51
|
Hunt PJ, Kabotyanski KE, Calin GA, Xie T, Myers JN, Amit M. Interrupting Neuron-Tumor Interactions to Overcome Treatment Resistance. Cancers (Basel) 2020; 12:E3741. [PMID: 33322770 PMCID: PMC7762969 DOI: 10.3390/cancers12123741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
Neurons in the tumor microenvironment release neurotransmitters, neuroligins, chemokines, soluble growth factors, and membrane-bound growth factors that solid tumors leverage to drive their own survival and spread. Tumors express nerve-specific growth factors and microRNAs that support local neurons and guide neuronal growth into tumors. The development of feed-forward relationships between tumors and neurons allows tumors to use the perineural space as a sanctuary from therapy. Tumor denervation slows tumor growth in animal models, demonstrating the innervation dependence of growing tumors. Further in vitro and in vivo experiments have identified many of the secreted signaling molecules (e.g., acetylcholine, nerve growth factor) that are passed between neurons and cancer cells, as well as the major signaling pathways (e.g., MAPK/EGFR) involved in these trophic interactions. The molecules involved in these signaling pathways serve as potential biomarkers of disease. Additionally, new treatment strategies focus on using small molecules, receptor agonists, nerve-specific toxins, and surgical interventions to target tumors, neurons, and immune cells of the tumor microenvironment, thereby severing the interactions between tumors and surrounding neurons. This article discusses the mechanisms underlying the trophic relationships formed between neurons and tumors and explores the emerging therapies stemming from this work.
Collapse
Affiliation(s)
- Patrick J. Hunt
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA; (P.J.H.); (K.E.K.)
- Department of Neurosurgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Katherine E. Kabotyanski
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA; (P.J.H.); (K.E.K.)
| | - George A. Calin
- Translational Molecular Pathology, Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Tongxin Xie
- Department of Head and Neck Surgery, Division of Surgery, MD Anderson Cancer Center, Houston, TX 77030, USA; (T.X.); (J.N.M.)
| | - Jeffrey N. Myers
- Department of Head and Neck Surgery, Division of Surgery, MD Anderson Cancer Center, Houston, TX 77030, USA; (T.X.); (J.N.M.)
| | - Moran Amit
- Department of Head and Neck Surgery, Division of Surgery, MD Anderson Cancer Center, Houston, TX 77030, USA; (T.X.); (J.N.M.)
| |
Collapse
|
52
|
Schlick K, Hohla F, Hamacher F, Hackl H, Hufnagl C, Markus S, Magnes T, Gampenrieder SP, Melchardt T, Stättner S, Hauser-Kronberger C, Greil R, Rinnerthaler G. Overcoming negative predictions of microRNA expressions to gemcitabine response with FOLFIRINOX in advanced pancreatic cancer patients. Future Sci OA 2020; 7:FSO644. [PMID: 33437513 PMCID: PMC7787156 DOI: 10.2144/fsoa-2020-0128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/18/2020] [Indexed: 01/05/2023] Open
Abstract
FOLFIRINOX is superior to gemcitabine in patients with pancreatic cancer, but this regimen is associated with toxicity and biomarkers for response are warranted. MicroRNAs can mediate drug resistance and could provide predictive information. Altered expressions of several microRNAs including miR-21-5p, miR-10b-5p and miR-34a-5p have been previously linked to a worse response to gemcitabine. We investigated the influence of expression levels in tumor tissue of those three microRNAs on outcome to FOLFIRINOX. Twenty-nine patients with sufficient formalin-fixed paraffin-embedded tumor tissue were identified. There was no significant association between high and low expression groups for these three microRNA. We conclude that polychemotherapy combination can overcome intrinsic negative prognostic factors.
Collapse
Affiliation(s)
- Konstantin Schlick
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
| | - Florian Hohla
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
| | - Frank Hamacher
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
| | - Hubert Hackl
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Clemens Hufnagl
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
| | - Steiner Markus
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Teresa Magnes
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
| | - Simon Peter Gampenrieder
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Thomas Melchardt
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Stefan Stättner
- Department of Surgery, Salzkammergutklinikum, Standort Vöcklabruck, Oberösterreich, Austria
- Department of Surgery, Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Richard Greil
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Gabriel Rinnerthaler
- IIIrd Medical Department with Hematology & Medical Oncology, Hemostaseology, Rheumatology & Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstrasse 48, Salzburg 5020, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological & Molecular Cancer Research & Center for Clinical Cancer & Immunology Trials, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
53
|
Gablo NA, Prochazka V, Kala Z, Slaby O, Kiss I. Cell-free microRNAs as Non-invasive Diagnostic and Prognostic Bio- markers in Pancreatic Cancer. Curr Genomics 2020; 20:569-580. [PMID: 32581645 PMCID: PMC7290054 DOI: 10.2174/1389202921666191217095017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/01/2019] [Accepted: 12/01/2019] [Indexed: 12/22/2022] Open
Abstract
Pancreatic cancer (PaC) is one of the most lethal cancers, with an increasing global incidence rate. Unfavorable prognosis largely results from associated difficulties in early diagnosis and the absence of prognostic and predictive biomarkers that would enable an individualized therapeutic approach. In fact, PaC prognosis has not improved for years, even though much efforts and resources have been devoted to PaC research, and the multimodal management of PaC patients has been used in clinical practice. It is thus imperative to develop optimal biomarkers, which would increase diagnostic precision and improve the post-diagnostic management of PaC patients. Current trends in biomarker research envisage the unique opportunity of cell-free microRNAs (miRNAs) present in circulation to become a convenient, non-invasive tool for accurate diagnosis, prognosis and prediction of response to treatment. This review analyzes studies focused on cell-free miRNAs in PaC. The studies provide solid evidence that miRNAs are detectable in serum, blood plasma, saliva, urine, and stool, and that they present easy-to-acquire biomarkers with strong diagnostic, prognostic and predictive potential.
Collapse
Affiliation(s)
- Natalia A Gablo
- 1Central European Institute of Technology, Masaryk University, Brno, Czech Republic; 2Department of Surgery, Institutions shared with the Faculty Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic; 3Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Vladimir Prochazka
- 1Central European Institute of Technology, Masaryk University, Brno, Czech Republic; 2Department of Surgery, Institutions shared with the Faculty Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic; 3Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Zdenek Kala
- 1Central European Institute of Technology, Masaryk University, Brno, Czech Republic; 2Department of Surgery, Institutions shared with the Faculty Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic; 3Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ondrej Slaby
- 1Central European Institute of Technology, Masaryk University, Brno, Czech Republic; 2Department of Surgery, Institutions shared with the Faculty Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic; 3Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Igor Kiss
- 1Central European Institute of Technology, Masaryk University, Brno, Czech Republic; 2Department of Surgery, Institutions shared with the Faculty Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic; 3Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|
54
|
Liu L, Wang Q, Qiu Z, Kang Y, Liu J, Ning S, Yin Y, Pang D, Xu S. Noncoding RNAs: the shot callers in tumor immune escape. Signal Transduct Target Ther 2020; 5:102. [PMID: 32561709 PMCID: PMC7305134 DOI: 10.1038/s41392-020-0194-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/17/2023] Open
Abstract
Immunotherapy, designed to exploit the functions of the host immune system against tumors, has shown considerable potential against several malignancies. However, the utility of immunotherapy is heavily limited due to the low response rate and various side effects in the clinical setting. Immune escape of tumor cells may be a critical reason for such low response rates. Noncoding RNAs (ncRNAs) have been identified as key regulatory factors in tumors and the immune system. Consequently, ncRNAs show promise as targets to improve the efficacy of immunotherapy in tumors. However, the relationship between ncRNAs and tumor immune escape (TIE) has not yet been comprehensively summarized. In this review, we provide a detailed account of the current knowledge on ncRNAs associated with TIE and their potential roles in tumor growth and survival mechanisms. This review bridges the gap between ncRNAs and TIE and broadens our understanding of their relationship, providing new insights and strategies to improve immunotherapy response rates by specifically targeting the ncRNAs involved in TIE.
Collapse
Affiliation(s)
- Lei Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhilin Qiu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yujuan Kang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Jiena Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Shipeng Ning
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yanling Yin
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China. .,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
55
|
Circulating MicroRNAs Regulating DNA Damage Response and Responsiveness to Cisplatin in the Prognosis of Patients with Non-Small Cell Lung Cancer Treated with First-Line Platinum Chemotherapy. Cancers (Basel) 2020; 12:cancers12051282. [PMID: 32438598 PMCID: PMC7281609 DOI: 10.3390/cancers12051282] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 05/15/2020] [Indexed: 12/29/2022] Open
Abstract
The expression of microRNA (miR)-21, miR-128, miR-155, and miR-181a involved in DNA damage response (DDR) and tumor responsiveness to platinum was assessed by RT-qPCR in the plasma of patients with non-small cell lung cancer (NSCLC; n = 128) obtained prior to initiation of first-line platinum chemotherapy. U6 small nuclear RNA (snRNA) was used for normalization, and fold change of each miRNA expression relative to the expression in healthy controls was calculated by the 2−ΔΔCt method. MicroRNA expression levels were correlated with patients’ outcomes. Integrated function and pathway enrichment analysis was performed to identify putative target genes. MiR-128, miR-155, and miR-181a expressions were higher in patients compared to healthy donors. MiRNA expression was not associated with response to treatment. High miR-128 and miR-155 were correlated with shorter overall survival (OS), whereas performance status (PS) 2 and high miR-128 independently predicted for decreased OS. In the squamous (SqCC) subgroup (n = 41), besides miR-128 and miR-155, high miR-21 and miR-181a expressions were also associated with worse survival and high miR-155 independently predicted for shorter OS. No associations of miRNA expression with clinical outcomes were observed in patients with non-SqCC (n = 87). Integrated function and pathway analysis on miRNA targets revealed significant enrichments in hypoxia-related pathways. Our study shows for the first time that plasma miR-128 and miR-155 hold independent prognostic implications in NSCLC patients treated with platinum-based chemotherapy possibly related to their involvement in tumor response to hypoxia. Further studies are needed to investigate the potential functional role of these miRNAs in an effort to exploit their therapeutic potential.
Collapse
|
56
|
Zhao F, Wei C, Cui MY, Xia QQ, Wang SB, Zhang Y. Prognostic value of microRNAs in pancreatic cancer: a meta-analysis. Aging (Albany NY) 2020; 12:9380-9404. [PMID: 32420903 PMCID: PMC7288910 DOI: 10.18632/aging.103214] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The prognostic impact of microRNA (miRNA) expression levels in pancreatic cancer (PC) has been estimated for years, but the outcomes are controversial and heterogeneous. Therefore, we comprehensively reviewed the evidence collected on miRNA expression in PC to determine this effect. RESULTS PC patients with high miR-21 (HR=2.61, 95%CI=1.68-4.04), miR-451a (HR=2.23, 95%CI=1.23-4.04) or miR-1290 (HR=1.43, 95%CI=1.04-1.95) levels in blood had significantly poorer OS (P<0.05). Furthermore, PC patients with high miR-10b (HR=1.73, 95%CI=1.09-2.76), miR-17-5p (HR=1.91, 95%CI=1.30-2.80), miR-21 (HR=1.90, 95%CI=1.61-2.25), miR-23a (HR=2.18, 95%CI=1.52-3.13), miR-155 (HR=2.22, 95%CI=1.27-3.88), miR-203 (HR=1.65, 95%CI=1.14-2.40), miR-221 (HR=1.72, 95%CI=1.08-2.74), miR-222 levels (HR=1.72, 95%CI=1.02-2.91) or low miR-29c (HR=1.39, 95%CI=1.08-1.79), miR-126 (HR=1.55, 95%CI=1.23-1.95), miR-218 (HR=2.62, 95%CI=1.41-4.88) levels in tissues had significantly shorter OS (P<0.05). CONCLUSIONS In summary, blood miR-21, miR-451a, miR-1290 and tissue miR-10b, miR-17-5p, miR-21, miR-23a, miR-29c, miR-126, miR-155, miR-203, miR-218, miR-221, miR-222 had significant prognostic value. METHODS We searched PubMed, EMBASE, Web of Science and Cochrane Database of Systematic Reviews to recognize eligible studies, and 57 studies comprising 5445 PC patients and 15 miRNAs were included to evaluate the associations between miRNA expression levels and overall survival (OS) up to June 1, 2019. Summary hazard ratios (HR) with 95% confidence intervals (CI) were calculated to assess the effect.
