51
|
Araújo RS, Silva MS, Santos DF, Silva GA. Dysregulation of trophic factors contributes to diabetic retinopathy in the Ins2 Akita mouse. Exp Eye Res 2020; 194:108027. [PMID: 32259534 DOI: 10.1016/j.exer.2020.108027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/15/2020] [Accepted: 03/28/2020] [Indexed: 02/08/2023]
Abstract
Diabetic retinopathy (DR) is considered as a diabetes-related complication that can lead to severe visual impairments. By 2030, it is expected that 1 in 5 adults will suffer from the disease. Suitable animal models for chronic DR are essential for a better understanding of the pathophysiology and to further develop new treatments. The Ins2Akita mouse is a type 1 diabetes model that shows signs of both early and late stages of DR, including pericyte loss, increased vascular permeability, increased acellular capillaries and neovascularization. To further characterize DR in the Ins2Akita mouse model, we have evaluated the protein levels of the angiogenesis inducers vascular endothelial growth factor (VEGF) and placental growth factor (PlGF) and the angiogenesis inhibitor pigment epithelium-derived factor (PEDF). Additionally, we have analyzed the protein expression profile of the glial markers ionized calcium binding adaptor molecule 1 (Iba1) and glial fibrillary acidic protein (GFAP) as well as of the chemokine monocyte chemoattractant protein 1 (MCP-1). In this study we demonstrate that, with disease progression, there is the development of an inflammatory response and an unbalanced expression of pro- and antiangiogenic factors in the neural retina and in the retinal pigment epithelium (RPE) of Ins2Akita mice. Therefore, our data provide support for the diabetic retinopathy features detected in the Ins2Akita retina, reflecting what is observed in the human pathology.
Collapse
Affiliation(s)
- Rute S Araújo
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal; Bioengineering- Cell Therapies and Regenerative Medicine PhD Program, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Maria S Silva
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal
| | - Daniela F Santos
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal; ProRegeM PhD Program, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal
| | - Gabriela A Silva
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal; NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal.
| |
Collapse
|
52
|
Kaid C, Madi RADS, Astray R, Goulart E, Caires-Junior LC, Mitsugi TG, Moreno ACR, Castro-Amarante MF, Pereira LR, Porchia BFMM, de Andrade TO, Landini V, Sanches DS, Pires CG, Tanioka RKO, Pereira MCL, Barbosa IN, Massoco CO, Ferreira LCDS, Okamoto OK, Zatz M. Safety, Tumor Reduction, and Clinical Impact of Zika Virus Injection in Dogs with Advanced-Stage Brain Tumors. Mol Ther 2020; 28:1276-1286. [PMID: 32220305 PMCID: PMC7210722 DOI: 10.1016/j.ymthe.2020.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/10/2020] [Accepted: 03/06/2020] [Indexed: 11/19/2022] Open
Abstract
Malignant brain tumors are among the most aggressive cancers with poor prognosis and no effective treatment. Recently, we reported the oncolytic potential of Zika virus infecting and destroying the human central nervous system (CNS) tumors in vitro and in immunodeficient mice model. However, translating this approach to humans requires pre-clinical trials in another immunocompetent animal model. Here, we analyzed the safety of Brazilian Zika virus (ZIKVBR) intrathecal injections in three dogs bearing spontaneous CNS tumors aiming an anti-tumoral therapy. We further assessed some aspects of the innate immune and inflammatory response that triggers the anti-tumoral response observed during the ZIKVBR administration in vivo and in vitro. For the first time, we showed that there were no negative clinical side effects following ZIKVBR CNS injections in dogs, confirming the safety of the procedure. Furthermore, the intrathecal ZIKVBR injections reduced tumor size in immunocompetent dogs bearing spontaneous intracranial tumors, improved their neurological clinical symptoms significantly, and extended their survival by inducing the destruction specifically of tumor cells, sparing normal neurons, and activating an immune response. These results open new perspectives for upcoming virotherapy using ZIKV to destroy and induce an anti-tumoral immune response in CNS tumors for which there are currently no effective treatments.
Collapse
Affiliation(s)
- Carolini Kaid
- Human Genome and Stem Cell Research Center (HUG-CEL) Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo 055080-090, Brazil
| | | | | | - Ernesto Goulart
- Human Genome and Stem Cell Research Center (HUG-CEL) Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo 055080-090, Brazil
| | - Luiz Carlos Caires-Junior
- Human Genome and Stem Cell Research Center (HUG-CEL) Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo 055080-090, Brazil
| | - Thiago Giove Mitsugi
- Human Genome and Stem Cell Research Center (HUG-CEL) Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo 055080-090, Brazil
| | - Ana Carolina Ramos Moreno
- Vaccine Development Laboratory, Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, São Paulo 05508-900, Brazil
| | - Maria Fernanda Castro-Amarante
- Vaccine Development Laboratory, Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, São Paulo 05508-900, Brazil
| | - Lennon Ramos Pereira
- Vaccine Development Laboratory, Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, São Paulo 05508-900, Brazil
| | | | - Thais Oliveira de Andrade
- Human Genome and Stem Cell Research Center (HUG-CEL) Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo 055080-090, Brazil
| | - Vivian Landini
- Human Genome and Stem Cell Research Center (HUG-CEL) Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo 055080-090, Brazil
| | | | | | | | - Marcia C L Pereira
- Human Genome and Stem Cell Research Center (HUG-CEL) Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo 055080-090, Brazil
| | - Igor Neves Barbosa
- Human Genome and Stem Cell Research Center (HUG-CEL) Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo 055080-090, Brazil
| | - Cristina O Massoco
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
| | - Luís Carlos de Souza Ferreira
- Vaccine Development Laboratory, Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, São Paulo 05508-900, Brazil
| | - Oswaldo Keith Okamoto
- Human Genome and Stem Cell Research Center (HUG-CEL) Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo 055080-090, Brazil; Hemotherapy and Cellular Therapy Department, Hospital Israelita Albert Einstein, São Paulo 05652- 900, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center (HUG-CEL) Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo 055080-090, Brazil.
| |
Collapse
|
53
|
Honarpisheh P, Reynolds CR, Blasco Conesa MP, Moruno Manchon JF, Putluri N, Bhattacharjee MB, Urayama A, McCullough LD, Ganesh BP. Dysregulated Gut Homeostasis Observed Prior to the Accumulation of the Brain Amyloid-β in Tg2576 Mice. Int J Mol Sci 2020; 21:E1711. [PMID: 32138161 PMCID: PMC7084806 DOI: 10.3390/ijms21051711] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Amyloid plaques in Alzheimer's disease (AD) are associated with inflammation. Recent studies demonstrated the involvement of the gut in cerebral amyloid-beta (Aβ) pathogenesis; however, the mechanisms are still not well understood. We hypothesize that the gut bears the Aβ burden prior to brain, highlighting gut-brain axis (GBA) interaction in neurodegenerative disorders. We used pre-symptomatic (6-months) and symptomatic (15-months) Tg2576 mouse model of AD compared to their age-matched littermate WT control. We identified that dysfunction of intestinal epithelial barrier (IEB), dysregulation of absorption, and vascular Aβ deposition in the IEB occur before cerebral Aβ aggregation is detectible. These changes in the GBA were associated with elevated inflammatory plasma cytokines including IL-9, VEGF and IP-10. In association with reduced cerebral myelin tight junction proteins, we identified reduced levels of systemic vitamin B12 and decrease cubilin, an intestinal B12 transporter, after the development of cerebral Aβ pathology. Lastly, we report Aβ deposition in the intestinal autopsy from AD patients with confirmed cerebral Aβ pathology that is not present in intestine from non-AD controls. Our data provide evidence that gut dysfunction occurs in AD and may contribute to its etiology. Future therapeutic strategies to reverse AD pathology may involve the early manipulation of gut physiology and its microbiota.
