51
|
Williams NR, Bentzley BS, Sahlem GL, Pannu J, Korte JE, Revuelta G, Short EB, George MS. Unilateral ultra-brief pulse electroconvulsive therapy for depression in Parkinson's disease. Acta Neurol Scand 2017; 135:407-411. [PMID: 27241213 DOI: 10.1111/ane.12614] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Electroconvulsive therapy (ECT) has demonstrated efficacy in treating core symptoms of Parkinson's disease (PD); however, widespread use of ECT in PD has been limited due to concern over cognitive burden. We investigated the use of a newer ECT technology known to have fewer cognitive side effects (right unilateral [RUL] ultra-brief pulse [UBP]) for the treatment of medically refractory psychiatric dysfunction in PD. MATERIALS AND METHODS This open-label pilot study included 6 patients who were assessed in the motoric, cognitive, and neuropsychiatric domains prior to and after RUL UBP ECT. Primary endpoints were changes in total score on the HAM-D-17 and GDS-30 rating scales. RESULTS Patients were found to improve in motoric and psychiatric domains following RUL UBP ECT without cognitive side effects, both immediately following ECT and at 1-month follow-up. CONCLUSIONS This study demonstrates that RUL UBP ECT is safe, feasible, and potentially efficacious in treating multiple domains of PD, including motor and mood, without clear cognitive side effects.
Collapse
Affiliation(s)
- N. R. Williams
- Department of Psychiatry & Behavioral Sciences; Stanford University; Stanford CA USA
| | - B. S. Bentzley
- Department of Psychiatry & Behavioral Sciences; Stanford University; Stanford CA USA
| | - G. L. Sahlem
- Department of Psychiatry; Medical University of South Carolina; Charleston SC USA
| | - J. Pannu
- Department of Psychiatry & Behavioral Sciences; Stanford University; Stanford CA USA
| | - J. E. Korte
- Department of Public Health Sciences; Medical University of South Carolina; Charleston SC USA
| | - G. Revuelta
- Department of Neurology; Medical University of South Carolina; Charleston SC USA
| | - E. B. Short
- Department of Psychiatry; Medical University of South Carolina; Charleston SC USA
| | - M. S. George
- Department of Neurology; Medical University of South Carolina; Charleston SC USA
- Department of Psychiatry; Medical University of South Carolina; Charleston SC USA
- Ralph H. Johnson VA Medical Center; Charleston SC USA
| |
Collapse
|
52
|
Sierra M, Carnicella S, Strafella AP, Bichon A, Lhommée E, Castrioto A, Chabardes S, Thobois S, Krack P. Apathy and Impulse Control Disorders: Yin & Yang of Dopamine Dependent Behaviors. JOURNAL OF PARKINSONS DISEASE 2016; 5:625-36. [PMID: 25870025 DOI: 10.3233/jpd-150535] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Neuropsychiatric symptoms are common non-motor symptoms in Parkinson's disease (PD). Apathy and impulse control disorders (ICD) are two opposite motivational expressions of a continuous behavioural spectrum involving hypo- and hyperdopaminergia. Both syndromes share pathological (decreased vs increased) dopamine receptor stimulation states. Apathy belongs to the spectrum of hypodopaminergic symptoms together with anhedonia, anxiety and depression. Apathy is a key symptom of PD which worsens with disease progression. Animal models, imaging and pharmacological studies concur in pointing out dopaminergic denervation in the aetiology of parkinsonian apathy with a cardinal role of decreased tonic D2/D3 receptor stimulation. ICDs are part of the hyperdopaminergic behavioural spectrum, which also includes punding, and dopamine dysregulation syndrome (DDS), which are all related to non-physiological dopaminergic stimulation induced by antiparkinsonian drugs. According to clinical data tonic D2/D3 receptor stimulation can be sufficient to induce ICDs. Clinical observations in drug addiction and PD as well as data from studies in dopamine depleted rodents provide hints allowing to argue that both pulsatile D1 and D2 receptor stimulation and the severity of dopaminergic denervation are risk factors to develop punding behavior and DDS. Imaging studies have shown that the brain structures involved in drug addiction are also involved in hyperdopaminergic behaviours with increase of bottom-up appetitive drive and decrease in prefrontal top down behavioural control.
