51
|
McGuire PG, Rangasamy S, Maestas J, Das A. Pericyte-derived sphingosine 1-phosphate induces the expression of adhesion proteins and modulates the retinal endothelial cell barrier. Arterioscler Thromb Vasc Biol 2011; 31:e107-15. [PMID: 21940944 DOI: 10.1161/atvbaha.111.235408] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The mechanisms that regulate the physical interaction of pericytes and endothelial cells and the effects of these interactions on interendothelial cell junctions are not well understood. We determined the extent to which vascular pericytes could regulate pericyte-endothelial adhesion and the consequences that this disruption might have on the function of the endothelial barrier. METHODS AND RESULTS Human retinal microvascular endothelial cells were cocultured with pericytes, and the effect on the monolayer resistance of endothelial cells and expression of the cell junction molecules N-cadherin and VE-cadherin were measured. The molecules responsible for the effect of pericytes or pericyte-conditioned media on the endothelial resistance and cell junction molecules were further analyzed. Our results indicate that pericytes increase the barrier properties of endothelial cell monolayers. This barrier function is maintained through the secretion of pericyte-derived sphingosine 1-phosphate. Sphingosine 1-phosphate aids in maintenance of microvascular stability by upregulating the expression of N-cadherin and VE-cadherin, and downregulating the expression of angiopoietin 2. CONCLUSIONS Under normal circumstances, the retinal vascular pericytes maintain pericyte-endothelial contacts and vascular barrier function through the secretion of sphingosine 1-phosphate. Alteration of pericyte-derived sphingosine 1-phosphate production may be an important mechanism in the development of diseases characterized by vascular dysfunction and increased permeability.
Collapse
Affiliation(s)
- Paul G McGuire
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA.
| | | | | | | |
Collapse
|
52
|
Belvitch P, Dudek SM. Role of FAK in S1P-regulated endothelial permeability. Microvasc Res 2011; 83:22-30. [PMID: 21925517 DOI: 10.1016/j.mvr.2011.08.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/28/2011] [Accepted: 08/29/2011] [Indexed: 01/11/2023]
Abstract
The vascular endothelium serves as a semi-selective barrier between the circulating contents of the blood and the tissues through which they flow. Disruption of this barrier results in significant organ dysfunction during devastating inflammatory syndromes such as sepsis and acute lung injury (ALI). Sphingosine 1-phosphate (S1P) is an endogenous lipid regulator of endothelial permeability that produces potent barrier enhancement via actin and junctional protein rearrangement and resultant cytoskeletal changes. A key effector protein in this S1P response is focal adhesion kinase (FAK), a highly conserved cytoplasmic tyrosine kinase involved in the engagement of integrins and assembly of focal adhesions (FA) through the catalysis of multiple downstream signals. After stimulation by S1P, endothelial FAK undergoes specific tyrosine phosphorylation that results in activation of the kinase and dynamic interactions with other effector molecules to improve the endothelial barrier. FAK participates in peripheral actin cytoskeletal rearrangement as well as cell-matrix (FA) and cell-cell (adherens junction) junctional complex strengthening that combine to decrease vascular permeability. This review summarizes the current knowledge of the role of FAK in mediating enhanced endothelial barrier function by S1P.
Collapse
Affiliation(s)
- Patrick Belvitch
- Institute for Personalized Respiratory Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
53
|
Quadri SK. Cross talk between focal adhesion kinase and cadherins: role in regulating endothelial barrier function. Microvasc Res 2011; 83:3-11. [PMID: 21864544 DOI: 10.1016/j.mvr.2011.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/26/2011] [Accepted: 08/02/2011] [Indexed: 01/11/2023]
Abstract
A layer of endothelial cells attached to their underlying matrices by complex transmembrane structures termed focal adhesion (FA) proteins maintains the barrier property of microvascular endothelium. FAs sense the physical properties of the extracellular matrix (ECM) and organize the cytoskeleton accordingly. The close association of adherens junction (AJ) protein, cadherin, with the cytoskeleton is known to be essential in coordinating the appropriate mechanical properties to cell-cell contacts. Recently, it has become clear that a crosstalk exists between focal adhesion kinase (FAK) and cadherin that regulates signaling at intercellular endothelial junctions. This review discusses recent advances in our understanding of the dynamic regulation of the molecular connections between FAK and the cadherin complex and cadherin-catenin-actin interaction-dependent changes as well as the role of small GTPases in endothelial barrier regulation. This review also discusses how a signaling network regulates a range of cellular processes important for barrier function and diseases.