Collapse
Affiliation(s)
- Pedram Honarpisheh
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, USA; (P.H.); (C.R.R.); (M.P.B.C.); (J.F.M.M.); (A.U.); (L.D.M.)
| | - Caroline R. Reynolds
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, USA; (P.H.); (C.R.R.); (M.P.B.C.); (J.F.M.M.); (A.U.); (L.D.M.)
| | - Maria P. Blasco Conesa
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, USA; (P.H.); (C.R.R.); (M.P.B.C.); (J.F.M.M.); (A.U.); (L.D.M.)
| | - Jose F. Moruno Manchon
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, USA; (P.H.); (C.R.R.); (M.P.B.C.); (J.F.M.M.); (A.U.); (L.D.M.)
| | - Nagireddy Putluri
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | | | - Akihiko Urayama
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, USA; (P.H.); (C.R.R.); (M.P.B.C.); (J.F.M.M.); (A.U.); (L.D.M.)
| | - Louise D. McCullough
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, USA; (P.H.); (C.R.R.); (M.P.B.C.); (J.F.M.M.); (A.U.); (L.D.M.)
| | - Bhanu P. Ganesh
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, USA; (P.H.); (C.R.R.); (M.P.B.C.); (J.F.M.M.); (A.U.); (L.D.M.)
| |
Collapse
|
54
|
Oldani M, Fabbri M, Melchioretto P, Callegaro G, Fusi P, Gribaldo L, Forcella M, Urani C. In vitro and bioinformatics mechanistic-based approach for cadmium carcinogenicity understanding. Toxicol In Vitro 2020; 65:104757. [PMID: 31904401 PMCID: PMC7166080 DOI: 10.1016/j.tiv.2020.104757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/28/2019] [Accepted: 01/01/2020] [Indexed: 02/07/2023]
Abstract
Cadmium is a toxic metal able to enter the cells through channels and transport pathways dedicated to essential ions, leading, among others, to the dysregulation of divalent ions homeostasis. Despite its recognized human carcinogenicity, the mechanisms are still under investigation. A powerful tool for mechanistic studies of carcinogenesis is the Cell Transformation Assay (CTA). We have isolated and characterized by whole genome microarray and bioinformatics analysis of differentially expressed genes (DEGs) cadmium-transformed cells from different foci (F1, F2, and F3) at the end of CTA (6 weeks). The systematic analysis of up- and down-regulated transcripts and the comparison of DEGs in transformed cells evidence different functional targets and the complex picture of cadmium-induced transformation. Only 34 in common DEGs are found in cells from all foci, and among these, only 4 genes are jointly up-regulated (Ccl2, Ccl5, IL6 and Spp1), all responsible for cytokines/chemokines coding. Most in common DEGs are down-regulated, suggesting that the switching-off of specific functions plays a major role in this process. In addition, the comparison of dysregulated pathways immediately after cadmium treatment with those in transformed cells provides a valuable means to the comprehension of the overall process. Cell transformation Assay and toxicogenomics are integrated to study cadmium carcinogenesis mechanisms Inflammatory response is the only common feature in Cd-transformed cells from all different foci Switching-off of specific functions plays a major role in Cd-induced carcinogenesis Comparison of triggering signals and deregulated pathways in transformed cells provides hints on cadmium mechanisms
Collapse
Affiliation(s)
- Monica Oldani
- Department of Biotechnology and Biosciences, University of Milan - Bicocca, Piazza della Scienza 3, 20126 Milan, Italy
| | - Marco Fabbri
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
| | - Pasquale Melchioretto
- Department of Earth and Environmental Sciences, University of Milan - Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Giulia Callegaro
- Department of Earth and Environmental Sciences, University of Milan - Bicocca, Piazza della Scienza 1, 20126 Milan, Italy; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, The Netherlands
| | - Paola Fusi
- Department of Biotechnology and Biosciences, University of Milan - Bicocca, Piazza della Scienza 3, 20126 Milan, Italy; Integrated Models for Prevention and Protection in Environmental and Occupational Health, (MISTRAL) Interuniversity Research Center, Italy
| | - Laura Gribaldo
- European Commission, DG Joint Research Centre, Via Fermi 2749, 21027 Ispra, VA, Italy.
| | - Matilde Forcella
- Department of Biotechnology and Biosciences, University of Milan - Bicocca, Piazza della Scienza 3, 20126 Milan, Italy
| | - Chiara Urani
- Department of Earth and Environmental Sciences, University of Milan - Bicocca, Piazza della Scienza 1, 20126 Milan, Italy; Integrated Models for Prevention and Protection in Environmental and Occupational Health, (MISTRAL) Interuniversity Research Center, Italy
| |
Collapse
|
55
|
Abstract
Gliomas, the most common malignant primary brain tumours, remain universally lethal. Yet, seminal discoveries in the past 5 years have clarified the anatomy, genetics and function of the immune system within the central nervous system (CNS) and altered the paradigm for successful immunotherapy. The impact of standard therapies on the response to immunotherapy is now better understood, as well. This new knowledge has implications for a broad range of tumours that develop within the CNS. Nevertheless, the requirements for successful therapy remain effective delivery and target specificity, while the dramatic heterogeneity of malignant gliomas at the genetic and immunological levels remains a profound challenge.
Collapse
Affiliation(s)
- John H Sampson
- The Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.
| | - Michael D Gunn
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Peter E Fecci
- The Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
- Duke Center for Brain and Spine Metastasis, Duke University Medical Center, Durham, NC, USA
| | - David M Ashley
- The Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
56
|
Mishinov SV, Budnik AY, Stupak VV, Leplina OY, Tyrinova TV, Ostanin AA, Chernykh ER. Autologous and Pooled Tumor Lysates in Combined Immunotherapy of Patients with Glioblastoma. Sovrem Tekhnologii Med 2020; 12:34-41. [PMID: 34513051 PMCID: PMC8353674 DOI: 10.17691/stm2020.12.2.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Indexed: 11/14/2022] Open
Abstract
Although major progress has been made in the standard treatment for glioblastomas, encompassing the maximal surgical resection, chemotherapy and radiation therapy, it is possible to increase survival rates significantly only in a few patients. Therefore, it is necessary to explore new therapeutic modalities, one of which is immunotherapy. The aim of the study was to evaluate the efficacy of the combined use of autologous and pooled tumor lysates in comprehensive treatment of patients with glioblastoma.