Collapse
Affiliation(s)
- Fei Zhao
- , Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Chao Wei
- College of Integrated Traditional Chinese and Western Medicine, Jining Medical University, Jining, Shandong, China
| | - Meng-Ying Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qiang-Qiang Xia
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Shuai-Bin Wang
- Department of Urology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yue Zhang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
57
|
Nakamaru K, Tomiyama T, Kobayashi S, Ikemune M, Tsukuda S, Ito T, Tanaka T, Yamaguchi T, Ando Y, Ikeura T, Fukui T, Nishio A, Takaoka M, Uchida K, Leung PSC, Gershwin ME, Okazaki K. Extracellular vesicles microRNA analysis in type 1 autoimmune pancreatitis: Increased expression of microRNA-21. Pancreatology 2020; 20:318-324. [PMID: 32147308 DOI: 10.1016/j.pan.2020.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The molecular basis of type 1 autoimmune pancreatitis (AIP) remains unclear. Recent attention on the role of extracellular vesicles microRNA (EV miRNA) in immune homeostasis has prompted us to perform an extensive miRNA screening of serum-derived EV in AIP. METHODS EV miRNA expression was analyzed using microarrays in AIP, chronic pancreatitis (CP), and healthy adult (HC) samples (n = 10 from each group). Differences in signals, > 3 or <1/3 times, represented significant differences in expression. Another cohort of AIP (n = 14), CP (n = 10), and HC (n = 10) samples of EV miRNA was analyzed using reverse-transcription polymerase chain reaction (RT-PCR). miRNA expression in pancreatic tissues was evaluated using in situ hybridization (ISH) in three additional subjects from each group. RESULTS Signals of eight miRNAs (miR-659-3p, -27a-3p, -99a-5p, -21-5p, -205-5p, -100-5p, -29c-3p, and -125b-1-3p) were significantly higher, while those of two miRNAs (miR-4252 and -5004-5p) were significantly lower in AIP than in HC. EV miR-21-5p was significantly up-regulated in AIP than in HC (P = 0.035) and CP (P = 0.048). The number of miR-21-5p positive inflammatory cells was significantly elevated in AIP than in CP (P = 0.014). CONCLUSIONS Circulating EVs exhibited altered miRNA expression patterns with elevated miR-21-5p in AIP when compared with those in HC and CP. miR-21-5p was highly expressed in pancreatic inflammatory cells in AIP. Our data suggests that miR-21-5p may be involved in the regulation of effector pathways in the pathophysiology of AIP, thus differentiating AIP from CP.
Collapse
Affiliation(s)
- Koh Nakamaru
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Takashi Tomiyama
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan.
| | - Sanshiro Kobayashi
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Manami Ikemune
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Satoshi Tsukuda
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Takashi Ito
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Toshihiro Tanaka
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Takashi Yamaguchi
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Yugo Ando
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Tsukasa Ikeura
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Toshiro Fukui
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Akiyoshi Nishio
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Makoto Takaoka
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Kazushige Uchida
- Division of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Kohasu Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive Suite 6510, Davis, CA, 95616, USA
| | - M E Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive Suite 6510, Davis, CA, 95616, USA
| | - Kazuichi Okazaki
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| |
Collapse
|
58
|
Yi M, Xu L, Jiao Y, Luo S, Li A, Wu K. The role of cancer-derived microRNAs in cancer immune escape. J Hematol Oncol 2020; 13:25. [PMID: 32222150 PMCID: PMC7103070 DOI: 10.1186/s13045-020-00848-8] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
During malignant transformation, accumulated somatic mutations endow cancer cells with increased invasiveness and immunogenicity. Under selective pressure, these highly immunogenic cancer cells develop multiple strategies to evade immune attack. It has been well established that cancer cells could downregulate the expression of major histocompatibility complex, acquire alterations in interferon pathway, and upregulate the activities of immune checkpoint pathways. Besides, cancer cells secret numerous cytokines, exosomes, and microvesicles to regulate the functions and abundances of components in the tumor microenvironment including immune effector cells and professional antigen presentation cells. As the vital determinant of post-transcriptional regulation, microRNAs (miRNAs) not only participate in cancer initiation and progression but also regulate anti-cancer immune response. For instance, some miRNAs affect cancer immune surveillance and immune escape by interfering the expression of immune attack-associated molecules. A growing body of evidence indicated that cancer-derived immune modulatory miRNAs might be promising targets to counteract cancer immune escape. In this review, we summarized the role of some miRNAs in cancer immune escape and discussed their potential clinical application as treatment targets.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Linping Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Ying Jiao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Anping Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| |
Collapse
|
59
|
Gong R, Jiang Y. Non-coding RNAs in Pancreatic Ductal Adenocarcinoma. Front Oncol 2020; 10:309. [PMID: 32257946 PMCID: PMC7089935 DOI: 10.3389/fonc.2020.00309] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are reported to be expressed in human cancers, including pancreatic ductal adenocarcinoma (PDAC). These ncRNAs affect the growth, migration and invasion of tumor cells by regulating cell cycle and apoptosis, as well as playing important roles in epigenetic processes, transcription and post-transcriptional regulation. It is still unclear whether alterations in ncRNAs influence PDAC development and progression. Because of this, analysis based on existing data on ncRNAs, which are crucial for modulating pancreatic tumorigenesis, will be important for future research on PDAC. Here, we summarize ncRNAs with tumor-promoting functions: HOTAIR, HOTTIP, MALAT1, lncRNA H19, lncRNA PVT1, circ-RNA ciRS-7, circ-0030235, circ-RNA_100782, circ-LDLRAD3, circ-0007534, circRHOT1, circZMYM2, circ-IARS, circ-RNA PDE8A, miR-21, miR-155, miR-221/222, miR-196b, miR-10a. While others including GAS5, MEG3, and lncRNA ENST00000480739, has_circ_0001649, miR-34a, miR-100, miR-217, miR-143 inhibit the proliferation and invasion of PDAC. Hence, we summarize the functions of ncRNAs in the occurrence, development and metastasis of PDAC, with the goal to provide guidance in the clinical diagnosis and treatment of PDAC.
Collapse
Affiliation(s)
- Ruining Gong
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yueping Jiang
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
60
|
Bautista-Sánchez D, Arriaga-Canon C, Pedroza-Torres A, De La Rosa-Velázquez IA, González-Barrios R, Contreras-Espinosa L, Montiel-Manríquez R, Castro-Hernández C, Fragoso-Ontiveros V, Álvarez-Gómez RM, Herrera LA. The Promising Role of miR-21 as a Cancer Biomarker and Its Importance in RNA-Based Therapeutics. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:409-420. [PMID: 32244168 PMCID: PMC7118281 DOI: 10.1016/j.omtn.2020.03.003] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs are small noncoding transcripts that posttranscriptionally regulate gene expression via base-pairing complementarity. Their role in cancer can be related to tumor suppression or oncogenic function. Moreover, they have been linked to processes recognized as hallmarks of cancer, such as apoptosis, invasion, metastasis, and proliferation. Particularly, one of the first oncomiRs found upregulated in a variety of cancers, such as gliomas, breast cancer, and colorectal cancer, was microRNA-21 (miR-21). Some of its target genes associated with cancer are PTEN (phosphatase and tensin homolog), PDCD4 (programmed cell death protein 4), RECK (reversion-inducing cysteine-rich protein with Kazal motifs), and STAT3 (signal transducer activator of transcription 3). As a result, miR-21 has been proposed as a plausible diagnostic and prognostic biomarker, as well as a therapeutic target for several types of cancer. Currently, research and clinical trials to inhibit miR-21 through anti-miR-21 oligonucleotides and ADM-21 are being conducted. As all of the evidence suggests, miR-21 is involved in carcinogenic processes; therefore, inhibiting it could have effects on more than one type of cancer. However, whether miR-21 can be used as a tissue-specific biomarker should be analyzed with caution. Consequently, the purpose of this review is to outline the available information and recent advances regarding miR-21 as a potential biomarker in the clinical setting and as a therapeutic target in cancer to highlight its importance in the era of precision medicine.
Collapse
Affiliation(s)
- Diana Bautista-Sánchez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Abraham Pedroza-Torres
- CONACYT-Instituto Nacional de Cancerología, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | | | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Laura Contreras-Espinosa
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Rogelio Montiel-Manríquez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Clementina Castro-Hernández
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Verónica Fragoso-Ontiveros
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Rosa María Álvarez-Gómez
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico; Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, Tlalpan, CP 14610, Mexico City, Mexico.
| |
Collapse
|
61
|
Wu CH, Chen CY, Yeh CT, Lin KH. Radiosensitization of Hepatocellular Carcinoma through Targeting Radio-Associated MicroRNA. Int J Mol Sci 2020; 21:ijms21051859. [PMID: 32182776 PMCID: PMC7084923 DOI: 10.3390/ijms21051859] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths worldwide. For patients who are resistant to monotherapy, multimodal therapy is a basic oncologic principle that incorporates surgery, radiotherapy (RT), and chemotherapy providing survival benefits for patients with most types of cancer. Although liver has low tolerance for radiation, high-precision RT for local HCC minimizes the likelihood of radiation-induced liver disease (RILD) in noncancerous liver tissue. RT have several therapeutic benefits, including the down-staging of tumors to make them resectable and repression of metastasis. The DNA damage response (DDR) is a cellular response to irradiation (IR), including DNA repair of injured cells and induction of programmed cell death, thereby resulting in maintenance of cell homeostasis. Molecules that block the activity of proteins in DDR pathways have been found to enhance radiotherapeutic effects. These molecules include antibodies, kinase inhibitors, siRNAs and miRNAs. MicroRNAs (miRNAs) are short non-coding regulatory RNAs binding to the 3'-untranslated regions (3'-UTR) of the messenger RNAs (mRNAs) of target genes, regulating their translation and expression of proteins. Thus, miRNAs and their target genes constitute complicated interactive networks, which interact with other molecules during carcinogenesis. Due to their promising roles in carcinogenesis, miRNAs were shown to be the potential factors that mediated radiosensitivity and optimized outcomes of the combination of systemic therapy and radiotherapy.
Collapse
Affiliation(s)
- Cheng-Heng Wu
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Correspondence: ; Tel./Fax: +886-3-2118263
| |
Collapse
|
62
|
Apoptotic functions of microRNAs in pathogenesis, diagnosis, and treatment of endometriosis. Cell Biosci 2020; 10:12. [PMID: 32082539 PMCID: PMC7014775 DOI: 10.1186/s13578-020-0381-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs or miRNAs are a component of the non-coding RNAs family which is engaged in many cellular functions such as cell proliferation, apoptosis, gene expression, signaling pathways, angiogenesis, and etc. Endometriosis is a malignant gynecologic disorder occurring in women before menopausal age. Pathogenesis of this illness is still a discussion subject between the scientists but in our knowledge, microRNAs can be one of the possible involved factors. The purpose of this paper is to investigate the role of apoptotic activities of miRNAs in endometriosis. Accumulative evidence has demonstrated the role of cell proliferation, apoptosis, and invasion in the progression of these diseases. In this review, we looked into the specific role of apoptosis and its related genes and pathways in endometriosis and tied to present an explanation of how miRNAs can affect endometriosis by their apoptotic activities. What we found is that a great extent of miRNAs is involved in this illness and they are responsible for repressing apoptosis and progression of the disease. As a result, miRNAs have two different usages in endometriosis: biomarkers and potential therapeutic targets. In this review we gathered a great amount of evidence to inquire into the role of micro RNAs in inducing apoptosis and how this mechanism can be exerted for therapeutic purposes for endometriosis.