Collapse
Affiliation(s)
- María Sierra
- Service of Neurology, University Hospital "Marqués de Valdecilla (IFIMAV)", University of Cantabria and "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)", Santander, Spain
| | | | - Antonio P Strafella
- Morton and Gloria Shulman Movement Disorder Unit - E.J. Safra Parkinson Disease Program, Toronto Western Hospital and Research Institute, UHN & Research Imaging Centre, Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Ontario, Canada
| | - Amélie Bichon
- Movement Disorder Unit, Department of Psychiatry and Neurology, CHU de Grenoble, Joseph Fourier University, Grenoble Universités, France; and INSERM, Unit 836, Grenoble Institut des Neurosciences, Grenoble, France
| | - Eugénie Lhommée
- Movement Disorder Unit, Department of Psychiatry and Neurology, CHU de Grenoble, Joseph Fourier University, Grenoble Universités, France; and INSERM, Unit 836, Grenoble Institut des Neurosciences, Grenoble, France
| | - Anna Castrioto
- Movement Disorder Unit, Department of Psychiatry and Neurology, CHU de Grenoble, Joseph Fourier University, Grenoble Universités, France; and INSERM, Unit 836, Grenoble Institut des Neurosciences, Grenoble, France
| | - Stephan Chabardes
- Department of Neurosurgery CHU de Grenoble, Joseph Fourier University, Grenoble, France and INSERM, Unité 836, Grenoble Institut des Neurosciences, Grenoble, France
| | - Stéphane Thobois
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5229, Centre de Neuroscience Cognitive, Bron, France; Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France
| | - Paul Krack
- Movement Disorder Unit, Department of Psychiatry and Neurology, CHU de Grenoble, Joseph Fourier University, Grenoble Universités, France; and INSERM, Unit 836, Grenoble Institut des Neurosciences, Grenoble, France
| |
Collapse
|
53
|
Pietschnig J, Schröder L, Ratheiser I, Kryspin-Exner I, Pflüger M, Moser D, Auff E, Pirker W, Pusswald G, Lehrner J. Facial emotion recognition and its relationship to cognition and depressive symptoms in patients with Parkinson's disease. Int Psychogeriatr 2016; 28:1165-79. [PMID: 26987816 DOI: 10.1017/s104161021600034x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Impairments in facial emotion recognition (FER) have been detected in patients with Parkinson disease (PD). Presently, we aim at assessing differences in emotion recognition performance in PD patient groups with and without mild forms of cognitive impairment (MCI) compared to healthy controls. METHODS Performance on a concise emotion recognition test battery (VERT-K) of three groups of 97 PD patients was compared with an age-equivalent sample of 168 healthy controls. Patients were categorized into groups according to two well-established classifications of MCI according to Petersen's (cognitively intact vs. amnestic MCI, aMCI, vs. non-amnestic MCI, non-aMCI) and Litvan's (cognitively intact vs. single-domain MCI, sMCI, vs. multi-domain MCI, mMCI) criteria. Patients and controls underwent individual assessments using a comprehensive neuropsychological test battery examining attention, executive functioning, language, and memory (Neuropsychological Test Battery Vienna, NTBV), the Beck Depression Inventory, and a measure of premorbid IQ (WST). RESULTS Cognitively intact PD patients and patients with MCI in PD (PD-MCI) showed significantly worse emotion recognition performance when compared to healthy controls. Between-groups effect sizes were substantial, showing non-trivial effects in all comparisons (Cohen's ds from 0.31 to 1.22). Moreover, emotion recognition performance was higher in women, positively associated with premorbid IQ and negatively associated with age. Depressive symptoms were not related to FER. CONCLUSIONS The present investigation yields further evidence for impaired FER in PD. Interestingly, our data suggest FER deficits even in cognitively intact PD patients indicating FER dysfunction prior to the development of overt cognitive dysfunction. Age showed a negative association whereas IQ showed a positive association with FER.
Collapse
Affiliation(s)
- J Pietschnig
- Department of Applied Psychology: Health, Development, Enhancement and Intervention,Faculty of Psychology,University of Vienna,Vienna,Austria
| | - L Schröder
- Department of Applied Psychology: Health, Development, Enhancement and Intervention,Faculty of Psychology,University of Vienna,Vienna,Austria
| | - I Ratheiser
- Department of Applied Psychology: Health, Development, Enhancement and Intervention,Faculty of Psychology,University of Vienna,Vienna,Austria
| | - I Kryspin-Exner
- Department of Applied Psychology: Health, Development, Enhancement and Intervention,Faculty of Psychology,University of Vienna,Vienna,Austria
| | - M Pflüger
- Department of Neurology,Medical University of Vienna,Vienna,Austria
| | - D Moser
- Department of Neurology,Medical University of Vienna,Vienna,Austria
| | - E Auff
- Department of Neurology,Medical University of Vienna,Vienna,Austria
| | - W Pirker
- Department of Neurology,Medical University of Vienna,Vienna,Austria
| | - G Pusswald
- Department of Neurology,Medical University of Vienna,Vienna,Austria
| | - J Lehrner
- Department of Neurology,Medical University of Vienna,Vienna,Austria
| |
Collapse
|
54
|
Gillan CM, Robbins TW, Sahakian BJ, van den Heuvel OA, van Wingen G. The role of habit in compulsivity. Eur Neuropsychopharmacol 2016; 26:828-40. [PMID: 26774661 PMCID: PMC4894125 DOI: 10.1016/j.euroneuro.2015.12.033] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 12/17/2015] [Accepted: 12/20/2015] [Indexed: 11/22/2022]
Abstract
Compulsivity has been recently characterized as a manifestation of an imbalance between the brain׳s goal-directed and habit-learning systems. Habits are perhaps the most fundamental building block of animal learning, and it is therefore unsurprising that there are multiple ways in which the development and execution of habits can be promoted/discouraged. Delineating these neurocognitive routes may be critical to understanding if and how habits contribute to the many faces of compulsivity observed across a range of psychiatric disorders. In this review, we distinguish the contribution of excessive stimulus-response habit learning from that of deficient goal-directed control over action and response inhibition, and discuss the role of stress and anxiety as likely contributors to the transition from goal-directed action to habit. To this end, behavioural, pharmacological, neurobiological and clinical evidence are synthesised and a hypothesis is formulated to capture how habits fit into a model of compulsivity as a trans-diagnostic psychiatric trait.
Collapse
Affiliation(s)
- Claire M Gillan
- Department of Psychology, New York University, 6 Washington Place, New York, NY 10003, USA; Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom.
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Barbara J Sahakian
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Odile A van den Heuvel
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands; Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, The Netherlands; The OCD Team, Haukeland University Hospital, Bergen, Norway
| | - Guido van Wingen
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
55
|
van den Heuvel OA, van Wingen G, Soriano-Mas C, Alonso P, Chamberlain SR, Nakamae T, Denys D, Goudriaan AE, Veltman DJ. Brain circuitry of compulsivity. Eur Neuropsychopharmacol 2016; 26:810-27. [PMID: 26711687 DOI: 10.1016/j.euroneuro.2015.12.005] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/28/2015] [Accepted: 12/01/2015] [Indexed: 01/27/2023]
Abstract
Compulsivity is associated with alterations in the structure and the function of parallel and interacting brain circuits involved in emotional processing (involving both the reward and the fear circuits), cognitive control, and motor functioning. These brain circuits develop during the pre-natal period and early childhood under strong genetic and environmental influences. In this review we bring together literature on cognitive, emotional, and behavioral processes in compulsivity, based mainly on studies in patients with obsessive-compulsive disorder and addiction. Disease symptoms normally change over time. Goal-directed behaviors, in response to reward or anxiety, often become more habitual over time. During the course of compulsive disorders the mental processes and repetitive behaviors themselves contribute to the neuroplastic changes in the involved circuits, mainly in case of chronicity. On the other hand, successful treatment is able to normalize altered circuit functioning or to induce compensatory mechanisms. We conclude that insight in the neurobiological characteristics of the individual symptom profile and disease course, including the potential targets for neuroplasticity is an unmet need to advance the field.
