51
|
Chen N, Lu J, Shao H, Weng X, Fang F. Neural mechanisms of motion perceptual learning in noise. Hum Brain Mapp 2017; 38:6029-6042. [PMID: 28901676 DOI: 10.1002/hbm.23808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 11/08/2022] Open
Abstract
Practice improves our perceptual ability. However, the neural mechanisms underlying this experience-dependent plasticity in adult brain remain unclear. Here, we studied the long-term neural correlates of motion perceptual learning. Subjects' behavioral performance and BOLD signals were tracked before, immediately after, and 2 weeks after practicing a motion direction discrimination task in noise over six daily sessions. Parallel to the specificity and persistency of the behavioral learning effect, we found that training sharpened the cortical tuning in MT, and enhanced the connectivity strength from MT to the intraparietal sulcus (IPS, a motion decision-making area). In addition, the decoding accuracy for the trained motion direction was improved in IPS 2 weeks after training. The dual changes in the sensory and the high-level cortical areas suggest that learning refines the neural representation of the trained stimulus and facilitates the information transmission in the decision process. Our findings are consistent with the functional specialization in the visual cortex, and provide empirical evidence to the reweighting theory of perceptual learning at a large spatial scale. Hum Brain Mapp 38:6029-6042, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nihong Chen
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, People's Republic of China.,Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, 100871, People's Republic of China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, People's Republic of China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, People's Republic of China.,Department of Psychology, University of Southern California, Los Angeles, California 90089-1061
| | - Junshi Lu
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, People's Republic of China.,Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, 100871, People's Republic of China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, People's Republic of China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, People's Republic of China
| | - Hanyu Shao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuchu Weng
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, People's Republic of China.,Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, 100871, People's Republic of China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, People's Republic of China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, People's Republic of China
| |
Collapse
|
52
|
Abstract
UNLABELLED The ability to perceive the visual world around us as spatially stable despite frequent eye movements is one of the long-standing mysteries of neuroscience. The existence of neural mechanisms processing spatiotopic information is indispensable for a successful interaction with the external world. However, how the brain handles spatiotopic information remains a matter of debate. We here combined behavioral and fMRI adaptation to investigate the coding of spatiotopic information in the human brain. Subjects were adapted by a prolonged presentation of a tilted grating. Thereafter, they performed a saccade followed by the brief presentation of a probe. This procedure allowed dissociating adaptation aftereffects at retinal and spatiotopic positions. We found significant behavioral and functional adaptation in both retinal and spatiotopic positions, indicating information transfer into a spatiotopic coordinate system. The brain regions involved were located in ventral visual areas V3, V4, and VO. Our findings suggest that spatiotopic representations involved in maintaining visual stability are constructed by dynamically remapping visual feature information between retinotopic regions within early visual areas. SIGNIFICANCE STATEMENT Why do we perceive the visual world as stable, although we constantly perform saccadic eye movements? We investigated how the visual system codes object locations in spatiotopic (i.e., external world) coordinates. We combined visual adaptation, in which the prolonged exposure to a specific visual feature alters perception, with fMRI adaptation, where the repeated presentation of a stimulus leads to a reduction in the BOLD amplitude. Functionally, adaptation was found in visual areas representing the retinal location of an adaptor but also at representations corresponding to its spatiotopic position. The results suggest that an active dynamic shift transports information in visual cortex to counteract the retinal displacement associated with saccade eye movements.
Collapse
|
53
|
Chen C, Wang J, Liu Y, Chen X. Analyzing fatigue in prolonged watching of 3DTV with ReHo approach. JOURNAL OF THE SOCIETY FOR INFORMATION DISPLAY 2017; 25:524-530. [DOI: 10.1002/jsid.601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractFatigue caused by the prolonged watching of 3DTV has been paid great attention about the safety for viewers. We used regional homogeneity (ReHo) to measure the local synchronization of resting‐state functional magnetic resonance imaging signals both before and after watching 2D or 3D television. Twenty normal subjects were all measured four times: scans before watching television (3D‐Pre/2D‐Pre) and immediately after watching television for 1 h (3D‐Post/2D‐Post). The variation of ReHo was investigated in 2D/3D groups, and then the influence of watching 2D/3D TV on the spectators was estimated. Compared with the 3D‐Pre, the 3D‐Post showed significantly higher ReHo in the right inferior occipital gyrus (BA18/19) and right middle occipital gyrus (BA18/19), left postcentral gyrus (BA2/3/4/7), and small area of BA9/10 in left frontal lobe. Additionally, increased ReHo regions in the 2D‐Post was observed in the left medial frontal gyrus (BA9/10/32), left cingulate gyrus (BA24), and right anterior cingulate (BA32) as compared with the 2D‐Pre. For the 2D group, subjects mainly feel mental fatigue, which could be caused by prolonged attention. For the 3D group, watching TV primarily causes visual fatigue because of the constant change of depth of focus and mild mental fatigue. The study indicates the adverse effects of 3DTV on visual function.
Collapse
Affiliation(s)
- Chunxiao Chen
- Department of Biomedical Engineering Nanjing University of Aeronautics and Astronautics Nanjing Jiangsu Province 211106 China
| | - Jing Wang
- Department of Biomedical Engineering Nanjing University of Aeronautics and Astronautics Nanjing Jiangsu Province 211106 China
| | - Yupin Liu
- Department of Radiology Guangdong Province Traditional Chinese Medicine Hospital Guangzhou 510006 China
| | - Xin Chen
- Department of Radiology Guangdong Province Traditional Chinese Medicine Hospital Guangzhou 510006 China
| |
Collapse
|
54
|
Abstract
Cross-population covariance of brain morphometric quantities provides a measure of interareal connectivity, as it is believed to be determined by the coordinated neurodevelopment of connected brain regions. Although useful, structural covariance analysis predominantly employed bulky morphological measures with mixed compartments, whereas studies of the structural covariance of any specific subdivisions such as myelin are rare. Characterizing myelination covariance is of interest, as it will reveal connectivity patterns determined by coordinated development of myeloarchitecture between brain regions. Using myelin content MRI maps from the Human Connectome Project, here we showed that the cortical myelination covariance was highly reproducible, and exhibited a brain organization similar to that previously revealed by other connectivity measures. Additionally, the myelination covariance network shared common topological features of human brain networks such as small-worldness. Furthermore, we found that the correlation between myelination covariance and resting-state functional connectivity (RSFC) was uniform within each resting-state network (RSN), but could considerably vary across RSNs. Interestingly, this myelination covariance-RSFC correlation was appreciably stronger in sensory and motor networks than cognitive and polymodal association networks, possibly due to their different circuitry structures. This study has established a new brain connectivity measure specifically related to axons, and this measure can be valuable to investigating coordinated myeloarchitecture development. Hum Brain Mapp 38:4730-4743, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhiwei Ma
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
55
|
Lu KH, Jeong JY, Wen H, Liu Z. Spontaneous activity in the visual cortex is organized by visual streams. Hum Brain Mapp 2017; 38:4613-4630. [PMID: 28608643 DOI: 10.1002/hbm.23687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 12/12/2022] Open
Abstract
Large-scale functional networks have been extensively studied using resting state functional magnetic resonance imaging (fMRI). However, the pattern, organization, and function of fine-scale network activity remain largely unknown. Here, we characterized the spontaneously emerging visual cortical activity by applying independent component (IC) analysis to resting state fMRI signals exclusively within the visual cortex. In this subsystem scale, we observed about 50 spatially ICs that were reproducible within and across subjects, and analyzed their spatial patterns and temporal relationships to reveal the intrinsic parcellation and organization of the visual cortex. The resulting visual cortical parcels were aligned with the steepest gradient of cortical myelination, and were organized into functional modules segregated along the dorsal/ventral pathways and foveal/peripheral early visual areas. Cortical distance could partly explain intra-hemispherical functional connectivity, but not interhemispherical connectivity; after discounting the effect of anatomical affinity, the fine-scale functional connectivity still preserved a similar visual-stream-specific modular organization. Moreover, cortical retinotopy, folding, and cytoarchitecture impose limited constraints to the organization of resting state activity. Given these findings, we conclude that spontaneous activity patterns in the visual cortex are primarily organized by visual streams, likely reflecting feedback network interactions. Hum Brain Mapp 38:4613-4630, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kun-Han Lu
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Jun Young Jeong
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana
| | - Haiguang Wen
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Zhongming Liu
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| |
Collapse
|
56
|
Corbo D, Orban GA. Observing Others Speak or Sing Activates Spt and Neighboring Parietal Cortex. J Cogn Neurosci 2017; 29:1002-1021. [DOI: 10.1162/jocn_a_01103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
To obtain further evidence that action observation can serve as a proxy for action execution and planning in posterior parietal cortex, we scanned participants while they were (1) observing two classes of action: vocal communication and oral manipulation, which share the same effector but differ in nature, and (2) rehearsing and listening to nonsense sentences to localize area Spt, thought to be involved in audio-motor transformation during speech. Using this localizer, we found that Spt is specifically activated by vocal communication, indicating that Spt is not only involved in planning speech but also in observing vocal communication actions. In addition, we observed that Spt is distinct from the parietal region most specialized for observing vocal communication, revealed by an interaction contrast and located in PFm. The latter region, unlike Spt, processes the visual and auditory signals related to other's vocal communication independently. Our findings are consistent with the view that several small regions in the temporoparietal cortex near the ventral part of the supramarginal/angular gyrus border are involved in the planning of vocal communication actions and are also concerned with observation of these actions, though involvements in those two aspects are unequal.