Collapse
|
63
|
Cheng CS, Liu W, Zhou L, Tang W, Zhong A, Meng Z, Chen L, Chen Z. Prognostic Predicting Role of Contrast-Enhanced Computed Tomography for Locally Advanced Pancreatic Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1356264. [PMID: 31886169 PMCID: PMC6899328 DOI: 10.1155/2019/1356264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Contrast-enhanced computed tomography (CECT) imaging is commonly used to assess pancreatic adenocarcinoma (PAC). However, the value of semiquantitative and quantitative assessments of CECT parameters used to predict survival in PAC remains unknown. This study aims to investigate the prognostic role of pretreatment CECT imaging in patients with locally advanced pancreatic adenocarcinoma (LAPAC). MATERIALS AND METHODS From June 2013 to May 2017, eighty-six newly diagnosed patients with pathologically and radiologically confirmed LAPAC were retrospectively recruited. All patients were evaluated by CECT and experienced gemcitabine-based chemotherapy. The relationship between overall survival (OS) and clinical factors including age, sex, serum carbohydrate antigen 19-9 value, and CECT findings (including tumour location, tumour volume, peripancreatic involvement, blood vessel involvement, tumour enhanced rate, and distance liver metastasis) was determined using Cox proportional hazard regression models, and a nomogram was constructed for the prediction of 1- and 1.5-year survival rates of patients with LAPAC. RESULTS On univariate analysis, patients who had a tumour enhanced rate (TER) less than 80.465% and those who had a TER ≥ 80.465% are with a 3.587-fold increase in OS (p < 0.001). After multivariate Cox regression, a nomogram was established based on a new model containing the predictive variables of high Ca19-9 level, higher clinical stages, larger tumour volume, the presence of peripancreatic involvement, and liver metastases. The model displayed good accuracy in predicting OS with a C-index of 0.614. The calibration plots also showed a good discrimination and calibration of the nomogram between the predicted and observed survival probabilities. CONCLUSION Our results showed that TER can be used to predict survival in LAPAC, and we developed a nomogram for determining the prognosis of patients with LAPAC. However, the purposed nomogram still requires external data verification in future applications.
Collapse
Affiliation(s)
- Chien-shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wei Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Liangping Zhou
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Wei Tang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Ailing Zhong
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lianyu Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
64
|
Mironova N, Vlassov V. Surveillance of Tumour Development: The Relationship Between Tumour-Associated RNAs and Ribonucleases. Front Pharmacol 2019; 10:1019. [PMID: 31572192 PMCID: PMC6753386 DOI: 10.3389/fphar.2019.01019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Tumour progression is accompanied by rapid cell proliferation, loss of differentiation, the reprogramming of energy metabolism, loss of adhesion, escape of immune surveillance, induction of angiogenesis, and metastasis. Both coding and regulatory RNAs expressed by tumour cells and circulating in the blood are involved in all stages of tumour progression. Among the important tumour-associated RNAs are intracellular coding RNAs that determine the routes of metabolic pathways, cell cycle control, angiogenesis, adhesion, apoptosis and pathways responsible for transformation, and intracellular and extracellular non-coding RNAs involved in regulation of the expression of their proto-oncogenic and oncosuppressing mRNAs. Considering the diversity/variability of biological functions of RNAs, it becomes evident that extracellular RNAs represent important regulators of cell-to-cell communication and intracellular cascades that maintain cell proliferation and differentiation. In connection with the elucidation of such an important role for RNA, a surge in interest in RNA-degrading enzymes has increased. Natural ribonucleases (RNases) participate in various cellular processes including miRNA biogenesis, RNA decay and degradation that has determined their principal role in the sustention of RNA homeostasis in cells. Findings were obtained on the contribution of some endogenous ribonucleases in the maintenance of normal cell RNA homeostasis, which thus prevents cell transformation. These findings directed attention to exogenous ribonucleases as tools to compensate for the malfunction of endogenous ones. Recently a number of proteins with ribonuclease activity were discovered whose intracellular function remains unknown. Thus, the comprehensive investigation of physiological roles of RNases is still required. In this review we focused on the control mechanisms of cell transformation by endogenous ribonucleases, and the possibility of replacing malfunctioning enzymes with exogenous ones.
Collapse
Affiliation(s)
- Nadezhda Mironova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
65
|
Sun J, Jiang Z, Li Y, Wang K, Chen X, Liu G. Downregulation of miR-21 inhibits the malignant phenotype of pancreatic cancer cells by targeting VHL. Onco Targets Ther 2019; 12:7215-7226. [PMID: 31564905 PMCID: PMC6732742 DOI: 10.2147/ott.s211535] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022] Open
Abstract
Background MicroRNA (miR)-21 is overexpressed in numerous types of malignancy and participates in the development of cancer. However, the basic mechanism of the influence of miR-21 on the malignant phenotype of pancreatic cancer remains unclear. Purpose The present study aimed to investigate the role of miR-21 in pancreatic cancer development and explore its molecular mechanism. Patients and methods The tissue samples were collected at the Second Hospital of Tianjin Medical University (Tianjin, China) between January 2013 and December 2015. The expression of VHL in tissue samples was evaluated by IHC staining. The expression of miR-21 was measured by quantitative real-time polymerase chain reaction (qRT-PCR). MiR-21 target gene was detected by real-time PCR, Western blot and the luciferase reporter assay. Cell viability, cell proliferation, cell migration and invasion were evaluated by the MTT assays, the colony formation assays and the transwell assays. The nude mouse tumor xenograft model was performed to detect the effect of miR-21 on tumor growth in vivo. Results Von Hippel-Lindau tumor suppressor (VHL) was downregulated in pancreatic cancer tissues compared with pancreatic non-tumor tissues. VHL was identified as a novel direct target of miR-21, by which it is negatively regulated. In PANC-1 cells, inhibition of miR-21 and upregulation of VHL significantly suppressed cell proliferation, migration and invasion. Knockdown of miR-21 inhibited the hypoxia-inducible factor (HIF)-1α/vascular endothelial growth factor (VEGF) pathway, while inhibiting the expression of matrix metallopeptidase (MMP)-2 and MMP-9. Silencing of miR-21 inhibited tumor growth in vivo. Conclusion Knockdown miR-21 increased the expression of VHL, and thus modulated the HIF-1α/VEGF pathway and the expression of MMP-2 and MMP-9, which led to the inhibition of the proliferation, migration and invasion of pancreatic cancer cells. All of these results suggest that the miR-21/VHL interaction may be a novel potential target for pancreatic cancer prevention and therapy.
Collapse
Affiliation(s)
- Jinjin Sun
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Zhijia Jiang
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Yanxun Li
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Kaiqiang Wang
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Xing Chen
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Geng Liu
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
66
|
A Cell's Fate: An Overview of the Molecular Biology and Genetics of Apoptosis. Int J Mol Sci 2019; 20:ijms20174133. [PMID: 31450613 PMCID: PMC6747454 DOI: 10.3390/ijms20174133] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022] Open
Abstract
Apoptosis is one of the main types of regulated cell death, a complex process that can be triggered by external or internal stimuli, which activate the extrinsic or the intrinsic pathway, respectively. Among various factors involved in apoptosis, several genes and their interactive networks are crucial regulators of the outcomes of each apoptotic phase. Furthermore, mitochondria are key players in determining the way by which cells will react to internal stress stimuli, thus being the main contributor of the intrinsic pathway, in addition to providing energy for the whole process. Other factors that have been reported as important players of this intricate molecular network are miRNAs, which regulate the genes involved in the apoptotic process. Imbalance in any of these mechanisms can lead to the development of several illnesses, hence, an overall understanding of these processes is essential for the comprehension of such situations. Although apoptosis has been widely studied, the current literature lacks an updated and more general overview on this subject. Therefore, here, we review and discuss the mechanisms of apoptosis, highlighting the roles of genes, miRNAs, and mitochondria involved in this type of cell death.
Collapse
|
67
|
Shirjang S, Mansoori B, Asghari S, Duijf PHG, Mohammadi A, Gjerstorff M, Baradaran B. MicroRNAs in cancer cell death pathways: Apoptosis and necroptosis. Free Radic Biol Med 2019; 139:1-15. [PMID: 31102709 DOI: 10.1016/j.freeradbiomed.2019.05.017] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/01/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
To protect tissues and the organism from disease, potentially harmful cells are removed through programmed cell death processes, including apoptosis and necroptosis. These types of cell death are critically controlled by microRNAs (miRNAs). MiRNAs are short RNA molecules that target and inhibit expression of many cellular regulators, including those controlling programmed cell death via the intrinsic (Bcl-2 and Mcl-1), extrinsic (TRAIL and Fas), p53-and endoplasmic reticulum (ER) stress-induced apoptotic pathways, as well as the necroptosis cell death pathway. In this review, we discuss the current knowledge of apoptosis and necroptosis pathways and how these are impaired in cancer cells. We focus on how miRNAs disrupt apoptosis and necroptosis, thereby critically contributing to malignancy. Understanding which and how miRNAs and their targets affect cell death pathways could open up novel therapeutic opportunities for cancer patients. Indeed, restoration of pro-apoptotic tumor suppressor miRNAs (apoptomiRs) or inhibition of oncogenic miRNAs (oncomiRs) represent strategies that are currently being trialed or are already applied as miRNA-based cancer therapies. Therefore, better understanding the cancer type-specific expression of apoptomiRs and oncomiRs and their underlying mechanisms in cell death pathways will not only advance our knowledge, but also continue to provide new opportunities to treat cancer.
Collapse
Affiliation(s)
- Solmaz Shirjang
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Samira Asghari
- Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal H G Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Morten Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
68
|
Omar HA, El‐Serafi AT, Hersi F, Arafa EA, Zaher DM, Madkour M, Arab HH, Tolba MF. Immunomodulatory MicroRNAs in cancer: targeting immune checkpoints and the tumor microenvironment. FEBS J 2019; 286:3540-3557. [DOI: 10.1111/febs.15000] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/29/2019] [Accepted: 07/12/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Hany A. Omar
- Sharjah Institute for Medical Research University of Sharjah UAE
- Department of Pharmacology, Faculty of Pharmacy Beni‐Suef University Egypt
| | - Ahmed T. El‐Serafi
- Sharjah Institute for Medical Research University of Sharjah UAE
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Suez Canal University Ismailia Egypt
| | - Fatema Hersi
- Sharjah Institute for Medical Research University of Sharjah UAE
| | - El‐Shaimaa A. Arafa
- Department of Clinical Sciences, College of Pharmacy and Health Sciences Ajman University UAE
| | - Dana M. Zaher
- Sharjah Institute for Medical Research University of Sharjah UAE
| | - Mohamed Madkour
- Sharjah Institute for Medical Research University of Sharjah UAE
| | - Hany H. Arab
- Department of Biochemistry, Faculty of Pharmacy Cairo University Egypt
- Biochemistry Division and GTMR Unit, Department of Pharmacology and Toxicology, Faculty of Pharmacy Taif University Saudi Arabia
| | - Mai F. Tolba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy Ain Shams University Cairo Egypt
- Biology Department, School of Sciences and Engineering The American University in Cairo New Cairo Egypt
| |
Collapse
|
69
|
Cui M, Wang H, Yao X, Zhang D, Xie Y, Cui R, Zhang X. Circulating MicroRNAs in Cancer: Potential and Challenge. Front Genet 2019; 10:626. [PMID: 31379918 PMCID: PMC6656856 DOI: 10.3389/fgene.2019.00626] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding small RNA molecules that can be secreted into the circulation and exist in remarkably stable forms. Like intercellular miRNAs, circulating miRNAs participate in numerous regulations of biological process and expressed aberrantly under abnormal or pathological status. The quality and quantity changes of circulating miRNAs are associated with the initiation and progression of cancer and can be easily detected by basic molecular biology techniques. Consequently, considerable effort has been devoted to identify suitable extracellular miRNAs for noninvasive biomarkers in cancer. However, several challenges need to be overcome before the practical application. In this review, we discuss several issues of circulating miRNAs: biological function and basic transport carriers; extracellular cell communication process; roles as reliable cancer biomarkers and usage in targeted cancer therapy; and challenges for clinical application.