Collapse
Affiliation(s)
- S V Mishinov
- Senior Researcher, Novosibirsk Scientific Research Institute of Traumatology and Orthopedics named after Ya.L. Tsivyan of the Ministry of Health of the Russian Federation, 17 Frunze St., Novosibirsk, 630091, Russia
| | - A Ya Budnik
- Resident, Novosibirsk Scientific Research Institute of Traumatology and Orthopedics named after Ya.L. Tsivyan of the Ministry of Health of the Russian Federation, 17 Frunze St., Novosibirsk, 630091, Russia
| | - V V Stupak
- Professor, Head of Neurosurgery Research Department, Novosibirsk Scientific Research Institute of Traumatology and Orthopedics named after Ya.L. Tsivyan of the Ministry of Health of the Russian Federation, 17 Frunze St., Novosibirsk, 630091, Russia
| | - O Yu Leplina
- Leading Researcher, Laboratory of Cellular Immunotherapy, Scientific Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St., Novosibirsk, 630099, Russia
| | - T V Tyrinova
- Researcher, Laboratory of Cellular Immunotherapy, Scientific Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St., Novosibirsk, 630099, Russia
| | - A A Ostanin
- Professor, Chief Researcher, Laboratory of Cellular Immunotherapy, Scientific Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St., Novosibirsk, 630099, Russia
| | - E R Chernykh
- Professor, Corresponding Member of the Russian Academy of Sciences, Head of the Laboratory of Cellular Immunotherapy, Scientific Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St., Novosibirsk, 630099, Russia
| |
Collapse
|
57
|
Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor. Mol Immunol 2019; 117:201-215. [PMID: 31835202 DOI: 10.1016/j.molimm.2019.11.014] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 02/07/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) expand in tumor-bearing host. They suppress anti-tumor immune response and promote tumor growth. Chemokines play a vital role in recruiting MDSCs into tumor tissue. They can also induce the generation of MDSCs in the bone marrow, maintain their suppressive activity, and promote their proliferation and differentiation. Here, we review CCL2/CCL12-CCR2, CCL3/4/5-CCR5, CCL15-CCR1, CX3CL1/CCL26-CX3CR1, CXCL5/2/1-CXCR2, CXCL8-CXCR1/2, CCL21-CCR7, CXCL13-CXCR5 signaling pathways, their role in MDSCs recruitment to tumor tissue, and their correlation with tumor development, metastasis and prognosis. Targeting chemokines and their receptors may serve as a promising strategy in immunotherapy, especially combined with other strategies such as chemotherapy, cyclin-dependent kinase or immune checkpoints inhibitors.
Collapse
|
58
|
Transcriptome sequencing analysis of porcine MDM response to FSL-1 stimulation. Microb Pathog 2019; 138:103830. [PMID: 31689475 DOI: 10.1016/j.micpath.2019.103830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/18/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022]
Abstract
Mycoplasma infection can cause many diseases in pigs, resulting in great economic losses in pork production. Innate immune responses are thought to play critical roles in the pathogenesis of mycoplasma disease. However, the molecular events involved in immune responses remain to be determined. Hence, the object of this study was to use RNA-Seq to investigate the gene expression profiles of the innate immune response mediated by FSL-1 in pig monocyte-derived macrophages (MDMs). The results revealed that 1442 genes were differentially expressed in the FSL-1 group compared with the control groups, of which 777 genes were upregulated and 665 genes were downregulated. KEGG pathway analysis showed that the upregulated genes were mainly involved in innate immune-related pathways including the TNF signaling pathway, cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway, Jak-STAT signaling pathway, chemokine signaling pathway, NOD-like receptor signaling pathway and NF-kappa B signaling pathway. The downregulated genes were only involved in the cGMP-PKG signaling pathway and glycerophospholipid metabolism. Our results showed that FSL-1 stimulation activated the TLR2 signaling pathway and resulted in diverse inflammatory responses. FSL-1 induced the transcription of numerous protein-coding genes involved in a complex network of innate immune-related pathways. We speculate that TNF, IL1B, IL6, NFKB1, NFKBIA, CXCL2, CXCL8, CXCL10, CCL2, CCL4 and CCL5 were the most likely hub genes that play important roles in the above pathways. This study identified the differentially expressed genes and their related signaling pathways, contributing to the comprehensive understanding of the mechanisms underlying host-pathogen interactions during mycoplasma infection and providing a reference model for further studies.
Collapse
|
59
|
Mog B, Asase C, Chaplin A, Gao H, Rajagopalan S, Maiseyeu A. Nano-Antagonist Alleviates Inflammation and Allows for MRI of Atherosclerosis. Nanotheranostics 2019; 3:342-355. [PMID: 31723548 PMCID: PMC6838142 DOI: 10.7150/ntno.37391] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/22/2019] [Indexed: 01/08/2023] Open
Abstract
Specific targeting of inflammation remains a challenge in many pathologies, because of the necessary balance between host tolerance and efficacious inflammation resolution. Here, we discovered a short, 4-mer peptide which possesses antagonist properties towards CC chemokine receptor 2 (CCR2), but only when displayed on the surface of lipid nanoparticles. According to BLAST analysis, this peptide motif is a common repeating fragment in a number of proteins of the CC chemokine family, which are key players in the inflammatory response. In this study, self-assembled, peptide-conjugated nanoparticles (CCTV) exhibited typical properties of CCR2 antagonism, including affinity to the CCR2 receptor, inhibition of chemotactic migration of primary monocytes, and prevention from CC chemokine ligand 2 (CCL2)-induced actin polymerization. Furthermore, CCTV ameliorated NFkB activation and downregulated the secondary, but not the primary, inflammatory response in cultured macrophages. When conjugated with gadolinium or europium cryptates, CCTV enabled targeted imaging (via magnetic resonance imaging and time-resolved fluorescence) of atherosclerosis, a chronic inflammatory condition in which the CCL2/CCR2 axis is highly dysfunctional. CCTV targeted CCR2hiLy6Chi inflammatory monocytes in blood and the atherosclerotic plaque, resulting in cell-specific transcriptional downregulation of key inflammatory genes. Finally, CCTV generated pronounced inflammasome inactivation, likely mediated through reactive oxygen species scavenging and downregulation of NLRP3. In summary, our work demonstrates for the first time that a short peptide fragment presented on a nanoparticle surface exhibit potent receptor-targeted antagonist effects, which are not seen with the peptide alone. Unlike commonly used cargo-carrying, vector-directed drug delivery vehicles, CCTV nanoparticles may act as therapeutics/theranostics themselves, particularly in inflammatory conditions with CCL2/CCR2 pathogenesis, including cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Brian Mog
- Davis Heart and Lung Research Institute and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, 420 West 12th Avenue, Columbus, OH 43210, USA
| | - Courteney Asase
- Cardiovascular Research Institute, Case Western Reserve University, School of Medicine, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Alice Chaplin
- Cardiovascular Research Institute, Case Western Reserve University, School of Medicine, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Huiyun Gao
- Cardiovascular Research Institute, Case Western Reserve University, School of Medicine, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Sanjay Rajagopalan
- Davis Heart and Lung Research Institute and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, 420 West 12th Avenue, Columbus, OH 43210, USA.,Cardiovascular Research Institute, Case Western Reserve University, School of Medicine, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Andrei Maiseyeu
- Davis Heart and Lung Research Institute and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, 420 West 12th Avenue, Columbus, OH 43210, USA.,Cardiovascular Research Institute, Case Western Reserve University, School of Medicine, 10900 Euclid Ave, Cleveland, OH 44106, USA
| |
Collapse
|
60
|
Melatonin Modulates the Microenvironment of Glioblastoma Multiforme by Targeting Sirtuin 1. Nutrients 2019; 11:nu11061343. [PMID: 31207928 PMCID: PMC6627125 DOI: 10.3390/nu11061343] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 01/21/2023] Open
Abstract
Natural products have historically been regarded as an important resource of therapeutic agents. Resveratrol and melatonin have been shown to increase SIRT1 activity and stimulate deacetylation. Glioblastoma multiforme (GBM) is the deadliest of malignant types of tumor in the central nervous system (CNS) and their biological features make treatment difficult. In the glioma microenvironment, infiltrating immune cells has been shown to possess beneficial effects for tumor progression. We analyzed SIRT1, CCL2, VCAM-1 and ICAM-1 in human glioma cell lines by immunoblotting. The correlation between those markers and clinico-pathological grade of glioma patients were assessed by the Gene Expression Omnibus (GEO) datasets analysis. We also used monocyte-binding assay to study the effects of melatonin on monocyte adhesion to GBM. Importantly, overexpression of SIRT1 by genetic modification or treatment of melatonin significantly downregulated the adhesion molecular VCAM-1 and ICAM-1 expression in GBM. CCL2-mediated monocyte adhesion and expression of VCAM-1 and ICAM-1 were regulated through SIRT1 signaling. SIRT1 is an important modulator of monocytes interaction with GBM that gives the possibility of improved therapies for GBM. Hence, this study provides a novel treatment strategy for the understanding of microenvironment changes in tumor progression.