Collapse
|
57
|
Caruana F, Avanzini P, Mai R, Pelliccia V, LoRusso G, Rizzolatti G, Orban GA. Decomposing Tool-Action Observation: A Stereo-EEG Study. Cereb Cortex 2017; 27:4229-4243. [DOI: 10.1093/cercor/bhx124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Indexed: 11/14/2022] Open
Affiliation(s)
- F. Caruana
- Department of Neuroscience, University of Parma, Via Volturno 39, 43125 Parma, Italy
- CNR Institute of Neuroscience, Via Volturno 39, Parma, Italy
| | - P. Avanzini
- Department of Neuroscience, University of Parma, Via Volturno 39, 43125 Parma, Italy
- CNR Institute of Neuroscience, Via Volturno 39, Parma, Italy
| | - R. Mai
- Claudio Munari Center for Epilepsy Surgery, Ospedale Niguarda-Ca’ Granda, 20162 Milan, Italy
| | - V. Pelliccia
- Department of Neuroscience, University of Parma, Via Volturno 39, 43125 Parma, Italy
- Claudio Munari Center for Epilepsy Surgery, Ospedale Niguarda-Ca’ Granda, 20162 Milan, Italy
| | - G. LoRusso
- Claudio Munari Center for Epilepsy Surgery, Ospedale Niguarda-Ca’ Granda, 20162 Milan, Italy
| | - G. Rizzolatti
- Department of Neuroscience, University of Parma, Via Volturno 39, 43125 Parma, Italy
- CNR Institute of Neuroscience, Via Volturno 39, Parma, Italy
| | - G. A. Orban
- Department of Neuroscience, University of Parma, Via Volturno 39, 43125 Parma, Italy
| |
Collapse
|
58
|
Weiner KS, Barnett MA, Lorenz S, Caspers J, Stigliani A, Amunts K, Zilles K, Fischl B, Grill-Spector K. The Cytoarchitecture of Domain-specific Regions in Human High-level Visual Cortex. Cereb Cortex 2017; 27:146-161. [PMID: 27909003 PMCID: PMC5939223 DOI: 10.1093/cercor/bhw361] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/05/2016] [Accepted: 10/29/2016] [Indexed: 12/02/2022] Open
Abstract
A fundamental hypothesis in neuroscience proposes that underlying cellular architecture (cytoarchitecture) contributes to the functionality of a brain area. However, this hypothesis has not been tested in human ventral temporal cortex (VTC) that contains domain-specific regions causally involved in perception. To fill this gap in knowledge, we used cortex-based alignment to register functional regions from living participants to cytoarchitectonic areas in ex vivo brains. This novel approach reveals 3 findings. First, there is a consistent relationship between domain-specific regions and cytoarchitectonic areas: each functional region is largely restricted to 1 cytoarchitectonic area. Second, extracting cytoarchitectonic profiles from face- and place-selective regions after back-projecting each region to 20-μm thick histological sections indicates that cytoarchitectonic properties distinguish these regions from each other. Third, some cytoarchitectonic areas contain more than 1 domain-specific region. For example, face-, body-, and character-selective regions are located within the same cytoarchitectonic area. We summarize these findings with a parsimonious hypothesis incorporating how cellular properties may contribute to functional specialization in human VTC. Specifically, we link computational principles to correlated axes of functional and cytoarchitectonic segregation in human VTC, in which parallel processing across domains occurs along a lateral-medial axis while transformations of information within domain occur along an anterior-posterior axis.
Collapse
Affiliation(s)
- Kevin S. Weiner
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | | | - Simon Lorenz
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, 52428 Jülich, Germany
| | - Julian Caspers
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, 52428 Jülich, Germany
- Department of Diagnostic and Interventional Radiology, Medical Faculty,University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Anthony Stigliani
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Katrin Amunts
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, 52428 Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, Heinrich-Heine University of Düsseldorf, 40225 Düsseldorf, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, 52428 Jülich, Germany
| | - Karl Zilles
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, 52428 Jülich, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, 52428 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52062 Aachen, Germany
| | - Bruce Fischl
- Martinos Center for Biomedical Imaging and Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
- Computer Science and Artificial Intelligence Laboratory, MIT EECS/HST, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
- Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
59
|
Turner R. Uses, misuses, new uses and fundamental limitations of magnetic resonance imaging in cognitive science. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150349. [PMID: 27574303 PMCID: PMC5003851 DOI: 10.1098/rstb.2015.0349] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2016] [Indexed: 11/29/2022] Open
Abstract
When blood oxygenation level-dependent (BOLD) contrast functional magnetic resonance imaging (fMRI) was discovered in the early 1990s, it provoked an explosion of interest in exploring human cognition, using brain mapping techniques based on MRI. Standards for data acquisition and analysis were rapidly put in place, in order to assist comparison of results across laboratories. Recently, MRI data acquisition capabilities have improved dramatically, inviting a rethink of strategies for relating functional brain activity at the systems level with its neuronal substrates and functional connections. This paper reviews the established capabilities of BOLD contrast fMRI, the perceived weaknesses of major methods of analysis, and current results that may provide insights into improved brain modelling. These results have inspired the use of in vivo myeloarchitecture for localizing brain activity, individual subject analysis without spatial smoothing and mapping of changes in cerebral blood volume instead of BOLD activation changes. The apparent fundamental limitations of all methods based on nuclear magnetic resonance are also discussed.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.
Collapse
Affiliation(s)
- Robert Turner
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103 Leipzig, Germany
| |
Collapse
|
60
|
Glasser MF, Smith SM, Marcus DS, Andersson J, Auerbach EJ, Behrens TEJ, Coalson TS, Harms MP, Jenkinson M, Moeller S, Robinson EC, Sotiropoulos SN, Xu J, Yacoub E, Ugurbil K, Van Essen DC. The Human Connectome Project's neuroimaging approach. Nat Neurosci 2016; 19:1175-87. [PMID: 27571196 PMCID: PMC6172654 DOI: 10.1038/nn.4361] [Citation(s) in RCA: 663] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/18/2016] [Indexed: 12/20/2022]
Abstract
Noninvasive human neuroimaging has yielded many discoveries about the brain. Numerous methodological advances have also occurred, though inertia has slowed their adoption. This paper presents an integrated approach to data acquisition, analysis and sharing that builds upon recent advances, particularly from the Human Connectome Project (HCP). The 'HCP-style' paradigm has seven core tenets: (i) collect multimodal imaging data from many subjects; (ii) acquire data at high spatial and temporal resolution; (iii) preprocess data to minimize distortions, blurring and temporal artifacts; (iv) represent data using the natural geometry of cortical and subcortical structures; (v) accurately align corresponding brain areas across subjects and studies; (vi) analyze data using neurobiologically accurate brain parcellations; and (vii) share published data via user-friendly databases. We illustrate the HCP-style paradigm using existing HCP data sets and provide guidance for future research. Widespread adoption of this paradigm should accelerate progress in understanding the brain in health and disease.