Collapse
Affiliation(s)
- Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hongdan Wang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoxiao Yao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yingjun Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
70
|
miRNA Predictors of Pancreatic Cancer Chemotherapeutic Response: A Systematic Review and Meta-Analysis. Cancers (Basel) 2019; 11:cancers11070900. [PMID: 31252688 PMCID: PMC6678460 DOI: 10.3390/cancers11070900] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND pancreatic cancer (PC) has increasing incidence and mortality in developing countries, and drug resistance is a significant hindrance to the efficacy of successful treatment. The objective of this systematic review and meta-analysis was to evaluate the association between miRNAs and response to chemotherapy in pancreatic cancer patients. METHODS the systematic review and meta-analysis was based on articles collected from a thorough search of PubMed and Science Direct databases for publications spanning from January 2008 to December 2018. The articles were screened via a set of inclusion and exclusion criteria based on the preferred reporting items for systematic review and meta-analysis (PRISMA) guidelines. Data was extracted, collated and tabulated in MS Excel for further synthesis. Hazard ratio (HR) was selected as the effect size metric to be pooled across studies for the meta-analysis, with the random effects model being applied. Subgroup analysis was also conducted, and the presence of publication bias in the selected studies was assessed. Publication bias of the included studies was quantified. FINDINGS of the 169 articles screened, 43 studies were included in our systematic review and 13 articles were included in the meta-analysis. Gemcitabine was observed to be the principal drug used in a majority of the studies. A total of 48 miRNAs have been studied, and 18 were observed to have possible contributions to chemoresistance, while 15 were observed to have possible contributions to chemosensitivity. 41 drug-related genetic pathways have been identified, through which the highlighted miRNA may be affecting chemosensitivity/resistance. The pooled HR value for overall survival was 1.603; (95% Confidence Interval (CI) 1.2-2.143; p-value: 0.01), with the subgroup analysis for miR-21 showing HR for resistance of 2.061; 95% CI 1.195-3.556; p-value: 0.09. INTERPRETATION our results highlight multiple miRNAs that have possible associations with modulation of chemotherapy response in pancreatic cancer patients. Further studies are needed to discover the molecular mechanisms underlying these associations before they can be suggested for use as biomarkers of response to chemotherapeutic interventions in pancreatic cancer.
Collapse
|
71
|
Current Evidence on miRNAs as Potential Theranostic Markers for Detecting Chemoresistance in Colorectal Cancer: A Systematic Review and Meta-Analysis of Preclinical and Clinical Studies. Mol Diagn Ther 2019; 23:65-82. [PMID: 30726546 DOI: 10.1007/s40291-019-00381-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Findings from observational clinical studies examining the relationship between biomarker expression and theranosis in colorectal cancer (CRC) have been conflicting. OBJECTIVE We conducted this systematic review and meta-analysis to summarise the existing evidence to demonstrate the involvement of microRNAs (miRNAs) in chemoresistance and sensitivity in CRC through drug genetic pathways. METHODS Using PRISMA guidelines, we systematically searched PubMed and Science Direct for relevant studies that took place between 2012 and 2017. A random-effects model of meta-analysis was applied to evaluate the pooled effect size of hazard ratios (HRs) across the included studies. Cochran's Q test and the I2 statistic were used to detect heterogeneity. A funnel plot was used to assess potential publication bias. RESULTS Of the 4700 studies found, 39 studies comprising 2822 patients with CRC met the inclusion criteria. The included studies used one or a combination of 14 chemotherapy drugs, including 5-fluorouracil and oxaliplatin. Of the 60 miRNAs, 28 were associated with chemosensitivity, 20 with chemoresistance, and one with differential expression and radiosensitivity; ten miRNAs were not associated with any impact on chemotherapy. The results outline the importance of 34 drug-regulatory pathways of chemoresistance and sensitivity in CRC. The mean effect size was 0.689 (95% confidence interval 0.428-1.110), indicating that the expression of miRNAs decreased the likelihood of death by about 32%. CONCLUSION Studies have consistently shown that multiple miRNAs could act as clinical predictors of chemoresistance and sensitivity. An inclusion of supplementary miRNA estimation in CRC routine practice needs to be considered to evaluate the efficacy of chemotherapy after confirming our findings with large-scale prospective cohort studies. PROSPERO REGISTRATION NUMBER CRD42017082196.
Collapse
|
72
|
Ramshani Z, Zhang C, Richards K, Chen L, Xu G, Stiles BL, Hill R, Senapati S, Go DB, Chang HC. Extracellular vesicle microRNA quantification from plasma using an integrated microfluidic device. Commun Biol 2019; 2:189. [PMID: 31123713 PMCID: PMC6527557 DOI: 10.1038/s42003-019-0435-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EV) containing microRNAs (miRNAs) have tremendous potential as biomarkers for the early detection of disease. Here, we present a simple and rapid PCR-free integrated microfluidics platform capable of absolute quantification (<10% uncertainty) of both free-floating miRNAs and EV-miRNAs in plasma with 1 pM detection sensitivity. The assay time is only 30 minutes as opposed to 13 h and requires only ~20 μL of sample as oppose to 1 mL for conventional RT-qPCR techniques. The platform integrates a surface acoustic wave (SAW) EV lysing microfluidic chip with a concentration and sensing microfluidic chip incorporating an electrokinetic membrane sensor that is based on non-equilibrium ionic currents. Unlike conventional RT-qPCR methods, this technology does not require EV extraction, RNA purification, reverse transcription, or amplification. This platform can be easily extended for other RNA and DNA targets of interest, thus providing a viable screening tool for early disease diagnosis, prognosis, and monitoring of therapeutic response.
Collapse
Affiliation(s)
- Zeinab Ramshani
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
- Center for Microfluidics and Medical Diagnostics, University of Notre Dame, Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Chenguang Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
- Center for Microfluidics and Medical Diagnostics, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Katherine Richards
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Lulu Chen
- Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90211 USA
| | - Geyang Xu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632 Guangdong China
| | - Bangyan L. Stiles
- Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90211 USA
| | - Reginald Hill
- Lawrence J. Ellison Institute for Transformative Medicine of USC, University of Southern California, Beverly Hills, CA 90211 USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
- Center for Microfluidics and Medical Diagnostics, University of Notre Dame, Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
| | - David B. Go
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
- Center for Microfluidics and Medical Diagnostics, University of Notre Dame, Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|
73
|
Yu X, Gao Y, Zhang F. Propofol inhibits pancreatic cancer proliferation and metastasis by up‐regulating miR‐328 and down‐regulating ADAM8. Basic Clin Pharmacol Toxicol 2019; 125:271-278. [PMID: 30861616 DOI: 10.1111/bcpt.13224] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/04/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Xiangdi Yu
- Department of Anesthesiology Guizhou Provincial People’s Hospital Guiyang China
| | - Yutong Gao
- Department of Anesthesiology Guizhou Provincial People’s Hospital Guiyang China
- Department of Biomedicine Guizhou University Guiyang China
| | - Fangxiang Zhang
- Department of Anesthesiology Guizhou Provincial People’s Hospital Guiyang China
| |
Collapse
|
74
|
Melisi D, Garcia-Carbonero R, Macarulla T, Pezet D, Deplanque G, Fuchs M, Trojan J, Kozloff M, Simionato F, Cleverly A, Smith C, Wang S, Man M, Driscoll KE, Estrem ST, Lahn MMF, Benhadji KA, Tabernero J. TGFβ receptor inhibitor galunisertib is linked to inflammation- and remodeling-related proteins in patients with pancreatic cancer. Cancer Chemother Pharmacol 2019; 83:975-991. [PMID: 30887178 DOI: 10.1007/s00280-019-03807-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/01/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE Galunisertib, the first small molecule transforming growth factor beta (TGFβ) receptor inhibitor, plus gemcitabine resulted in the improvement of survival in patients with unresectable pancreatic cancer, but markers to identify patients likely to respond are lacking. METHODS In the Phase 1b/2 JBAJ study, 156 patients were randomized 2:1 to galunisertib + gemcitabine (N = 104) or placebo + gemcitabine (N = 52). Clinical outcome data were integrated with baseline markers and pharmacodynamic markers while patients were on treatment, including circulating proteins using a multi-analyte panel, T cell subset evaluation, and miRNA profiling. RESULTS Baseline biomarkers associated with overall prognosis regardless of treatment included CA19-9 and TGF-β1. In addition, IP-10, FSH, MIP-1α, and PAI-1 were potential predictive proteins. Baseline proteins that were changed during treatment included amphiregulin, CA15-3, cathepsin D, P-selectin, RAGE, sortilin, COMP, eotaxin-2, N-BNP, osteopontin, and thrombospondin-4. Plasma miRNA with potential prognostic value included miR-21-5p, miR-301a-3p, miR-210-3p, and miR-141-3p, while those with potential predictive value included miR-424-5p, miR-483-3p, and miR-10b-5p. CONCLUSIONS Galunisertib + gemcitabine resulted in improvement of overall survival, and 4 proteins (IP-10, FSH, MIP-1α, PAI-1) were potentially predictive for this combination treatment. Future studies should also include baseline evaluation of miR-424-5p, miR-483-3p, and miR-10b-5p. TRIAL REGISTRATION Clinicaltrials.gov NCT01373164.