Collapse
Affiliation(s)
- Sadiqa K Quadri
- Lung Biology Laboratory, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
54
|
Adyshev DM, Moldobaeva NK, Elangovan VR, Garcia JGN, Dudek SM. Differential involvement of ezrin/radixin/moesin proteins in sphingosine 1-phosphate-induced human pulmonary endothelial cell barrier enhancement. Cell Signal 2011; 23:2086-96. [PMID: 21864676 DOI: 10.1016/j.cellsig.2011.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 07/30/2011] [Accepted: 08/01/2011] [Indexed: 01/07/2023]
Abstract
Endothelial cell (EC) barrier dysfunction induced by inflammatory agonists is a frequent pathophysiologic event in multiple diseases. The platelet-derived phospholipid sphingosine-1 phosphate (S1P) reverses this dysfunction by potently enhancing the EC barrier through a process involving Rac GTPase-dependent cortical actin rearrangement as an integral step. In this study we explored the role of the ezrin, radixin, and moesin (ERM) family of actin-binding linker protein in modulating S1P-induced human pulmonary EC barrier enhancement. S1P induces ERM translocation to the EC periphery and promotes ERM phosphorylation on a critical threonine residue (Ezrin-567, Radixin-564, Moesin-558). This phosphorylation is dependent on activation of PKC isoforms and Rac1. The majority of ERM phosphorylation on these critical threonine residues after S1P occurs in moesin and ezrin. Baseline radixin phosphorylation is higher than in the other two ERM proteins but does not increase after S1P. S1P-induced moesin and ezrin threonine phosphorylation is not mediated by the barrier enhancing receptor S1PR1 because siRNA downregulation of S1PR1 fails to inhibit these phosphorylation events, while stimulation of EC with the S1PR1-specific agonist SEW2871 fails to induce these phosphorylation events. Silencing of either all ERM proteins or radixin alone (but not moesin alone) reduced S1P-induced Rac1 activation and phosphorylation of the downstream Rac1 effector PAK1. Radixin siRNA alone, or combined siRNA for all three ERM proteins, dramatically attenuates S1P-induced EC barrier enhancement (measured by transendothelial electrical resistance (TER), peripheral accumulation of di-phospho-MLC, and cortical cytoskeletal rearrangement. In contrast, moesin depletion has the opposite effects on these parameters. Ezrin silencing partially attenuates S1P-induced EC barrier enhancement and cytoskeletal changes. Thus, despite structural similarities and reported functional redundancy, the ERM proteins differentially modulate S1P-induced alterations in lung EC cytoskeleton and permeability. These results suggest that ERM activation is an important regulatory event in EC barrier responses to S1P.
Collapse
Affiliation(s)
- Djanybek M Adyshev
- Institute for Personalized Respiratory Medicine, Department of Medicine, Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
55
|
Thennes T, Mehta D. Heterotrimeric G proteins, focal adhesion kinase, and endothelial barrier function. Microvasc Res 2011; 83:31-44. [PMID: 21640127 DOI: 10.1016/j.mvr.2011.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/04/2011] [Accepted: 05/12/2011] [Indexed: 12/18/2022]
Abstract
Ligands by binding to G protein coupled receptors (GPCRs) stimulate dissociation of heterotrimeric G proteins into Gα and Gβγ subunits. Released Gα and Gβγ subunits induce discrete signaling cues that differentially regulate focal adhesion kinase (FAK) activity and endothelial barrier function. Activation of G proteins downstream of receptors such as protease activated receptor 1 (PAR1) and histamine receptors rapidly increases endothelial permeability which reverses naturally within the following 1-2 h. However, activation of G proteins coupled to the sphingosine-1-phosphate receptor 1 (S1P1) signal cues that enhance basal barrier endothelial function and restore endothelial barrier function following the increase in endothelial permeability by edemagenic agents. Intriguingly, both PAR1 and S1P1 activation stimulates FAK activity, which associates with alteration in endothelial barrier function by these agonists. In this review, we focus on the role of the G protein subunits downstream of PAR1 and S1P1 in regulating FAK activity and endothelial barrier function.