Collapse
Affiliation(s)
- Odile A van den Heuvel
- Department of Psychiatry, VU University Medical Center (VUmc), Amsterdam, The Netherlands; Department of Anatomy & Neurosciences, VUmc, Amsterdam, The Netherlands; The Obsessive-Compulsive Disorder Team, Haukeland University Hospital, Bergen, Norway.
| | - Guido van Wingen
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Carles Soriano-Mas
- OCD Clinical and Research Unit, Department of Psychiatry, Bellvitge University Hospital; Bellvitge Biomedical Research Institute (IDIBELL), and CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Barcelona, Spain; Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Spain
| | - Pino Alonso
- OCD Clinical and Research Unit, Department of Psychiatry, Bellvitge University Hospital; Bellvitge Biomedical Research Institute (IDIBELL), and CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Spain
| | - Samuel R Chamberlain
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridge and Peterborough NHS Foundation Trust (CPFT), Cambridge, United Kingdom
| | - Takashi Nakamae
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Damiaan Denys
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anna E Goudriaan
- Academic Medical Center, Department of Psychiatry, Amsterdam Institute for Addiction Research, University of Amsterdam, Amsterdam, The Netherlands; Arkin Mental Health and Jellinek Addiction Treatment, Amsterdam, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| |
Collapse
|
56
|
Aznar S, Hervig MES. The 5-HT2A serotonin receptor in executive function: Implications for neuropsychiatric and neurodegenerative diseases. Neurosci Biobehav Rev 2016; 64:63-82. [DOI: 10.1016/j.neubiorev.2016.02.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/05/2015] [Accepted: 02/08/2016] [Indexed: 02/07/2023]
|
57
|
Vriend C, Boedhoe PSW, Rutten S, Berendse HW, van der Werf YD, van den Heuvel OA. A smaller amygdala is associated with anxiety in Parkinson's disease: a combined FreeSurfer-VBM study. J Neurol Neurosurg Psychiatry 2016; 87:493-500. [PMID: 25986365 DOI: 10.1136/jnnp-2015-310383] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/22/2015] [Indexed: 01/04/2023]
Abstract
BACKGROUND Up to 50% of all patients with Parkinson's disease (PD) suffer from anxiety symptoms, a much higher percentage than in the general population. This suggests that PD associated pathological alterations partly underlie these symptoms, although empirical evidence is limited. METHODS Here we investigated the association between anxiety symptoms measured with the Beck Anxiety Inventory (BAI) and hippocampal and amygdalar volume in 110 early-stage patients with PD. Measures of anxiety in PD are often obscured by overlap with the somatic symptoms. We therefore also used a subscale of the BAI, established by our recent factor analysis, that reflects 'psychological' anxiety symptoms and is independent of the severity of PD-related motor and autonomic symptoms. We used FreeSurfer and voxel-based morphometry for the volumetric analyses. RESULTS Both software packages showed a negative correlation between the 'psychological' subscale of the BAI, but not total BAI and volume of the left amygdala, independent of the severity of motor symptoms, autonomic dysfunction and dopaminergic or anxiolytic medication status. CONCLUSIONS These results confirm studies in non-PD samples showing lower left amygdalar volume in anxious patients. The results also indicate that the 'psychological' BAI subscale is a better reflection of neural correlates of anxiety in PD. Whether the left amygdalar volume decrease constitutes a premorbid trait, a PD-associated neurobiological susceptibility to anxiety or arises as a consequence of chronic anxiety symptoms remains to be determined by future prospective longitudinal studies. Nonetheless, we speculate that the Parkinson pathology is responsible for the reduction in amygdalar volume and the concomitant development of anxiety symptoms.