Collapse
Affiliation(s)
- Davide Melisi
- Digestive Molecular Clinical Oncology Research Unit, Section of Medical Oncology, Department of Medicine, Università degli studi di Verona, Piazzale L.A. Scuro, 10, 37134, Verona, Italy.
| | - Rocio Garcia-Carbonero
- University Hospital Doce de Octubre, Institute of Health Research Hospital 12 de Octubre (imas12), UCM, CNIO, CIBERONC, Madrid, Spain
| | - Teresa Macarulla
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Autonomous University of Barcelona, CIBERONC, Barcelona, Spain
| | - Denis Pezet
- Digestive Surgery Service, CHU Clermont-Ferrand, University Clermont Auvergne, Clermont-Ferrand, France
| | | | - Martin Fuchs
- Hospital Bogenhausen, Municipal Hospital Munich GmbH, Munich, Germany
| | - Jorg Trojan
- Goethe University Medical Center, Frankfurt, Germany
| | | | - Francesca Simionato
- Digestive Molecular Clinical Oncology Research Unit, Section of Medical Oncology, Department of Medicine, Università degli studi di Verona, Piazzale L.A. Scuro, 10, 37134, Verona, Italy
| | | | | | | | - Michael Man
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | | | - Josep Tabernero
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Autonomous University of Barcelona, CIBERONC, Barcelona, Spain
| |
Collapse
|
75
|
Qian L, Yu S, Yin C, Zhu B, Chen Z, Meng Z, Wang P. Plasma IFN-γ-inducible chemokines CXCL9 and CXCL10 correlate with survival and chemotherapeutic efficacy in advanced pancreatic ductal adenocarcinoma. Pancreatology 2019; 19:340-345. [PMID: 30685120 DOI: 10.1016/j.pan.2019.01.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Recent studies have suggested that the CXCL9, 10, 11/CXCR3 axis is significant in immune regulation and therapeutic efficacy in human cancers; however, its role in pancreatic ductal adenocarcinoma (PDAC) remains unknown. This study serves to evaluate the prognostic prediction value of plasma IFN-γ-inducible chemokines, CXCL9 and CXCL10, in advanced PDAC. METHODS Two hundred patients with advanced PDAC receiving palliative chemotherapy were retrospectively recruited. The association between Plasma CXCL9/CXCL10 levels and survival time was first analyzed in a test group of 110 patients and then confirmed in a validation group of 90 patients. RESULTS High levels of CXCL9 and CXCL10 were significantly correlated with longer overall survival (OS) in advanced PDAC patients (314 vs. 136 days for CXCL9, P < 0.0001, and 374 vs. 163 days for CXCL10, P < 0.0001, respectively) in the test group, which was consistent with the results derived from the validation group. In addition, high levels of CXCL9 and CXCL10 were associated with longer time to progression (TTP) in patients receiving chemotherapy (100 vs. 60 days for CXCL9, P = 0.0021, and 104 vs. 67 days for CXCL10, P = 0.0057, respectively). Multivariate analyses confirmed that CXCL9 and CXCL10 were independent prognostic predictors for OS (hazard ratio [HR]: 0.452, P < 0.001 for CXCL9; and HR: 0.586, P = 0.007 for CXCL10, respectively) and TTP (HR: 0.656, P = 0.015 for CXCL9; and HR: 0.687, P = 0.040 for CXCL10, respectively). CONCLUSIONS Plasma CXCL9 and CXCL10 can be used to predict survival of advanced PDAC patients receiving chemotherapy, allowing clinicians to potentially improve treatment outcomes by identifying candidates for aggressive therapy.
Collapse
Affiliation(s)
- Ling Qian
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai, 200032, China
| | - Shulin Yu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai, 200032, China
| | - Chengqian Yin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
| | - Bo Zhu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai, 200032, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai, 200032, China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai, 200032, China.
| |
Collapse
|
76
|
The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics 2019; 11:25. [PMID: 30744689 PMCID: PMC6371621 DOI: 10.1186/s13148-018-0587-8] [Citation(s) in RCA: 426] [Impact Index Per Article: 85.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 11/19/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with a length of about 19–25 nt, which can regulate various target genes and are thus involved in the regulation of a variety of biological and pathological processes, including the formation and development of cancer. Drug resistance in cancer chemotherapy is one of the main obstacles to curing this malignant disease. Statistical data indicate that over 90% of the mortality of patients with cancer is related to drug resistance. Drug resistance of cancer chemotherapy can be caused by many mechanisms, such as decreased antitumor drug uptake, modified drug targets, altered cell cycle checkpoints, or increased DNA damage repair, among others. In recent years, many studies have shown that miRNAs are involved in the drug resistance of tumor cells by targeting drug-resistance-related genes or influencing genes related to cell proliferation, cell cycle, and apoptosis. A single miRNA often targets a number of genes, and its regulatory effect is tissue-specific. In this review, we emphasize the miRNAs that are involved in the regulation of drug resistance among different cancers and probe the mechanisms of the deregulated expression of miRNAs. The molecular targets of miRNAs and their underlying signaling pathways are also explored comprehensively. A holistic understanding of the functions of miRNAs in drug resistance will help us develop better strategies to regulate them efficiently and will finally pave the way toward better translation of miRNAs into clinics, developing them into a promising approach in cancer therapy.
Collapse
|
77
|
Ma L, Fan Z, Du G, Wang H. Leptin-elicited miRNA-342-3p potentiates gemcitabine resistance in pancreatic ductal adenocarcinoma. Biochem Biophys Res Commun 2019; 509:845-853. [PMID: 30638935 DOI: 10.1016/j.bbrc.2019.01.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/06/2019] [Indexed: 12/16/2022]
Abstract
Although obesity (characterized by high levels of serum leptin) and deregulated expression of miRNAs are both functionally implicated in the pathogenesis of chemoresistance of pancreatic ductal adenocarcinoma (PDAC), the mechanistic link synchronize these two factors remain poorly understood. Here, we show that expression levels of obesity-associated miR-342-3p were significantly upregulated in gemcitabine (GEM)-resistant PDAC tissues and cells, and this upregulation was associated with poor postchemotherapy prognosis. Using pharmacological approaches, we observed that crosstalk between leptin and Notch signaling pathways regulated fundamentally the miR-342-3p expression in GEM-resistant PDAC cells. Functionally, forced expression of miR-342-3p exhibited a prosurvival effect and potentiated GEM resistance, whereas inhibition of miR-342-3p expression noticeably ameliorated chemosensitivity in GEM-resistant PDAC cells. By employing bioinformatics analysis, point mutation and luciferase reporter assays, we further identified the 3'-UTR of tumor suppressor Krüppel-like factor 6 (KLF6) as the direct target of miR-342-3p. Therapeutically, stable expression of the exogenous KLF6 was sufficient to abrogate the pro-survival effects of miR-342-3p in GEM-treated PDAC cells. Taken together, these results suggest that leptin-elicited miR-342-3p upregulation mediates, at least partially, the GEM resistance through inhibition of KLF6 signaling in PDAC. Considering the indispensable function of miR-342-3p during adipogenesis, this obesity-associated miRNA may operate as a novel posttranscriptional integrator linking lipid homeostasis and pancreatic chemoresistance.
Collapse
Affiliation(s)
- Longyang Ma
- Department of Acute Care Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Zhiyong Fan
- Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Gongliang Du
- Department of Acute Care Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Hui Wang
- Department of Acute Care Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China.
| |
Collapse
|
78
|
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules involved in the regulation of gene expression. They are involved in the fine-tuning of fundamental biological processes such as proliferation, differentiation, survival and apoptosis in many cell types. Emerging evidence suggests that miRNAs regulate critical pathways involved in stem cell function. Several miRNAs have been suggested to target transcripts that directly or indirectly coordinate the cell cycle progression of stem cells. Moreover, previous studies have shown that altered expression levels of miRNAs can contribute to pathological conditions, such as cancer, due to the loss of cell cycle regulation. However, the precise mechanism underlying miRNA-mediated regulation of cell cycle in stem cells is still incompletely understood. In this review, we discuss current knowledge of miRNAs regulatory role in cell cycle progression of stem cells. We describe how specific miRNAs may control cell cycle associated molecules and checkpoints in embryonic, somatic and cancer stem cells. We further outline how these miRNAs could be regulated to influence cell cycle progression in stem cells as a potential clinical application.
Collapse
Affiliation(s)
- Michelle M J Mens
- Department of Epidemiology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands. .,Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
79
|
Rofi E, Vivaldi C, Del Re M, Arrigoni E, Crucitta S, Funel N, Fogli S, Vasile E, Musettini G, Fornaro L, Falcone A, Danesi R. The emerging role of liquid biopsy in diagnosis, prognosis and treatment monitoring of pancreatic cancer. Pharmacogenomics 2018; 20:49-68. [PMID: 30520336 DOI: 10.2217/pgs-2018-0149] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Circulating tumor DNA, circulating tumor cells and tumor-related exosomes may offer new opportunities to provide insights into the biological and clinical characteristics of a neoplastic disease. They represent alternative routes for diagnostic and prognostic purposes, and for predicting and longitudinally monitoring response to treatment and disease progression. Hence, circulating biomarkers represent promising noninvasive tools in the scenario of pancreatic cancer, where neither molecular nor clinical predictors of treatment benefit have been identified yet. This review aims to provide an overview of the current status of circulating biomarker research in pancreatic cancer, and discusses their potential clinical utility to facilitate clinical decision-making.
Collapse
Affiliation(s)
- Eleonora Rofi
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Caterina Vivaldi
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Elena Arrigoni
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Niccola Funel
- Department of Translational Research & The New Technologies in Medicine & Surgery, University of Pisa, Pisa, Italy
| | - Stefano Fogli
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| | - Enrico Vasile
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Gianna Musettini
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Lorenzo Fornaro
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Alfredo Falcone
- Unit of Medical Oncology, Department of Translational Research & New Technologies in Medicine, University of Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology & Pharmacogenetics, Department of Clinical & Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
80
|
Baradaran B, Shahbazi R, Khordadmehr M. Dysregulation of key microRNAs in pancreatic cancer development. Biomed Pharmacother 2018; 109:1008-1015. [PMID: 30551350 DOI: 10.1016/j.biopha.2018.10.177] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is mentioned as one of the fourth major cause of cancer-related deaths and also is considered as one of the most malignancies worldwide. Sadly, widely metastasis is frequently observed at the time of PC detection and there are, thereby, almost poor prognosis and ineffective treatment in PC patients. microRNAs (miRNAs), a group of short non-coding RNAs, regulate various cellular and developmental mechanisms, such as cell growth, proliferation, apoptosis, differentiation and angiogenesis. Also, they have essential roles even on the progression of different human and animal diseases. In recent years, extensive studies confirmed the important role of miRNAs in various steps of PC developments, including; tumor initiation, invasion and metastasis, which can use valuably for cancer detection, prognosis and therapy. Therefore, the present study reviewed the new recent investigations in miRNAs involvement in the biology of PC associated with their clinical implications.
Collapse
Affiliation(s)
- Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Shahbazi
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran
| | - Monireh Khordadmehr
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran.
| |
Collapse
|
81
|
Zhu X, Shen X, Qu J, Straubinger RM, Jusko WJ. Multi-Scale Network Model Supported by Proteomics for Analysis of Combined Gemcitabine and Birinapant Effects in Pancreatic Cancer Cells. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2018; 7:549-561. [PMID: 30084546 PMCID: PMC6157671 DOI: 10.1002/psp4.12320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/03/2018] [Indexed: 12/27/2022]
Abstract
Gemcitabine combined with birinapant, an inhibitor of apoptosis protein antagonist, acts synergistically to reduce pancreatic cancer cell proliferation. A large‐scale proteomics dataset provided rich time‐series data on proteome‐level changes that reflect the underlying biological system and mechanisms of action of these drugs. A multiscale network model was developed to link the signaling pathways of cell cycle regulation, DNA damage response, DNA repair, apoptosis, nuclear factor‐kappa β (NF‐κβ), and mitogen‐activated protein kinase (MAPK)‐p38 to cell cycle progression, proliferation, and death. After validating the network model under different conditions, the Sobol Sensitivity Analysis was applied to identify promising targets to enhance gemcitabine efficacy. The effects of p53 silencing and combining curcumin with gemcitabine were also tested with the developed model. Merging proteomics analysis with systems modeling facilitates the characterization of quantitative relations among relevant signaling pathways in drug action and resistance, and such multiscale network models could be applied for prediction of combination efficacy and target selection.