Collapse
Affiliation(s)
- Tracy Thennes
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
56
|
Grinnell KL, Harrington EO. Interplay between FAK, PKCδ, and p190RhoGAP in the regulation of endothelial barrier function. Microvasc Res 2011; 83:12-21. [PMID: 21549132 DOI: 10.1016/j.mvr.2011.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 04/15/2011] [Accepted: 04/16/2011] [Indexed: 11/16/2022]
Abstract
Disruption of either intercellular or extracellular junctions involved in maintaining endothelial barrier function can result in increased endothelial permeability. Increased endothelial permeability, in turn, allows for the unregulated movement of fluid and solutes out of the vasculature and into the surrounding connective tissue, contributing to a number of disease states, including stroke and pulmonary edema (Ermert et al., 1995; Lee and Slutsky, 2010; van Hinsbergh, 1997; Waller et al., 1996; Warboys et al., 2010). Thus, a better understanding of the molecular mechanisms by which endothelial cell junction integrity is controlled is necessary for development of therapies aimed at treating such conditions. In this review, we will discuss the functions of three signaling molecules known to be involved in regulation of endothelial permeability: focal adhesion kinase (FAK), protein kinase C delta (PKCδ), and p190RhoGAP (p190). We will discuss the independent functions of each protein, as well as the interplay that exists between them and the effects of such interactions on endothelial function.
Collapse
Affiliation(s)
- Katie L Grinnell
- Vascular Research Laboratory, Providence VA Medical Center, Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI 02908, USA
| | | |
Collapse
|
57
|
Swan DJ, Kirby JA, Ali S. Vascular biology: the role of sphingosine 1-phosphate in both the resting state and inflammation. J Cell Mol Med 2011; 14:2211-22. [PMID: 20716131 PMCID: PMC3822560 DOI: 10.1111/j.1582-4934.2010.01136.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The vascular and immune systems of mammals are closely intertwined: the individual components of the immune system must move between various body compartments to perform their function effectively. Sphingosine 1-phosphate (S1P), a bioactive lipid mediator, exerts effects on the two organ systems and influences the interaction between them. In the resting state, the vascular S1P gradient contributes to control of lymphocyte recirculation through the blood, lymphoid tissue and lymphatic vasculature. The high level of S1P in blood helps maintain endothelial barrier integrity. During the inflammatory process, both the level of S1P in different immune compartments and S1P receptor expression on lymphocytes and endothelial cells are modified, resulting in functionally important changes in endothelial cell and lymphocyte behaviour. These include transient arrest of lymphocytes in secondary lymphoid tissue, crucial for generation of adaptive immunity, and subsequent promotion of lymphocyte recruitment to sites of inflammation. This review begins with an outline of the basic biochemistry of S1P. S1P receptor signalling is then discussed, followed by an exploration of the roles of S1P in the vascular and immune systems, with particular focus on the interface between them. The latter part concerns crosstalk between S1P and other signalling pathways, and concludes with a look at therapies targeting the S1P-S1P receptor axis.
Collapse
Affiliation(s)
- David J Swan
- Applied Immunobiology and Transplantation Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | | | | |
Collapse
|
58
|
Chavez A, Smith M, Mehta D. New Insights into the Regulation of Vascular Permeability. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 290:205-48. [DOI: 10.1016/b978-0-12-386037-8.00001-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
59
|
Bonnaud S, Niaudet C, Legoux F, Corre I, Delpon G, Saulquin X, Fuks Z, Gaugler MH, Kolesnick R, Paris F. Sphingosine-1-phosphate activates the AKT pathway to protect small intestines from radiation-induced endothelial apoptosis. Cancer Res 2010; 70:9905-15. [PMID: 21118968 DOI: 10.1158/0008-5472.can-10-2043] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A previous in vitro study showed that sphingosine-1-phosphate (S1P), a ceramide antagonist, preserved endothelial cells in culture from radiation-induced apoptosis. We proposed to validate the role of S1P in tissue radioprotection by inhibiting acute gastrointestinal (GI) syndrome induced by endothelial cell apoptosis after high dose of radiation. Retro-orbital S1P was injected in mice exposed to 15 Gy, a dose-inducing GI syndrome within 10 days. Overall survival and apoptosis on intestines sections were studied. Intestinal cell type targeted by S1P and early molecular survival pathways were researched using irradiated in vitro cell models and in vivo mouse models. We showed that retro-orbital S1P injection before irradiation prevented GI syndrome by inhibiting endothelium collapse. We defined endothelium as a specific therapeutic target because only these cells and not intestinal epithelial cells, or B and T lymphocytes, were protected. Pharmacologic approaches using AKT inhibitor and pertussis toxin established that S1P affords endothelial cell protection in vitro and in vivo through a mechanism involving AKT and 7-pass transmembrane receptors coupled to Gi proteins. Our results provide strong pharmacologic and mechanistic proofs that S1P protects endothelial cells against acute radiation enteropathy.
