD4+ T cell infiltration and a higher stromal score. In contrast, the low PCDscore group exhibited sensitivity to common chemotherapy drugs such as Cisplatin and 5-Fluorouracil. Single-cell sequencing analysis further revealed that the high-PCDscore group displayed a lower proportion of CD4+ T cells. Colorectal cancer samples from the years 2013-2017 were employed to validate the PCDscore, while those from 2018 to 2019 served as a temporal external validation set for the PCDscore. In vitro experimental results indicated that the overexpression of SLC39A8 inhibited the proliferation and invasion of colorectal cancer cells. The study developed a novel PCDscore system based on the analysis of genes related to all identified PCD types, providing valuable insights into clinical prognosis and drug sensitivity for patients with COAD.
Collapse
Affiliation(s)
- Yangjie Peng
- Key Laboratory of Gastrointestinal Cancer Etiology and Prevention, Shenyang 110001, Liaoning, China; Department of Anorectal Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Cheng Ouyang
- Key Laboratory of Gastrointestinal Cancer Etiology and Prevention, Shenyang 110001, Liaoning, China; Tumor Etiology and Screening Department of Cancer Institute, and Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yijun Wu
- Key Laboratory of Gastrointestinal Cancer Etiology and Prevention, Shenyang 110001, Liaoning, China; Tumor Etiology and Screening Department of Cancer Institute, and Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Rui Ma
- Key Laboratory of Gastrointestinal Cancer Etiology and Prevention, Shenyang 110001, Liaoning, China; Tumor Etiology and Screening Department of Cancer Institute, and Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Hao Li
- Department of Clinical Laboratory, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yanke Li
- Key Laboratory of Gastrointestinal Cancer Etiology and Prevention, Shenyang 110001, Liaoning, China; Department of Anorectal Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| | - Jingjing Jing
- Key Laboratory of Gastrointestinal Cancer Etiology and Prevention, Shenyang 110001, Liaoning, China; Tumor Etiology and Screening Department of Cancer Institute, and Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| | - Liping Sun
- Key Laboratory of Gastrointestinal Cancer Etiology and Prevention, Shenyang 110001, Liaoning, China; Tumor Etiology and Screening Department of Cancer Institute, and Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| |
Collapse
|
62
|
Ni D, Lei C, Liu M, Peng J, Yi G, Mo Z. Cell death in atherosclerosis. Cell Cycle 2024; 23:495-518. [PMID: 38678316 PMCID: PMC11135874 DOI: 10.1080/15384101.2024.2344943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/14/2024] [Indexed: 04/29/2024] Open
Abstract
A complex and evolutionary process that involves the buildup of lipids in the arterial wall and the invasion of inflammatory cells results in atherosclerosis. Cell death is a fundamental biological process that is essential to the growth and dynamic equilibrium of all living things. Serious cell damage can cause a number of metabolic processes to stop, cell structure to be destroyed, or other irreversible changes that result in cell death. It is important to note that studies have shown that the two types of programmed cell death, apoptosis and autophagy, influence the onset and progression of atherosclerosis by controlling these cells. This could serve as a foundation for the creation of fresh atherosclerosis prevention and treatment strategies. Therefore, in this review, we summarized the molecular mechanisms of cell death, including apoptosis, pyroptosis, autophagy, necroptosis, ferroptosis and necrosis, and discussed their effects on endothelial cells, vascular smooth muscle cells and macrophages in the process of atherosclerosis, so as to provide reference for the next step to reveal the mechanism of atherosclerosis.
Collapse
Affiliation(s)
- Dan Ni
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China
| | - Cai Lei
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Minqi Liu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Province Postgraduate Co-training Base for Cooperative Innovation in Basic Medicine (Guilin Medical University and Yueyang Women & Children’s Medical Center), Yueyang, China
| | - Jinfu Peng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Guanghui Yi
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Zhongcheng Mo
- Guangxi Key Laboratory of Diabetic Systems Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Province Postgraduate Co-training Base for Cooperative Innovation in Basic Medicine (Guilin Medical University and Yueyang Women & Children’s Medical Center), Yueyang, China
| |
Collapse
|
63
|
Lunghi E, Bilandžija H. Telomere length and dynamics in Astyanax mexicanus cave and surface morphs. PeerJ 2024; 12:e16957. [PMID: 38435987 PMCID: PMC10908260 DOI: 10.7717/peerj.16957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/25/2024] [Indexed: 03/05/2024] Open
Abstract
Background Telomeres are non-coding DNA repeats at the chromosome ends and their shortening is considered one of the major causes of aging. However, they also serve as a biomarker of environmental exposures and their length and attrition is affected by various stressors. In this study, we examined the average telomere length in Astyanax mexicanus, a species that has both surface-dwelling and cave-adapted populations. The cave morph descended from surface ancestors and adapted to a markedly different environment characterized by specific biotic and abiotic stressors, many of which are known to affect telomere length. Our objective was to explore whether telomere length differs between the two morphs and whether it serves as a biological marker of aging or correlates with the diverse environments the morphs are exposed to. Methods We compared telomere length and shortening between laboratory-reared Pachón cavefish and Rio Choy surface fish of A. mexicanus across different tissues and ages. Results Astyanax mexicanus surface fish exhibited longer average telomere length compared to cavefish. In addition, we did not observe telomere attrition in either cave or surface form as a result of aging in adults up to 9 years old, suggesting that efficient mechanisms prevent telomere-mediated senescence in laboratory stocks of this species, at least within this time frame. Our results suggest that telomere length in Astyanax may be considered a biomarker of environmental exposures. Cavefish may have evolved shorter and energetically less costly telomeres due to the absence of potential stressors known to affect surface species, such as predator pressure and ultra-violet radiation. This study provides the first insights into telomere dynamics in Astyanax morphs and suggests that shorter telomeres may have evolved as an adaptation to caves.
Collapse
Affiliation(s)
- Enrico Lunghi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Helena Bilandžija
- Division of Molecular Biology, Ruder Bošković Institute, Zagreb, Croatia
| |
Collapse
|
64
|
Tang Y, Wang T, Li Q, Shi J. A cuproptosis score model and prognostic score model can evaluate clinical characteristics and immune microenvironment in NSCLC. Cancer Cell Int 2024; 24:68. [PMID: 38341588 DOI: 10.1186/s12935-024-03267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Cuproptosis-related genes (CRGs) are associated with lung adenocarcinoma. However, the links between CRGs and non-small-cell lung cancer (NSCLC) are not clear. In this study, we aimed to develop two cuproptosis models and investigate their correlation with NSCLC in terms of clinical features and tumor microenvironment. METHODS CRG expression profiles and clinical data from NSCLC and normal tissues was obtained from GEO (GSE42127) and TCGA datasets. Molecular clusters were classified into three patterns based on CRGs and cuproptosis cluster-related specific differentially expressed genes (CRDEGs). Then, two clinical models were established. First, a prognostic score model based on CRDEGs was established using univariate/multivariate Cox analysis. Then, through principal component analysis, a cuproptosis score model was established based on prognosis-related genes acquired via univariate analysis of CRDEGs. NSCLC patients were divided into high/low risk groups. RESULTS Eighteen CRGs were acquired, all upregulated in tumor tissues, 15 of which significantly (P < 0.05). Among the three CRG clusters, cluster B had the best prognosis. In the CRDEG clusters, cluster C had the best survival. In the prognostic score model, the high-risk group had worse prognosis, higher tumor mutation load, and lower immune infiltration while in the cuproptosis score model, a high score represented better survival, lower tumor mutation load, and high-level immune infiltration. CONCLUSIONS The cuproptosis score model and prognostic score model may be associated with NSCLC prognosis and immune microenvironment. These novel findings on the progression and immune landscape of NSCLC may facilitate the provision of more personalized immunotherapy interventions for NSCLC patients.
Collapse
Affiliation(s)
- Yijie Tang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Tianyi Wang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Qixuan Li
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China.