Collapse
Affiliation(s)
- Matthew F. Glasser
- Department of Neuroscience, Washington University Medical School, Saint Louis, MO, USA
| | - Stephen M. Smith
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Daniel S. Marcus
- Department of Neuroscience, Washington University Medical School, Saint Louis, MO, USA
| | - Jesper Andersson
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Edward J. Auerbach
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Timothy E. J. Behrens
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Timothy S. Coalson
- Department of Neuroscience, Washington University Medical School, Saint Louis, MO, USA
| | - Michael P. Harms
- Department of Psychiatry, Washington University Medical School, Saint Louis, MO
| | - Mark Jenkinson
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Steen Moeller
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Emma C. Robinson
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Stamatios N. Sotiropoulos
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Junqian Xu
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - David C. Van Essen
- Department of Neuroscience, Washington University Medical School, Saint Louis, MO, USA
| |
Collapse
|
61
|
Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC. A multi-modal parcellation of human cerebral cortex. Nature 2016; 536:171-178. [PMID: 27437579 PMCID: PMC4990127 DOI: 10.1038/nature18933] [Citation(s) in RCA: 2800] [Impact Index Per Article: 311.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 06/15/2016] [Indexed: 01/27/2023]
Abstract
Understanding the amazingly complex human cerebral cortex requires a map (or parcellation) of its major subdivisions, known as cortical areas. Making an accurate areal map has been a century-old objective in neuroscience. Using multi-modal magnetic resonance images from the Human Connectome Project (HCP) and an objective semi-automated neuroanatomical approach, we delineated 180 areas per hemisphere bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults. We characterized 97 new areas and 83 areas previously reported using post-mortem microscopy or other specialized study-specific approaches. To enable automated delineation and identification of these areas in new HCP subjects and in future studies, we trained a machine-learning classifier to recognize the multi-modal 'fingerprint' of each cortical area. This classifier detected the presence of 96.6% of the cortical areas in new subjects, replicated the group parcellation, and could correctly locate areas in individuals with atypical parcellations. The freely available parcellation and classifier will enable substantially improved neuroanatomical precision for studies of the structural and functional organization of human cerebral cortex and its variation across individuals and in development, aging, and disease.
Collapse
Affiliation(s)
- Matthew F Glasser
- Department of Neuroscience, Washington University Medical School, Saint Louis, Missouri 63110, USA
| | - Timothy S Coalson
- Department of Neuroscience, Washington University Medical School, Saint Louis, Missouri 63110, USA
| | - Emma C Robinson
- FMRIB centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Department of Computing, Imperial College, London SW7 2AZ, UK
| | - Carl D Hacker
- Department of Biomedical Engineering, Washington University, Saint Louis, Missouri 63110, USA
| | - John Harwell
- Department of Neuroscience, Washington University Medical School, Saint Louis, Missouri 63110, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Jesper Andersson
- FMRIB centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen 6525 EN, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Centre Nijmegen, Postbus 9101, Nijmegen 6500 HB, The Netherlands
| | - Mark Jenkinson
- FMRIB centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Stephen M Smith
- FMRIB centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - David C Van Essen
- Department of Neuroscience, Washington University Medical School, Saint Louis, Missouri 63110, USA
| |
Collapse
|
62
|
Abstract
The purpose of this study was to investigate the contribution of stereopsis to the processing of observed manipulative actions. To this end, we first combined the factors "stimulus type" (action, static control, and dynamic control), "stereopsis" (present, absent) and "viewpoint" (frontal, lateral) into a single design. Four sites in premotor, retro-insular (2) and parietal cortex operated specifically when actions were viewed stereoscopically and frontally. A second experiment clarified that the stereo-action-specific regions were driven by actions moving out of the frontoparallel plane, an effect amplified by frontal viewing in premotor cortex. Analysis of single voxels and their discriminatory power showed that the representation of action in the stereo-action-specific areas was more accurate when stereopsis was active. Further analyses showed that the 4 stereo-action-specific sites form a closed network converging onto the premotor node, which connects to parietal and occipitotemporal regions outside the network. Several of the specific sites are known to process vestibular signals, suggesting that the network combines observed actions in peripersonal space with gravitational signals. These findings have wider implications for the function of premotor cortex and the role of stereopsis in human behavior.
Collapse
Affiliation(s)
- S Ferri
- Department of Neuroscience, University of Parma, 43125 Parma, Italy
| | - K Pauwels
- Computer Vision and Active Perception Laboratory, School of Computer Science and Communication, KTH, 10044 Stockholm, Sweden
| | - G Rizzolatti
- Department of Neuroscience, University of Parma, 43125 Parma, Italy
| | - G A Orban
- Department of Neuroscience, University of Parma, 43125 Parma, Italy
| |
Collapse
|
63
|
Large I, Bridge H, Ahmed B, Clare S, Kolasinski J, Lam WW, Miller KL, Dyrby TB, Parker AJ, Smith JET, Daubney G, Sallet J, Bell AH, Krug K. Individual Differences in the Alignment of Structural and Functional Markers of the V5/MT Complex in Primates. Cereb Cortex 2016; 26:3928-3944. [PMID: 27371764 PMCID: PMC5028002 DOI: 10.1093/cercor/bhw180] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Extrastriate visual area V5/MT in primates is defined both structurally by myeloarchitecture and functionally by distinct responses to visual motion. Myelination is directly identifiable from postmortem histology but also indirectly by image contrast with structural magnetic resonance imaging (sMRI). First, we compared the identification of V5/MT using both sMRI and histology in Rhesus macaques. A section-by-section comparison of histological slices with in vivo and postmortem sMRI for the same block of cortical tissue showed precise correspondence in localizing heavy myelination for V5/MT and neighboring MST. Thus, sMRI in macaques accurately locates histologically defined myelin within areas known to be motion selective. Second, we investigated the functionally homologous human motion complex (hMT+) using high-resolution in vivo imaging. Humans showed considerable intersubject variability in hMT+ location, when defined with myelin-weighted sMRI signals to reveal structure. When comparing sMRI markers to functional MRI in response to moving stimuli, a region of high myelin signal was generally located within the hMT+ complex. However, there were considerable differences in the alignment of structural and functional markers between individuals. Our results suggest that variation in area identification for hMT+ based on structural and functional markers reflects individual differences in human regional brain architecture.
Collapse
Affiliation(s)
- I Large
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - H Bridge
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - B Ahmed
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - S Clare
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - J Kolasinski
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - W W Lam
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - K L Miller
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - T B Dyrby
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - A J Parker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - J E T Smith
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - G Daubney
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - J Sallet
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - A H Bell
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
- MRC Cognition and Brain Sciences Unit, Cambridge, CB2 7EF, UK
| | - K Krug
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| |
Collapse
|
64
|
Michalareas G, Vezoli J, van Pelt S, Schoffelen JM, Kennedy H, Fries P. Alpha-Beta and Gamma Rhythms Subserve Feedback and Feedforward Influences among Human Visual Cortical Areas. Neuron 2016; 89:384-97. [PMID: 26777277 DOI: 10.1016/j.neuron.2015.12.018] [Citation(s) in RCA: 438] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/06/2015] [Accepted: 12/08/2015] [Indexed: 01/01/2023]
Abstract
Primate visual cortex is hierarchically organized. Bottom-up and top-down influences are exerted through distinct frequency channels, as was recently revealed in macaques by correlating inter-areal influences with laminar anatomical projection patterns. Because this anatomical data cannot be obtained in human subjects, we selected seven homologous macaque and human visual areas, and we correlated the macaque laminar projection patterns to human inter-areal directed influences as measured with magnetoencephalography. We show that influences along feedforward projections predominate in the gamma band, whereas influences along feedback projections predominate in the alpha-beta band. Rhythmic inter-areal influences constrain a functional hierarchy of the seven homologous human visual areas that is in close agreement with the respective macaque anatomical hierarchy. Rhythmic influences allow an extension of the hierarchy to 26 human visual areas including uniquely human brain areas. Hierarchical levels of ventral- and dorsal-stream visual areas are differentially affected by inter-areal influences in the alpha-beta band.