Collapse
Affiliation(s)
- Stéphanie Bonnaud
- Inserm UMR892-Centre de Recherche en Cancérologie Nantes-Angers, Nantes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Wang L, Chiang ET, Simmons JT, Garcia JGN, Dudek SM. FTY720-induced human pulmonary endothelial barrier enhancement is mediated by c-Abl. Eur Respir J 2010; 38:78-88. [PMID: 21071472 DOI: 10.1183/09031936.00047810] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Strategies to improve pulmonary endothelial barrier function are needed to reverse the devastating effects of vascular leak in acute respiratory distress syndrome. FTY720 is a pharmaceutical analogue of the potent barrier-enhancing phospholipid sphingosine 1-phosphate (S1P). FTY720 decreases vascular permeability by an incompletely characterised mechanism that differs from S1P. Here, we describe its barrier-promoting effects on intracellular signalling and junctional assembly formation in human pulmonary endothelium. Permeability of cultured human pulmonary endothelial cells was assessed using transendothelial electrical resistance and dextran transwell assays. Junctional complex formation was assessed using membrane fractionation and immunofluorescence. Pharmacological inhibitors and small interfering (si)RNA were utilised to determine the effects of individual components on permeability. Unlike S1P, FTY720 failed to induce membrane translocation of adherens junction or tight junction proteins. β-catenin, occludin, claudin-5 or zona occludens protein (ZO)-1/ZO-2 siRNAs did not alter FTY720-induced barrier enhancement. FTY720 induced focal adhesion kinase (FAK) phosphorylation and focal adhesion formation, with FAK siRNA partially attenuating the prolonged phase of barrier enhancement. Inhibition of Src, protein kinase (PK)A, PKG, PKC or protein phosphatase 2A failed to alter FTY720-induced barrier enhancement. FTY720 increased c-Abl tyrosine kinase activity and c-Abl siRNA attenuated peak barrier enhancement after FTY720. FTY720 enhances endothelial barrier function by a novel pathway involving c-Abl signalling.
Collapse
Affiliation(s)
- L Wang
- Institute for Personalized Respiratory Medicine, Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
61
|
Aldinucci A, Rizzetto L, Pieri L, Nosi D, Romagnoli P, Biagioli T, Mazzanti B, Saccardi R, Beltrame L, Massacesi L, Cavalieri D, Ballerini C. Inhibition of Immune Synapse by Altered Dendritic Cell Actin Distribution: A New Pathway of Mesenchymal Stem Cell Immune Regulation. THE JOURNAL OF IMMUNOLOGY 2010; 185:5102-10. [DOI: 10.4049/jimmunol.1001332] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
62
|
Dudek SM, Chiang ET, Camp SM, Guo Y, Zhao J, Brown ME, Singleton PA, Wang L, Desai A, Arce FT, Lal R, Van Eyk JE, Imam SZ, Garcia JGN. Abl tyrosine kinase phosphorylates nonmuscle Myosin light chain kinase to regulate endothelial barrier function. Mol Biol Cell 2010; 21:4042-56. [PMID: 20861316 PMCID: PMC2982111 DOI: 10.1091/mbc.e09-10-0876] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
This study identified multiple novel c-Abl–mediated nmMLCK phosphorylation sites by mass spectroscopy and examined their influence on nmMLCK function and human lung endothelial barrier regulation. The data indicate an essential role for Abl kinase in vascular barrier regulation via phosphorylation of nmMLCK and the actin-binding protein cortactin. Nonmuscle myosin light chain kinase (nmMLCK), a multi-functional cytoskeletal protein critical to vascular homeostasis, is highly regulated by tyrosine phosphorylation. We identified multiple novel c-Abl–mediated nmMLCK phosphorylation sites by mass spectroscopy analysis (including Y231, Y464, Y556, Y846) and examined their influence on nmMLCK function and