Collapse
Affiliation(s)
- Chris Vriend
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, The Netherlands Neuroscience Campus Amsterdam, VU/VUMC, Amsterdam, The Netherlands Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | - Premika S W Boedhoe
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, The Netherlands Neuroscience Campus Amsterdam, VU/VUMC, Amsterdam, The Netherlands
| | - Sonja Rutten
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Henk W Berendse
- Neuroscience Campus Amsterdam, VU/VUMC, Amsterdam, The Netherlands Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ysbrand D van der Werf
- Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, The Netherlands Neuroscience Campus Amsterdam, VU/VUMC, Amsterdam, The Netherlands Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Odile A van den Heuvel
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, The Netherlands Neuroscience Campus Amsterdam, VU/VUMC, Amsterdam, The Netherlands
| |
Collapse
|
58
|
Lamberti VM, Pereira B, Lhommée E, Bichon A, Schmitt E, Pelissier P, Kistner A, Fraix V, Castrioto A, Esselink RAJ, Durif F, Krack P. Profile of Neuropsychiatric Symptoms in Parkinson’s Disease: Surgical Candidates Compared to Controls. JOURNAL OF PARKINSONS DISEASE 2016; 6:133-42. [DOI: 10.3233/jpd-150698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Valérie M.J. Lamberti
- Movement Disorders Unit, Department of Psychiatry Neurology and Neurological Rehabilitation, CHU Grenoble Alpes, F-38000 Grenoble, France
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bruno Pereira
- CHU Clermont-Ferrand, DRCI, Biostatistics Unit, Clermont-Ferrand, France
| | - Eugénie Lhommée
- Movement Disorders Unit, Department of Psychiatry Neurology and Neurological Rehabilitation, CHU Grenoble Alpes, F-38000 Grenoble, France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| | - Amélie Bichon
- Movement Disorders Unit, Department of Psychiatry Neurology and Neurological Rehabilitation, CHU Grenoble Alpes, F-38000 Grenoble, France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| | - Emmanuelle Schmitt
- Movement Disorders Unit, Department of Psychiatry Neurology and Neurological Rehabilitation, CHU Grenoble Alpes, F-38000 Grenoble, France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| | - Pierre Pelissier
- Movement Disorders Unit, Department of Psychiatry Neurology and Neurological Rehabilitation, CHU Grenoble Alpes, F-38000 Grenoble, France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| | - Andrea Kistner
- Movement Disorders Unit, Department of Psychiatry Neurology and Neurological Rehabilitation, CHU Grenoble Alpes, F-38000 Grenoble, France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| | - Valérie Fraix
- Movement Disorders Unit, Department of Psychiatry Neurology and Neurological Rehabilitation, CHU Grenoble Alpes, F-38000 Grenoble, France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| | - Anna Castrioto
- Movement Disorders Unit, Department of Psychiatry Neurology and Neurological Rehabilitation, CHU Grenoble Alpes, F-38000 Grenoble, France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| | - Rianne A. J. Esselink
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank Durif
- CHU Clermont-Ferrand, Neurology Department; CHU Gabriel Montpied, and Université Clermont 1, UFR Medecine, EA7280, Clermont-Ferrand, France
| | - Paul Krack
- Movement Disorders Unit, Department of Psychiatry Neurology and Neurological Rehabilitation, CHU Grenoble Alpes, F-38000 Grenoble, France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| |
Collapse
|
59
|
Gene therapy blockade of dorsal striatal p11 improves motor function and dyskinesia in parkinsonian mice. Proc Natl Acad Sci U S A 2016; 113:1423-8. [PMID: 26787858 DOI: 10.1073/pnas.1524387113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Complications of dopamine replacement for Parkinson's disease (PD) can limit therapeutic options, leading to interest in identifying novel pathways that can be exploited to improve treatment. p11 (S100A10) is a cellular scaffold protein that binds to and potentiates the activity of various ion channels and neurotransmitter receptors. We have previously reported that p11 can influence ventral striatal function in models of depression and drug addiction, and thus we hypothesized that dorsal striatal p11 might mediate motor function and drug responses in parkinsonian mice. To focally inhibit p11 expression in the dorsal striatum, we injected an adeno-associated virus (AAV) vector producing a short hairpin RNA (AAV.sh.p11). This intervention reduced the impairment in motor function on forced tasks, such as rotarod and treadmill tests, caused by substantia nigra lesioning in mice. Measures of spontaneous movement and gait in an open-field test declined as expected in control lesioned mice, whereas AAV.sh.p11 mice remained at or near normal baseline. Mice with unilateral lesions were then challenged with l-dopa (levodopa) and various dopamine receptor agonists, and resulting rotational behaviors were significantly reduced after ipsilateral inhibition of dorsal striatal p11 expression. Finally, p11 knockdown in the dorsal striatum dramatically reduced l-dopa-induced abnormal involuntary movements compared with control mice. These data indicate that focal inhibition of p11 action in the dorsal striatum could be a promising PD therapeutic target to improve motor function while reducing l-dopa-induced dyskinesias.
Collapse
|
60
|
Janakiraman U, Manivasagam T, Thenmozhi AJ, Essa MM, Barathidasan R, SaravanaBabu C, Guillemin GJ, Khan MAS. Influences of Chronic Mild Stress Exposure on Motor, Non-Motor Impairments and Neurochemical Variables in Specific Brain Areas of MPTP/Probenecid Induced Neurotoxicity in Mice. PLoS One 2016; 11:e0146671. [PMID: 26765842 PMCID: PMC4713092 DOI: 10.1371/journal.pone.0146671] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/21/2015] [Indexed: 12/31/2022] Open
Abstract
Parkinson's disease (PD) is regarded as a movement disorder mainly affecting the elderly population and occurs due to progressive loss of dopaminergic (DAergic) neurons in nigrostriatal pathway. Patients suffer from non-motor symptoms (NMS) such as depression, anxiety, fatigue and sleep disorders, which are not well focussed in PD research. Depression in PD is a predominant /complex symptom and its pathology lies exterior to the nigrostriatal system. The main aim of this study is to explore the causative or progressive effect of chronic mild stress (CMS), a paradigm developed as an animal model of depression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (25 mg/kg. body wt.) with probenecid (250 mg/kg, s.c.) (MPTP/p) induced mice model of PD. After ten i.p. injections (once in 3.5 days for 5 weeks) of MPTP/p or exposure to CMS for 4 weeks, the behavioural (motor and non-motor) impairments, levels and expressions of dopamine (DA), serotonin (5-HT), DAergic markers such as tyrosine hydroxylase (TH), dopamine transporter (DAT), vesicular monoamine transporters-2 (VMAT 2) and α-synuclein in nigrostriatal (striatum (ST) and substantia nigra (SN)) and extra-nigrostriatal (hippocampus, cortex and cerebellum) tissues were analysed. Significantly decreased DA and 5-HT levels, TH, DAT and VMAT 2 expressions and increased motor deficits, anhedonia-like behaviour and α-synuclein expression were found in MPTP/p treated mice. Pre and/or post exposure of CMS to MPTP/p mice further enhanced the MPTP/p induced DA and 5-HT depletion, behaviour abnormalities and protein expressions. Our results could strongly confirm that the exposure of stress after MPTP/p injections worsens the symptoms and neurochemicals status of PD.