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
65
|
Wang H, Zhu X, Zhao F, Guo P, Li J, Du J, Shan G, Li Y, Li J. Integrative analysis of single-cell and bulk RNA-sequencing data revealed disulfidptosis genes-based molecular subtypes and a prognostic signature in lung adenocarcinoma. Aging (Albany NY) 2024; 16:2753-2773. [PMID: 38319721 PMCID: PMC10911368 DOI: 10.18632/aging.205509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/02/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Disulfidoptosis is an unconventional form of programmed cell death that distinguishes itself from well-established cell death pathways like ferroptosis, pyroptosis, and necroptosis. METHODS Initially, we conducted a single-cell analysis of the GSE131907 dataset from the GEO database to identify disulfidoptosis-related genes (DRGs). We utilized differentially expressed DRGs to classify TCGA samples with an unsupervised clustering algorithm. Prognostic models were built using Cox regression and LASSO regression. RESULTS Two DRG-related clusters (C1 and C2) were identified based on the DEGs from single-cell sequencing data analysis. In comparison to C1, C2 exhibited significantly worse overall prognosis, along with lower expression levels of immune checkpoint genes (ICGs) and chemoradiotherapy sensitivity-related genes (CRSGs). Furthermore, C2 displayed a notable enrichment in metabolic pathways and cell cycle-associated mechanisms. C2 was also linked to the development and spread of tumors. We created a prognostic risk model known as the DRG score, which relies on the expression levels of five DRGs. Patients were categorized into high-risk and low-risk groups depending on their DRG score, with the former group being linked to a poorer prognosis and higher TMB score. Moreover, the DRG score displayed significant correlations with CRSGs, ICGs, the tumor immune dysfunction and exclusion (TIDE) score, and chemotherapeutic sensitivity. Subsequently, we identified a significant correlation between the DRG score and monocyte macrophages. Additionally, crucial DRGs were additionally validated using qRT-PCR. CONCLUSIONS Our new DRG score can predict the immune landscape and prognosis of LUAD, serving as a reference for immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Haixia Wang
- Department of Radiation Oncology, The Fifth Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou People’s Hospital, Zhengzhou 450003, China
| | - Xuemei Zhu
- Department of Ultrasound, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang 212000, China
| | - Fangchao Zhao
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Pengfei Guo
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jing Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jingfang Du
- Department of Clinical Medicine, Hebei University of Engineering, Handan 056002, China
| | - Guoyong Shan
- Department of Radiation Oncology, The Fifth Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou People’s Hospital, Zhengzhou 450003, China
| | - Yishuai Li
- Department of Thoracic Surgery, Hebei Chest Hospital, Shijiazhuang 050000, China
| | - Juan Li
- School of Nursing, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271000, China
| |
Collapse
|
66
|
Liu H, Zheng Q, Li M, Kou J, Wei J, Feng W. Dose-dependent bidirectional pharmacological effects of vinorelbine-based metronomic combination chemotherapy on tumor growth and metastasis and mechanisms in melanoma mouse model. Fundam Clin Pharmacol 2024; 38:99-112. [PMID: 37458143 DOI: 10.1111/fcp.12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/25/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND There is evidence that the empirical setting of doses and schedules of antineoplastic agents in metronomic chemotherapy (MC) might lead to undesirable outcomes, such as promoting tumor growth or metastasis at certain low doses. However, details about the dose effect of antineoplastic agents in MC have not been fully known yet. OBJECTIVES Vinorelbine combined with cisplatin or fluorouracil (VNR/CDDP or VNR/FU) was selected to investigate its effects on tumor growth or metastasis as well as mechanisms. METHODS Experimental techniques, including immunohistochemistry, western blot, immunofluorescence, and flow cytometry, were used to explore the mechanisms, along with cell proliferation, apoptosis, migration, and invasion. RESULTS The results showed that VNR/CDDP or VNR/FU promoted tumor growth and metastasis at low doses and inhibited them at high ones. Except that expressions of apoptotic proteins were elevated at both low and high doses, low-dose treatments enhanced angiogenesis and promoted the mobilization and recruitment of myeloid-derived suppressor cells (MDSCs), while high-dose treatments reversed these effects. Additionally, low concentrations of VNR/CDDP or VNR/FU stimulated tumor cell functions such as anti-apoptosis, migration, and invasion, but high concentrations only suppressed cell proliferation and increased apoptosis. CONCLUSION This study elucidated a bidirectional action mode regulated by multiple mechanisms at different doses in MC and also highlighted the risks of low-dose metronomic administration of antineoplastic agents in the clinic. More preclinical and clinical studies focusing on the dose-effect of metronomic regimens are urgently needed because an effective therapeutic regimen should be an optimal setting of drugs, doses, schedules, or combinations.
Collapse
Affiliation(s)
- Hua Liu
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Qiaowei Zheng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Min Li
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Jianrong Kou
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Junsong Wei
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Weiyi Feng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| |
Collapse
|
67
|
Liu N, Chen M. Crosstalk between ferroptosis and cuproptosis: From mechanism to potential clinical application. Biomed Pharmacother 2024; 171:116115. [PMID: 38181713 DOI: 10.1016/j.biopha.2023.116115] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Ferroptosis and cuproptosis, regulated forms of cell death resulting from metal ion accumulation, are closely related in terms of occurrence, cell metabolism, signaling pathways, and drug resistance. Notably, it is now understood that these processes play crucial roles in regulating physiological and pathological processes, especially in tumor development. Consequently, ferroptosis and cuproptosis have gained increasing significance as potential targets for anti-cancer drug development. This article systematically outlines the molecular mechanisms and cross-talk components of both ferroptosis and cuproptosis, elucidating their impacts on cancer. Furthermore, it investigates the clinical perspective of targeted ferroptosis and cuproptosis in cancer chemotherapy, immunotherapy, and radiotherapy. Our discussion extends to a comparative analysis of nanoparticles developed based on the mechanisms of ferroptosis and cuproptosis in cancer, contrasting them with current conventional therapies. Opportunities and challenges in cancer treatment are explored, emphasizing the potential therapeutic direction of co-targeting ferroptosis and cuproptosis. The article also attempts to analyze the clinical applications of this co-targeting approach for cancer treatment while summarizing the existing barriers that require overcoming.
Collapse
Affiliation(s)
- Na Liu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Minbin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| |
Collapse
|
68
|
Li X, Lu K, Guo S, Xue S, Lian F. TRPV4 blockade alleviates endoplasmic reticulum stress mediated apoptosis in hypoxia-induced cardiomyocyte injury. Cell Signal 2024; 114:110973. [PMID: 37981067 DOI: 10.1016/j.cellsig.2023.110973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Hypoxia-induced myocardial injury remains to be a huge health issue worldwide. Transient receptor potential vanilloid 4 (TRPV4) is a high-flux Ca2+ channel that is involved in numerous cardiovascular diseases. However, the role of TRPV4 in myocardial hypoxic injury remains unclear. Accordingly, this study aimed to investigate the antiapoptotic activity of TRPV4 inhibition and elucidate the underlying mechanisms in myocardial hypoxic injury. METHODS The ability of TRPV4 to modulate the endoplasmic reticulum stress (ERS) and apoptosis was assessed in vitro through the administration of the TRPV4 antagonist HC-067047 or the agonist GSK1016790A. Additionally, intracellular Ca2+ concentration was measured by Fluo-4 AM. RESULTS TRPV4 expression was significantly upregulated in hypoxic H9c2 cells compared with that in normoxic cardiomyocytes, accompanied with increased intracellular Ca2+ levels. Conversely, TRPV4 inhibition alleviated ERS in hypoxic H9c2 cells and prevented apoptosis, whereas TRPV4 agonist exacerbated such events. Furthermore, H9c2 cell apoptosis was attenuated with the administration of 4-PBA, an ERS inhibitor. CONCLUSION TRPV4 inhibition alleviates hypoxia-induced H9c2 cell apoptosis by mitigating ERS.
Collapse
Affiliation(s)
- Xueqing Li
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Kongli Lu
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Suxiang Guo
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.
| | - Feng Lian
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.
| |
Collapse
|
69
|
Feng S, Zhang Y, Zhu H, Jian Z, Zeng Z, Ye Y, Li Y, Smerin D, Zhang X, Zou N, Gu L, Xiong X. Cuproptosis facilitates immune activation but promotes immune escape, and a machine learning-based cuproptosis-related signature is identified for predicting prognosis and immunotherapy response of gliomas. CNS Neurosci Ther 2024; 30:e14380. [PMID: 37515314 PMCID: PMC10848101 DOI: 10.1111/cns.14380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
AIMS Cell death, except for cuproptosis, in gliomas has been extensively studied, providing novel targets for immunotherapy by reshaping the tumor immune microenvironment through multiple mechanisms. This study aimed to explore the effect of cuproptosis on the immune microenvironment and its predictive power in prognosis and immunotherapy response. METHODS Eight glioma cohorts were included in this study. We employed the unsupervised clustering algorithm to identify novel cuproptosis clusters and described their immune microenvironmental characteristics, mutation landscape, and altered signaling pathways. We verified the correlation among FDX1, SLC31A1, and macrophage infiltration in 56 glioma tissues. Next, based on multicenter cohorts and 10 machine learning algorithms, we constructed an artificial intelligence-driven cuproptosis-related signature named CuproScore. RESULTS Our findings suggested that glioma patients with high levels of cuproptosis had a worse prognosis owing to immunosuppression caused by unique immune escape mechanisms. Meanwhile, we experimentally validated the positive association between cuproptosis and macrophages and its tumor-promoting mechanism in vitro. Furthermore, our CuproScore exhibited powerful and robust prognostic predictive ability. It was also capable of predicting response to immunotherapy and chemotherapy drug sensitivity. CONCLUSIONS Cuproptosis facilitates immune activation but promotes immune escape. The CuproScore could predict prognosis and immunotherapy response in gliomas.
Collapse
Affiliation(s)
- Shi Feng
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yonggang Zhang
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Hua Zhu
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhihong Jian
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhi Zeng
- Department of PathologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yingze Ye
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yina Li
- Department of AnesthesiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Daniel Smerin
- Department of NeurosurgeryUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Xu Zhang
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ning Zou
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lijuan Gu
- Department of AnesthesiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xiaoxing Xiong
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
70
|
Gress V, Roussy M, Boulianne L, Bilodeau M, Cardin S, El-Hachem N, Lisi V, Khakipoor B, Rouette A, Farah A, Théret L, Aubert L, Fatima F, Audemard É, Thibault P, Bonneil É, Chagraoui J, Laramée L, Gendron P, Jouan L, Jammali S, Paré B, Simpson SM, Tran TH, Duval M, Teira P, Bittencourt H, Santiago R, Barabé F, Sauvageau G, Smith MA, Hébert J, Roux PP, Gruber TA, Lavallée VP, Wilhelm BT, Cellot S. CBFA2T3::GLIS2 pediatric acute megakaryoblastic leukemia is sensitive to BCL-XL inhibition by navitoclax and DT2216. Blood Adv 2024; 8:112-129. [PMID: 37729615 PMCID: PMC10787250 DOI: 10.1182/bloodadvances.2022008899] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/25/2023] [Accepted: 09/02/2023] [Indexed: 09/22/2023] Open
Abstract
ABSTRACT Acute megakaryoblastic leukemia (AMKL) is a rare, developmentally restricted, and highly lethal cancer of early childhood. The paucity and hypocellularity (due to myelofibrosis) of primary patient samples hamper the discovery of cell- and genotype-specific treatments. AMKL is driven by mutually exclusive chimeric fusion oncogenes in two-thirds of the cases, with CBFA2T3::GLIS2 (CG2) and NUP98 fusions (NUP98r) representing the highest-fatality subgroups. We established CD34+ cord blood-derived CG2 models (n = 6) that sustain serial transplantation and recapitulate human leukemia regarding immunophenotype, leukemia-initiating cell frequencies, comutational landscape, and gene expression signature, with distinct upregulation of the prosurvival factor B-cell lymphoma 2 (BCL2). Cell membrane proteomic analyses highlighted CG2 surface markers preferentially expressed on leukemic cells compared with CD34+ cells (eg, NCAM1 and CD151). AMKL differentiation block in the mega-erythroid progenitor space was confirmed by single-cell profiling. Although CG2 cells were rather resistant to BCL2 genetic knockdown or selective pharmacological inhibition with venetoclax, they were vulnerable to strategies that target the megakaryocytic prosurvival factor BCL-XL (BCL2L1), including in vitro and in vivo treatment with BCL2/BCL-XL/BCL-W inhibitor navitoclax and DT2216, a selective BCL-XL proteolysis-targeting chimera degrader developed to limit thrombocytopenia in patients. NUP98r AMKL were also sensitive to BCL-XL inhibition but not the NUP98r monocytic leukemia, pointing to a lineage-specific dependency. Navitoclax or DT2216 treatment in combination with low-dose cytarabine further reduced leukemic burden in mice. This work extends the cellular and molecular diversity set of human AMKL models and uncovers BCL-XL as a therapeutic vulnerability in CG2 and NUP98r AMKL.