Collapse
|
61
|
Identification of CTRP1 as a Prognostic Biomarker and Oncogene in Human Glioblastoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2582416. [PMID: 31183364 PMCID: PMC6515110 DOI: 10.1155/2019/2582416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/21/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022]
Abstract
Introduction Glioblastoma (GBM) is the most frequent and malignant type of primary brain tumors in adults. The valuable prognostic biomarkers and therapeutic targets for GBM remain to be elucidated. The association of adipokines with cancer has been well documented. The C1q/TNF-related protein 1 (CTRP1), a novel adipokine, belongs to the CTRP family. Methods In the present study, the expression and potential roles of CTRP1 in GBM were explored based on in silico evaluation, including GEPIA, the Pathology Atlas of the Human Protein Atlas, cBioPortal, TIMER, and SurvExpress. The CCK8, transwell, and wound healing assays were used to detect cell proliferation and migration. Results It was found that mRNA expression levels of CTRP1 were significantly upregulated in GBM tissues compared with those in nontumor tissues according to the analysis on public dataset and immunohistochemical results of GBM tissues (P<0.05). CTRP1 was mainly localized in the cytoplasm and cell membrane of GBM cells. The genetic alterations of CTRP1 occurred at a low rate in GBM (2 of 591 sequenced cases/patients, 0.33%). The mRNA expression levels of CTRP1 were positively associated with the tumor-infiltrating macrophages and CCL2 in GBM (P<0.05, respectively). The higher mRNA expression levels of CTRP1 were significantly correlated with higher risk and shorter overall survival time in GBM (P<0.05). CTRP1 knockdown significantly inhibited the proliferation and migration in human GBM cells, suggesting the inhibition of CTRP1 on human GMB progression. Moreover, CTRP1 knockdown inhibited CCL2 expression, and CCL2 overexpression reversed the inhibition of cell proliferation and migration induced by CTRP1 knockdown, suggesting that CTRP1 promoted tumor progression by regulating CCL2 expression. Conclusions These findings suggest that CTRP1 potentially indicates poor prognosis in GBM and promotes the progression of human GBM.
Collapse
|
62
|
Martin ME, Millan-Linares MC, Naranjo MC, Toscano R, Abia R, Muriana FJG, Bermudez B, Montserrat-de la Paz S. Minor compounds from virgin olive oil attenuate LPS-induced inflammation via visfatin-related gene modulation on primary human monocytes. J Food Biochem 2019; 43:e12941. [PMID: 31368572 DOI: 10.1111/jfbc.12941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 01/27/2023]
Abstract
We have analyzed the effects of minor compounds found in the unsaponifiable fraction (UF) and in the phenolic fraction (PF) of virgin olive oil (VOO) on LPS-induced inflammatory response via visfatin modulation in human monocytes. For this purpose, monocytes were incubated with UF and PF at different concentrations and the pro-inflammatory stimulus LPS for 24 hr; squalene (SQ) and hydroxytyrosol (HTyr), the main components in UF and PF, respectively, were also used. The relative expression of both pro-inflammatory and anti-inflammatory genes, as well as other genes related to the NAD+-biosynthetic pathway was evaluated by RT-qPCR; and the secretion of some of these markers was assessed by ELISA procedures. We found that UF, SQ, PF, and HTyr prevented from LPS-induced dysfunctional gene expression and secretion via visfatin-related gene modulation in human monocytes. These findings unveil a potential beneficial role for minor compounds of VOO in the prevention of inflammatory-disorders. PRACTICAL APPLICATION: In this project, potential health benefits of VOO micronutrients (unsaponifiable and phenolic compounds) were confirmed through anti-inflammatory assays. Our results reveal new interesting researching goals concerning nutrition by considering the role of bioactive VOO compounds in the prevention and progress of diseases related to inflammation.
Collapse
Affiliation(s)
- Maria E Martin
- Faculty of Biology, Department of Cell Biology, Universidad de Sevilla, Seville, Spain
| | - Maria C Millan-Linares
- Cell Biology Unit, Instituto de la Grasa, CSIC, Seville, Spain.,Instituto de la Grasa, CSIC, Seville, Spain
| | | | - Rocío Toscano
- Instituto de la Grasa, CSIC, Seville, Spain.,Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, Seville, Spain
| | - Rocio Abia
- Instituto de la Grasa, CSIC, Seville, Spain
| | | | - Beatriz Bermudez
- Faculty of Biology, Department of Cell Biology, Universidad de Sevilla, Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
63
|
Alshabi AM, Vastrad B, Shaikh IA, Vastrad C. Identification of Crucial Candidate Genes and Pathways in Glioblastoma Multiform by Bioinformatics Analysis. Biomolecules 2019; 9:biom9050201. [PMID: 31137733 PMCID: PMC6571969 DOI: 10.3390/biom9050201] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to investigate the molecular mechanisms underlying glioblastoma multiform (GBM) and its biomarkers. The differentially expressed genes (DEGs) were diagnosed using the limma software package. The ToppGene (ToppFun) was used to perform pathway and Gene Ontology (GO) enrichment analysis of the DEGs. Protein-protein interaction (PPI) networks, extracted modules, miRNA-target genes regulatory network and TF-target genes regulatory network were used to obtain insight into the actions of DEGs. Survival analysis for DEGs was carried out. A total of 590 DEGs, including 243 up regulated and 347 down regulated genes, were diagnosed between scrambled shRNA expression and Lin7A knock down. The up-regulated genes were enriched in ribosome, mitochondrial translation termination, translation, and peptide biosynthetic process. The down-regulated genes were enriched in focal adhesion, VEGFR3 signaling in lymphatic endothelium, extracellular matrix organization, and extracellular matrix. The current study screened the genes in the PPI network, extracted modules, miRNA-target genes regulatory network, and TF-target genes regulatory network with higher degrees as hub genes, which included NPM1, CUL4A, YIPF1, SHC1, AKT1, VLDLR, RPL14, P3H2, DTNA, FAM126B, RPL34, and MYL5. Survival analysis indicated that the high expression of RPL36A and MRPL35 were predicting longer survival of GBM, while high expression of AP1S1 and AKAP12 were predicting shorter survival of GBM. High expression of RPL36A and AP1S1 were associated with pathogenesis of GBM, while low expression of ALPL was associated with pathogenesis of GBM. In conclusion, the current study diagnosed DEGs between scrambled shRNA expression and Lin7A knock down samples, which could improve our understanding of the molecular mechanisms in the progression of GBM, and these crucial as well as new diagnostic markers might be used as therapeutic targets for GBM.
Collapse
Affiliation(s)
- Ali Mohamed Alshabi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia.
| | - Basavaraj Vastrad
- Department of Pharmaceutics, SET`S College of Pharmacy, Dharwad, Karnataka 580002, India.
| | - Ibrahim Ahmed Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia.