Collapse
Affiliation(s)
- Udaiyappan Janakiraman
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, 608002, Tamilnadu, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, 608002, Tamilnadu, India
- * E-mail:
| | - Arokiasamy Justin Thenmozhi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, 608002, Tamilnadu, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| | - Rajamani Barathidasan
- Centre for Toxicology and Developmental Research, Sri Ramachandra University, Porur, Chennai-600 116, Tamilnadu, India
| | - Chidambaram SaravanaBabu
- Centre for Toxicology and Developmental Research, Sri Ramachandra University, Porur, Chennai-600 116, Tamilnadu, India
| | - Gilles J. Guillemin
- Neuropharmacology group, Faculty of Medicine and Health Sciences, Deb Bailey MND Research Laboratory, Macquarie University, NSW, 2109, Australia
| | - Mohammed A. S. Khan
- Harvard Medical School, Massachusetts General Hospital, Shriners Hospital for Children, Boston, Massachusetts, 02114, United States of America
| |
Collapse
|
61
|
Williams NR, Hopkins TR, Short EB, Sahlem GL, Snipes J, Revuelta GJ, George MS, Takacs I. Reward circuit DBS improves Parkinson's gait along with severe depression and OCD. Neurocase 2016; 22:201-4. [PMID: 26644268 PMCID: PMC4902271 DOI: 10.1080/13554794.2015.1112019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A 59-year-old Caucasian man with a past history of Parkinson's disease (PD) status post-bilateral subthalamic nucleus (STN) deep brain stimulation (DBS), who also had treatment-resistant (TR) obsessive-compulsive disorder (OCD), and treatment-resistant depression (TRD), presented for further evaluation and management of his TR OCD. After an unsuccessful attempt to treat his OCD by reprogramming his existing STN DBS, he was offered bilateral ventral capsule/ventral striatum (VC/VS) DBS surgery. In addition to the expected improvement in OCD symptoms, he experienced significant improvement in both PD-related apathy and depression along with resolution of suicidal ideation. Furthermore, the patient's festinating gait dramatically improved. This case demonstrates that DBS of both the STN and VC/VS appears to have an initial signal of safety and tolerability. This is the first instance where both the STN and the VC/VS DBS targets have been implanted in an individual and the first case where a patient with PD has received additional DBS in mood-regulatory circuitry.
Collapse
Affiliation(s)
- Nolan R Williams
- a Department of Psychiatry , Stanford University , Stanford , CA , USA
| | - Thomas R Hopkins
- b Department of Psychiatry and Behavioral Sciences , Medical University of South Carolina , Charleston , SC , USA
| | - E Baron Short
- b Department of Psychiatry and Behavioral Sciences , Medical University of South Carolina , Charleston , SC , USA
| | - Gregory L Sahlem
- b Department of Psychiatry and Behavioral Sciences , Medical University of South Carolina , Charleston , SC , USA
| | - Jonathan Snipes
- b Department of Psychiatry and Behavioral Sciences , Medical University of South Carolina , Charleston , SC , USA
| | - Gonzalo J Revuelta
- c Department of Neurosciences , Medical University of South Carolina , Charleston , SC , USA
| | - Mark S George
- b Department of Psychiatry and Behavioral Sciences , Medical University of South Carolina , Charleston , SC , USA.,c Department of Neurosciences , Medical University of South Carolina , Charleston , SC , USA.,d Ralph H. Johnson VA Medical Center , Charleston , SC , USA
| | - Istvan Takacs
- c Department of Neurosciences , Medical University of South Carolina , Charleston , SC , USA
| |
Collapse
|
62
|
Houeto JL, Magnard R, Dalley JW, Belin D, Carnicella S. Trait Impulsivity and Anhedonia: Two Gateways for the Development of Impulse Control Disorders in Parkinson's Disease? Front Psychiatry 2016; 7:91. [PMID: 27303314 PMCID: PMC4884740 DOI: 10.3389/fpsyt.2016.00091] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/17/2016] [Indexed: 12/03/2022] Open
Abstract
Apathy and impulsivity are two major comorbid syndromes of Parkinson's disease (PD) that may represent two extremes of a behavioral spectrum modulated by dopamine-dependent processes. PD is characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta to which are attributed the cardinal motor symptoms of the disorder. Dopamine replacement therapy (DRT), used widely to treat these motor symptoms, is often associated with deficits in hedonic processing and motivation, including apathy and depression, as well as impulse control disorders (ICDs). ICDs comprise pathological gambling, hypersexuality, compulsive shopping, binge eating, compulsive overuse of dopaminergic medication, and punding. More frequently observed in males with early onset PD, ICDs are associated not only with comorbid affective symptoms, such as depression and anxiety, but also with behavioral traits, such as novelty seeking and impulsivity, as well as with personal or familial history of alcohol use. This constellation of associated risk factors highlights the importance of inter-individual differences in the vulnerability to develop comorbid psychiatric disorders in PD patients. Additionally, withdrawal from DRT in patients with ICDs frequently unmasks a severe apathetic state, suggesting that apathy and ICDs may be caused by overlapping neurobiological mechanisms within the cortico-striato-thalamo-cortical networks. We suggest that altered hedonic and impulse control processes represent distinct prodromal substrates for the development of these psychiatric symptoms, the etiopathogenic mechanisms of which remain unknown. Specifically, we argue that deficits in hedonic and motivational states and impulse control are mediated by overlapping, yet dissociable, neural mechanisms that differentially interact with DRT to promote the emergence of ICDs in vulnerable individuals. Thus, we provide a novel heuristic framework for basic and clinical research to better define and treat comorbid ICDs in PD.