Collapse
Affiliation(s)
- Verena Gress
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Mathieu Roussy
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Luc Boulianne
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Pathology, McGill University, Montréal, QC, Canada
| | - Mélanie Bilodeau
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Sophie Cardin
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Nehme El-Hachem
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Véronique Lisi
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Banafsheh Khakipoor
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Alexandre Rouette
- Molecular Diagnostic Laboratory, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
| | - Azer Farah
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Louis Théret
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Léo Aubert
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Furat Fatima
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Pathology, McGill University, Montréal, QC, Canada
| | - Éric Audemard
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Éric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Jalila Chagraoui
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, Montréal, Québec, Canada
| | - Louise Laramée
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Patrick Gendron
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Loubna Jouan
- Molecular Diagnostic Laboratory, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
| | - Safa Jammali
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Bastien Paré
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Shawn M Simpson
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Thai Hoa Tran
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Michel Duval
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Pierre Teira
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Henrique Bittencourt
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Raoul Santiago
- Division of Hematology-Oncology, Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QC, Canada
| | - Frédéric Barabé
- Centre de recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Guy Sauvageau
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, Montréal, Québec, Canada
- Division of Hematology, Maisonneuve-Rosemont Hospital, Montréal, QC, Canada
| | - Martin A Smith
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Josée Hébert
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Division of Hematology-Oncology and Quebec Leukemia Cell Bank, Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Philippe P Roux
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Tanja A Gruber
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Vincent-Philippe Lavallée
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Brian T Wilhelm
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Sonia Cellot
- Pediatric Hematology-Oncology Division, Charles-Bruneau Cancer Center, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
71
|
Collins C, Baker S, Brown J, Zheng H, Chan A, Stenius U, Narita M, Korhonen A. Text mining for contexts and relationships in cancer genomics literature. Bioinformatics 2024; 40:btae021. [PMID: 38258418 PMCID: PMC10822582 DOI: 10.1093/bioinformatics/btae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/27/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
MOTIVATION Scientific advances build on the findings of existing research. The 2001 publication of the human genome has led to the production of huge volumes of literature exploring the context-specific functions and interactions of genes. Technology is needed to perform large-scale text mining of research papers to extract the reported actions of genes in specific experimental contexts and cell states, such as cancer, thereby facilitating the design of new therapeutic strategies. RESULTS We present a new corpus and Text Mining methodology that can accurately identify and extract the most important details of cancer genomics experiments from biomedical texts. We build a Named Entity Recognition model that accurately extracts relevant experiment details from PubMed abstract text, and a second model that identifies the relationships between them. This system outperforms earlier models and enables the analysis of gene function in diverse and dynamically evolving experimental contexts. AVAILABILITY AND IMPLEMENTATION Code and data are available here: https://github.com/cambridgeltl/functional-genomics-ie.
Collapse
Affiliation(s)
- Charlotte Collins
- Language Technology Laboratory, Theoretical and Applied Linguistics, Faculty of Modern and Medieval Languages and Linguistics, University of Cambridge, Cambridge CB3 9DA, United Kingdom
| | - Simon Baker
- Language Technology Laboratory, Theoretical and Applied Linguistics, Faculty of Modern and Medieval Languages and Linguistics, University of Cambridge, Cambridge CB3 9DA, United Kingdom
| | - Jason Brown
- Language Technology Laboratory, Theoretical and Applied Linguistics, Faculty of Modern and Medieval Languages and Linguistics, University of Cambridge, Cambridge CB3 9DA, United Kingdom
| | - Huiyuan Zheng
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Adelyne Chan
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Ulla Stenius
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Anna Korhonen
- Language Technology Laboratory, Theoretical and Applied Linguistics, Faculty of Modern and Medieval Languages and Linguistics, University of Cambridge, Cambridge CB3 9DA, United Kingdom
| |
Collapse
|
72
|
Wang HH, Fan SQ, Zhan YT, Peng SP, Wang WY. Suppression of the SLC7A11/glutathione axis causes ferroptosis and apoptosis and alters the mitogen-activated protein kinase pathway in nasopharyngeal carcinoma. Int J Biol Macromol 2024; 254:127976. [PMID: 37951442 DOI: 10.1016/j.ijbiomac.2023.127976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/24/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
SLC7A11 is a unit of the glutamate cystine antiporter Xc- system. It functions to import cystine for glutathione biosynthesis and maintains the redox balance in cells. Sorafenib inhibits the transporter activity of SLC7A11. The use of sorafenib has been approved in the treatment of multiple cancers. However, at present, our understanding of the mechanism of SLC7A11 and sorafenib in nasopharyngeal carcinoma (NPC) remains limited. We found that the expression of SLC7A11 was upregulated in NPC. A high SLC7A11 expression was associated with poor prognosis, metastasis, and an advanced T stage, which can be used as an independent prognostic indicator of NPC. In vitro, we observed that NPC cells relied on cystine for survival. Targeting SLC7A11 resulted in glutathione biosynthesis limitation, intracellular reactive oxygen species accumulation, lipid peroxides, ferroptosis, and apoptosis. Meanwhile, it altered mitogen activated protein kinase pathway, including p38 activation but ERK inhibition in NPC. This limited the proliferation of NPC cells. Sorafenib inhibited the proliferation and induced the death of NPC cells in vivo. In conclusion, SLC7A11 plays an important role in the occurrence and progression of NPC and may be a novel target for NPC treatment.
Collapse
Affiliation(s)
- Hai-Hua Wang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Song-Qing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yu-Ting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shu-Ping Peng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Wei-Yuan Wang
- Department of Pathology, The Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
73
|
Li X, Rui J, Yang Z, Shang-Guan F, Shi H, Wang D, Sun J. Cuproptosis Related Gene DLD Associated with Poor Prognosis and Malignant Biological Characteristics in Lung Adenocarcinoma. Curr Cancer Drug Targets 2024; 24:867-880. [PMID: 38310466 DOI: 10.2174/0115680096271679231213060750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 02/05/2024]
Abstract
PURPOSE Cuproptosis plays a crucial role in the biological function of cells. The subject of this work was to analyze the effects of cuproptosis-related genes (CRGs) on the prognosis and biological function in lung adenocarcinoma (LUAD). METHODS In this study, RNA sequencing and clinical data of LUAD samples were screened from public databases and our institution. A CRG signature was identified by least absolute shrinkage and selection operator and Cox regression. In addition, this study analyzed the correlation between prognostic CRGs and clinicopathological features. Finally, this study studied the effect of inhibiting dihydrolipoamide dehydrogenase (DLD) expression on cell biological function. RESULTS There were 10 CRGs that showed differential expression between LUAD and normal tissues (p<0.05). A prognostic signature (DLD and lipoyltransferase 1 [LIPT1]) was constructed. Survival analysis suggested that patients with LUAD in the high-risk group had shorter overall survival (OS) (p<0.05). High expression of DLD and low expression of LIPT1 were significantly associated with shorter OS (p<0.05). Immunohistochemical analysis revealed that, in LUAD tissues, DLD was highly expressed, whereas LIPT1 was not detected. Finally, inhibition of DLD expression could significantly restrain cell proliferation, invasion and migration. CONCLUSION Overall, this prognostic CRG signature may play a pivotal role in LUAD outcome, while oncogene DLD may be a future therapeutic candidate for LUAD.
Collapse
Affiliation(s)
- Xinyang Li
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Junshuai Rui
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Zihan Yang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Feng Shang-Guan
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Haolin Shi
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Dengkui Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Jiachun Sun
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
74
|
Huang J, Xu Z, Chen D, Zhou C, Shen Y. Pancancer analysis reveals the role of disulfidptosis in predicting prognosis, immune infiltration and immunotherapy response in tumors. Medicine (Baltimore) 2023; 102:e36830. [PMID: 38206694 PMCID: PMC10754585 DOI: 10.1097/md.0000000000036830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024] Open
Abstract
Disulfidptosis has been reported as a novel cell death process, suggesting a therapeutic strategy for cancer treatment. Herein, we constructed a multiomics data analysis to reveal the effects of disulfidptosis in tumors. Data for 33 kinds of tumors were downloaded from UCSC Xene, and disulfidptosis-related genes (DRGs) were selected from a previous study. After finishing processing data by the R packages, the expression and coexpression of DRGs in different tumors were assessed as well as copy number variations. The interaction network was drawn by STRING, and the activity of disulfidptosis was compared to the single-sample gene set enrichment analysis algorithm. Subsequently, the differences in DRGs for prognosis and clinicopathological features were evaluated, and the tumor immune microenvironment was assessed by the TIMER and TISCH databases. Tumor mutation burden, stem cell features and microsatellite instability were applied to predict drug resistance, and the expression of checkpoints was identified for the prediction of immunotherapy. Moreover, the TCIA, CellMiner and Enrichr databases were also utilized for selecting potential agents. Ten DRGs were differentially expressed in tumors, and the plots of coexpression and interaction revealed their correlation. Survival analysis suggested SLC7A11 as the most prognosis-related DRG with the most significant results. Additionally, the comparison also reflected the differences in DRGs in the status of pathologic lymph node metastasis for 5 types of tumors. The tumor immune microenvironment showed commonality among tumors based on immune infiltration and single-cell sequencing, and the analysis of tumor mutation burden, stemness and microsatellite instability showed a mostly positive correlation with DRGs. Moreover, referring to the prediction about clinical treatment, most DRGs can enhance sensitivity to chemotherapeutic agents but decrease the response to immune inhibitors with increasing expression. In this study, a primarily synthetic landscape of disulfidptosis in tumors was established and provided guidance for further exploration and investigation.