Collapse
Affiliation(s)
- Xu Zhu
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Xiaomeng Shen
- Department of Biochemistry, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA.,Department of Biochemistry, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
82
|
Wu ZH, Lin C, Liu CC, Jiang WW, Huang MZ, Liu X, Guo WJ. MiR-616-3p promotes angiogenesis and EMT in gastric cancer via the PTEN/AKT/mTOR pathway. Biochem Biophys Res Commun 2018; 501:1068-1073. [PMID: 29777710 DOI: 10.1016/j.bbrc.2018.05.109] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/15/2018] [Indexed: 12/16/2022]
Abstract
Dysregulation of microRNAs has been demonstrated to be involved in a variety of biological events related to cancer, including proliferation, metastasis, angiogenesis and immune escape. MiR-616-3p is located on the chromosome region 12q13.3, however, its potential role and clinical implications in gastric cancer remain poorly understood. The current study aimed to investigate the potential role of miR-616-3p in gastric cancer. The results showed that miR-616-3p was up-regulated in cancer tissues. Higher expression of miR-616-3p in tumor tissues also predicted poor prognosis. Furthermore, loss- and gain-of-function in vitro revealed that miR-616-3p promoted angiogenesis and EMT in gastric cancer cells. Mechanistically, further analysis demonstrated that the effects of miR-616-3p on metastasis and angiogenesis occurred through the down-regulation of PTEN, a direct target of miR-616-3p. We propose that the restoration of PTEN expression may block miR-616-3p-induced EMT and angiogenesis. Collectively, our findings suggest that the miR-616-3p-PTEN signaling axis might be a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Zhen-Hua Wu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chen Lin
- Department of Medical Oncology, Zhejiang Cancer Hospital, Zhejiang, 310022, China
| | - Chen-Chen Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Wei-Wei Jiang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ming-Zhu Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xin Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Wei-Jian Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
83
|
Lian J, Lin SH, Ye Y, Chang DW, Huang M, Dinney CP, Wu X. Serum microRNAs as predictors of risk for non-muscle invasive bladder cancer. Oncotarget 2018; 9:14895-14908. [PMID: 29599914 PMCID: PMC5871085 DOI: 10.18632/oncotarget.24473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 01/13/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are implicated in the development of nearly all cancers and may function as promising biomarkers for early detection, diagnosis and prognosis. We sought to investigate the role of serum miRNAs as potential diagnostic biomarkers or biomarkers of risk for early-stage bladder cancer. First, we profiled global serum miRNAs in a pilot set of 10 non-muscle invasive bladder cancer (NMIBC) cases and 10 healthy controls matched on age, gender and smoking status. Eighty nine stably detectable miRNAs were selected for further testing and quantification by high-throughput Taqman analysis using the Fluidigm BioMark HD System to assess their association with NMIBC risk in both discovery and validation sets totaling 280 cases and 278 controls. We found miR-409-3p and six miRNAs expression ratios were significantly associated with risk of bladder cancer in both discovery and validation sets. Interestingly, we identified expression of miR-409-3p and miR-342-3p inversely correlated with age and age of onset of NMIBC. A risk score was generated based on the combination of three miRNA ratios (miR-29a-3p/miR-222-3p, miR-150-5p/miR-331-3p, miR-409-3p/miR-423-5p). In dichotomized analysis, we found individuals with high risk score showed increased risk of bladder cancer in the discovery, validation, and combined sets. Pathway enrichment analyses suggested altered miRNAs and cognate target genes are linked to the retinoid acid receptor (RAR) signaling pathway. Overall, these results suggested specific serum miRNA signatures may serve as noninvasive predictors of NMIBC risk. Biological insights underlying bladder cancer development based on the pathway enrichment analysis may reveal novel therapeutic targets for personalized medicine.
Collapse
Affiliation(s)
- Jie Lian
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shu-Hong Lin
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David W. Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Colin P. Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
84
|
Qi M, Liu D, Zhang S. MicroRNA-21 contributes to the discrimination of chemoresistance in metastatic gastric cancer. Cancer Biomark 2018; 18:451-458. [PMID: 28128744 DOI: 10.3233/cbm-161732] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Multidrug resistance in gastric cancer greatly impedes the efficacy of chemotherapy. OBJECTIVE To explore the efficacy of microRNA-21 (mir-21) in distinguishing metastatic gastric cancer (MGC) with chemoresistance. METHODS From April 2012 to May 2015, 92 MGC patients were enrolled. Cisplatin and fluorouracil-based systemic chemotherapy was given, and patients' characteristics and follow-up data were collected. In addition, miR-21 expression was determined in tumor tissue and plasma. RESULTS Sixty-seven patients responded to chemotherapy, and chemotherapy resistance was observed in 25 patients. miR-21 expression in tumor tissue and plasma was significantly elevated in the chemotherapy-resistant group (CRG) compared to the chemotherapy-sensitive group (CSG) (p< 0.001). miR-21 expression in tissue was associated with tumor differentiation (p= 0.042), and plasma miR-21 was correlated with gender (p= 0.016), tumor differentiation (p= 0.003), and number of metastatic sites (p< 0.001). Receiver operating characteristic (ROC) analysis indicated that miR-21 in tissue yielded an area under the ROC curve (AUC) of 0.830 (95%CI: 0.737-0.900, sensitivity: 88.0%, specificity: 68.7%) in distinguishing CRG from CSG; and plasma miR-21 yielded an AUC of 0.759 (95%CI: 0.658-0.842, sensitivity: 52.0%, specificity: 88.1%) in distinguishing CRG form CSG. Log-rank test and Cox proportional hazard regression analysis indicated that patients with higher miR-21 expression in tissue and plasma experienced shorter overall survival (P< 0.001). CONCLUSION miR-21 could serve as a potential biomarker to identify MGC with chemoresistance.
Collapse
Affiliation(s)
- Ming Qi
- Department of Digestive System, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong, China
| | - Dongmei Liu
- Transfusion Centre, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong, China
| | - Shuhong Zhang
- Department of Digestive System, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong, China
| |
Collapse
|
85
|
Zhu X, Shen X, Qu J, Straubinger RM, Jusko WJ. Proteomic Analysis of Combined Gemcitabine and Birinapant in Pancreatic Cancer Cells. Front Pharmacol 2018. [PMID: 29520231 PMCID: PMC5827530 DOI: 10.3389/fphar.2018.00084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is characterized by mutated signaling pathways and a high incidence of drug resistance. Comprehensive, large-scale proteomic analysis can provide a system-wide view of signaling networks, assist in understanding drug mechanisms of action and interactions, and serve as a useful tool for pancreatic cancer research. In this study, liquid chromatography-mass spectrometry-based proteomic analysis was applied to characterize the combination of gemcitabine and birinapant in pancreatic cancer cells, which was shown previously to be synergistic. A total of 4069 drug-responsive proteins were identified and quantified in a time-series proteome analysis. This rich dataset provides broad views and accurate quantification of signaling pathways. Pathways relating to DNA damage response regulations, DNA repair, anti-apoptosis, pro-migration/invasion were implicated as underlying mechanisms for gemcitabine resistance and for the beneficial effects of the drug combination. Promising drug targets were identified for future investigation. This study also provides a database for systems mathematical modeling to relate drug effects and interactions in various signaling pathways in pancreatic cancer cells.
Collapse
Affiliation(s)
- Xu Zhu
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Xiaomeng Shen
- Department of Biochemistry, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States.,Department of Biochemistry, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - William J Jusko
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| |
Collapse
|
86
|
Luo H, Liang C. MicroRNA-148b inhibits proliferation and the epithelial-mesenchymal transition and increases radiosensitivity in non-small cell lung carcinomas by regulating ROCK1. Exp Ther Med 2018; 15:3609-3616. [PMID: 29545890 DOI: 10.3892/etm.2018.5845] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/07/2017] [Indexed: 12/21/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for ~80% of all types of lung cancer, which has the highest morbidity and mortality of all types of cancer worldwide. It is important to identify novel biomarkers and the molecular mechanism of NSCLC to improve current treatments of NSCLC. The present study aimed to investigate the effect of miR-148b expression on the proliferation, epithelial-mesenchymal transition (EMT) and radiosensitivity of NSCLC cells. It was demonstrated that miR-148b expression was significantly decreased in NSCLC tissues and cell lines. A549 cells were then transfected with a miR-148b mimic and a miR-148b inhibitor. Transfection with the miR-148b mimic decreased proliferation whereas transfection with the miR-148b inhibitor increased the proliferation of A549 cells. Additionally, the miR-148b mimic increased E-cadherin expression and decreased N-cadherin and vimentin expression. By contrast, transfection with the miR-148b inhibitor decreased E-cadherin expression and increased N-cadherin and vimentin expression. Irradiation-induced cell death was significantly promoted by the miR-148b mimic but inhibited by the miR-148b inhibitor. The miR-148b mimic significantly decreased the expression of Rho-associated protein kinase 1 (ROCK1) and it was demonstrated that overexpression of ROCK1 significantly inhibited the effects of miR-148b on cell proliferation, the EMT and irradiation-induced cell death. Therefore, the current study revealed that miR-148b inhibited NSCLC cell proliferation and the EMT, and increased the radiosensitivity of NSCLC cells by inhibiting ROCK1 expression. Therefore, miR-148b/ROCK1 signaling may be a novel therapeutic target to inhibit the growth of NSCLC cells and enhance the effects of radiotherapy to treat patients with NSCLC.
Collapse
Affiliation(s)
- Haitao Luo
- Department of Oncology 2 Division, Foshan Nanhai District People's Hospital, Foshan, Guangdong 528200, P.R. China
| | - Caixia Liang
- Department of Respiratory Medicine, Foshan Nanhai District People's Hospital, Foshan, Guangdong 528200, P.R. China
| |
Collapse
|
87
|
Pucci M, Reclusa Asiáin P, Duréndez Sáez E, Jantus-Lewintre E, Malarani M, Khan S, Fontana S, Naing A, Passiglia F, Raez LE, Rolfo C, Taverna S. Extracellular Vesicles As miRNA Nano-Shuttles: Dual Role in Tumor Progression. Target Oncol 2018; 13:175-187. [DOI: 10.1007/s11523-018-0551-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
88
|
Ren L, Yu Y. The role of miRNAs in the diagnosis, chemoresistance, and prognosis of pancreatic ductal adenocarcinoma. Ther Clin Risk Manag 2018; 14:179-187. [PMID: 29416345 PMCID: PMC5790163 DOI: 10.2147/tcrm.s154226] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a very challenging malignancy with late presentation, metastatic potential, chemoresistance, and poor prognosis. Therefore, there is an urgent need for novel diagnostic and prognostic biomarkers. miRNAs are small noncoding RNAs that regulate the expression of multitude number of genes. Aberrant expression of miRNAs has been linked to the development of various malignancies, including PDAC. A series of miRNAs have been defined as holding promise for early diagnostics, as indicators of therapy resistance, and even as markers for prognosis in PDAC patients. In this review, we summarize the current knowledge on the role of miRNAs in diagnosis, chemoresistance, and prognosis in PDAC patients.
Collapse
Affiliation(s)
- Le Ren
- Department of Gastroenterology, Affiliated Provincial Hospital, Anhui Medical University, Hefei, China
| | - Yue Yu
- Department of Gastroenterology, Affiliated Provincial Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
89
|
Ear atresia: Is there a role of apoptosis-regulating miRNAs? North Clin Istanb 2018; 5:238-245. [PMID: 30688935 PMCID: PMC6323559 DOI: 10.14744/nci.2017.26680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/11/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE: The molecular events underlying ear development involve numerous regulatory molecules; however, the role of microRNAs (miRNAs) has not been explored in patients with ear atresia. Here, we aimed to investigate the expressions of 20–22 nucleotide noncoding RNAs. METHODS: We selected 12 miRNAs that function to control post-transcriptional gene expression in different pathways, including apoptosis, angiogenesis, and chondrogenesis. The altered miRNA expressions were analyzed by real-time PCR from serum samples of 7 patients with ear atresia and 8 controls. RESULTS: We found that the expression of apoptosis-regulating miRNAs was significantly downregulated in patients with ear atresia. TThe expressions of miR126, miR146a, miR222, and miR21 were significantly decreased by 76.2-(p=0.041), 61.8-(p=0.000), 30.5-(p=0.009), and 71.21-fold (p=0.042), respectively, compared with controls. CONCLUSION: Abnormal ear development in ear atresia patients, could possibly be due to the reduced expression of apoptosis regulating miRNAs. Changes in the regulation of tumor protein p53 (TP53), p53 upregulated modulator of apoptosis (PUMA), Fas cell surface death receptor (FAS), FAS ligand (FasL), and phosphatase and tensin homolog (PTEN) directly or within the apoptosis-related cascades may play important roles during development, particularly in the external ear. This is the first report to present the possible association between apoptosis-regulating miRNAs and ear atresia/microtia.