Collapse
Affiliation(s)
- Jean-Luc Houeto
- Service de Neurologie, CIC-INSERM 1402, CHU de Poitiers, Université de Poitiers , Poitiers , France
| | - Robin Magnard
- INSERM U1216, Grenoble Institut des Neurosciences (GIN), University Grenoble Alpes , Grenoble , France
| | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Cambridge, UK; Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - David Belin
- Department of Pharmacology, University of Cambridge , Cambridge , UK
| | - Sebastien Carnicella
- INSERM U1216, Grenoble Institut des Neurosciences (GIN), University Grenoble Alpes , Grenoble , France
| |
Collapse
|
63
|
Weingarten CP, Sundman MH, Hickey P, Chen NK. Neuroimaging of Parkinson's disease: Expanding views. Neurosci Biobehav Rev 2015; 59:16-52. [PMID: 26409344 PMCID: PMC4763948 DOI: 10.1016/j.neubiorev.2015.09.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 12/14/2022]
Abstract
Advances in molecular and structural and functional neuroimaging are rapidly expanding the complexity of neurobiological understanding of Parkinson's disease (PD). This review article begins with an introduction to PD neurobiology as a foundation for interpreting neuroimaging findings that may further lead to more integrated and comprehensive understanding of PD. Diverse areas of PD neuroimaging are then reviewed and summarized, including positron emission tomography, single photon emission computed tomography, magnetic resonance spectroscopy and imaging, transcranial sonography, magnetoencephalography, and multimodal imaging, with focus on human studies published over the last five years. These included studies on differential diagnosis, co-morbidity, genetic and prodromal PD, and treatments from L-DOPA to brain stimulation approaches, transplantation and gene therapies. Overall, neuroimaging has shown that PD is a neurodegenerative disorder involving many neurotransmitters, brain regions, structural and functional connections, and neurocognitive systems. A broad neurobiological understanding of PD will be essential for translational efforts to develop better treatments and preventive strategies. Many questions remain and we conclude with some suggestions for future directions of neuroimaging of PD.
Collapse
Affiliation(s)
- Carol P Weingarten
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, United States.
| | - Mark H Sundman
- Brain Imaging and Analysis Center, Duke University Medical Center, United States
| | - Patrick Hickey
- Department of Neurology, Duke University School of Medicine, United States
| | - Nan-kuei Chen
- Brain Imaging and Analysis Center, Duke University Medical Center, United States; Department of Radiology, Duke University School of Medicine, United States
| |
Collapse
|
64
|
Alzahrani H, Venneri A. Cognitive and neuroanatomical correlates of neuropsychiatric symptoms in Parkinson's disease: A systematic review. J Neurol Sci 2015; 356:32-44. [DOI: 10.1016/j.jns.2015.06.037] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 05/25/2015] [Accepted: 06/17/2015] [Indexed: 12/13/2022]
|
65
|
Lindahl AJ, MacMahon DG. The agony of the agonists: a review of impulsivity and withdrawal syndromes in Parkinson's disease treatment. FUTURE NEUROLOGY 2015. [DOI: 10.2217/fnl.15.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The introduction of dopamine agonists was a welcome development in the treatment of Parkinson's disease. However, their history has been somewhat checkered with concerns about their side effects including sudden onset of sleep and ‘sleep attacks’ the development of fibrotic side effects with ergot-derived agents; and most recently, the emergence of impulse control disorders. Furthermore, those who develop these behaviors are those most likely to suffer distressing side effects on their withdrawal: the so-called ‘dopamine agonist withdrawal syndrome’ (DAWS). This review examines this complex area and some suggested strategies to avoid and manage these phenomena, and concludes with some discussion of the future agenda for improving the understanding and management of these conditions.
Collapse
Affiliation(s)
- Andrea J Lindahl
- University Hospitals Coventry & Warwickshire NHS Trust, University Hospital, Clifford Bridge Road, Coventry CV2 2DX, UK
| | | |
Collapse
|
66
|
Pattij T, Schoffelmeer AN. Serotonin and inhibitory response control: Focusing on the role of 5-HT1A receptors. Eur J Pharmacol 2015; 753:140-5. [DOI: 10.1016/j.ejphar.2014.05.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/20/2014] [Accepted: 05/27/2014] [Indexed: 12/11/2022]
|
67
|
den Brok MG, van Dalen JW, van Gool WA, Moll van Charante EP, de Bie RM, Richard E. Apathy in Parkinson's disease: A systematic review and meta-analysis. Mov Disord 2015; 30:759-69. [DOI: 10.1002/mds.26208] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 02/05/2015] [Accepted: 02/12/2015] [Indexed: 01/24/2023] Open
Affiliation(s)
| | | | - Willem A. van Gool
- Department of Neurology; Academic Medical Center Amsterdam; The Netherlands
| | | | - Rob M.A. de Bie
- Department of Neurology; Academic Medical Center Amsterdam; The Netherlands
| | - Edo Richard
- Department of Neurology; Radboud University Medical Center Nijmegen; The Netherlands
- Department of Neurology; Academic Medical Center Amsterdam; The Netherlands
| |
Collapse
|
68
|
Samuel M, Rodriguez-Oroz M, Antonini A, Brotchie JM, Ray Chaudhuri K, Brown RG, Galpern WR, Nirenberg MJ, Okun MS, Lang AE. Management of impulse control disorders in Parkinson's disease: Controversies and future approaches. Mov Disord 2015; 30:150-9. [PMID: 25607799 PMCID: PMC5077247 DOI: 10.1002/mds.26099] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 10/28/2014] [Accepted: 11/02/2014] [Indexed: 02/01/2023] Open
Abstract
Impulse control disorders in Parkinson's disease are a group of impulsive behaviors most often associated with dopaminergic treatment. Presently, there is a lack of high quality evidence available to guide their management. This manuscript reviews current management strategies, before concentrating on the concept of dopamine agonist withdrawal syndrome and its implications for the management of impulse control disorders. Further, we focus on controversies, including the role of more recently available anti-parkinsonian drugs, and potential future approaches involving routes of drug delivery, nonpharmacological treatments (such as cognitive behavioral therapy and deep brain stimulation), and other as yet experimental strategies.