Collapse
Affiliation(s)
- Juntao Huang
- Department of Otolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ziqian Xu
- Department of Dermatology, Ningbo First Hospital, Zhejiang University, Zhejiang, China
| | - Dahua Chen
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Chongchang Zhou
- Department of Otolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yi Shen
- Centre for Medical Research, Ningbo No.2 Hospital, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
75
|
Hu Y, Liu Y, Zong L, Zhang W, Liu R, Xing Q, Liu Z, Yan Q, Li W, Lei H, Liu X. The multifaceted roles of GSDME-mediated pyroptosis in cancer: therapeutic strategies and persisting obstacles. Cell Death Dis 2023; 14:836. [PMID: 38104141 PMCID: PMC10725489 DOI: 10.1038/s41419-023-06382-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Pyroptosis is a novel regulated cell death (RCD) mode associated with inflammation and innate immunity. Gasdermin E (GSDME), a crucial component of the gasdermin (GSDM) family proteins, has the ability to convert caspase-3-mediated apoptosis to pyroptosis of cancer cells and activate anti-tumor immunity. Accumulating evidence indicates that GSDME methylation holds tremendous potential as a biomarker for early detection, diagnosis, prognosis, and treatment of tumors. In fact, GSDME-mediated pyroptosis performs a dual role in anti-tumor therapy. On the one side, pyroptotic cell death in tumors caused by GSDME contributes to inflammatory cytokines release, which transform the tumor immune microenvironment (TIME) from a 'cold' to a 'hot' state and significantly improve anti-tumor immunotherapy. However, due to GSDME is expressed in nearly all body tissues and immune cells, it can exacerbate chemotherapy toxicity and partially block immune response. How to achieve a balance between the two sides is a crucial research topic. Meanwhile, the potential functions of GSDME-mediated pyroptosis in anti-programmed cell death protein 1 (PD-1) therapy, antibody-drug conjugates (ADCs) therapy, and chimeric antigen receptor T cells (CAR-T cells) therapy have not yet been fully understood, and how to improve clinical outcomes persists obscure. In this review, we systematically summarize the latest research regarding the molecular mechanisms of pyroptosis and discuss the role of GSDME-mediated pyroptosis in anti-tumor immunity and its potential applications in cancer treatment.
Collapse
Affiliation(s)
- Yixiang Hu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Ya Liu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Lijuan Zong
- Department of Rehabilitation Medicine, Zhongda Hospital of Southeast University, Nanjing, 210096, China
| | - Wenyou Zhang
- Department of Pharmacy, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Renzhu Liu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Qichang Xing
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Zheng Liu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Qingzi Yan
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Wencan Li
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Haibo Lei
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China.
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China.
| | - Xiang Liu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China.
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China.
| |
Collapse
|
76
|
Tang L, Yu Y, Deng W, Liu J, Wang Y, Ye F, Kang R, Tang D, He Q. TXNDC12 inhibits lipid peroxidation and ferroptosis. iScience 2023; 26:108393. [PMID: 38047088 PMCID: PMC10690572 DOI: 10.1016/j.isci.2023.108393] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Ferroptosis is a type of regulated cell death characterized by lipid peroxidation and subsequent damage to the plasma membrane. Here, we report a ferroptosis resistance mechanism involving the upregulation of TXNDC12, a thioredoxin domain-containing protein located in the endoplasmic reticulum. The inducible expression of TXNDC12 during ferroptosis in leukemia cells is inhibited by the knockdown of the transcription factor ATF4, rather than NFE2L2. Mechanistically, TXNDC12 acts to inhibit lipid peroxidation without affecting iron accumulation during ferroptosis. When TXNDC12 is overexpressed, it restores the sensitivity of ATF4-knockdown cells to ferroptosis. Moreover, TXNDC12 plays a GPX4-independent role in inhibiting lipid peroxidation. The absence of TXNDC12 enhances the tumor-suppressive effects of ferroptosis induction in both cell culture and animal models. Collectively, these findings demonstrate an endoplasmic reticulum-based anti-ferroptosis pathway in cancer cells with potential translational applications.
Collapse
Affiliation(s)
- Lanlan Tang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wenjun Deng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Yichun Wang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Fanghua Ye
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
77
|
Wang Y, Qin Z, Chen Y, Zheng Y, Jia L. A Novel LncRNA MASCC1 Regulates the Progression and Metastasis of Head and Neck Squamous Cell Carcinoma by Sponging miR-195. Cancers (Basel) 2023; 15:5792. [PMID: 38136338 PMCID: PMC10741893 DOI: 10.3390/cancers15245792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The altered expression of long noncoding RNAs (lncRNAs) is associated with human carcinogenesis. We performed a high-throughput analysis of lncRNA expression in strictly selected pairs of metastatic head and neck squamous cell carcinoma (HNSCC) and non-metastatic HNSCC samples. We identified a novel lncRNA, which was highly expressed in metastatic HNSCC, named Metastasis Associated Squamous Cell Carcinoma 1 (MASCC1), for further study. Using qRT-PCR, we further compared MASCC1 expression in 60 HNSCC samples. The results show that high expression of MASCC1 in patients with HNSCC was related to poor prognosis. In vitro, MASCC1 knockdown (KD) inhibited HNSCC proliferation, migration, invasion, and tumor sphere formation, while promoting apoptosis. In vivo, MASCC1 KD inhibited HNSCC growth and lymph node metastasis. Mechanistically, MASCC1 acted as a competing endogenous RNA (ceRNA) by binding to miR-195, subsequently regulating the expression of Cyclin D1, BCL-2, and YAP1. Moreover, miR-195 overexpression rescued the effects of MASCC1 on the biological behaviors of HNSCC. Taken together, our results suggest that MASCC1 is a novel oncogene that can predict the prognosis of patients with HNSCC and is a potential therapeutic target for HNSCC intervention.
Collapse
Affiliation(s)
- Yujia Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China; (Y.W.); (Z.Q.); (Y.C.)
| | - Zhen Qin
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China; (Y.W.); (Z.Q.); (Y.C.)
| | - Yiwen Chen
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China; (Y.W.); (Z.Q.); (Y.C.)
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China; (Y.W.); (Z.Q.); (Y.C.)
- Department of Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| |
Collapse
|
78
|
Tian X, Zhu S, Liu W, Wu X, Wei G, Zhang J, Anwaier A, Chen C, Ye S, Che X, Xu W, Qu Y, Zhang H, Ye D. Construction of cuproptosis signature based on bioinformatics and experimental validation in clear cell renal cell carcinoma. J Cancer Res Clin Oncol 2023; 149:17451-17466. [PMID: 37889309 DOI: 10.1007/s00432-023-05259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Cuproptosis was defined as a novel nonapoptotic cell death pathway and its potential function in clear cell renal cell carcinoma (ccRCC) remains unclear. METHODS We obtained gene expression profiles, somatic mutation and corresponding clinical information of 881 ccRCC samples from 3 cohorts including the cancer genome atlas cohort, GSE29609 cohort and CheckMate 025 cohort. As described in the latest published article, we enrolled 16 genes as cuproptosis-related genes (CRGs). We explored the expression level, variants and copy number variation of the CRGs. Univariate and multi-variate regression were utilized to assess the prognostic significance of the CRGs. Non-negative matrix factorization was used to identify potential subgroup and gene set variation analysis was used to explore the potential biological functions. CIBERSORT, ESTIMATE algorithm and single sample gene set enrichment analysis were used to evaluate the tumor microenvironment. In vitro experiments including CCK-8, transwell and wound healing assays were utilized to explore the potential biological function of DLAT in ccRCC. RESULTS We found that except for CDKN2A, the CRGs were positively associated with patients' OS. Cuproptosis cluster, cuproptosis gene cluster and cuproptosis score were established, respectively, and higher cuproptosis score was significantly associated with a worse OS in ccRCC (p < 0.001). The area under the receiver operating characteristic curve of the cuproptosis-related nomogram at 1 year, 3 years, 5 years was 0.858, 0.821 and 0.78, respectively. In addition, we found that the cuproptosis score was positively associated with PDCD1, CTLA4 expression level, thus the cuproptosis score may also reflect the dysfunction of tumor infiltrating immune cells. In vitro experiments indicated that overexpression of DLAT could inhibited the migration and proliferation ability of ccRCC cells. CONCLUSION Our findings identify a novel cuproptosis-related signature and the cuproptosis characteristics may influence the anti-tumor immunity though complex regulating networks, and thus cuproptosis may play a role in developing novel therapeutic target of ccRCC.
Collapse
Affiliation(s)
- Xi Tian
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shuxuan Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wangrui Liu
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Xinrui Wu
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Gaomeng Wei
- Department of Urology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, People's Republic of China
| | - Ji Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Aihetaimujiang Anwaier
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Cong Chen
- Department of Nursing, Fudan University Shanghai Cancer Cente, Shanghai, China
| | - Shiqi Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiangxian Che
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Yuanyuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
79
|
Khalil MI, Ali MM, Holail J, Houssein M. Growth or death? Control of cell destiny by mTOR and autophagy pathways. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 185:39-55. [PMID: 37944568 DOI: 10.1016/j.pbiomolbio.2023.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
One of the central regulators of cell growth, proliferation, and metabolism is the mammalian target of rapamycin, mTOR, which exists in two structurally and functionally different complexes: mTORC1 and mTORC2; unlike m TORC2, mTORC1 is activated in response to the sufficiency of nutrients and is inhibited by rapamycin. mTOR complexes have critical roles not only in protein synthesis, gene transcription regulation, proliferation, tumor metabolism, but also in the regulation of the programmed cell death mechanisms such as autophagy and apoptosis. Autophagy is a conserved catabolic mechanism in which damaged molecules are recycled in response to nutrient starvation. Emerging evidence indicates that the mTOR signaling pathway is frequently activated in tumors. In addition, dysregulation of autophagy was associated with the development of a variety of human diseases, such as cancer and aging. Since mTOR can inhibit the induction of the autophagic process from the early stages of autophagosome formation to the late stage of lysosome degradation, the use of mTOR inhibitors to regulate autophagy could be considered a potential therapeutic option. The present review sheds light on the mTOR and autophagy signaling pathways and the mechanisms of regulation of mTOR-autophagy.