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India.
| |
Collapse
|
64
|
Hutter G, Theruvath J, Graef CM, Zhang M, Schoen MK, Manz EM, Bennett ML, Olson A, Azad TD, Sinha R, Chan C, Assad Kahn S, Gholamin S, Wilson C, Grant G, He J, Weissman IL, Mitra SS, Cheshier SH. Microglia are effector cells of CD47-SIRPα antiphagocytic axis disruption against glioblastoma. Proc Natl Acad Sci U S A 2019; 116:997-1006. [PMID: 30602457 PMCID: PMC6338872 DOI: 10.1073/pnas.1721434116] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive malignant brain tumor with fatal outcome. Tumor-associated macrophages and microglia (TAMs) have been found to be major tumor-promoting immune cells in the tumor microenvironment. Hence, modulation and reeducation of tumor-associated macrophages and microglia in GBM is considered a promising antitumor strategy. Resident microglia and invading macrophages have been shown to have distinct origin and function. Whereas yolk sac-derived microglia reside in the brain, blood-derived monocytes invade the central nervous system only under pathological conditions like tumor formation. We recently showed that disruption of the SIRPα-CD47 signaling axis is efficacious against various brain tumors including GBM primarily by inducing tumor phagocytosis. However, most effects are attributed to macrophages recruited from the periphery but the role of the brain resident microglia is unknown. Here, we sought to utilize a model to distinguish resident microglia and peripheral macrophages within the GBM-TAM pool, using orthotopically xenografted, immunodeficient, and syngeneic mouse models with genetically color-coded macrophages (Ccr2RFP) and microglia (Cx3cr1GFP). We show that even in the absence of phagocytizing macrophages (Ccr2RFP/RFP), microglia are effector cells of tumor cell phagocytosis in response to anti-CD47 blockade. Additionally, macrophages and microglia show distinct morphological and transcriptional changes. Importantly, the transcriptional profile of microglia shows less of an inflammatory response which makes them a promising target for clinical applications.
Collapse
Affiliation(s)
- Gregor Hutter
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurosurgery, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Johanna Theruvath
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, CA 94305
| | - Claus Moritz Graef
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, CA 94305
| | - Michael Zhang
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94305
| | - Matthew Kenneth Schoen
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, CA 94305
| | - Eva Maria Manz
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, CA 94305
| | - Mariko L Bennett
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Andrew Olson
- Neuroscience Microscopy Center, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
| | - Tej D Azad
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, CA 94305
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, CA 94305
| | - Carmel Chan
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Suzana Assad Kahn
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, CA 94305
| | - Sharareh Gholamin
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, CA 94305
| | - Christy Wilson
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94305
| | - Gerald Grant
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94305
| | - Joy He
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, CA 94305
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305;
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, CA 94305
| | - Siddhartha S Mitra
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94305;
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, CA 94305
- Department of Pediatrics, Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Samuel H Cheshier
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94305;
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, CA 94305
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
65
|
Taghavi Y, Hassanshahi G, Kounis NG, Koniari I, Khorramdelazad H. Monocyte chemoattractant protein-1 (MCP-1/CCL2) in diabetic retinopathy: latest evidence and clinical considerations. J Cell Commun Signal 2019; 13:451-462. [PMID: 30607767 DOI: 10.1007/s12079-018-00500-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022] Open
Abstract
Diabetic retinopathy (DR) is considered as a diabetes-related complication that can render severe visual impairments and is also a risk factor for acquired blindness in both developed as well as developing countries. Through fibrovascular epiretinal membranes (ERMs), this condition can similarly lead to tractional retinal detachment. Laboratory efforts evaluating the DR pathogenesis can be provided by ocular vitreous fluid and ERMs resulting from vitrectomy. The clinical stages of DR are significantly associated with expression levels of certain chemokines, including monocyte chemotactic protein-1 (MCP-1) in the intraocular fluid. The MCP-1 is also a known potent chemotactic factor for monocytes and macrophages that can stimulate them to produce superoxide and other mediators. Following hyperglycemia, retinal pigmented epithelial (RPE) cells, endothelial cells, and Müller's glial cells are of utmost importance for MCP-1 production, and vitreous MCP-1 levels rise in patients with DR. Increased expression of the MCP-1 in the eyes can also play a significant role in the pathogenesis of DR. In this review, current clinical and laboratory progress achieved on the MCP-1 and the DR concerning neovascularization and inflammatory responses in vitreous and/or aqueous humor of DR patients was summarized. It was suggested that further exploration of the MCP-1/CCR2 axis association between clinical stages of DR and expression levels of inflammatory and angiogenic cytokines and chemokines, principally the MCP-1 might lead to potential therapies aiming at neutralizing antibodies and viral vectors.
Collapse
Affiliation(s)
- Yousof Taghavi
- Geriatric Care Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Ophthalmology and Otorhinolaryngology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Nicholas G Kounis
- Department of Cardiology, University of Patras Medical School, Patras, Achaia, Greece
| | - Ioanna Koniari
- Department of Cardiology, Queen Elizabeth Hospital, Birmingham, England
| | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran. .,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
66
|
Ma Q, Long W, Xing C, Chu J, Luo M, Wang HY, Liu Q, Wang RF. Cancer Stem Cells and Immunosuppressive Microenvironment in Glioma. Front Immunol 2018; 9:2924. [PMID: 30619286 PMCID: PMC6308128 DOI: 10.3389/fimmu.2018.02924] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/28/2018] [Indexed: 12/22/2022] Open
Abstract
Glioma is one of the most common malignant tumors of the central nervous system and is characterized by extensive infiltrative growth, neovascularization, and resistance to various combined therapies. In addition to heterogenous populations of tumor cells, the glioma stem cells (GSCs) and other nontumor cells present in the glioma microenvironment serve as critical regulators of tumor progression and recurrence. In this review, we discuss the role of several resident or peripheral factors with distinct tumor-promoting features and their dynamic interactions in the development of glioma. Localized antitumor factors could be silenced or even converted to suppressive phenotypes, due to stemness-related cell reprogramming and immunosuppressive mediators in glioma-derived microenvironment. Furthermore, we summarize the latest knowledge on GSCs and key microenvironment components, and discuss the emerging immunotherapeutic strategies to cure this disease.
Collapse
Affiliation(s)
- Qianquan Ma
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China.,Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Wenyong Long
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Changsheng Xing
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Junjun Chu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Mei Luo
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China.,Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Helen Y Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Qing Liu
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Rong-Fu Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States.,Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, United States.,Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, United States
| |
Collapse
|
67
|
Juvenile stress leads to long-term immunological metaplasticity-like effects on inflammatory responses in adulthood. Neurobiol Learn Mem 2018; 154:12-21. [DOI: 10.1016/j.nlm.2017.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022]
|
68
|
Behfar S, Hassanshahi G, Nazari A, Khorramdelazad H. A brief look at the role of monocyte chemoattractant protein-1 (CCL2) in the pathophysiology of psoriasis. Cytokine 2018; 110:226-231. [DOI: 10.1016/j.cyto.2017.12.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/05/2017] [Accepted: 12/08/2017] [Indexed: 12/22/2022]
|
69
|
Szepesi Z, Manouchehrian O, Bachiller S, Deierborg T. Bidirectional Microglia-Neuron Communication in Health and Disease. Front Cell Neurosci 2018; 12:323. [PMID: 30319362 PMCID: PMC6170615 DOI: 10.3389/fncel.2018.00323] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Microglia are ramified cells that exhibit highly motile processes, which continuously survey the brain parenchyma and react to any insult to the CNS homeostasis. Although microglia have long been recognized as a crucial player in generating and maintaining inflammatory responses in the CNS, now it has become clear, that their function are much more diverse, particularly in the healthy brain. The innate immune response and phagocytosis represent only a little segment of microglia functional repertoire that also includes maintenance of biochemical homeostasis, neuronal circuit maturation during development and experience-dependent remodeling of neuronal circuits in the adult brain. Being equipped by numerous receptors and cell surface molecules microglia can perform bidirectional interactions with other cell types in the CNS. There is accumulating evidence showing that neurons inform microglia about their status and thus are capable of controlling microglial activation and motility while microglia also modulate neuronal activities. This review addresses the topic: how microglia communicate with other cell types in the brain, including fractalkine signaling, secreted soluble factors and extracellular vesicles. We summarize the current state of knowledge of physiological role and function of microglia during brain development and in the mature brain and further highlight microglial contribution to brain pathologies such as Alzheimer’s and Parkinson’s disease, brain ischemia, traumatic brain injury, brain tumor as well as neuropsychiatric diseases (depression, bipolar disorder, and schizophrenia).