Collapse
Affiliation(s)
- Michael Samuel
- Department of Neurology, National Parkinson Foundation International Centre of Excellence, King's College Hospital, King's Health Partners, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Payer DE, Guttman M, Kish SJ, Tong J, Strafella A, Zack M, Adams JR, Rusjan P, Houle S, Furukawa Y, Wilson AA, Boileau I. [11
C]-(+)-PHNO PET imaging of dopamine D2/3
receptors in Parkinson's disease with impulse control disorders. Mov Disord 2015; 30:160-6. [DOI: 10.1002/mds.26135] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 12/12/2022] Open
Affiliation(s)
- Doris E. Payer
- Addictions Program; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Research Imaging Centre; Centre for Addiction and Mental Health; Toronto Ontario Canada
| | - Mark Guttman
- Human Brain Laboratory; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Centre for Movement Disorders; Markham Ontario Canada
| | - Stephen J. Kish
- Research Imaging Centre; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Human Brain Laboratory; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Campbell Family Mental Health Research Institute; Toronto Ontario Canada
- Department of Psychiatry; University of Toronto; Toronto Ontario Canada
- Department of Pharmacology; University of Toronto; Toronto Ontario Canada
| | - Junchao Tong
- Research Imaging Centre; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Campbell Family Mental Health Research Institute; Toronto Ontario Canada
- Department of Psychiatry; University of Toronto; Toronto Ontario Canada
| | - Antonio Strafella
- Research Imaging Centre; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Campbell Family Mental Health Research Institute; Toronto Ontario Canada
- Movement Disorder Unit & E.J. Safra Parkinson Disease Program; Toronto Western Hospital, UHN, University of Toronto; Ontario Canada
- Division of Brain, Imaging and Behaviour-Systems Neuroscience; Toronto Western Research Institute, UHN, University of Toronto; Ontario Canada
| | - Martin Zack
- Department of Psychiatry; University of Toronto; Toronto Ontario Canada
- Department of Pharmacology; University of Toronto; Toronto Ontario Canada
- Clinical Neuroscience Program; Centre for Addiction and Mental Health; Toronto Ontario Canada
| | - John R. Adams
- Centre for Movement Disorders; Markham Ontario Canada
| | - Pablo Rusjan
- Research Imaging Centre; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Campbell Family Mental Health Research Institute; Toronto Ontario Canada
| | - Sylvain Houle
- Research Imaging Centre; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Campbell Family Mental Health Research Institute; Toronto Ontario Canada
| | - Yoshiaki Furukawa
- Human Brain Laboratory; Centre for Addiction and Mental Health; Toronto Ontario Canada
| | - Alan A. Wilson
- Research Imaging Centre; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Campbell Family Mental Health Research Institute; Toronto Ontario Canada
- Department of Psychiatry; University of Toronto; Toronto Ontario Canada
| | - Isabelle Boileau
- Addictions Program; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Research Imaging Centre; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Campbell Family Mental Health Research Institute; Toronto Ontario Canada
- Department of Psychiatry; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
70
|
Failure of stop and go in de novo Parkinson's disease—a functional magnetic resonance imaging study. Neurobiol Aging 2015; 36:470-5. [DOI: 10.1016/j.neurobiolaging.2014.07.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 01/23/2023]
|
71
|
Novelty processing and memory formation in Parkinson׳s disease. Neuropsychologia 2014; 62:124-36. [DOI: 10.1016/j.neuropsychologia.2014.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/05/2014] [Accepted: 07/16/2014] [Indexed: 01/25/2023]
|
72
|
O'Callaghan C, Shine J, Lewis S, Hornberger M. Neuropsychiatric symptoms in Parkinson's disease: Fronto-striatal atrophy contributions. Parkinsonism Relat Disord 2014; 20:867-72. [DOI: 10.1016/j.parkreldis.2014.04.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/23/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
|
73
|
van Velzen LS, Vriend C, de Wit SJ, van den Heuvel OA. Response inhibition and interference control in obsessive-compulsive spectrum disorders. Front Hum Neurosci 2014; 8:419. [PMID: 24966828 PMCID: PMC4052433 DOI: 10.3389/fnhum.2014.00419] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/24/2014] [Indexed: 12/30/2022] Open
Abstract
Over the past 20 years, motor response inhibition and interference control have received considerable scientific effort and attention, due to their important role in behavior and the development of neuropsychiatric disorders. Results of neuroimaging studies indicate that motor response inhibition and interference control are dependent on cortical–striatal–thalamic–cortical (CSTC) circuits. Structural and functional abnormalities within the CSTC circuits have been reported for many neuropsychiatric disorders, including obsessive–compulsive disorder (OCD) and related disorders, such as attention-deficit hyperactivity disorder, Tourette’s syndrome, and trichotillomania. These disorders also share impairments in motor response inhibition and interference control, which may underlie some of their behavioral and cognitive symptoms. Results of task-related neuroimaging studies on inhibitory functions in these disorders show that impaired task performance is related to altered recruitment of the CSTC circuits. Previous research has shown that inhibitory performance is dependent upon dopamine, noradrenaline, and serotonin signaling, neurotransmitters that have been implicated in the pathophysiology of these disorders. In this narrative review, we discuss the common and disorder-specific pathophysiological mechanisms of inhibition-related dysfunction in OCD and related disorders.