Collapse
Affiliation(s)
- Mahmoud I Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, 11072809, Lebanon; Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Mohamad M Ali
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23, Uppsala, Sweden.
| | - Jasmine Holail
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.
| | - Marwa Houssein
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, 11072809, Lebanon.
| |
Collapse
|
80
|
Huang P, Duan W, Ruan C, Wang L, Hosea R, Wu Z, Zeng J, Wu S, Kasim V. NeuroD1-GPX4 signaling leads to ferroptosis resistance in hepatocellular carcinoma. PLoS Genet 2023; 19:e1011098. [PMID: 38134213 PMCID: PMC10773945 DOI: 10.1371/journal.pgen.1011098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/08/2024] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Cell death resistance is a hallmark of tumor cells that drives tumorigenesis and drug resistance. Targeting cell death resistance-related genes to sensitize tumor cells and decrease their cell death threshold has attracted attention as a potential antitumor therapeutic strategy. However, the underlying mechanism is not fully understood. Recent studies have reported that NeuroD1, first discovered as a neurodifferentiation factor, is upregulated in various tumor cells and plays a crucial role in tumorigenesis. However, its involvement in tumor cell death resistance remains unknown. Here, we found that NeuroD1 was highly expressed in hepatocellular carcinoma (HCC) cells and was associated with tumor cell death resistance. We revealed that NeuroD1 enhanced HCC cell resistance to ferroptosis, a type of cell death caused by aberrant redox homeostasis that induces lipid peroxide accumulation, leading to increased HCC cell viability. NeuroD1 binds to the promoter of glutathione peroxidase 4 (GPX4), a key reductant that suppresses ferroptosis by reducing lipid peroxide, and activates its transcriptional activity, resulting in decreased lipid peroxide and ferroptosis. Subsequently, we showed that NeuroD1/GPX4-mediated ferroptosis resistance was crucial for HCC cell tumorigenic potential. These findings not only identify NeuroD1 as a regulator of tumor cell ferroptosis resistance but also reveal a novel molecular mechanism underlying the oncogenic function of NeuroD1. Furthermore, our findings suggest the potential of targeting NeuroD1 in antitumor therapy.
Collapse
Affiliation(s)
- Ping Huang
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Wei Duan
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Cao Ruan
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lingxian Wang
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Rendy Hosea
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Zheng Wu
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Jianting Zeng
- Department of Hepatobiliary and Pancreatic Oncology, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China
| | - Shourong Wu
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China
| | - Vivi Kasim
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
81
|
Khorsandi K, Esfahani H, Ghamsari SK, Lakhshehei P. Targeting ferroptosis in melanoma: cancer therapeutics. Cell Commun Signal 2023; 21:337. [PMID: 37996827 PMCID: PMC10666330 DOI: 10.1186/s12964-023-01296-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/25/2023] [Indexed: 11/25/2023] Open
Abstract
Melanoma is an aggressive kind of skin cancer; its rate has risen rapidly over the past few decades. Melanoma reports for only about 1% of skin cancers but leads to a high majority of skin cancer deaths. Thus, new useful therapeutic approaches are currently required, to state effective treatments to consistently enhance the overall survival rate of melanoma patients. Ferroptosis is a recently identified cell death process, which is different from autophagy, apoptosis, necrosis, and pyroptosis in terms of biochemistry, genetics, and morphology which plays an important role in cancer treatment. Ferroptosis happens mostly by accumulating iron and lipid peroxides in the cell. Recently, studies have revealed that ferroptosis has a key role in the tumor's progression. Especially, inducing ferroptosis in cells can inhibit the tumor cells' growth, leading to back warding tumorigenesis. Here, we outline the ferroptosis characteristics from its basic role in melanoma cancer and mention its possible applications in melanoma cancer treatment. Video Abstract.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamics, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.
| | - HomaSadat Esfahani
- Department of Photodynamics, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | | | - Parisa Lakhshehei
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
82
|
Zhong F, Jiang J, Yao FY, Liu J, Shuai X, Wang XL, Huang B, Wang X. Development and validation of a disulfidptosis-related scoring system to predict clinical outcome and immunotherapy response in acute myeloid leukemia by integrated analysis of single-cell and bulk RNA-sequencing. Front Pharmacol 2023; 14:1272701. [PMID: 38053840 PMCID: PMC10694296 DOI: 10.3389/fphar.2023.1272701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
Background: Disulfidptosis is a metabolically relevant mode of cell death, and its relationship with acute myeloid leukemia (AML) has not been clarified. In this study, disulfidptosis scores were computed to examine the potential biological mechanisms. Methods: Consensus clustering was applied to detect disulfidptosis-related molecular subtypes. The least absolute shrinkage and selection operator (LASSO) regression analysis was used to construct a DRG prognostic model. Results: DRGs are upregulated in AML and associated with poor prognosis. The higher the disulfidptosis activity score, the worse the clinical outcome for patients, accompanied by increased immune checkpoint expression and tumor marker pathway activity. The two molecular subtypes exhibited distinct prognoses and tumor microenvironment (TME) profiles. A prognostic risk score model was established using six DRGs, and the AML cohort was divided into high- and low-risk score groups. Patients in the high-risk group experienced significantly worse prognosis, which was validated in seven AML cohorts. Receiver Operating Characteristic (ROC) curve analysis indicated that the area under the curve values for risk score prediction of 1-, 3-, and 5-year survival were 0.779, 0.714, and 0.778, respectively. The nomogram, in conjunction with clinicopathological factors, further improved the accuracy of prognosis prediction. The high-risk score group exhibited a higher somatic mutation frequency, increased immune-related signaling pathway activity, and greater immune checkpoint expression, suggesting a certain degree of immunosuppression. Patients with advanced age and higher cytogenetic risk also had elevated risk scores. According to drug prediction and AML anti-PD-1 therapy cohort analysis, the low-risk score group displayed greater sensitivity to chemotherapy drugs like cytarabine and midostaurin, while the high-risk score group was more responsive to anti-PD-1 therapy. Finally, clinical samples were collected for sequencing analysis, confirming that the progression of myeloid leukemia was associated with a higher risk score and a negative disulfidptosis score, suggesting that the poor prognosis of AML may be associated with disulfidptosis resistance. Conclusion: In conclusion, a systematic analysis of DRGs can help to identify potential disulfidptosis-related mechanisms and provide effective new biomarkers for prognosis prediction, TME assessment, and the establishment of personalized treatment plans in AML.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bo Huang
- Department of Clinical Laboratory, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaozhong Wang
- Department of Clinical Laboratory, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
83
|
Zhang X, Zhang M, Song L, Wang S, Wei X, Shao W, Song N. Leveraging diverse cell-death patterns to predict the prognosis, immunotherapy and drug sensitivity of clear cell renal cell carcinoma. Sci Rep 2023; 13:20266. [PMID: 37985807 PMCID: PMC10662159 DOI: 10.1038/s41598-023-46577-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) poses clinical challenges due to its varied prognosis, tumor microenvironment attributes, and responses to immunotherapy. We established a novel Programmed Cell Death-related Signature (PRS) for ccRCC assessment, derived through the Least Absolute Shrinkage and Selection Operator (LASSO) regression method. We validated PRS using the E-MTAB-1980 dataset and created PCD-related clusters via non-negative matrix factorization (NMF). Our investigation included an in-depth analysis of immune infiltration scores using various algorithms. Additionally, we integrated data from the Cancer Immunome Atlas (TCIA) for ccRCC immunotherapy insights and leveraged the Genomics of Drug Sensitivity in Cancer (GDSC) database to assess drug sensitivity models. We complemented our findings with single-cell sequencing data and employed the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and qRT-PCR to compare gene expression profiles between cancerous and paracancerous tissues. PRS serves as a valuable tool for prognostication, immune characterization, tumor mutation burden estimation, immunotherapy response prediction, and drug sensitivity assessment in ccRCC. We identify five genes with significant roles in cancer promotion and three genes with cancer-suppressive properties, further validated by qRT-PCR and CPTAC analyses, showcasing gene expression differences in ccRCC tissues. Our study introduces an innovative PCD model that amalgamates diverse cell death patterns to provide accurate predictions for clinical outcomes, mutational profiles, and immune characteristics in ccRCC. Our findings hold promise for advancing personalized treatment strategies in ccRCC patients.
Collapse
Affiliation(s)
- Xi Zhang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Mingcong Zhang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lebin Song
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shuai Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiyi Wei
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wenchuan Shao
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ninghong Song
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
84
|
Zhao X, Zhang J, Liu J, Chen Q, Cai C, Miao X, Wu T, Cheng X. Identification of mitochondrial-related signature and molecular subtype for the prognosis of osteosarcoma. Aging (Albany NY) 2023; 15:12794-12816. [PMID: 37976137 DOI: 10.18632/aging.205143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/26/2023] [Indexed: 11/19/2023]
Abstract
Mitochondria play a vital role in osteosarcoma. Therefore, the purpose of this study was to investigate the potential role of mitochondrial-related genes (MRGs) in osteosarcoma. Based on 92 differentially expressed MRGs, osteosarcoma samples were divided into two subtypes using the nonnegative matrix factorization (NMF). Ultimately, a univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox analysis were performed to construct a prognostic risk model. The single-sample gene set enrichment analysis assessed the immune infiltration characteristics of osteosarcoma patients. Finally, we identified an osteosarcoma biomarker, malonyl-CoA decarboxylase (MLYCD), which showed downregulation. Osteosarcoma cells proliferation, migration, and invasion were effectively inhibited by the overexpression of MLYCD. Our findings will help us to further understand the molecular mechanisms of osteosarcoma and contribute to the discovery of new diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Xiaokun Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Jian Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Jiahao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Qi Chen
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Changxiong Cai
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Xinxin Miao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Tianlong Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| |
Collapse
|
85
|
Hassan AHE, Wang CY, Lee CJ, Jeon HR, Choi Y, Moon S, Lee CH, Kim YJ, Cho SB, Mahmoud K, El-Sayed SM, Lee SK, Lee YS. Repurposing Synthetic Congeners of a Natural Product Aurone Unveils a Lead Antitumor Agent Inhibiting Folded P-Loop Conformation of MET Receptor Tyrosine Kinase. Pharmaceuticals (Basel) 2023; 16:1597. [PMID: 38004462 PMCID: PMC10675456 DOI: 10.3390/ph16111597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
A library of 24 congeners of the natural product sulfuretin were evaluated against nine panels representing nine cancer diseases. While sulfuretin elicited very weak activities at 10 µM concentration, congener 1t was identified as a potential compound triggering growth inhibition of diverse cell lines. Mechanistic studies in HCT116 colon cancer cells revealed that congener 1t dose-dependently increased levels of cleaved-caspases 8 and 9 and cleaved-PARP, while it concentration-dependently decreased levels of CDK4, CDK6, Cdc25A, and Cyclin D and E resulting in induction of cell cycle arrest and apoptosis in colon cancer HCT116 cells. Mechanistic study also presented MET receptor tyrosine kinase as the molecular target mediating the anticancer activity of compound 1t in HCT116 cells. In silico study predicted folded p-loop conformation as the form of MET receptor tyrosine kinase responsible for binding of compound 1t. Together, the current study presents compound 1t as an interesting anticancer lead for further development.