Collapse
|
90
|
Khan K, Cunningham D, Peckitt C, Barton S, Tait D, Hawkins M, Watkins D, Starling N, Rao S, Begum R, Thomas J, Oates J, Guzzardo V, Fassan M, Braconi C, Chau I. miR-21 expression and clinical outcome in locally advanced pancreatic cancer: exploratory analysis of the pancreatic cancer Erbitux, radiotherapy and UFT (PERU) trial. Oncotarget 2017; 7:12672-81. [PMID: 26862857 PMCID: PMC4914313 DOI: 10.18632/oncotarget.7208] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/25/2016] [Indexed: 01/06/2023] Open
Abstract
Background Locally advanced pancreatic cancer (LAPC) is associated with high mortality, and biomarker-driven treatment approach is currently lacking. This study evaluated safety and efficacy of a combination approach of chemotherapy followed by chemo-radiotherapy (CRT) +/− cetuximab, and the prognostic role of miR-21 in patients with LAPC treated with a multimodality approach. Patients and Methods This was a randomised phase II trial in which patients with inoperable LAPC were offered gemcitabine and capecitabine (GEM-CAP) for 16 weeks. Patients with stable disease or response after GEM-CAP were randomised to capecitabine or UFT plus radiotherapy (RT) (A), or capecitabine or UFT plus cetuximab plus RT (B). The primary outcome of the study was overall survival (OS). Clinical outcome was compared according to baseline circulating miR-21 levels. Results 17 patients were enrolled and treated with GEM-CAP, with 13 patients achieving disease control and being randomised to arms A (n:7) and B (n:6). After a median follow-up of 61.2 months, median progression free survival (PFS) was 10.4 months and 12.7 months, median OS was 15.8 months and 22.0 months in arms A and B respectively (p > 0.05). Patients with high baseline plasma miR-21 had worse PFS (3.5 vs. 12.7 months; p:0.032) and OS (5.1 vs 15.3 months; p:0.5) compared to patients with low miR-21. Circulating miR-21 levels reflected miR-21 expression within the tissues. Conclusions Addition of Cetuximab to CRT following induction chemotherapy did not improve survival. High miR-21 baseline plasma expression was associated with poor clinical outcome in LAPC patients treated with induction chemotherapy followed by chemo-radiotherapy.
Collapse
Affiliation(s)
- Khurum Khan
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - David Cunningham
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Clare Peckitt
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Sarah Barton
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Diana Tait
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Maria Hawkins
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton, UK.,CRUK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford, UK
| | - David Watkins
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Naureen Starling
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Sheela Rao
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Ruwaida Begum
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Janet Thomas
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Jacqui Oates
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | | | - Matteo Fassan
- Department of Medicine, University of Padua, Padua, IT
| | - Chiara Braconi
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton, UK.,Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton, UK
| | - Ian Chau
- Gastrointestinal Unit, The Royal Marsden NHS Foundation Trust, Sutton, UK
| |
Collapse
|
91
|
Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D'Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY) 2017; 8:603-19. [PMID: 27019364 PMCID: PMC4925817 DOI: 10.18632/aging.100934] [Citation(s) in RCA: 996] [Impact Index Per Article: 142.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/08/2016] [Indexed: 02/07/2023]
Abstract
Apoptosis is a form of programmed cell death that results in the orderly and efficient removal of damaged cells, such as those resulting from DNA damage or during development. Apoptosis can be triggered by signals from within the cell, such as genotoxic stress, or by extrinsic signals, such as the binding of ligands to cell surface death receptors. Deregulation in apoptotic cell death machinery is an hallmark of cancer. Apoptosis alteration is responsible not only for tumor development and progression but also for tumor resistance to therapies. Most anticancer drugs currently used in clinical oncology exploit the intact apoptotic signaling pathways to trigger cancer cell death. Thus, defects in the death pathways may result in drug resistance so limiting the efficacy of therapies. Therefore, a better understanding of the apoptotic cell death signaling pathways may improve the efficacy of cancer therapy and bypass resistance. This review will highlight the role of the fundamental regulators of apoptosis and how their deregulation, including activation of anti-apoptotic factors (i.e., Bcl-2, Bcl-xL, etc) or inactivation of pro-apoptotic factors (i.e., p53 pathway) ends up in cancer cell resistance to therapies. In addition, therapeutic strategies aimed at modulating apoptotic activity are briefly discussed.
Collapse
Affiliation(s)
- Giuseppa Pistritto
- Department of Systems Medicine, University "Tor Vergata", 00133 Rome, Italy
| | - Daniela Trisciuoglio
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00158 Rome, Italy
| | - Claudia Ceci
- Department of Systems Medicine, University "Tor Vergata", 00133 Rome, Italy
| | - Alessia Garufi
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00158 Rome, Italy.,Department of Medical Oral and Biotechnological Sciences, Tumor Biology Unit, University "G. d'Annunzio", 66013 Chieti, Italy
| | - Gabriella D'Orazi
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00158 Rome, Italy.,Department of Medical Oral and Biotechnological Sciences, Tumor Biology Unit, University "G. d'Annunzio", 66013 Chieti, Italy
| |
Collapse
|
92
|
Wald P, Liu XS, Pettit C, Dillhoff M, Manilchuk A, Schmidt C, Wuthrick E, Chen W, Williams TM. Prognostic value of microRNA expression levels in pancreatic adenocarcinoma: a review of the literature. Oncotarget 2017; 8:73345-73361. [PMID: 29069873 PMCID: PMC5641216 DOI: 10.18632/oncotarget.20277] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/23/2017] [Indexed: 01/17/2023] Open
Abstract
Background Clinical and pathologic markers of prognosis and patterns of failure help guide clinicians in selecting patients for adjuvant therapy after surgical resection for pancreatic adenocarcinoma (PDAC). Recent studies have reported the prognostic utility of microRNA profiling in numerous malignancies. Here, we review and summarize the current literature regarding associations between microRNA expression and overall survival in PDAC patients. Materials and Methods We conducted a systematic search in the PubMed database to identify all primary research studies reporting prognostic associations between tumor and/or serum microRNA expression and overall survival in PDAC patients. Eligible articles were reviewed by the authors and relevant findings are summarized below. Results We found 53 publications that fit our search criteria. In total, 23 up-regulated and 49 down-regulated miRNAs have been associated with worse overall survival. MiR-21 is the most commonly reported miRNA, appearing in 19 publications, all of which report aberrant over-expression and association with shorter survival in PDAC. Other miRNAs that appear in multiple publications include miR-10b, −21, −34a, −155, −196a, −198, −200c, −203, −210, −218, −222, and −328. We summarize the preclinical and clinical data implicating these miRNAs in various molecular signaling pathways and cellular functions. Conclusions There is growing evidence that miRNA expression profiles have the potential to provide tumor-specific prognostic information to assist clinicians in more appropriately selecting patients for adjuvant therapy. These molecules are often aberrantly expressed and exhibit oncogenic and/or tumor suppressor functions in PDAC. Additional efforts to develop prognostic and predictive molecular signatures, and further elucidate miRNA mechanisms of action, are warranted.
Collapse
Affiliation(s)
- Patrick Wald
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - X Shawn Liu
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Cory Pettit
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Mary Dillhoff
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Andrei Manilchuk
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Carl Schmidt
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Evan Wuthrick
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Wei Chen
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Terence M Williams
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| |
Collapse
|
93
|
Garcia‐Riart B, Lorda‐Diez CI, Marin‐Llera JC, Garcia‐Porrero JA, Hurle JM, Montero JA. Interdigital tissue remodelling in the embryonic limb involves dynamic regulation of the miRNA profiles. J Anat 2017; 231:275-286. [PMID: 28543398 PMCID: PMC5522895 DOI: 10.1111/joa.12629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2017] [Indexed: 11/26/2022] Open
Abstract
Next-generation sequencing in combination with quantitative polymerase chain reaction analysis revealed a dynamic miRNA signature in the interdigital mesoderm of the chick embryonic hinlimb in the course of interdigit remodelling. During this period, 612 previously known chicken miRNAs (gga-miRNAs) and 401 non-identified sequences were expressed in the interdigital mesoderm. Thirty-six microRNAs, represented by more than 750 reads per million, displayed differential expression between stages HH29 (6 id) and HH32 (7.5 id), which correspond to the onset and the peak of interdigital cell death. Twenty miRNAs were upregulated by at least 1.5-fold, and sixteen were downregulated by at least 0.5-fold. Upregulated miRNAs included miRNAs with recognized proapoptotic functions in other systems (miR-181 family, miR-451 and miR-148a), miRNAs associated with inflammation and cell senescence (miR-21 and miR-146) and miRNAs able to induce changes in the extracellular matrix (miR-30c). In contrast, miRNAs with known antiapoptotic effects in other systems, such as miR-222 and miR-205, became downregulated. In addition, miR-92, an important positive regulator of cell proliferation, was also downregulated. Together, these findings indicate a role for miRNAs in the control of tissue regression and cell death in a characteristic morphogenetic embryonic process based on massive apoptosis.
Collapse
Affiliation(s)
- Beatriz Garcia‐Riart
- Departamento de Anatomía y Biología Celular and IDIVALUniversidad de CantabriaSantanderSpain
| | - Carlos I. Lorda‐Diez
- Departamento de Anatomía y Biología Celular and IDIVALUniversidad de CantabriaSantanderSpain
| | - Jessica C. Marin‐Llera
- Departamento de Anatomía y Biología Celular and IDIVALUniversidad de CantabriaSantanderSpain
- Present address:
Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoDistrito FederalMéxico
| | - Juan A. Garcia‐Porrero
- Departamento de Anatomía y Biología Celular and IDIVALUniversidad de CantabriaSantanderSpain
| | - Juan M. Hurle
- Departamento de Anatomía y Biología Celular and IDIVALUniversidad de CantabriaSantanderSpain
| | - Juan A. Montero
- Departamento de Anatomía y Biología Celular and IDIVALUniversidad de CantabriaSantanderSpain
| |
Collapse
|
94
|
He Y, Zhang L, Cheng G, Yuan R, Zhuang Y, Zhang D, Zhou D, Xu X. Upregulation of circulating miR-21 is associated with poor prognosis of nasopharyngeal carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:7362-7368. [PMID: 31966577 PMCID: PMC6965269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/11/2017] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) have been demonstrated to be implicated in the pathogenesis of a number of human diseases including cancer. The aim of current study was to reveal the potential clinical significance of serum miR-21 in nasopharyngeal carcinoma (NPC). CCK8 assay was used to evaluate the effects of miR-21 overexpression/downregulation on the chemoresistance of NPC cells. Real-time PCR was performed to detect the expression level of serum miR-21 in NPC patients and healthy volunteers. Then clinical significance of serum miR-21 was further investigated. Our results showed that miR-21 overexpression could enhance the chemoresistance of NPC cells to cisplatin, and vice versa. In addition, serum miR-21 was significantly upregulated in NPC patients and enhanced serum miR-21 level was associated with poor prognosis of NPC. Furthermore, its level was much higher in NPC patients resistant to cisplatin based chemotherapy and could discriminate the patients in the responding group from the non-responding group with high accuracy. The proportions of patients that resistant to chemotherapy were higher in the high serum miR-21 group. Finally, Kaplan-Meier survival analysis showed that enhanced serum miR-21 was a poor indicator of both overall and disease free survival among the patients who received cisplatin based chemotherapy. Taken together, serum miR-21 might be employed as a potential biomarker for predicting the clinical outcome and chemoresistance of NPC patients.