Collapse
Affiliation(s)
- Zsuzsanna Szepesi
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Oscar Manouchehrian
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sara Bachiller
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
70
|
Matias D, Balça-Silva J, da Graça GC, Wanjiru CM, Macharia LW, Nascimento CP, Roque NR, Coelho-Aguiar JM, Pereira CM, Dos Santos MF, Pessoa LS, Lima FRS, Schanaider A, Ferrer VP, Moura-Neto V. Microglia/Astrocytes-Glioblastoma Crosstalk: Crucial Molecular Mechanisms and Microenvironmental Factors. Front Cell Neurosci 2018; 12:235. [PMID: 30123112 PMCID: PMC6086063 DOI: 10.3389/fncel.2018.00235] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022] Open
Abstract
In recent years, the functions of glial cells, namely, astrocytes and microglia, have gained prominence in several diseases of the central nervous system, especially in glioblastoma (GB), the most malignant primary brain tumor that leads to poor clinical outcomes. Studies showed that microglial cells or astrocytes play a critical role in promoting GB growth. Based on the recent findings, the complex network of the interaction between microglial/astrocytes cells and GB may constitute a potential therapeutic target to overcome tumor malignancy. In the present review, we summarize the most important mechanisms and functions of the molecular factors involved in the microglia or astrocytes-GB interactions, which is particularly the alterations that occur in the cell's extracellular matrix and the cytoskeleton. We overview the cytokines, chemokines, neurotrophic, morphogenic, metabolic factors, and non-coding RNAs actions crucial to these interactions. We have also discussed the most recent studies regarding the mechanisms of transportation and communication between microglial/astrocytes - GB cells, namely through the ABC transporters or by extracellular vesicles. Lastly, we highlight the therapeutic challenges and improvements regarding the crosstalk between these glial cells and GB.
Collapse
Affiliation(s)
- Diana Matias
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joana Balça-Silva
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences Consortium, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Grazielle C da Graça
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Caroline M Wanjiru
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucy W Macharia
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla Pires Nascimento
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia R Roque
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Juliana M Coelho-Aguiar
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | | | - Marcos F Dos Santos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana S Pessoa
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Flavia R S Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alberto Schanaider
- Centro de Cirurgia Experimental do Departamento de Cirurgia da Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valéria P Ferrer
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | | | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Universidade do Grande Rio (Unigranrio), Duque de Caxias, Brazil
| |
Collapse
|
71
|
Vastrad C, Vastrad B. Bioinformatics analysis of gene expression profiles to diagnose crucial and novel genes in glioblastoma multiform. Pathol Res Pract 2018; 214:1395-1461. [PMID: 30097214 DOI: 10.1016/j.prp.2018.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/27/2018] [Accepted: 07/22/2018] [Indexed: 02/07/2023]
Abstract
Therefore, the current study aimed to diagnose the genes associated in the pathogenesis of GBM. The differentially expressed genes (DEGs) were diagnosed using the limma software package. The ToppFun was used to perform pathway and Gene Ontology (GO) enrichment analysis of the DEGs. Protein-protein interaction (PPI) networks, extracted modules, miRNA-target genes regulatory network and miRNA-target genes regulatory network were used to obtain insight into the actions of DEGs. Survival analysis for DEGs carried out. A total of 701 DEGs, including 413 upregulated and 288 downregulated genes, were diagnosed between U1118MG cell line (PK 11195 treated with 1 h exposure) and U1118MG cell line (PK 11195 treated with 24 h exposure). The up-regulated genes were enriched in superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis, cell cycle, cell cycle process and chromosome. The down-regulated genes were enriched in folate transformations I, biosynthesis of amino acids, cellular amino acid metabolic process and vacuolar membrane. The current study screened the genes in PPI network, extracted modules, miRNA-target genes regulatory network and miRNA-target genes regulatory network with higher degrees as hub genes, which included MYC, TERF2IP, CDK1, EEF1G, TXNIP, SLC1A5, RGS4 and IER5L Survival suggested that low expressed NR4A2, SLC7 A5, CYR61 and ID1 in patients with GBM was linked with a positive prognosis for overall survival. In conclusion, the current study could improve our understanding of the molecular mechanisms in the progression of GBM, and these crucial as well as new molecular markers might be used as therapeutic targets for GBM.
Collapse
Affiliation(s)
- Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, 580001, Karanataka, India.
| | - Basavaraj Vastrad
- Department of Pharmaceutics, SET`S College of Pharmacy, Dharwad, Karnataka, 580002, India
| |
Collapse
|
72
|
Differential regulation of the pro-inflammatory biomarker, YKL-40/CHI3L1, by PTEN/Phosphoinositide 3-kinase and JAK2/STAT3 pathways in glioblastoma. Cancer Lett 2018; 429:54-65. [PMID: 29729901 DOI: 10.1016/j.canlet.2018.04.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/28/2018] [Accepted: 04/30/2018] [Indexed: 12/27/2022]
Abstract
Constitutive activation of the phosphoinositide 3-kinase/AKT signaling pathway is frequently observed in high-grade gliomas with high frequency of losing PTEN tumor suppressor. To identify transcriptomic profiles associated with a hyperactivated PI3K pathway, RNA-sequencing analysis was performed in a glioblastoma cell line stably expressing PTEN. RNA-sequencing revealed enriched transcripts of pro-inflammatory mediators, and among the genes that displayed high differential expression was the secreted glycoprotein YKL-40. Treatment with chemical inhibitors that target the PI3K/AKT pathway elicited differential effects on YKL-40 expression in selected GBM cell lines, indicating that its expression displayed tumor cell-specific variations. This variability appeared to be correlated with the ability to transactivate the immune signaling molecules JAK2 and STAT3. In summary, the differential expression of the immunomodulatory molecule YKL-40 may affect the treatment efficacy of PI3K/AKT-based pathway inhibitors in glioblastoma.