Collapse
Affiliation(s)
- Ahmed H. E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Cai Yi Wang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheol Jung Lee
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hye Rim Jeon
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yeonwoo Choi
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Suyeon Moon
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chae Hyeon Lee
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yeon Ju Kim
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Soo Bin Cho
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kazem Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt
| | - Selwan M. El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
86
|
Kourie HR, Zouein J, Succar B, Mardirossian A, Ahmadieh N, Chouery E, Mehawej C, Jalkh N, kattan J, Nemr E. Genetic Polymorphisms Involved in Bladder Cancer: A Global Review. Oncol Rev 2023; 17:10603. [PMID: 38025894 PMCID: PMC10657888 DOI: 10.3389/or.2023.10603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Bladder cancer (BC) has been associated with genetic susceptibility. Single peptide polymorphisms (SNPs) can modulate BC susceptibility. A literature search was performed covering the period between January 2000 and October 2020. Overall, 334 articles were selected, reporting 455 SNPs located in 244 genes. The selected 455 SNPs were further investigated. All SNPs that were associated with smoking and environmental exposure were excluded from this study. A total of 197 genes and 343 SNPs were found to be associated with BC, among which 177 genes and 291 SNPs had congruent results across all available studies. These genes and SNPs were classified into eight different categories according to their function.
Collapse
Affiliation(s)
- Hampig Raphael Kourie
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Joseph Zouein
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Bahaa Succar
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Avedis Mardirossian
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Nizar Ahmadieh
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Eliane Chouery
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Cybel Mehawej
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Nadine Jalkh
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Joseph kattan
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Elie Nemr
- Urology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| |
Collapse
|
87
|
Ibarra-Berumen J, Moreno-Eutimio MA, Rosales-Castro M, Ordaz-Pichardo C. Cytotoxic effect and induction of apoptosis in human cervical cancer cells by a wood extract from Prosopis laevigata. Drug Chem Toxicol 2023; 46:931-943. [PMID: 35950554 DOI: 10.1080/01480545.2022.2109046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 12/31/2022]
Abstract
Cervical cancer ranks fourth in incidence among women worldwide. Cisplatin is currently the first-line drug of treatment for cervical cancer; however, it causes serious adverse effects. Therefore, it is crucial to explore natural products for cervical cancer treatment. Prosopis laevigata is a medicinal plant frequently used for ophthalmological and gastrointestinal infections. In this study, we used the MTT cell viability assay to evaluate the cytotoxic effect of a wood extract from Prosopis laevigata (Extract T7) in SiHa, HeLa, Ca Ski, and C-33 A cancer cell lines. Phosphatidylserine translocation and cell cycle evaluations were performed to determine the mechanism of cellular death. The extract's safety was evaluated using the Ames test with Salmonella typhimurium strains, in vivo acute toxicity assay, and repeated dose toxicity assay in mice. We also identified phenolic compounds of Extract T7 through liquid chromatography/mass spectrometry. Naringin, catechin, and eriodictyol demonstrated a higher concentration in Extract T7. Additionally, Extract T7 exhibited a cytotoxic effect against cervical cancer cells, where C-33 A was the most sensitive (IC50= 22.58 ± 1.10 µg/mL and 14.26 ± 1.11 µg/mL at 24 h and 48 h respectively). Extract T7 induced death by apoptosis and cell cycle arrest in the G2 phase in C-33 A. Extract T7 was not mutagenic. No toxicological effects were observed during acute toxicity and repeated dose toxicity for 28 days. Therefore, further evaluations of Extract T7 should be conducted to identify the complete mechanism of action for potential anti-tumoral activity and safety before conducting studies in animal models.
Collapse
Affiliation(s)
- Jorge Ibarra-Berumen
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional - Unidad Durango, Instituto Politécnico Nacional, Durango, Dgo, México
| | - Mario Adán Moreno-Eutimio
- Facultad de Química, Universidad Nacional Autónoma de México, Alc. Coyoacán, Ciudad de México, México
| | - Martha Rosales-Castro
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional - Unidad Durango, Instituto Politécnico Nacional, Durango, Dgo, México
| | - Cynthia Ordaz-Pichardo
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Alc. Gustavo A. Madero, Ciudad de México, México
| |
Collapse
|
88
|
Gao W, He X, Huangfu Q, Xie Y, Chen K, Sun C, Wei J, Wang B. A novel cuproptosis-related prognostic gene signature in adrenocortical carcinoma. J Clin Lab Anal 2023; 37:e24981. [PMID: 37997497 PMCID: PMC10749488 DOI: 10.1002/jcla.24981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Adrenocortical carcinoma (ACC) is an aggressive and rare malignant tumor associated with poor outcomes. Cuproptosis, a new pattern of cell death, relies on mitochondrial respiration and is associated with protein lipoylation. Increasing evidence has demonstrated the potential roles of cuproptosis in several tumor entities. However, the relationship between cuproptosis and ACC remains unclear. METHODS In total, 10 cuproptosis-related genes (CRGs) of patients with ACC were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases and differential expression analysis of CRGs was analyzed. Functional enrichment of the CRGs was performed and protein-protein interaction analysis was utilized to explore the association between the CRGs. Cuproptosis-related risk score (CRRS) was constructed by Lasso Cox regression and validated. RESULTS In the current study, the alteration and expression patterns of 10 CRGs in TCGA-ACC datasets were analyzed. We identified different expression patterns of CRGs in ACCs, discovered strong associations between CRGs and ACCs, and found that the CRGs were associated with immune infiltration in ACCs. A CRRS was created thereafter to predict overall survival (OS). CRRS = (0.083103718) *FDX1 + (-0.278423862) *LIAS+(0.090985682) *DLAT+(-0.018784047) *PDHA1 + (0.297218951) *MTF1 + (0.310197964) *CDKN2A. Patients were divided into high- and low-risk groups based on their CRRS, and independent prognostic factors were investigated. Finally, CDKN2A and FDX1 were found to be independent prognostic predictors of patients with ACC. CONCLUSIONS CDKN2A and FDX1 are independent prognostic predictors of patients with ACC. Cuproptosis may play a role in the development of ACC, providing a new perspective on therapeutic strategies related to CRGs for cancer prevention and treatment.
Collapse
Affiliation(s)
- Wenjun Gao
- Department of UrologyThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Xiaoyan He
- Department of Health EducationHangZhou Center for Disease Control and PreventionHangzhouChina
| | - Qi Huangfu
- Department of UrologyThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Yanqi Xie
- Department of UrologyThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Keliang Chen
- Department of Urology, 4th Affiliated HospitalZhejiang University School of MedicineYiwuZhejiangChina
| | - Chengfang Sun
- Department of UrologyThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Jingchao Wei
- Department of UrologyThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Bohan Wang
- Department of UrologyThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
89
|
Shi X, Ding H, Tao J, Zhu Y, Zhang X, He G, Yang J, Wu X, Liu X, Yu X. Comprehensive evaluation of cell death-related genes as novel diagnostic biomarkers for breast cancer. Heliyon 2023; 9:e21341. [PMID: 38027811 PMCID: PMC10643282 DOI: 10.1016/j.heliyon.2023.e21341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Background Breast cancer (BRCA) ranks first among cancers in terms of incidence and mortality rates in women, primarily owing to metastasis, chemo-resistance, and heterogeneity. To predict long-term prognosis and design novel therapies for BRCA, more sensitive markers need to be explored. Methods Data from 1089 BRCA patients were downloaded from TCGA database. Pearson's correlation analysis and univariate and multivariate Cox regression analyses were performed to assess the role of cell death-related genes (CDGs) in predicting BRCA prognosis. Kaplan-Meier survival curves were generated to compare the overall survival in the two subgroups. A nomogram was constructed using risk scores based on the five CDGs and other clinicopathological features. CCK-8, EdU incorporation, and colony formation assays were performed to verify the inhibitory effect of NFKBIA on BRCA cell proliferation. Transwell assay, flow cytometry, and immunohistochemistry analyses were performed to ascertain the biological function of NFKBIA. Results Five differentially expressed CDGs were detected among 156 CDGs. The risk score for each patient was then calculated based on the expression levels of the five CDGs. Distinct differences in immune infiltration, expression of immune-oncological targets, mutation status, and half-maximal inhibitory concentration values of some targeted drugs were observed between the high- and low-risk groups. Finally, in vitro cell experiments verified that NFKBIA overexpression suppresses the proliferation and migration of BRCA cells. Conclusions Our study revealed that some CDGs, especially NFKBIA, could serve as sensitive markers for predicting the prognosis of patients with BRCA and designing more personalized clinical therapies.