Collapse
Affiliation(s)
- Georgios Michalareas
- 1Ernst Strungmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
65
|
A map of the human neocortex showing the estimated overall myelin content of the individual architectonic areas based on the studies of Adolf Hopf. Brain Struct Funct 2016; 222:465-480. [PMID: 27138385 PMCID: PMC5225164 DOI: 10.1007/s00429-016-1228-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/21/2016] [Indexed: 12/01/2022]
Abstract
During the period extending from 1910 to 1970, Oscar and Cécile Vogt and their numerous collaborators published a large number of myeloarchitectonic studies on the cortex of the various lobes of the human cerebrum. In a previous publication [Nieuwenhuys et al (Brain Struct Funct 220:2551–2573, 2015; Erratum in Brain Struct Funct 220: 3753–3755, 2015)], we used the data provided by the Vogt–Vogt school for the composition of a myeloarchitectonic map of the entire human neocortex. Because these data were derived from many different brains, a standard brain had to be introduced to which all data available could be transferred. As such the Colin 27 structural scan, aligned to the MNI305 template was selected. The resultant map includes 180 myeloarchitectonic areas, 64 frontal, 30 parietal, 6 insular, 17 occipital and 63 temporal. Here we present a supplementary map in which the overall density of the myelinated fibers in the individual architectonic areas is indicated, based on a meta-analysis of data provided by Adolf Hopf, a prominent collaborator of the Vogts. This map shows that the primary sensory and motor regions are densely myelinated and that, in general, myelination decreases stepwise with the distance from these primary regions. The map also reveals the presence of a number of heavily myelinated formations, situated beyond the primary sensory and motor domains, each consisting of two or more myeloarchitectonic areas. These formations were provisionally designated as the orbitofrontal, intraparietal, posterolateral temporal, and basal temporal dark clusters. Recently published MRI-based in vivo myelin content mappings show, with regard to the primary sensory and motor regions, a striking concordance with our map. As regards the heavily myelinated clusters shown by our map, scrutiny of the current literature revealed that correlates of all of these clusters have been identified in in vivo structural MRI studies and appear to correspond either entirely or largely to known cytoarchitectonic entities. Moreover, functional neuroimaging studies indicate that all of these clusters are involved in vision-related cognitive functions.
Collapse
|
66
|
On the neurocognitive origins of human tool use : A critical review of neuroimaging data. Neurosci Biobehav Rev 2016; 64:421-37. [DOI: 10.1016/j.neubiorev.2016.03.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/04/2016] [Accepted: 03/09/2016] [Indexed: 11/22/2022]
|
67
|
Dubois J, Adolphs R. Building a Science of Individual Differences from fMRI. Trends Cogn Sci 2016; 20:425-443. [PMID: 27138646 DOI: 10.1016/j.tics.2016.03.014] [Citation(s) in RCA: 390] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 11/19/2022]
Abstract
To date, fMRI research has been concerned primarily with evincing generic principles of brain function through averaging data from multiple subjects. Given rapid developments in both hardware and analysis tools, the field is now poised to study fMRI-derived measures in individual subjects, and to relate these to psychological traits or genetic variations. We discuss issues of validity, reliability and statistical assessment that arise when the focus shifts to individual subjects and that are applicable also to other imaging modalities. We emphasize that individual assessment of neural function with fMRI presents specific challenges and necessitates careful consideration of anatomical and vascular between-subject variability as well as sources of within-subject variability.
Collapse
Affiliation(s)
- Julien Dubois
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Ralph Adolphs
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
68
|
Meletti S, Ruggieri A, Avanzini P, Caramaschi E, Filippini M, Bergonzini P, Monti G, Vignoli A, Olivotto S, Mastrangelo M, Santucci M, Gobbi G, Veggiotti P, Vaudano AE. Extrastriate visual cortex in idiopathic occipital epilepsies: The contribution of retinotopic areas to spike generation. Epilepsia 2016; 57:896-906. [PMID: 27093945 DOI: 10.1111/epi.13385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To provide insight into the pathophysiology of idiopathic childhood occipital epilepsies (ICOEs), by mapping the contribution of retinotopic visual areas to the generation and sustainment of epileptic activity. METHODS Thirteen patients affected by ICOEs (mean age = 10.9 years) underwent a video electroencephalography-functional magnetic resonance imaging (EEG-fMRI) study. A flexible-related fMRI analysis was applied to estimate the shape of the blood oxygen level-dependent (BOLD) response in each patient. Second-level analysis was performed using the interictal EEG discharge (IED)-specific response shape for the ICOE group. The resulting fMRI t-maps were warped to the Population-Average, Landmark- and Surface-based (PALS)-B12 atlas in Caret. For localization purposes, functional results were plotted and compared against 19 retinotopic areas for each hemisphere. A correlation analysis was performed between the hemodynamic maps and electroclinical variables. RESULTS The shape of the group-averaged hemodynamic response in ICOE patients showed an earlier time-to-peak and a more pronounced undershoot than the canonical hemodynamic response function (HRF). The random-effect analysis showed positive hemodynamic changes in the bilateral temporooccipital network. With regard to the retinotopic subdivision of the visual cortex, the primary visual area was consistently spared. Conversely, an extensive involvement of the occipitotemporal cortex, including the fusiform gyrus, and the occipitoparietal areas was observed. Moreover, a linear relationship was detected between the occipital spike-density and BOLD increases at the postcentral gyrus and temporooccipital cortex. SIGNIFICANCE Our data indicate that both the ventral and dorsal visual pathways are involved in spike generation in ICOEs, to extents that vary between patients, and reinforce the concept of benign childhood seizure susceptibility syndrome as a substrate for ICOEs. Finally, these results underscore the need for appropriate neuropsychological testing in these children, aimed at revealing selective impairments in functions subserved by both visual pathways.
Collapse
Affiliation(s)
- Stefano Meletti
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Neurology Unit, NOCSAE Hospital, AUSL Modena, Modena, Italy
| | - Andrea Ruggieri
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Pietro Avanzini
- Department of Neuroscience, University of Parma, Parma, Italy
| | | | - Melissa Filippini
- Child Neuropsychiatry Unit, IRCCS, Institute of Neurological Sciences, Bellaria Hospital, Bologna, Italy
| | | | - Giulia Monti
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Neurology Unit, NOCSAE Hospital, AUSL Modena, Modena, Italy
| | - Aglaia Vignoli
- Department of Health Sciences, University of Milano, Milano, Italy
| | - Sara Olivotto
- Brain and Behavior Department, University of Pavia, Pavia, Italy
| | | | - Margherita Santucci
- IRCCS Institute of Neurological Sciences, Bellaria Hospital, AUSL of Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Giuseppe Gobbi
- Child Neuropsychiatry Unit, IRCCS, Institute of Neurological Sciences, Bellaria Hospital, Bologna, Italy
| | - Pierangelo Veggiotti
- Brain and Behavior Department, University of Pavia, Pavia, Italy.,Department of Child Neurology and Psychiatry C. Mondino, National Neurological Institute, University of Pavia, Pavia, Italy
| | - Anna Elisabetta Vaudano
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Neurology Unit, NOCSAE Hospital, AUSL Modena, Modena, Italy
| |
Collapse
|
69
|
Orban GA. Functional definitions of parietal areas in human and non-human primates. Proc Biol Sci 2016; 283:20160118. [PMID: 27053755 PMCID: PMC4843655 DOI: 10.1098/rspb.2016.0118] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/03/2016] [Indexed: 11/25/2022] Open
Abstract
Establishing homologies between cortical areas in animal models and humans lies at the heart of translational neuroscience, as it demonstrates how knowledge obtained from these models can be applied to the human brain. Here, we review progress in using parallel functional imaging to ascertain homologies between parietal areas of human and non-human primates, species sharing similar behavioural repertoires. The human homologues of several areas along monkey IPS involved in action planning and observation, such as AIP, LIP and CIP, as well as those of opercular areas (SII complex), have been defined. In addition, uniquely human areas, such as the tool-use area in left anterior supramarginal gyrus, have also been identified.