human lung endothelial cell (EC) barrier regulation. Tyrosine phosphorylation of nmMLCK increased kinase activity, reversed nmMLCK-mediated inhibition of Arp2/3-mediated actin polymerization, and enhanced binding to the critical actin-binding phosphotyrosine protein, cortactin. EC challenge with sphingosine 1-phosphate (S1P), a potent barrier-enhancing agonist, resulted in c-Abl and phosphorylated nmMLCK recruitment into caveolin-enriched microdomains, rapid increases in Abl kinase activity, and spatial targeting of c-Abl to barrier-promoting cortical actin structures. Conversely, reduced c-Abl expression in EC (siRNA) markedly attenuated S1P-mediated cortical actin formation, reduced the EC modulus of elasticity (assessed by atomic force microscopy), reduced nmMLCK and cortactin tyrosine phosphorylation, and attenuated S1P-mediated barrier enhancement. These studies indicate an essential role for Abl kinase in vascular barrier regulation via posttranslational modification of nmMLCK and strongly support c-Abl-cortactin-nmMLCK interaction as a novel determinant of cortical actin-based cytoskeletal rearrangement critical to S1P-mediated EC barrier enhancement.
Collapse
Affiliation(s)
- Steven M Dudek
- Institute for Personalized Respiratory Medicine, Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Ahn S, Park H. XIAP is essential for shear stress-enhanced Tyr-576 phosphorylation of FAK. Biochem Biophys Res Commun 2010; 399:256-61. [DOI: 10.1016/j.bbrc.2010.07.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 07/18/2010] [Indexed: 12/13/2022]
|
64
|
Curry FRE, Adamson RH. Vascular permeability modulation at the cell, microvessel, or whole organ level: towards closing gaps in our knowledge. Cardiovasc Res 2010; 87:218-29. [PMID: 20418473 PMCID: PMC2895542 DOI: 10.1093/cvr/cvq115] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/13/2010] [Accepted: 04/19/2010] [Indexed: 01/20/2023] Open
Abstract
Multiple processes modulate net blood-to-tissue exchange in a microvascular unit in normal and pathophysiological conditions. These include mechanisms that control the number and type of microvessels perfused, the balance of adhesion and contractile forces that determine the conductance of the spaces between endothelial cells to water and solutes, the pressure and chemical potential gradients determining the driving forces through these conductive pathways, and the organization of barriers to macromolecules in the endothelial glycocalyx. Powerful methods are available to investigate these mechanisms at the levels of cultured endothelial monolayers, isolated microvessels, and the microvascular units within intact organs. Here we focus on current problems that limit the integration of our knowledge of mechanisms investigated in detail at the cellular level into a more complete understanding of modulation of blood-to-tissue exchange in whole organs when the endothelial barrier is exposed to acute and more long-term inflammatory conditions. First, we review updated methods, applicable in mouse models of vascular permeability regulation, to investigate both acute and long-term changes in permeability. Methods to distinguish tracer accumulation due to change in perfusion from real increases in extravascular accumulation are emphasized. The second part of the review compares normal and increased permeability in individually perfused venular microvessels and endothelial cell monolayers. The heterogeneity of endothelial cell phenotypes in the baseline state and after exposure to injury and inflammatory conditions is emphasized. Lastly, we review new approaches to investigation of the glycocalyx barrier properties in cultured endothelial monolayers and in whole-body investigations.