Collapse
|
73
|
Long noncoding RNA DANCR mediates cisplatin resistance in glioma cells via activating AXL/PI3K/Akt/NF-κB signaling pathway. Neurochem Int 2018; 118:233-241. [PMID: 29572052 DOI: 10.1016/j.neuint.2018.03.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/29/2022]
Abstract
Malignant glioma is an aggressive type of brain tumor with poor prognosis and mostly incurable. Although cisplatin is used for adjuvant chemotherapy against glioma, intrinsic and acquired resistance restricts the application of cisplatin. Long noncoding RNA (lncRNA) DANCR is reported to regulate the differentiation and progression of several cancers. However, whether DANCR participates in cisplatin resistance of glioma is still unknown. In this study, we found that DANCR expression was negatively correlated with cisplatin sensitivity in glioma cells. Gain-of and loss-of function assays revealed that DNACR attenuated cisplatin-induced cell proliferation inhibition in vitro and xenograft growth suppression in vivo. Furthermore, DNACR also attenuated cisplatin-induced cell apoptosis in vitro and in vivo. Mechanistically, we found that DANCR upregulated AXL via competitively binding miR-33a-5p, miR-33b-5p, miR-1-3p, miR-206, and miR-613. Through upregulating AXL, DANCR activated PI3K/Akt/NF-κB signaling pathway in glioma cells. Inhibiting AXL/PI3K/Akt/NF-κB signaling pathway reversed the effects of DANCR on cisplatin resistance. In conclusion, we identified a cisplatin-resistance associated lncRNA DANCR. DANCR promotes cisplatin resistance via activating AXL/PI3K/Akt/NF-κB signaling pathway in glioma. Our data suggested that DANCR would be a potential biomarker for predicting cisplatin sensitivity and a therapeutic target for enhancing cisplatin efficacy in glioma.
Collapse
|
74
|
Li P, Feng J, Liu Y, Liu Q, Fan L, Liu Q, She X, Liu C, Liu T, Zhao C, Wang W, Li G, Wu M. Novel Therapy for Glioblastoma Multiforme by Restoring LRRC4 in Tumor Cells: LRRC4 Inhibits Tumor-Infitrating Regulatory T Cells by Cytokine and Programmed Cell Death 1-Containing Exosomes. Front Immunol 2017; 8:1748. [PMID: 29312296 PMCID: PMC5732324 DOI: 10.3389/fimmu.2017.01748] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/24/2017] [Indexed: 01/28/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a heterogeneous malignant brain tumor, the pathological incidence of which induces the accumulation of tumor-infiltrating lymphocytes (TILs). As a tumor suppressor gene, LRRC4 is absent in GBM cells. Here, we report that the recovery of LRRC4 in GBM cells inhibited the infiltration of tumor-infiltrating regulatory T cells (Ti-Treg), promoted the expansion of tumor-infiltrating effector T (Ti-Teff) cells and CD4+CCR4+ T cells, and enhanced the chemotaxis of CD4+CCR4+ T cells in the GBM immune microenvironment. LRRC4 was not transferred into TILs from GBM cells through exosomes but mainly exerted its inhibiting function on Ti-Treg cell expansion by directly promoting cytokine secretion. GBM cell-derived exosomes (cytokine-free and programmed cell death 1 containing) also contributed to the modulation of LRRC4 on Ti-Treg, Ti-Teff, and CD4+CCR4+ T cells. In GBM cells, LRRC4 directly bound to phosphoinositide-dependent protein kinase 1 (PDPK1), phosphorylated IKKβser181, facilitated NF-κB activation, and promoted the secretion of interleukin-6 (IL-6), CCL2, and interferon gamma. In addition, HSP90 was required to maintain the interaction between LRRC4 and PDPK1. However, the inhibition of Ti-Treg cell expansion and promotion of CD4+CCR4+ T cell chemotaxis by LRRC4 could be blocked by anti-IL-6 antibody or anti-CCL2 antibody, respectively. miR-101 is a suppressor gene in GBM. Our previous studies have shown that EZH2, EED, and DNMT3A are direct targets of miR-101. Here, we showed that miR-101 reversed the hypermethylation of the LRRC4 promoter and induced the re-expression of LRRC4 in GBM cells by directly targeting EZH2, EED, and DNMT3A. Our results reveal a novel mechanism underlying GBM microenvironment and provide a new therapeutic strategy using re-expression of LRRC4 in GBM cells to create a permissive intratumoral environment.
Collapse
Affiliation(s)
- Peiyao Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Changsha, China.,Xiangya Hospital, Central South University, Changsha, China
| | - Jianbo Feng
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Changsha, China
| | - Yang Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Changsha, China
| | - Qiang Liu
- Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Fan
- Department of Biochemistry, University of California, Riverside, CA, United States
| | - Qing Liu
- Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoling She
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Changhong Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Changsha, China
| | - Tao Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Changsha, China
| | - Chunhua Zhao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Changsha, China
| | - Wei Wang
- Third Xiangya Hospital, Central South University, Changsha, China
| | - Guiyuan Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Changsha, China
| | - Minghua Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Changsha, China.,Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China
| |
Collapse
|
75
|
Duhart JM, Brocardo L, Caldart CS, Marpegan L, Golombek DA. Circadian Alterations in a Murine Model of Hypothalamic Glioma. Front Physiol 2017; 8:864. [PMID: 29163208 PMCID: PMC5670357 DOI: 10.3389/fphys.2017.00864] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/16/2017] [Indexed: 01/09/2023] Open
Abstract
The mammalian circadian system is controlled by a central oscillator located in the suprachiasmatic nuclei (SCN) of the hypothalamus, in which glia appears to play a prominent role. Gliomas originate from glial cells and are the primary brain tumors with the highest incidence and mortality. Optic pathway/hypothalamic gliomas account for 4–7% of all pediatric intracranial tumors. Given the anatomical location, which compromises both the circadian pacemaker and its photic input pathway, we decided to study whether the presence of gliomas in the hypothalamic region could alter circadian behavioral outputs. Athymic nude mice implanted with LN229 human glioma cells showed an increase in the endogenous period of the circadian clock, which was also less robust in terms of sustaining the free running period throughout 2 weeks of screening. We also found that implanted mice showed a slower resynchronization rate after an abrupt 6 h advance of the light-dark (LD) cycle, advanced phase angle, and a decreased direct effect of light in general activity (masking), indicating that hypothalamic tumors could also affect photic sensitivity of the circadian clock. Our work suggests that hypothalamic gliomas have a clear impact both on the endogenous pacemaking of the circadian system, as well as on the photic synchronization of the clock. These findings strongly suggest that the observation of altered circadian parameters in patients might be of relevance for glioma diagnosis.
Collapse
Affiliation(s)
- José M Duhart
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Lucila Brocardo
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Carlos S Caldart
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Luciano Marpegan
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Diego A Golombek
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| |
Collapse
|
76
|
Sanina N, Shmatko N, Stupina T, Balakina A, Terent'ev A. NO-Donor Iron Nitrosyl Complex with N-Ethylthiourea Ligand Exhibits Selective Toxicity to Glioma A172 Cells. Molecules 2017; 22:molecules22091426. [PMID: 28850075 PMCID: PMC6151528 DOI: 10.3390/molecules22091426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/22/2017] [Indexed: 11/29/2022] Open
Abstract
We studied effects of NO-donor iron nitrosyl complex with N-ethylthiourea ligand (ETM) on normal or tumor-derived cell lines. ETM was mildly toxic to most cell lines studied except the human glioma cell line A172 that proved to be highly sensitive to the complex and underwent cell death after ETM exposure. The high susceptibility of A172 cells to ETM was attributed to its NO-donor properties since no toxicity was detected for the N-ethylthiourea ligand.
Collapse
Affiliation(s)
- Nataliya Sanina
- Institute of Problems of Chemical Physics RAS, Chernogolovka 142432, Russia.
- Medicinal Chemistry Research and Education Center, Moscow Region State University, Moscow 105005, Russia.
- Faculty of Fundamental Physical and Chemical Engineering, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Natal'ya Shmatko
- Institute of Problems of Chemical Physics RAS, Chernogolovka 142432, Russia.
| | - Tatiyana Stupina
- Institute of Problems of Chemical Physics RAS, Chernogolovka 142432, Russia.
| | - Anastasiya Balakina
- Institute of Problems of Chemical Physics RAS, Chernogolovka 142432, Russia.
| | - Alexei Terent'ev
- Institute of Problems of Chemical Physics RAS, Chernogolovka 142432, Russia.