Collapse
Affiliation(s)
- Guy A Orban
- Department of Neuroscience, University of Parma, Parma, Italy
| |
Collapse
|
70
|
Abstract
A fine-grained description of the spatiotemporal dynamics of human brain activity is a major goal of neuroscientific research. Limitations in spatial and temporal resolution of available noninvasive recording and imaging techniques have hindered so far the acquisition of precise, comprehensive four-dimensional maps of human neural activity. The present study combines anatomical and functional data from intracerebral recordings of nearly 100 patients, to generate highly resolved four-dimensional maps of human cortical processing of nonpainful somatosensory stimuli. These maps indicate that the human somatosensory system devoted to the hand encompasses a widespread network covering more than 10% of the cortical surface of both hemispheres. This network includes phasic components, centered on primary somatosensory cortex and neighboring motor, premotor, and inferior parietal regions, and tonic components, centered on opercular and insular areas, and involving human parietal rostroventral area and ventral medial-superior-temporal area. The technique described opens new avenues for investigating the neural basis of all levels of cortical processing in humans.
Collapse
|
71
|
Sun HC, Welchman AE, Chang DHF, Di Luca M. Look but don't touch: Visual cues to surface structure drive somatosensory cortex. Neuroimage 2016; 128:353-361. [PMID: 26778128 PMCID: PMC4767223 DOI: 10.1016/j.neuroimage.2015.12.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/15/2015] [Accepted: 12/31/2015] [Indexed: 11/30/2022] Open
Abstract
When planning interactions with nearby objects, our brain uses visual information to estimate shape, material composition, and surface structure before we come into contact with them. Here we analyse brain activations elicited by different types of visual appearance, measuring fMRI responses to objects that are glossy, matte, rough, or textured. In addition to activation in visual areas, we found that fMRI responses are evoked in the secondary somatosensory area (S2) when looking at glossy and rough surfaces. This activity could be reliably discriminated on the basis of tactile-related visual properties (gloss, rough, and matte), but importantly, other visual properties (i.e., coloured texture) did not substantially change fMRI activity. The activity could not be solely due to tactile imagination, as asking explicitly to imagine such surface properties did not lead to the same results. These findings suggest that visual cues to an object's surface properties evoke activity in neural circuits associated with tactile stimulation. This activation may reflect the a-priori probability of the physics of the interaction (i.e., the expectation of upcoming friction) that can be used to plan finger placement and grasp force.
Collapse
Affiliation(s)
- Hua-Chun Sun
- School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrew E Welchman
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | | | | |
Collapse
|
72
|
Abstract
UNLABELLED Posterior cortical atrophy (PCA) is a rare focal neurodegenerative syndrome characterized by progressive visuoperceptual and visuospatial deficits, most often due to atypical Alzheimer's disease (AD). We applied insights from basic visual neuroscience to analyze 3D shape perception in humans affected by PCA. Thirteen PCA patients and 30 matched healthy controls participated, together with two patient control groups with diffuse Lewy body dementia (DLBD) and an amnestic-dominant phenotype of AD, respectively. The hierarchical study design consisted of 3D shape processing for 4 cues (shading, motion, texture, and binocular disparity) with corresponding 2D and elementary feature extraction control conditions. PCA and DLBD exhibited severe 3D shape-processing deficits and AD to a lesser degree. In PCA, deficient 3D shape-from-shading was associated with volume loss in the right posterior inferior temporal cortex. This region coincided with a region of functional activation during 3D shape-from-shading in healthy controls. In PCA patients who performed the same fMRI paradigm, response amplitude during 3D shape-from-shading was reduced in this region. Gray matter volume in this region also correlated with 3D shape-from-shading in AD. 3D shape-from-disparity in PCA was associated with volume loss slightly more anteriorly in posterior inferior temporal cortex as well as in ventral premotor cortex. The findings in right posterior inferior temporal cortex and right premotor cortex are consistent with neurophysiologically based models of the functional anatomy of 3D shape processing. However, in DLBD, 3D shape deficits rely on mechanisms distinct from inferior temporal structural integrity. SIGNIFICANCE STATEMENT Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive visuoperceptual dysfunction and most often an atypical presentation of Alzheimer's disease (AD) affecting the ventral and dorsal visual streams rather than the medial temporal system. We applied insights from fundamental visual neuroscience to analyze 3D shape perception in PCA. 3D shape-processing deficits were affected beyond what could be accounted for by lower-order processing deficits. For shading and disparity, this was related to volume loss in regions previously implicated in 3D shape processing in the intact human and nonhuman primate brain. Typical amnestic-dominant AD patients also exhibited 3D shape deficits. Advanced visual neuroscience provides insight into the pathogenesis of PCA that also bears relevance for vision in typical AD.
Collapse
|
73
|
Architectonic Mapping of the Human Brain beyond Brodmann. Neuron 2015; 88:1086-1107. [DOI: 10.1016/j.neuron.2015.12.001] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 10/13/2015] [Accepted: 11/20/2015] [Indexed: 12/25/2022]
|
74
|
Yu D, Jiang Y, Legge GE, He S. Locating the cortical bottleneck for slow reading in peripheral vision. J Vis 2015; 15:3. [PMID: 26237299 PMCID: PMC4525773 DOI: 10.1167/15.11.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 06/24/2015] [Indexed: 11/24/2022] Open
Abstract
Yu, Legge, Park, Gage, and Chung (2010) suggested that the neural bottleneck for slow peripheral reading is located in nonretinotopic areas. We investigated the potential rate-limiting neural site for peripheral reading using fMRI, and contrasted peripheral reading with recognition of peripherally presented line drawings of common objects. We measured the BOLD responses to both text (three-letter words/nonwords) and line-drawing objects presented either in foveal or peripheral vision (10° lower right visual field) at three presentation rates (2, 4, and 8/second). The statistically significant interaction effect of visual field × presentation rate on the BOLD response for text but not for line drawings provides evidence for distinctive processing of peripheral text. This pattern of results was obtained in all five regions of interest (ROIs). At the early retinotopic cortical areas, the BOLD signal slightly increased with increasing presentation rate for foveal text, and remained fairly constant for peripheral text. In the Occipital Word-Responsive Area (OWRA), Visual Word Form Area (VWFA), and object sensitive areas (LO and PHA), the BOLD responses to text decreased with increasing presentation rate for peripheral but not foveal presentation. In contrast, there was no rate-dependent reduction in BOLD response for line-drawing objects in all the ROIs for either foveal or peripheral presentation. Only peripherally presented text showed a distinctive rate-dependence pattern. Although it is possible that the differentiation starts to emerge at the early retinotopic cortical representation, the neural bottleneck for slower reading of peripherally presented text may be a special property of peripheral text processing in object category selective cortex.