Collapse
Affiliation(s)
- Fitz-Roy E Curry
- Department of Physiology and Membrane Biology, School of Medicine, University of California, 1 Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
65
|
Kim M, Kim M, Park SW, Pitson SM, Lee HT. Isoflurane protects human kidney proximal tubule cells against necrosis via sphingosine kinase and sphingosine-1-phosphate generation. Am J Nephrol 2010; 31:353-62. [PMID: 20234131 DOI: 10.1159/000298339] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 02/03/2010] [Indexed: 01/13/2023]
Abstract
BACKGROUND/AIMS We previously showed that the inhalational anesthetic isoflurane protects against renal ischemia reperfusion injury in part via sphingosine kinase (SK)-mediated synthesis of sphingosine-1-phosphate (S1P). In this study, we tested the hypothesis that isoflurane directly targets renal proximal tubule cells via SK activation, S1P synthesis and activation of S1P receptors to initiate cytoprotective signaling. METHODS AND RESULTS Isoflurane-mediated phosphorylation of extracellular signal-regulated kinase (ERK) and Akt and induction of HSP70 in human kidney proximal tubule (HK-2) cells were inhibited by dimethylsphingosine (DMS), an SK inhibitor, and VPC23019, an S1P(1/3) receptor selective antagonist, in HK-2 cells. A selective S1P(1) receptor agonist, SEW2781, mimicked isoflurane-induced phosphorylation of ERK and Akt and induction of HSP70. Moreover, isoflurane-mediated protection against H(2)O(2)-induced necrosis of HK-2 cells was significantly attenuated by an S1P(1/3) receptor antagonist, VPC23019, and by SK inhibitors DMS or 4-[[4- (4-chlorophenyl)-2-thiazolyl]amino]phenol. Finally, overexpression of the SK1 enzyme in HK-2 cells protected against H(2)O(2)-induced necrosis. CONCLUSIONS Collectively, our study demonstrates that S1P released via isoflurane-mediated SK1 stimulation produces direct anti-necrotic effects probably via S1P(1) receptor-mediated cytoprotective signaling (ERK/Akt phosphorylation and HSP70 induction) in HK-2 cells. Our findings may help to unravel the cellular signaling pathways of volatile anesthetic-mediated renal protection and lead to new therapeutic applications of volatile anesthetics during the perioperative period.
Collapse
Affiliation(s)
- Mihwa Kim
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY 10032-3784, USA
| | | | | | | | | |
Collapse
|
66
|
Wei L, Sun D, Yin Z, Yuan Y, Hwang A, Zhang Y, Si R, Zhang R, Guo W, Cao F, Wang H. A PKC-β inhibitor protects against cardiac microvascular ischemia reperfusion injury in diabetic rats. Apoptosis 2010; 15:488-98. [DOI: 10.1007/s10495-009-0439-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
67
|
Mochizuki N. Vascular integrity mediated by vascular endothelial cadherin and regulated by sphingosine 1-phosphate and angiopoietin-1. Circ J 2009; 73:2183-91. [PMID: 19838001 DOI: 10.1253/circj.cj-09-0666] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Development of blood vessels is coordinated by angiogenesis and stabilization of vascular endothelial cells (ECs). The vascular network is established during embryogenesis to supply oxygen and nutrients to the tissues and organs. However, after cardiac or peripheral ischemia is caused by occlusion of the vessels, new vessels must be formed to rescue the ischemic tissues. Many angiogenic growth factors and chemokines are produced in the ischemic tissue to induce angiogenic sprouting of preexisting vessels. Branched vessels must be again restabilized to form mature vessels that deliver blood to the tissues. To this end, vascular EC-cell adhesion is tightly regulated by cell-cell adhesion molecules and extracellular stimuli that activate G protein-coupled receptors and receptor tyrosine kinases exclusively expressed on vascular ECs. This review spotlights the recent studies of vascular endothelial cadherin and of sphingosine 1-phosphate signaling and angiopoietin-Tie signaling.