Collapse
Affiliation(s)
- Xiaoyue Shi
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Hao Ding
- Department of Breast Surgery, Baoying Maternal and Child Health Hospital, 120 Anyi East Road, Yangzhou, Jiangsu 225800, People's Republic of China
| | - Jing Tao
- Department of Thyroid-Breast Surgery, Nanjing Pukou Hospital, The Fourth Affiliated Hospital of Nanjing Medical University, 18 Puyuan Road, Nanjing, Jiangsu 210031, People's Republic of China
| | - Yanhui Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Xiaoqiang Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Gao He
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Junzhe Yang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Xian Wu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Xiaoan Liu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Xiafei Yu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
| |
Collapse
|
90
|
Gao Y, Wu Y, Huang P, Wu FY. Colorimetric and photothermal immunosensor for sensitive detection of cancer biomarkers based on enzyme-mediated growth of gold nanostars on polydopamine. Anal Chim Acta 2023; 1279:341775. [PMID: 37827632 DOI: 10.1016/j.aca.2023.341775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Detecting cancer biomarker levels in body fluids is essential for medical diagnosis. Enzyme-linked immunosorbent assay (ELISA) has been broadly used to detect cancer biomarkers. However, colorimetric ELISA based solely on nanoparticles (NPs) are susceptible to environmental influences, which often results in the detection inaccuracy, being limited in clinical applications. In this regard, the dual-mode approach would add signal diversity to the detection, making the results more reliable. RESULTS We present colorimetric and photothermal immunosensor that enables direct reading of the color and temperature of the solution. A core-satellite nanoprobe constructed by polydopamine (PDA) as the core and gold seeds as satellites is rationally designed as the signal reporter. When ascorbic acid is present in the solution, PDA can cooperate with ascorbic acid to reduce chloroauric acid and mediate the growth of gold seeds on the PDA surface, inducing a redshift of the localized surface plasmon resonance peak of the nanosensor and the change in photothermal conversion efficiency. The method is further combined with the sandwiched immunoassay to construct an alkaline phosphatase based colorimetric and photothermal ELISA for the highly sensitive and accurate evaluation and detection of prostate-specific antigen (PSA). The linear range was from 0.05 to 100 ng mL-1 with a detection limit of 6.71 pg mL-1 for the colorimetric detection, while the linear range was from 0.5 to 90 ng mL-1 with a detection limit of 0.13 ng mL-1 in the photothermal analysis. The accurate detection of PSA levels in serum samples was well demonstrated with the dual-mode approach. SIGNIFICANCE The presented immunoassay allows straightforward, sensitive, and selective readout by color and temperature without advanced instrumentation. Particularly, the LOD was much lower than the threshold in clinical trials for PSA. Therefore, this method has a great prospect in the early diagnosis of cancer biomarkers based on a dual-mode multifunctional platform.
Collapse
Affiliation(s)
- Yuting Gao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Yan Wu
- The First Affiliated Hospital of Nanchang University, Nanchang, 330096, China
| | - Pengcheng Huang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
| | - Fang-Ying Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
91
|
Chen JW, Chen S, Chen GQ. Recent advances in natural compounds inducing non-apoptotic cell death for anticancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:729-747. [PMID: 38239395 PMCID: PMC10792489 DOI: 10.20517/cdr.2023.78] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/22/2023] [Accepted: 10/10/2023] [Indexed: 01/22/2024]
Abstract
The induction of cell death is recognized as a potent strategy for cancer treatment. Apoptosis is an extensively studied form of cell death, and multiple anticancer drugs exert their therapeutic effects by inducing it. Nonetheless, apoptosis evasion is a hallmark of cancer, rendering cancer cells resistant to chemotherapy drugs. Consequently, there is a growing interest in exploring novel non-apoptotic forms of cell death, such as ferroptosis, necroptosis, pyroptosis, and paraptosis. Natural compounds with anticancer properties have garnered significant attention due to their advantages, including a reduced risk of drug resistance. Over the past two decades, numerous natural compounds have been discovered to exert anticancer and anti-resistance effects by triggering these four non-apoptotic cell death mechanisms. This review primarily focuses on these four non-apoptotic cell death mechanisms and their recent advancements in overcoming drug resistance in cancer treatment. Meanwhile, it highlights the role of natural compounds in effectively addressing cancer drug resistance through the induction of these forms of non-apoptotic cell death.
Collapse
Affiliation(s)
- Jia-Wen Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
| | - Sibao Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Guo-Qing Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| |
Collapse
|
92
|
Huang J, Zhang J, Zhang F, Lu S, Guo S, Shi R, Zhai Y, Gao Y, Tao X, Jin Z, You L, Wu J. Identification of a disulfidptosis-related genes signature for prognostic implication in lung adenocarcinoma. Comput Biol Med 2023; 165:107402. [PMID: 37657358 DOI: 10.1016/j.compbiomed.2023.107402] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most prevalent subtype of non-small cell lung cancer. Additionally, disulfidptosis, a newly discovered type of cell death, has been found to be closely associated with the onset and progression of tumors. METHODS The study first identified genes related to disulfidptosis through correlation analysis. These genes were then screened using univariate cox regression and LASSO regression, and a prognostic model was constructed through multivariate cox regression. A nomogram was also created to predict the prognosis of LUAD. The model was validated in three independent data sets: GSE72094, GSE31210, and GSE37745. Next, patients were grouped based on their median risk score, and differentially expressed genes between the two groups were analyzed. Enrichment analysis, immune infiltration analysis, and drug sensitivity evaluation were also conducted. RESULTS In this study, we examined 21 genes related to disulfidptosis and developed a gene signature that was found to be associated with a poorer prognosis in LUAD. Our model was validated using three independent datasets and showed AUC values greater than 0.5 at 1, 3, and 5 years. Enrichment analysis revealed that the disulfidptosis-related genes signature had a multifaceted impact on LUAD, particularly in relation to tumor development, proliferation, and metastasis. Patients in the high-risk group exhibited higher tumor purity and lower stromal score, ESTIMATE score, and Immune score. CONCLUSION This study constructed a gene signature related to disulfidptosis in lung adenocarcinoma and analyzed its impact on the disease and its association with the tumor microenvironment. The findings of this research provide valuable insights into the understanding of lung adenocarcinoma and could potentially lead to the development of new treatment strategies.
Collapse
Affiliation(s)
- Jiaqi Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingyuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fanqin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shan Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Siyu Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yiyan Zhai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yifei Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoyu Tao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhengsen Jin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Leiming You
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiarui Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
93
|
Gregory CD. Hijacking homeostasis: Regulation of the tumor microenvironment by apoptosis. Immunol Rev 2023; 319:100-127. [PMID: 37553811 PMCID: PMC10952466 DOI: 10.1111/imr.13259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
Cancers are genetically driven, rogue tissues which generate dysfunctional, obdurate organs by hijacking normal, homeostatic programs. Apoptosis is an evolutionarily conserved regulated cell death program and a profoundly important homeostatic mechanism that is common (alongside tumor cell proliferation) in actively growing cancers, as well as in tumors responding to cytotoxic anti-cancer therapies. Although well known for its cell-autonomous tumor-suppressive qualities, apoptosis harbors pro-oncogenic properties which are deployed through non-cell-autonomous mechanisms and which generally remain poorly defined. Here, the roles of apoptosis in tumor biology are reviewed, with particular focus on the secreted and fragmentation products of apoptotic tumor cells and their effects on tumor-associated macrophages, key supportive cells in the aberrant homeostasis of the tumor microenvironment. Historical aspects of cell loss in tumor growth kinetics are considered and the impact (and potential impact) on tumor growth of apoptotic-cell clearance (efferocytosis) as well as released soluble and extracellular vesicle-associated factors are discussed from the perspectives of inflammation, tissue repair, and regeneration programs. An "apoptosis-centric" view is proposed in which dying tumor cells provide an important platform for intricate intercellular communication networks in growing cancers. The perspective has implications for future research and for improving cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Christopher D. Gregory
- Centre for Inflammation ResearchInstitute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarterEdinburghUK
| |
Collapse
|
94
|
Zhang Y, Ye Y, Xu A, Luo Y, Sun Y, Zhang W, Ji L. Prognosis stratification of patients with breast invasive carcinoma based on cysteine metabolism-disulfidptosis affinity. J Cancer Res Clin Oncol 2023; 149:11979-11994. [PMID: 37422541 DOI: 10.1007/s00432-023-05028-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
PURPOSE The rise of female breast cancer has created a significant global public health issue that requires effective solutions. Disulfidptosis, a recently identified form of cell death characterized by an excessive accumulation of disulfides, has unique initiatory and regulatory mechanisms. The formation of disulfide bonds is a metabolic event typically associated with cysteines. This study aims to explore the potential of the affinity between cysteine metabolism and disulfidptosis in risk stratification for breast invasive carcinoma (BRCA). METHODS We used correlation analysis to decipher co-relation genes between cysteine metabolism and disulfidptosis (CMDCRGs). Both LASSO regression analysis and multivariate Cox regression analysis were employed to construct the prognostic signature. Additionally, we conducted investigations concerning subtype identification, functional enhancement, mutation landscape, immune infiltration, drug prioritization, and single-cell analysis. RESULTS We developed and validated a six-gene prognostic signature as an independent prognostic predictor for BRCA. The prognostic nomogram, based on risk score, demonstrated a favorable capability in predicting survival outcomes. We identified distinct gene mutations, functional enhancements, and immune infiltration patterns between the two risk groups. Four clusters of drugs were predicted as potentially effective for patients in the low-risk group. We identified seven cell clusters within the tumor microenvironment of breast cancer, and RPL27A was found to be widely expressed in this environment. CONCLUSION Multidimensional analyses confirmed the clinical utility of the cysteine metabolism-disulfidptosis affinity-based signature in risk stratification and guiding personalized treatment for patients with BRCA.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Breast Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, 510000, China
| | - Yinghui Ye
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Anping Xu
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Yulou Luo
- Department of Breast Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, China
| | - Yutian Sun
- Department of Medical Oncology, School of Medicine, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Wei Zhang
- Department of Breast Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, 510000, China.
| | - Ling Ji
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, 518000, China.
| |
Collapse
|
95
|
Tu T, Yuan Y, Liu X, Liang X, Yang X, Yang Y. Progress in investigating the relationship between Schlafen5 genes and malignant tumors. Front Oncol 2023; 13:1248825. [PMID: 37771431 PMCID: PMC10523568 DOI: 10.3389/fonc.2023.1248825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
The Schlafen5(SLFN5)gene belongs to the third group of the Schlafen protein family. As a tumor suppressor gene, SLFN5 plays a pivotal role in inhibiting tumor growth, orchestrating cell cycle regulation, and modulating the extent of cancer cell infiltration and metastasis in various malignancies. However, the high expression of SLFN 5 in some tumors was positively correlated with lymph node metastasis, tumor stage, and tumor grade. This article endeavors to elucidate the reciprocal relationship between the SLFN5 gene and malignant tumors, thereby enhancing our comprehension of the intricate mechanisms underlying the SLFN5 gene and its implications for the progression, invasive potential, and metastatic behavior of malignant tumors. At the same time, this paper summarizes the basis of SLFN 5 as a new biomarker of tumor diagnosis and prognosis, and provides new ideas for the target treatment of tumor.