- Medicinal Chemistry Research and Education Center, Moscow Region State University, Moscow 105005, Russia.
- Faculty of Fundamental Physical and Chemical Engineering, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
77
|
Chen ZG, Zheng CY, Cai WQ, Li DW, Ye FY, Zhou J, Wu R, Yang K. miR-26b Mimic Inhibits Glioma Proliferation In Vitro and In Vivo Suppressing COX-2 Expression. Oncol Res 2017; 27:147-155. [PMID: 28800785 PMCID: PMC7848412 DOI: 10.3727/096504017x15021536183517] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glioma is the most common malignant tumor of the nervous system. Studies have shown the microRNA-26b (miR-26b)/cyclooxygenase-2 (COX-2) axis in the development and progression in many tumor cells. Our study aims to investigate the effect and mechanism of the miR-26b/COX-2 axis in glioma. Decreased expression of miR-26b with increased levels of COX-2 was found in glioma tissues compared with matched normal tissues. A strong negative correlation was observed between the level of miR-26b and COX-2 in 30 glioma tissues. The miR-26b was then overexpressed by transfecting a miR-26b mimic into U-373 cells. The invasive cell number and wound closing rate were reduced in U-373 cells transfected with miR-26b mimic. In addition, COX-2 siRNA enhanced the effect of miR-26b mimic in suppressing the expression of p-ERK1 and p-JNK. Finally, the in vivo experiment revealed that miR-26b mimic transfection strongly reduced the tumor growth, tumor volume, and expression of matrix metalloproteinase-2 (MMP-2) and MMP-9. Taken together, our research indicated a miR-26b/COX-2/ERK/JNK axis in regulating the motility of glioma in vitro and in vivo, providing a new sight for the treatment of glioma.
Collapse
Affiliation(s)
- Zheng-Gang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Chuan-Yi Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Wang-Qing Cai
- Department of Neurosurgery, The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Da-Wei Li
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Fu-Yue Ye
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Jian Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Ran Wu
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Kun Yang
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| |
Collapse
|
78
|
Jiang H, Wang X, Miao W, Wang B, Qiu Y. CXCL8 promotes the invasion of human osteosarcoma cells by regulation of PI3K/Akt signaling pathway. APMIS 2017; 125:773-780. [PMID: 28736978 DOI: 10.1111/apm.12721] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/17/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Hai Jiang
- Department of Orthopedics; the First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
- Department of Pediatric Orthopedics; Honghui Hospital; Xi'an Jiaotong University College of Medicine; Xi'an China
| | - Xiaowei Wang
- Department of Pediatric Orthopedics; Honghui Hospital; Xi'an Jiaotong University College of Medicine; Xi'an China
| | - Wusheng Miao
- Department of Pediatric Orthopedics; Honghui Hospital; Xi'an Jiaotong University College of Medicine; Xi'an China
| | - Bing Wang
- Department of Pediatric Orthopedics; Honghui Hospital; Xi'an Jiaotong University College of Medicine; Xi'an China
| | - Yusheng Qiu
- Department of Orthopedics; the First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| |
Collapse
|
79
|
Amin M, Vakilian A, Mahmoodi MH, Hassanshahi G, Falahati-Pour SK, Dolatabadi MR, Nadimi AE. Circulatory Levels of C-X-C Motif Chemokine Ligands 1, 9, and 10 Are Elevated in Patients with Ischemic Stroke. Eurasian J Med 2017. [PMID: 28638249 DOI: 10.5152/eurasianjmed.2017.17022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Inflammation plays a significant role in the development of ischemic stroke. CXC chemokines play pleiotropic roles in prolonged leukocyte locomotion, astrocyte migration/activation, and neural attachment/sprouting in response to focal stroke. In this study, we aimed to explore the changes in serum levels of three chemokines, C-X-C motif chemokine ligand 1 (CXCL1), C-X-C motif chemokine ligand 9 (CXCL9), and C-X-C motif chemokine ligand 10 (CXCL10), in ischemic stroke patients at the time of admission and before discharge from the hospital ward. MATERIALS AND METHODS In this study, we recruited 43 unrelated ischemic stroke patients using an easy convenience method or accidental sampling which is a type of non-probability sampling that involves the sample being drawn from that part of the population that is close to hand. We also enrolled 50 genetically unrelated healthy controls showing no history of neurologic, cardiovascular, or inflammatory diseases. Serum levels of the considered chemokines were measured by enzyme-linked immunosorbent assay (ELISA) in patients and healthy controls. RESULTS No significant difference was observed in ischemic stroke patients following hospitalization and prior discharging from the hospital; however, there was a significant difference in serum levels of CXCL9 and CXCL10 between patients and healthy controls. We also found that the level of the chemokine was not related to gender or medical therapy. It appears that CXCL9 and CXCL10 are more predisposing factors and play a direct role in stroke considering that they were higher in patients than in healthy controls. CONCLUSION We believe that this study might be used as a basis for further studies on more effective medication regimens to prevent the onset and subsequent complications of stroke. However, these mediators are useful diagnostic and prognostic tools rather than therapeutic tools.
Collapse
Affiliation(s)
- Masoud Amin
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Alireza Vakilian
- Department of Neurology, Ali-Ebne-Abitaleb Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Hossein Mahmoodi
- Department of Neurology, Ali-Ebne-Abitaleb Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | | | - Maryam Rafiei Dolatabadi
- Department of Neurology, Ali-Ebne-Abitaleb Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Esmaeili Nadimi
- Department of Cardiology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
80
|
Laudati E, Currò D, Navarra P, Lisi L. Blockade of CCR5 receptor prevents M2 microglia phenotype in a microglia-glioma paradigm. Neurochem Int 2017; 108:100-108. [PMID: 28279751 DOI: 10.1016/j.neuint.2017.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 02/24/2017] [Accepted: 03/03/2017] [Indexed: 02/08/2023]
Abstract
Microglia express chemokines and their cognate receptors that were found to play important roles in many processes required for tumor development, such as tumor growth, proliferation, invasion, and angiogenesis. Among the chemokine receptor, CCR5 have been documented in different cancer models; in particular, CCR5 is highly expressed in human glioblastoma, where it is associated to poor prognosis. In the present study, we investigated the effect of CCR5 receptor blockade on a paradigm of microglia-glioma interaction; the CCR5 blocker maraviroc (MRV) was used as a pharmacological tool. We found that MVR is able to reduce the gene expression and function of the M2 markers ARG1 and IL-10 in presence of both basal glioma-released factors (C-CM) and activated glioma-released factors (LI-CM), but it up-regulates the M1 markers NO and IL-1β only if microglia is stimulated by LI-CM; the latter effect appears to be mediated by the inhibition of mTOR pathway. In addition, CCR5 blockade was associated to a significant reduction in microglia migration, an effect mediated through the inhibition of AKT pathway.
Collapse
Affiliation(s)
- Emilia Laudati
- Institute of Pharmacology, Catholic University Medical School, L.go F Vito 1, Rome, Italy
| | - Diego Currò
- Institute of Pharmacology, Catholic University Medical School, L.go F Vito 1, Rome, Italy
| | - Pierluigi Navarra
- Institute of Pharmacology, Catholic University Medical School, L.go F Vito 1, Rome, Italy.
| | - Lucia Lisi
- Institute of Pharmacology, Catholic University Medical School, L.go F Vito 1, Rome, Italy
| |
Collapse
|