Collapse
Affiliation(s)
- Laura S van Velzen
- GGZ InGeest , Amsterdam , Netherlands ; Neuroscience Campus Amsterdam (NCA) , Amsterdam , Netherlands
| | - Chris Vriend
- GGZ InGeest , Amsterdam , Netherlands ; Neuroscience Campus Amsterdam (NCA) , Amsterdam , Netherlands ; Department of Psychiatry, VU University Medical Center , Amsterdam , Netherlands ; Department of Anatomy and Neurosciences, VU University Medical Center , Amsterdam , Netherlands
| | - Stella J de Wit
- GGZ InGeest , Amsterdam , Netherlands ; Neuroscience Campus Amsterdam (NCA) , Amsterdam , Netherlands ; Department of Psychiatry, VU University Medical Center , Amsterdam , Netherlands
| | - Odile A van den Heuvel
- Neuroscience Campus Amsterdam (NCA) , Amsterdam , Netherlands ; Department of Psychiatry, VU University Medical Center , Amsterdam , Netherlands ; Department of Anatomy and Neurosciences, VU University Medical Center , Amsterdam , Netherlands
| |
Collapse
|
74
|
Aarts E, Nusselein AAM, Smittenaar P, Helmich RC, Bloem BR, Cools R. Greater striatal responses to medication in Parkinson׳s disease are associated with better task-switching but worse reward performance. Neuropsychologia 2014; 62:390-7. [PMID: 24912070 DOI: 10.1016/j.neuropsychologia.2014.05.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/24/2014] [Accepted: 05/27/2014] [Indexed: 01/19/2023]
Abstract
Dopaminergic medication in Parkinson's disease has been proposed to improve cognitive processing by modulating the severely depleted dorsal striatum, while impairing reward processing by modulating the relatively intact ventral striatum. However, there is no direct (neural) evidence for this hypothesis. Here we fill this gap by scanning Parkinson's disease patients (n=15) ON and relatively OFF their dopaminergic medication using functional magnetic resonance imaging. During scanning, patients performed a task that enabled the simultaneous measurement of task-switching and reward-related processing. Brain-behavior correlations revealed that medication-related increases (ON-OFF) in switch-related BOLD signal (switch-repeat) in the dorsomedial striatum were associated, on an individual basis, with improvements in task-switching (i.e. a decreased switch cost). Conversely, medication-related increases (ON-OFF) in reward-related BOLD signal (high-low) in the ventromedial striatum were associated, on an individual basis, with impairments in performance in anticipation of reward (i.e. an increased reward cost). Linear regression analyses demonstrated that the positive relationship between medication-related changes in BOLD and the reward cost was unique to the ventromedial striatum, whereas the negative relationship between medication-related changes in BOLD and the switch cost was not unique to the dorsomedial striatum. These findings extend the dopamine overdose hypothesis, according to which dopamine-induced changes in dorsal and ventral striatal processing lead to cognitive improvement and impairment respectively.
Collapse
Affiliation(s)
- Esther Aarts
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Abraham A M Nusselein
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Peter Smittenaar
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Rick C Helmich
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Parkinson Centre Nijmegen (ParC), P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Parkinson Centre Nijmegen (ParC), P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Roshan Cools
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Psychiatry, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
75
|
Kapfhammer HP. [Coexistent depressive and anxiety disorders in neurological diseases: from a perspective of multimorbidity]. DER NERVENARZT 2014; 85:437-44. [PMID: 24619147 DOI: 10.1007/s00115-013-3936-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The high rate of coexistent emotional disorders in neurological diseases is challenging. As a rule this coexistence comprises a more dramatic subjective suffering, reduced psychological coping, possible negative interferences with somatic treatments and rehabilitation, an impaired quality of life and higher grades of psychosocial disability. It may also lead to an overall increased risk of somatic morbidity and even mortality in the further course of illness. The complex interrelations may be favorably integrated within a biopsychosocial model. Psychological and psychosocial stressors can be appreciated on their own discrete levels but have to be reflected in their neurobiological correlates. Both neurological and emotional disorders frequently share decisive pathogenetic mechanisms, i.e. the underlying process of neurological disease may contribute to major affective problems also in a somatopsychic direction. From a perspective of multimorbidity the prevalence and clinical relevance of coexistent depressive and anxiety disorders, common pathogenetic mechanisms and implications for treatment will be described for stroke and Parkinson's disease, as selected neurological disorders.
Collapse
Affiliation(s)
- H P Kapfhammer
- Klinik für Psychiatrie, Medizinische Universität Graz, Auenbruggerplatz 31, 8036, Graz, Österreich,
| |
Collapse
|
76
|
Abstract
OPINION STATEMENT Anxiety and depression, while very common problems in Parkinson's disease (PD), have not been subject to adequate treatment trials. While a handful of double blind placebo-controlled trials of depression have been published, only a small number of subjects have been enrolled in most of these. There have been no adequate treatment trials of anxiety. Thus, most practitioners base their treatments on what has been published in the general population and their own personal experience. The data suggest that depression is probably treatable in some cases, but there are no data to support any drug treatment of anxiety. Much of the rationale for treating these disorders is based primarily on side effect profiles rather than efficacy and is almost entirely based on anecdotal experience. Although we lack convincing data, we do believe in the pharmacologic treatment of depression and anxiety and choose medications based on side effect profiles, some of which may be useful. We favor the selective serotonin reuptake inhibitors (SSRIs) in general for both depression and anxiety because of their relative freedom from side effects but will often choose mirtazapine if insomnia or weight loss is a problem, clonazepam for anxiety without depression if an SSRI is insufficient or if REM sleep behavior disorder is a problem, or a tricyclic antidepressant if drooling is troubling and the patient is not demented. Alternatively, we use the serotonin and noradrenaline reuptake inhibitor venlafaxine in those who do not tolerate an SSRI. SSRIs cannot be used for anxiety on an as needed basis, whereas short-acting benzodiazepines may be useful for this purpose. Psychosocial treatments of both depression and anxiety have also been under-studied, with probable benefits and a benign adverse effect profile.
Collapse
Affiliation(s)
- Atbin Djamshidian
- Department of Molecular Neuroscience and Reta Lila Weston Institute for Neurological Studies, University of London, London, 1 Wakefield Street, WC1N1PJ, London, UK,
| | | |
Collapse
|