Collapse
Affiliation(s)
- Naoki Mochizuki
- Department of Structural Analysis, National Cardiovascular Center Research Institute, Suita, Japan.
| |
Collapse
|
68
|
Stamer WD, Read AT, Sumida GM, Ethier CR. Sphingosine-1-phosphate effects on the inner wall of Schlemm's canal and outflow facility in perfused human eyes. Exp Eye Res 2009; 89:980-8. [PMID: 19715693 DOI: 10.1016/j.exer.2009.08.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/18/2009] [Accepted: 08/18/2009] [Indexed: 11/29/2022]
Abstract
Previous work has shown that sphingosine 1-phosphate (S1P) decreases outflow facility in perfused porcine eyes while dramatically increasing giant vacuole density in the inner wall of the aqueous plexus, with no obvious changes in the trabecular meshwork (TM). Due to known effects of S1P on cell-cell junction assembly in vascular endothelia, we hypothesized that S1P would decrease outflow facility in human eyes by increasing the complexity of cell-cell junctions in Schlemm's canal (SC) inner wall endothelia. Perfusion of enucleated post mortem human eyes at 8 mmHg constant pressure in the presence or absence of 5 microM S1P showed that S1P decreased outflow facility by 36 +/- 20% (n = 10 pairs; p = 0.0004); an effect likely mediated by activation of S1P(1) and/or S1P(3) receptor subtypes, which were found to be the principal S1P receptors expressed by both TM and SC cells by RT-PCR, confocal immunofluorescence microscopy and western blot analyses. Examination of SC's inner wall using confocal microscopy revealed no consistent differences in VE-cadherin, beta-catenin, phosphotyrosine or filamentous actin abundance/distribution between S1P-treated eyes and controls. Moreover, morphological inspection of conventional outflow tissues by light and scanning electron microscopy showed no significant differences between S1P-treated and control eyes, particularly in giant vacuole density. Thus, unlike the situation in porcine eyes, we did not observe changes in inner wall morphology in human eyes treated with S1P, despite a significant and immediate decrease in outflow facility in both species. Regardless, S1P receptor antagonists represent novel therapeutic prospects for ocular hypertension in humans.
Collapse
Affiliation(s)
- W Daniel Stamer
- Department of Ophthalmology and Vision Science, The University of Arizona, 655 North Alvernon Way, Suite 108, Tucson, AZ 85711, USA.
| | | | | | | |
Collapse
|
69
|
Sarai K, Shikata K, Shikata Y, Omori K, Watanabe N, Sasaki M, Nishishita S, Wada J, Goda N, Kataoka N, Makino H. Endothelial barrier protection by FTY720 under hyperglycemic condition: involvement of focal adhesion kinase, small GTPases, and adherens junction proteins. Am J Physiol Cell Physiol 2009; 297:C945-54. [PMID: 19657053 DOI: 10.1152/ajpcell.00606.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recently, sphingosine 1-phosphate (S1P) has been highlighted as an endothelial barrier-stabilizing mediator. FTY720 is a S1P analog originally developed as a novel immunosuppressant. The phosphorylated form of FTY720 binds to S1P receptors to exert S1P-like biological effects, suggesting endothelial barrier promotion by FTY720. To elucidate whether FTY720 induces signaling events related to endothelial barrier enhancement under hyperglycemic conditions, human microvascular endothelial cells (HMVECs) preincubated with hyperglycemic (30 mM) medium were treated with 100 nM FTY720 for 3 h. Immunofluorescent microscopy and coprecipitation study revealed FTY720-induced focal adhesion kinase (FAK)-associated adherens junction (AJ) assembly at cell-cell contacts coincident with formation of a prominent cortical actin ring. FTY720 also induced transmonolayer electrical resistance (TER) augmentation in HMVEC monolayers in both normoglycemic and hyperglycemic conditions, implying endothelial barrier enhancement. Similar to S1P, site-specific FAK tyrosine phosphorylation analysis revealed FTY720-induced FAK [Y576] phosphorylation without phosphorylation of FAK [Y397/Y925]. Furthermore, FTY720 conditioned the phosphorylation profile of FAK [Y397/Y576/Y925] in hyperglycemic medium to the same pattern observed in normoglycemic medium. FTY720 challenge resulted in small GTPase Rac activation under hyperglycemic conditions, whereas increased Rho activity in hyperglycemic medium was restored to the basal level. Rac protein depletion by small interfering RNA (siRNA) technique completely abolished FTY720-induced FAK [Y576] phosphorylation. These findings strongly suggest the barrier protective effect of FTY720 on HMVEC monolayers in hyperglycemic medium via S1P signaling, further implying the possibility of FTY720 as a therapeutic agent of diabetic vascular disorder.
Collapse
Affiliation(s)
- Kei Sarai
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|