Collapse
|
75
|
Abstract
AbstractIn primates, the cortex adjoining the rostral border of V2 has been variously interpreted as belonging to a single visual area, V3, with dorsal V3 (V3d) representing the lower visual quadrant and ventral V3 (V3v) representing the upper visual quadrant, V3d and V3v constituting separate, incomplete visual areas, V3d and ventral posterior (VP), or V3d being divided into several visual areas, including a dorsomedial (DM) visual area, a medial visual area (M), and dorsal extension of VP (or VLP). In our view, the evidence from V1 connections strongly supports the contention that V3v and V3d are parts of a single visual area, V3, and that DM is a separate visual area along the rostral border of V3d. In addition, the retinotopy revealed by V1 connection patterns, microelectrode mapping, optical imaging mapping, and functional magnetic resonance imaging (fmri) mapping indicates that much of the proposed territory of V3d corresponds to V3. Yet, other evidence from microelectrode mapping and anatomical connection patterns supports the possibility of an upper quadrant representation along the rostral border of the middle of dorsal V2 (V2d), interpreted as part of DM or DM plus DI, and along the midline end of V2d, interpreted as the visual area M. While the data supporting these different interpretations appear contradictory, they also seem, to some extent, valid. We suggest that V3d may have a gap in its middle, possibly representing part of the upper visual quadrant that is not part of DM. In addition, another visual area, M, is likely located at the DM tip of V3d. There is no evidence for a similar disruption of V3v. For the present, we favor continuing the traditional concept of V3 with the possible modification of a gap in V3d in at least some primates.
Collapse
|
76
|
Ferri S, Rizzolatti G, Orban GA. The organization of the posterior parietal cortex devoted to upper limb actions: An fMRI study. Hum Brain Mapp 2015; 36:3845-66. [PMID: 26129732 PMCID: PMC5008173 DOI: 10.1002/hbm.22882] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/03/2015] [Accepted: 06/09/2015] [Indexed: 11/06/2022] Open
Abstract
The present fMRI study examined whether upper-limb action classes differing in their motor goal are encoded by different PPC sectors. Action observation was used as a proxy for action execution. Subjects viewed actors performing object-related (e.g., grasping), skin-displacing (e.g., rubbing the skin), and interpersonal upper limb actions (e.g., pushing someone). Observation of the three action classes activated a three-level network including occipito-temporal, parietal, and premotor cortex. The parietal region common to observing all three action classes was located dorsally to the left intraparietal sulcus (DIPSM/DIPSA border). Regions specific for observing an action class were obtained by combining the interaction between observing action classes and stimulus types with exclusive masking for observing the other classes, while for regions considered preferentially active for a class the interaction was exclusively masked with the regions common to all observed actions. Left putative human anterior intraparietal was specific for observing manipulative actions, and left parietal operculum including putative human SII region, specific for observing skin-displacing actions. Control experiments demonstrated that this latter activation depended on seeing the skin being moved and not simply on seeing touch. Psychophysiological interactions showed that the two specific parietal regions had similar connectivities. Finally, observing interpersonal actions preferentially activated a dorsal sector of left DIPSA, possibly the homologue of ventral intraparietal coding the impingement of the target person's body into the peripersonal space of the actor. These results support the importance of segregation according to the action class as principle of posterior parietal cortex organization for action observation and by implication for action execution.
Collapse
Affiliation(s)
- Stefania Ferri
- Department of Neuroscience, University of Parma, Parma, Italy
| | - Giacomo Rizzolatti
- Department of Neuroscience, University of Parma, Parma, Italy.,Brain Center for Social and Motor Cognition, Italian Institute of Technology, Parma, Italy
| | - Guy A Orban
- Department of Neuroscience, University of Parma, Parma, Italy
| |
Collapse
|
77
|
Mangeat G, Govindarajan ST, Mainero C, Cohen-Adad J. Multivariate combination of magnetization transfer, T2* and B0 orientation to study the myelo-architecture of the in vivo human cortex. Neuroimage 2015; 119:89-102. [PMID: 26095090 DOI: 10.1016/j.neuroimage.2015.06.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 05/04/2015] [Accepted: 06/11/2015] [Indexed: 12/21/2022] Open
Abstract
Recently, T2* imaging at 7Tesla (T) MRI was shown to reveal microstructural features of the cortical myeloarchitecture thanks to an increase in contrast-to-noise ratio. However, several confounds hamper the specificity of T2* measures (iron content, blood vessels, tissues orientation). Another metric, magnetization transfer ratio (MTR), is known to also be sensitive to myelin content and thus would be an excellent complementary measure because its underlying contrast mechanisms are different than that from T2*. The goal of this study was thus to combine MTR and T2* using multivariate statistics in order to gain insights into cortical myelin content. Seven healthy subjects were scanned at 7T and 3T to obtain T2* and MTR data, respectively. A multivariate myelin estimation model (MMEM) was developed, and consists in (i) normalizing T2* and MTR values and (ii) extracting their shared information using independent component analysis (ICA). B0 orientation dependence and cortical thickness were also computed and included in the model. Results showed high correlation between MTR and T2* in the whole cortex (r=0.76, p<10(-16)), suggesting that both metrics are partly driven by a common source of contrast, here assumed to be the myelin. Average MTR and T2* were respectively 31.0+/-0.3% and 32.1+/-1.4 ms. Results of the MMEM spatial distribution showed similar trends to that from histological work stained for myelin (r=0.77, p<0.01). Significant right-left differences were detected in the primary motor cortex (p<0.05), the posterior cingulate cortex (p<0.05) and the visual cortex (p<0.05). This study demonstrates that MTR and T2* are highly correlated in the cortex. The combination of MTR, T2*, CT and B0 orientation may be a useful means to study cortical myeloarchitecture with more specificity than using any of the individual methods. The MMEM framework is extendable to other contrasts such as T1 and diffusion MRI.
Collapse
Affiliation(s)
- G Mangeat
- Neuroimaging Research Laboratory (NeuroPoly), Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Athinoula A. Martinos Center for Biomedical Imaging, MGH, Charlestown, MA, USA
| | - S T Govindarajan
- Athinoula A. Martinos Center for Biomedical Imaging, MGH, Charlestown, MA, USA
| | - C Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, MGH, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - J Cohen-Adad
- Neuroimaging Research Laboratory (NeuroPoly), Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
78
|
Bordier C, Hupé JM, Dojat M. Quantitative evaluation of fMRI retinotopic maps, from V1 to V4, for cognitive experiments. Front Hum Neurosci 2015; 9:277. [PMID: 26042016 PMCID: PMC4436890 DOI: 10.3389/fnhum.2015.00277] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 04/28/2015] [Indexed: 12/05/2022] Open
Abstract
FMRI retinotopic mapping is a non-invasive technique for the delineation of low-level visual areas in individual subjects. It generally relies upon the analysis of functional responses to periodic visual stimuli that encode eccentricity or polar angle in the visual field. This technique is used in vision research when the precise assignation of brain activation to retinotopic areas is an issue. It involves processing steps computed with different algorithms and embedded in various software suites. Manual intervention may be needed for some steps. Although the diversity of the available processing suites and manual interventions may potentially introduce some differences in the final delineation of visual areas, no documented comparison between maps obtained with different procedures has been reported in the literature. To explore the effect of the processing steps on the quality of the maps obtained, we used two tools, BALC, which relies on a fully automated procedure, and BrainVoyager, where areas are delineated “by hand” on the brain surface. To focus on the mapping procedures specifically, we used the same SPM pipeline for pretreatment and the same tissue segmentation tool. We document the consistency and differences of the fMRI retinotopic maps obtained from “routine retinotopy” experiments on 10 subjects. The maps obtained by skilled users are never fully identical. However, the agreement between the maps, around 80% for low-level areas, is probably sufficient for most applications. Our results also indicate that assigning cognitive activations, following a specific experiment (here, color perception), to individual retinotopic maps is not free of errors. We provide measurements of this error, that may help for the cautious interpretation of cognitive activation projection onto fMRI retinotopic maps. On average, the magnitude of the error is about 20%, with much larger differences in a few subjects. More variability may even be expected with less trained users or using different acquisition parameters and preprocessing chains.