Collapse
Affiliation(s)
- Yu He
- Department of Radiation, China-Japan Union Hospital of Jilin UniversityChangchun, China
- Department of Oncology, Daqing Oilfields General HospitalDaqing, China
| | - Liangyu Zhang
- Department of Oncology, Daqing Oilfields General HospitalDaqing, China
| | - Guanghui Cheng
- Department of Radiation, China-Japan Union Hospital of Jilin UniversityChangchun, China
| | - Renbing Yuan
- Department of Oncology, Daqing Oilfields General HospitalDaqing, China
| | - Yongzhi Zhuang
- Department of Oncology, Daqing Oilfields General HospitalDaqing, China
| | - Dehui Zhang
- Department of Oncology, Daqing Oilfields General HospitalDaqing, China
| | - Daming Zhou
- Department of Oncology, Daqing Oilfields General HospitalDaqing, China
| | - Xin Xu
- Department of Neurology, Daqing Oilfields General HospitalDaqing, China
| |
Collapse
|
95
|
miR-331-3p and Aurora Kinase inhibitor II co-treatment suppresses prostate cancer tumorigenesis and progression. Oncotarget 2017; 8:55116-55134. [PMID: 28903407 PMCID: PMC5589646 DOI: 10.18632/oncotarget.18664] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 05/22/2017] [Indexed: 01/10/2023] Open
Abstract
RNA-based therapeutics could represent a new avenue of cancer treatment. miRNA 331-3p (miR-331-3p) is implicated in prostate cancer (PCa) as a putative tumor suppressor, but its functional activity and synergy with other anti-tumor agents is largely unknown. We found miR-331-3p expression in PCa tumors was significantly decreased compared to non-malignant matched tissue. Analysis of publicly available PCa gene expression data sets showed miR-331-3p expression negatively correlated with Gleason Score, tumor stage, lymph node involvement and PSA value, and was significantly down regulated in tumor tissue relative to normal prostate tissue. Overexpression of miR-331-3p reduced PCa cell growth, migration and colony formation, as well as xenograft tumor initiation, proliferation and survival of mice. Microarray analysis identified seven novel targets of miR-331-3p in PCa. The 3’-untranslated regions of PLCγ1 and RALA were confirmed as targets of miR-331-3p, with mutation analyses confirming RALA as a direct target. Expression of miR-331-3p or RALA siRNA in PCa cells reduced RALA expression, proliferation, migration and colony formation in vitro. RALA expression positively correlated with Gleason grade in two separate studies, as well as in a PCa tissue microarray. Co-treatment using siRALA with an Aurora Kinase inhibitor (AKi-II) decreased colony formation of PCa cells while the combination of AKi-II with miR-331-3p resulted in significant reduction of PCa cell proliferation in vitro and PCa xenograft growth in vivo. Thus, miR-331-3p directly targets the RALA pathway and the addition of the AKi-II has a synergistic effect on tumor growth inhibition, suggesting a potential role as combination therapy in PCa.
Collapse
|
96
|
Giovannetti E, van der Borden CL, Frampton AE, Ali A, Firuzi O, Peters GJ. Never let it go: Stopping key mechanisms underlying metastasis to fight pancreatic cancer. Semin Cancer Biol 2017; 44:43-59. [PMID: 28438662 DOI: 10.1016/j.semcancer.2017.04.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive neoplasm, predicted to become the second leading cause of cancer-related deaths before 2030. This dismal trend is mainly due to lack of effective treatments against its metastatic behavior. Therefore, a better understanding of the key mechanisms underlying metastasis should provide new opportunities for therapeutic purposes. Genomic analyses revealed that aberrations that fuel PDAC tumorigenesis and progression, such as SMAD4 loss, are also implicated in metastasis. Recently, microRNAs have been shown to play a regulatory role in the metastatic behavior of many tumors, including PDAC. In particular, miR-10 and miR-21 have appeared as master regulators of the metastatic program, while members of the miR-200 family are involved in the epithelial-to-mesenchymal switch, favoring cell migration and invasiveness. Several studies have also found a close relationship between cancer stem cells (CSCs) and biological features of metastasis, and the CSC markers ALDH1, ABCG2 and c-Met are expressed at high levels in metastatic PDAC cells. Emerging evidence reveals that exosomes are involved in the modulation of the tumor microenvironment and can initiate PDAC pre-metastatic niche formation in the liver and lungs. In this review, we provide an overview of the role of all these pivotal factors in the metastatic behavior of PDAC, and discuss their potential exploitation in the clinic to improve current therapeutics and identify new drug targets.
Collapse
Affiliation(s)
- E Giovannetti
- Lab Medical Oncology, Dept. Medical Oncology, VU University Medical Center (VUmc), Amsterdam, The Netherlands; Cancer Pharmacology Lab, AIRC Start Up Unit, University of Pisa, Pisa, Italy
| | - C L van der Borden
- Lab Medical Oncology, Dept. Medical Oncology, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - A E Frampton
- HPB Surgical Unit, Dept. of Surgery & Cancer, Imperial College, Hammersmith Hospital Campus, London, UK
| | - A Ali
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, KP, Pakistan; Institute of Cancer Sciences, University of Glasgow, UK
| | - O Firuzi
- Lab Medical Oncology, Dept. Medical Oncology, VU University Medical Center (VUmc), Amsterdam, The Netherlands; Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - G J Peters
- Lab Medical Oncology, Dept. Medical Oncology, VU University Medical Center (VUmc), Amsterdam, The Netherlands.
| |
Collapse
|
97
|
Detection of MicroRNA in Hepatic Cirrhosis and Hepatocellular Carcinoma in Hepatitis C Genotype-4 in Egyptian Patients. BIOMED RESEARCH INTERNATIONAL 2017. [PMID: 28642869 PMCID: PMC5469990 DOI: 10.1155/2017/1806069] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background In Egypt, the prevalence of chronic hepatitis C (CHC) infection is 13.8% of whole population and about 80% of the patients with hepatocellular carcinoma have underling hepatitis C. Aim This study was designed to assess the diagnostic value of plasma miR-122 and miR-21 in patients with CHC, genotype-4, to detect fibrosis progression versus noninvasive indices and their diagnostic value in detection of early stages of hepatocellular carcinoma (HCC). Methodology A prospective study that included 180 patients, divided into 3 groups: healthy controls (group I), CHC patients (group II), and hepatitis C patients with HCC (group III); all cases were subjected to thorough clinical, radiological, and laboratory investigations. Selected biomarkers were evaluated and correlated with degree of liver damage. Results revealed that miR-122 followed by miR-21 had the highest efficiency in prediction of liver cell damage. Also, miR-21 was strongly correlated with vascular endothelial growth factor (VEGF) and alpha fetoprotein (α-FP) in HCC patients. Conclusions Plasma miR-122 and miR-21 had strong correlation with degree fibrosis in HCV genotype-4 patients; consequently they can be considered as potential biomarker for early detection of hepatic fibrosis. Moreover, miR-21 can be used as a potential biomarker, for early detection of HCC combined with VEGF and α-FP.
Collapse
|
98
|
Negoi I, Hostiuc S, Sartelli M, Negoi RI, Beuran M. MicroRNA-21 as a prognostic biomarker in patients with pancreatic cancer - A systematic review and meta-analysis. Am J Surg 2017; 214:515-524. [PMID: 28477839 DOI: 10.1016/j.amjsurg.2017.03.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/22/2017] [Accepted: 03/31/2017] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The aim of this systematic review and meta-analysis is to summarize the current knowledge regarding microRNA-21 and to evaluate its prognostic impact in patients with pancreatic cancer. METHODS We conducted an electronic literature search to identify all published studies in PubMed/MEDLINE, Scopus and Google Scholar databases from 2000 until August 2016. RESULTS A total of 17 studies involving 1471 patients met the inclusion criteria for the quantitative synthesis. The microRNA-21 upregulation was significantly associated with poorer overall survival, disease-free survival, and progression-free survival. The subgroup analysis revealed that microRNA-21 overexpression has a significant higher prognostic value for patients who receive adjuvant chemotherapy. Increased microRNA-21 was associated with a statistically significant higher rate of metastatic lymph nodes and poorly differentiated tumors. CONCLUSIONS MicroRNA-21 upregulation in pancreatic cancer is associated with a significantly poorer overall survival, disease-free survival, and progression-free survival. MicroRNA-21 may be a useful prognostic biomarker, allowing stratification for chemotherapy administration, and being a component of precision medicine in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Ionut Negoi
- Carol Davila University of Medicine and Pharmacy Bucharest, Romania; Department of General Surgery, Emergency Hospital of Bucharest, Romania.
| | - Sorin Hostiuc
- Carol Davila University of Medicine and Pharmacy Bucharest, Romania; Department of Legal Medicine and Bioethics, National Institute of Legal Medicine Mina Minovici, Romania
| | | | | | - Mircea Beuran
- Carol Davila University of Medicine and Pharmacy Bucharest, Romania; Department of General Surgery, Emergency Hospital of Bucharest, Romania
| |
Collapse
|
99
|
He M, Xue Y. MicroRNA-148a suppresses proliferation and invasion potential of non-small cell lung carcinomas via regulation of STAT3. Onco Targets Ther 2017; 10:1353-1361. [PMID: 28280370 PMCID: PMC5338933 DOI: 10.2147/ott.s123518] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lung cancer has the highest morbidity and mortality in the world, and non-small cell lung carcinomas (NSCLC) account for 80% of cases of lung cancer. The mechanism of NSCLC is still largely unknown, and finding novel targets is of great importance for the treatment of NSCLC. The current study was designed to evaluate the role of miR-148a in NSCLC cell proliferation and invasion and to investigate the possible molecular mechanisms. We found that miR-148a expression was decreased in NSCLC tissues and cell lines. Upregulation of miR-148a significantly decreased A549 cell proliferation, and downregulation of miR-148a significantly increased A549 cell proliferation. Upregulation of miR-148a markedly increased apoptotic cell death and inhibited cell invasion potential. Upregulation of miR-148a significantly decreased signal transducer and activator of transcription 3 (STAT3) expression and 3′-untranslated region luciferase activity. Downregulation of miR-148a significantly increased STAT3 expression. Overexpression of STAT3 significantly inhibited the effect of miR-148a on cell viability and invasion potential. In conclusion, we found that miR-148a inhibited NSCLC cell proliferation and invasion potential through the inhibition of STAT3. Our findings highlight miR-148a/STAT3 axis as a novel therapeutic target for the inhibition of NSCLC growth.
Collapse
Affiliation(s)
- Mei He
- Department of Respiratory Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, People's Republic of China
| | - Yan Xue
- Department of Respiratory Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, People's Republic of China
| |
Collapse
|
100
|
The underlying mechanisms of non-coding RNAs in the chemoresistance of pancreatic cancer. Cancer Lett 2017; 397:94-102. [PMID: 28254409 DOI: 10.1016/j.canlet.2017.02.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/08/2017] [Accepted: 02/21/2017] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer, which is often asymptomatic, is currently one of the most common causes of cancer-related death. This phenomenon is most likely due to a lack of early diagnosis, a high metastasis rate and a disappointing chemotherapy outcome. Thus, improving treatment outcomes by overcoming chemotherapy resistance may be a useful strategy in pancreatic cancer. Various underlying mechanisms involved in the chemoresistance of pancreatic cancer have been investigated. Notably, non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play a pivotal role in regulating sensitivity to chemotherapy in pancreatic cancer. In this review, we highlight recent evidence regarding the role of miRNAs and lncRNAs in the chemoresistance of pancreatic cancer, including their expression levels, targets, biological functions and the regulation of chemoresistance, and discuss the potential clinical application of miRNAs and lncRNAs in the treatment of pancreatic cancer.
Collapse
|