Collapse
Affiliation(s)
- Teng Tu
- School of Basic Medicine, Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| | - Ye Yuan
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Xiaoxue Liu
- School of Basic Medicine, Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| | - Xin Liang
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Xiaofan Yang
- The 1st Clinical Medical College, Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| | - Yue Yang
- School of Basic Medicine, Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| |
Collapse
|
96
|
Lahooti B, Akwii RG, Zahra FT, Sajib MS, Lamprou M, Alobaida A, Lionakis MS, Mattheolabakis G, Mikelis CM. Targeting endothelial permeability in the EPR effect. J Control Release 2023; 361:212-235. [PMID: 37517543 DOI: 10.1016/j.jconrel.2023.07.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
The characteristics of the primary tumor blood vessels and the tumor microenvironment drive the enhanced permeability and retention (EPR) effect, which confers an advantage towards enhanced delivery of anti-cancer nanomedicine and has shown beneficial effects in preclinical models. Increased vascular permeability is a landmark feature of the tumor vessels and an important driver of the EPR. The main focus of this review is the endothelial regulation of vascular permeability. We discuss current challenges of targeting vascular permeability towards clinical translation and summarize the structural components and mechanisms of endothelial permeability, the principal mediators and signaling players, the targeted approaches that have been used and their outcomes to date. We also critically discuss the effects of the tumor-infiltrating immune cells, their interplay with the tumor vessels and the impact of immune responses on nanomedicine delivery, the impact of anti-angiogenic and tumor-stroma targeting approaches, and desirable nanoparticle design approaches for greater translational benefit.
Collapse
Affiliation(s)
- Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Racheal G Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Fatema Tuz Zahra
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Margarita Lamprou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece
| | - Ahmed Alobaida
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA.
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece.
| |
Collapse
|
97
|
Yang L, Xu F. A novel anoikis-related risk model predicts prognosis in patients with colorectal cancer and responses to different immunotherapy strategies. J Cancer Res Clin Oncol 2023; 149:10879-10892. [PMID: 37318595 DOI: 10.1007/s00432-023-04945-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023]
Abstract
PURPOSE We aimed to study the role of anoikis-related genes (ARGs) in colorectal cancer (CRC) using bioinformatics. METHODS GSE39582 and GSE39084, which collectively contain 363 CRC samples, were downloaded from the NCBI Gene Expression Omnibus (GEO) database as a test set. TCGA-COADREAD, with 376 CRC samples, was downloaded from the UCSC database as a validation set. Univariate Cox regression analysis was used to screen for ARGs that were significantly associated with prognosis. The top 10 ARGs were used to classify the samples into different subtypes based on unsupervised cluster analysis. The immune environments of the different subtypes were analyzed. ARGs that were significantly associated with CRC prognosis were used to construct a risk model. Univariate and multivariate Cox regression analyses were used to screen independent prognostic factors and construct a nomogram. RESULTS Four anoikis-related subtypes (ARSs) with differential prognoses and immune microenvironments were identified. KRAS and epithelial-mesenchymal transition pathways were enriched in subtype B, which had the worst prognosis. Three ARGs (DLG1, AKT3, and LPAR1) were used to construct the risk model. Both the test and validation sets showed worse outcomes for patients in the high-risk group than those in the low-risk group. Risk score was found to be an independent prognostic factor for CRC. Moreover, there was a difference in drug sensitivity between the high- and low-risk groups. CONCLUSION The identified ARGs and risk scores were associated with CRC prognosis and could predict the responses of patients with CRC to immunotherapy strategies.
Collapse
Affiliation(s)
- Lei Yang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Feng Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| |
Collapse
|
98
|
Talamantes S, Lisjak M, Gilglioni EH, Llamoza-Torres CJ, Ramos-Molina B, Gurzov EN. Non-alcoholic fatty liver disease and diabetes mellitus as growing aetiologies of hepatocellular carcinoma. JHEP Rep 2023; 5:100811. [PMID: 37575883 PMCID: PMC10413159 DOI: 10.1016/j.jhepr.2023.100811] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 08/15/2023] Open
Abstract
Obesity-related complications such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D) are well-established risk factors for the development of hepatocellular carcinoma (HCC). This review provides insights into the molecular mechanisms that underlie the role of steatosis, hyperinsulinemia and hepatic inflammation in HCC development and progression. We focus on recent findings linking intracellular pathways and transcription factors that can trigger the reprogramming of hepatic cells. In addition, we highlight the role of enzymes in dysregulated metabolic activity and consequent dysfunctional signalling. Finally, we discuss the potential uses and challenges of novel therapeutic strategies to prevent and treat NAFLD/T2D-associated HCC.
Collapse
Affiliation(s)
- Stephanie Talamantes
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Route de Lennik 808, Brussels, 1070, Belgium
| | - Michela Lisjak
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Route de Lennik 808, Brussels, 1070, Belgium
| | - Eduardo H. Gilglioni
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Route de Lennik 808, Brussels, 1070, Belgium
| | - Camilo J. Llamoza-Torres
- Department of Hepatology, Virgen de la Arrixaca University Hospital, Murcia, 30120, Spain
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, 30120, Spain
| | - Bruno Ramos-Molina
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, 30120, Spain
| | - Esteban N. Gurzov
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Route de Lennik 808, Brussels, 1070, Belgium
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, 30120, Spain
- WELBIO Department, WEL Research Institute, Avenue Pasteur 6, Wavre, 1300, Belgium
| |
Collapse
|
99
|
Park YR, Jee W, Park SM, Kim SW, Bae H, Jung JH, Kim H, Kim S, Chung JS, Jang HJ. Viscum album Induces Apoptosis by Regulating STAT3 Signaling Pathway in Breast Cancer Cells. Int J Mol Sci 2023; 24:11988. [PMID: 37569363 PMCID: PMC10418465 DOI: 10.3390/ijms241511988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
In this study, we investigated the potential anticancer effects of Viscum album, a parasitic plant that grows on Malus domestica (VaM) on breast cancer cells, and explored the underlying mechanisms. VaM significantly inhibited cell viability and proliferation and induced apoptosis in a dose-dependent manner. VaM also regulated cell cycle progression and effectively inhibited activation of the STAT3 signaling pathway through SHP-1. Combining VaM with low-dose doxorubicin produced a synergistic effect, highlighting its potential as a promising therapeutic. In vivo, VaM administration inhibited tumor growth and modulated key molecular markers associated with breast cancer progression. Overall, our findings provide strong evidence for the therapeutic potential of VaM in breast cancer treatment and support further studies exploring clinical applications.
Collapse
Affiliation(s)
- Ye-Rin Park
- College of Korean Medicine, Kyung Hee University, 24, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (Y.-R.P.); (W.J.); (S.-M.P.); (S.W.K.); (H.B.); (J.H.J.); (H.K.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wona Jee
- College of Korean Medicine, Kyung Hee University, 24, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (Y.-R.P.); (W.J.); (S.-M.P.); (S.W.K.); (H.B.); (J.H.J.); (H.K.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - So-Mi Park
- College of Korean Medicine, Kyung Hee University, 24, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (Y.-R.P.); (W.J.); (S.-M.P.); (S.W.K.); (H.B.); (J.H.J.); (H.K.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seok Woo Kim
- College of Korean Medicine, Kyung Hee University, 24, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (Y.-R.P.); (W.J.); (S.-M.P.); (S.W.K.); (H.B.); (J.H.J.); (H.K.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hanbit Bae
- College of Korean Medicine, Kyung Hee University, 24, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (Y.-R.P.); (W.J.); (S.-M.P.); (S.W.K.); (H.B.); (J.H.J.); (H.K.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji Hoon Jung
- College of Korean Medicine, Kyung Hee University, 24, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (Y.-R.P.); (W.J.); (S.-M.P.); (S.W.K.); (H.B.); (J.H.J.); (H.K.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyungsuk Kim
- College of Korean Medicine, Kyung Hee University, 24, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (Y.-R.P.); (W.J.); (S.-M.P.); (S.W.K.); (H.B.); (J.H.J.); (H.K.)
- Department of Korean Rehabilitation Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Sangki Kim
- Dalim Biotech, 33 Sinpyeong-ro, Jijeong-myeon, Wonju-si 26348, Republic of Korea; (S.K.); (J.S.C.)
| | - Jong Sup Chung
- Dalim Biotech, 33 Sinpyeong-ro, Jijeong-myeon, Wonju-si 26348, Republic of Korea; (S.K.); (J.S.C.)
| | - Hyeung-Jin Jang
- College of Korean Medicine, Kyung Hee University, 24, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (Y.-R.P.); (W.J.); (S.-M.P.); (S.W.K.); (H.B.); (J.H.J.); (H.K.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
100
|
Takács-Vellai K. Apoptosis and Autophagy, Different Modes of Cell Death: How to Utilize Them to Fight Diseases? Int J Mol Sci 2023; 24:11609. [PMID: 37511366 PMCID: PMC10380540 DOI: 10.3390/ijms241411609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
A careful balance between cell death and survival is of key importance when it comes to the maintenance of cellular homeostasis [...].
Collapse
|