Collapse
Affiliation(s)
- Cécile Bordier
- Grenoble Institut des Neurosciences, Université Grenoble Alpes Grenoble, France ; Inserm, U836 Grenoble, France
| | - Jean-Michel Hupé
- Centre de Recherche Cerveau et Cognition, Université de Toulouse and Centre National de la Recherche Scientifique Toulouse, France
| | - Michel Dojat
- Grenoble Institut des Neurosciences, Université Grenoble Alpes Grenoble, France ; Inserm, U836 Grenoble, France
| |
Collapse
|
79
|
Ferri S, Peeters R, Nelissen K, Vanduffel W, Rizzolatti G, Orban GA. A human homologue of monkey F5c. Neuroimage 2015; 111:251-66. [PMID: 25711137 PMCID: PMC4401441 DOI: 10.1016/j.neuroimage.2015.02.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/15/2015] [Accepted: 02/16/2015] [Indexed: 02/04/2023] Open
Abstract
Area F5c is a monkey premotor area housing mirror neurons which responds more strongly to grasping observation when the actor is visible than when only the actor's hand is visible. Here we used this characteristic fMRI signature of F5c in seven imaging experiments – one in macaque monkeys and six in humans – to identify the human homologue of monkey F5c. By presenting the two grasping actions (actor, hand) and varying the low level visual characteristics, we localized a putative human homologue of area F5c (phF5c) in the inferior part of precentral sulcus, bilaterally. In contrast to monkey F5c, phF5c is asymmetric, with a right-sided bias, and is activated more strongly during the observation of the later stages of grasping when the hand is close to the object. The latter characteristic might be related to the emergence, in humans, of the capacity to precisely copy motor acts performed by others, and thus imitation. We use parallel fMRI to identify the human homologue of macaque F5c. In premotor cortex only F5c reacts more to observing grasping with the actor visible. Two bilateral inferior precentral sulcus sites respond similarly for many stimuli. The human homologues of F5c are asymmetric and require fixation near the target.
Collapse
Affiliation(s)
- S Ferri
- Department of Neuroscience, University of Parma, Parma, Italy
| | - R Peeters
- Division of Radiology, KU Leuven University Hospital, Leuven, Belgium
| | - K Nelissen
- Laboratorium voor Neuro-en Psychofysiologie, KU Leuven Medical School, Leuven, Belgium
| | - W Vanduffel
- Laboratorium voor Neuro-en Psychofysiologie, KU Leuven Medical School, Leuven, Belgium
| | - G Rizzolatti
- Department of Neuroscience, University of Parma, Parma, Italy; Brain Center for Social and Motor Cognition, Italian Institute of Technology, Parma, Italy
| | - G A Orban
- Department of Neuroscience, University of Parma, Parma, Italy; Laboratorium voor Neuro-en Psychofysiologie, KU Leuven Medical School, Leuven, Belgium.
| |
Collapse
|
80
|
Arcaro MJ, Honey CJ, Mruczek REB, Kastner S, Hasson U. Widespread correlation patterns of fMRI signal across visual cortex reflect eccentricity organization. eLife 2015; 4. [PMID: 25695154 PMCID: PMC4337732 DOI: 10.7554/elife.03952] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/21/2015] [Indexed: 01/13/2023] Open
Abstract
The human visual system can be divided into over two-dozen distinct areas, each of which contains a topographic map of the visual field. A fundamental question in vision neuroscience is how the visual system integrates information from the environment across different areas. Using neuroimaging, we investigated the spatial pattern of correlated BOLD signal across eight visual areas on data collected during rest conditions and during naturalistic movie viewing. The correlation pattern between areas reflected the underlying receptive field organization with higher correlations between cortical sites containing overlapping representations of visual space. In addition, the correlation pattern reflected the underlying widespread eccentricity organization of visual cortex, in which the highest correlations were observed for cortical sites with iso-eccentricity representations including regions with non-overlapping representations of visual space. This eccentricity-based correlation pattern appears to be part of an intrinsic functional architecture that supports the integration of information across functionally specialized visual areas. DOI:http://dx.doi.org/10.7554/eLife.03952.001 Imagine you are looking out over a scenic landscape. The image you perceive is actually made up of many different visual components—for example color and movement—that are processed across many different areas in a region of the brain called the visual cortex. An important question for neuroscience is how the visual system combines information from so many different areas to create a coherent picture of the world around us. Many areas of the visual cortex have their own map of what we see (the visual field). These maps allow the brain to maintain its representation of the visual field as the information passes from one processing area to the next. Areas that process corresponding parts of the visual field are physically interconnected, and tend to be active at the same time, which suggests that they are working together in some way. In addition, areas of the visual cortex that process different sections of the visual field can be activated at the same time, but it is not clear how this works. Here, Arcaro et al. used a technique called functional magnetic resonance imaging (fMRI) to image the brains of people as they watched movies and while they rested. The images showed that seemingly unrelated areas of the visual cortex respond in similar ways if they are processing sections of the visual field that are the same distance from the center of the person's gaze. For example, if you look directly at the center of a computer screen parts of the brain that process the top of the screen are active at the same time as parts that process the bottom. Arcaro et al.'s findings suggest that the brain uses the distance from the center of our gaze to bring together information from different areas of the visual cortex. This offers a new insight into how the brain assembles the many pieces of the visual jigsaw to make a complete picture. Future work will investigate how the architecture of the visual cortex is able to support this coupling of different areas, and how it might influence our perception of the visual world. DOI:http://dx.doi.org/10.7554/eLife.03952.002
Collapse
Affiliation(s)
- Michael J Arcaro
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | | | - Ryan E B Mruczek
- Department of Psychology, Worcester State University, Worcester, United States
| | - Sabine Kastner
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Uri Hasson
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| |
Collapse
|
81
|
Cytoarchitecture of the human lateral occipital cortex: mapping of two extrastriate areas hOc4la and hOc4lp. Brain Struct Funct 2015; 221:1877-97. [DOI: 10.1007/s00429-015-1009-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/09/2015] [Indexed: 10/24/2022]
|
82
|
Caspers S, Axer M, Caspers J, Jockwitz C, Jütten K, Reckfort J, Grässel D, Amunts K, Zilles K. Target sites for transcallosal fibers in human visual cortex - A combined diffusion and polarized light imaging study. Cortex 2015; 72:40-53. [PMID: 25697048 DOI: 10.1016/j.cortex.2015.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/17/2014] [Accepted: 01/06/2015] [Indexed: 01/28/2023]
Abstract
Transcallosal fibers of the visual system have preferential target sites within the occipital cortex of monkeys. These target sites coincide with vertical meridian representations of the visual field at borders of retinotopically defined visual areas. The existence of preferential target sites of transcallosal fibers in the human brain at the borders of early visual areas was claimed, but controversially discussed. Hence, we studied the distribution of transcallosal fibers in human visual cortex, searching for an organizational principle across early and higher visual areas. In-vivo high angular resolution diffusion imaging data of 28 subjects were used for probabilistic fiber tracking using a constrained spherical deconvolution approach. The fiber architecture within the target sites was analyzed at microscopic resolution using 3D polarized light imaging in a post-mortem human hemisphere. Fibers through a seed in the splenium of the corpus callosum reached the occipital cortex via the forceps major and the tapetum. We found target sites of these transcallosal fibers at borders of cytoarchitectonically defined occipital areas not only between early visual areas V1 and V2, V3d and V3A, and V3v and V4, but also between higher extrastriate areas, namely V4 (ventral) and posterior fusiform area FG1 as well as posterior fusiform area FG2 and lateral occipital cortex. In early visual areas, the target sites coincided with the vertical meridian representations of retinotopic maps. The spatial arrangement of the fibers in the 'border tuft' region at the V1/V2 border was found to be more complex than previously observed in myeloarchitectonic studies. In higher visual areas, our results provided additional evidence for a hemi-field representation in human area V4. The fiber topography in posterior fusiform gyrus indicated that additional retinotopic areas might exist, located between the recently identified retinotopic representations phPITv/phPITd and PHC-1/PHC-2 in lateral occipital cortex and parahippocampal gyrus.
Collapse
Affiliation(s)
- Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
| | - Markus Axer
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Julian Caspers
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Kerstin Jütten
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Julia Reckfort
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - David Grässel
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; C. and O. Vogt Institute for Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
83
|
ARCARO M, KASTNER S. Topographic organization of areas V3 and V4 and its relation to supra-areal organization of the primate visual system. Vis Neurosci 2015; 32:E014. [PMID: 26241035 PMCID: PMC4900470 DOI: 10.1017/s0952523815000115] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Areas V3 and V4 are commonly thought of as individual entities in the primate visual system, based on definition criteria such as their representation of visual space, connectivity, functional response properties, and relative anatomical location in cortex. Yet, large-scale functional and anatomical organization patterns not only emphasize distinctions within each area, but also links across visual cortex. Specifically, the visuotopic organization of V3 and V4 appears to be part of a larger, supra-areal organization, clustering these areas with early visual areas V1 and V2. In addition, connectivity patterns across visual cortex appear to vary within these areas as a function of their supra-areal eccentricity organization. This complicates the traditional view of these regions as individual functional "areas." Here, we will review the criteria for defining areas V3 and V4 and will discuss functional and anatomical studies in humans and monkeys that emphasize the integration of individual visual areas into broad, supra-areal clusters that work in concert for a common computational goal. Specifically, we propose that the visuotopic organization of V3 and V4, which provides the criteria for differentiating these areas, also unifies these areas into the supra-areal organization of early visual cortex. We propose that V3 and V4 play a critical role in this supra-areal organization by filtering information about the visual environment along parallel pathways across higher-order cortex.
Collapse
Affiliation(s)
- M.J. ARCARO
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
- Department of Psychology, Princeton University, Princeton, New Jersey 08544
| | - S. KASTNER
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
- Department of Psychology, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
84
|
Abstract
The ventral surface of the human occipital lobe contains multiple retinotopic maps. The most posterior of these maps is considered a potential homolog of macaque V4, and referred to as human V4 ("hV4"). The location of the hV4 map, its retinotopic organization, its role in visual encoding, and the cortical areas it borders have been the subject of considerable investigation and debate over the last 25 years. We review the history of this map and adjacent maps in ventral occipital cortex, and consider the different hypotheses for how these ventral occipital maps are organized. Advances in neuroimaging, computational modeling, and characterization of the nearby anatomical landmarks and functional brain areas have improved our understanding of where human V4 is and what kind of visual representations it contains.
Collapse
Affiliation(s)
- Jonathan Winawer
- Department of Psychology and Center for Neural Science,New York University,New York,New York 10003
| | - Nathan Witthoft
- Department of Psychology,Stanford University,Stanford,California 94305
| |
Collapse
|
85
|
Wang L, Mruczek REB, Arcaro MJ, Kastner S. Probabilistic Maps of Visual Topography in Human Cortex. Cereb Cortex 2014; 25:3911-31. [PMID: 25452571 DOI: 10.1093/cercor/bhu277] [Citation(s) in RCA: 396] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The human visual system contains an array of topographically organized regions. Identifying these regions in individual subjects is a powerful approach to group-level statistical analysis, but this is not always feasible. We addressed this limitation by generating probabilistic maps of visual topographic areas in 2 standardized spaces suitable for use with adult human brains. Using standard fMRI paradigms, we identified 25 topographic maps in a large population of individual subjects (N = 53) and transformed them into either a surface- or volume-based standardized space. Here, we provide a quantitative characterization of the inter-subject variability within and across visual regions, including the likelihood that a given point would be classified as a part of any region (full probability map) and the most probable region for any given point (maximum probability map). By evaluating the topographic organization across the whole of visual cortex, we provide new information about the organization of individual visual field maps and large-scale biases in visual field coverage. Finally, we validate each atlas for use with independent subjects. Overall, the probabilistic atlases quantify the variability of topographic representations in human cortex and provide a useful reference for comparing data across studies that can be transformed into these standard spaces.
Collapse
Affiliation(s)
- Liang Wang
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ryan E B Mruczek
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA Department of Psychology, Swarthmore College, Swarthmore, PA 19081, USA
| | - Michael J Arcaro
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| | - Sabine Kastner
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
86
|
Gray matter myelination of 1555 human brains using partial volume corrected MRI images. Neuroimage 2014; 105:473-85. [PMID: 25449739 DOI: 10.1016/j.neuroimage.2014.10.054] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/19/2014] [Accepted: 10/19/2014] [Indexed: 11/23/2022] Open
Abstract
The myelin content of the cortex changes over the human lifetime and aberrant cortical myelination is associated with diseases such as schizophrenia and multiple sclerosis. Recently magnetic resonance imaging (MRI) techniques have shown potential in differentiating between myeloarchitectonically distinct cortical regions in vivo. Here we introduce a new algorithm for correcting partial volume effects present in mm-scale MRI images which was used to investigate the myelination pattern of the cerebral cortex in 1555 clinically normal subjects using the ratio of T1-weighted (T1w) and T2-weighted (T2w) MRI images. A significant linear cross-sectional age increase in T1w/T2w estimated myelin was detected across an 18 to 35 year age span (highest value of ~ 1%/year compared to mean T1w/T2w myelin value at 18 years). The cortex was divided at mid-thickness and the value of T1w/T2w myelin calculated for the inner and outer layers separately. The increase in T1w/T2w estimated myelin occurs predominantly in the inner layer for most cortical regions. The ratio of the inner and outer layer T1w/T2w myelin was further validated using high-resolution in vivo MRI scans and also a high-resolution MRI scan of a postmortem brain. Additionally, the relationships between cortical thickness, curvature and T1w/T2w estimated myelin were found to be significant, although the relationships varied across the cortex. We discuss these observations as well as limitations of using the T1w/T2w ratio as an estimate of cortical myelin.
Collapse
|
87
|
Robinson EC, Jbabdi S, Glasser MF, Andersson J, Burgess GC, Harms MP, Smith SM, Van Essen DC, Jenkinson M. MSM: a new flexible framework for Multimodal Surface Matching. Neuroimage 2014; 100:414-26. [PMID: 24939340 DOI: 10.1016/j.neuroimage.2014.05.069] [Citation(s) in RCA: 404] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 05/19/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022] Open
Abstract
Surface-based cortical registration methods that are driven by geometrical features, such as folding, provide sub-optimal alignment of many functional areas due to variable correlation between cortical folding patterns and function. This has led to the proposal of new registration methods using features derived from functional and diffusion imaging. However, as yet there is no consensus over the best set of features for optimal alignment of brain function. In this paper we demonstrate the utility of a new Multimodal Surface Matching (MSM) algorithm capable of driving alignment using a wide variety of descriptors of brain architecture, function and connectivity. The versatility of the framework originates from adapting the discrete Markov Random Field (MRF) registration method to surface alignment. This has the benefit of being very flexible in the choice of a similarity measure and relatively insensitive to local minima. The method offers significant flexibility in the choice of feature set, and we demonstrate the advantages of this by performing registrations using univariate descriptors of surface curvature and myelination, multivariate feature sets derived from resting fMRI, and multimodal descriptors of surface curvature and myelination. We compare the results with two state of the art surface registration methods that use geometric features: FreeSurfer and Spherical Demons. In the future, the MSM technique will allow explorations into the best combinations of features and alignment strategies for inter-subject alignment of cortical functional areas for a wide range of neuroimaging data sets.
Collapse
Affiliation(s)
- Emma C Robinson
- FMRIB centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK
| | - Saad Jbabdi
- FMRIB centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK
| | - Matthew F Glasser
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jesper Andersson
- FMRIB centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK
| | - Gregory C Burgess
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO, USA
| | - Michael P Harms
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Stephen M Smith
- FMRIB centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK
| | - David C Van Essen
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO, USA
| | - Mark Jenkinson
- FMRIB centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK.
| |
Collapse
|