51
|
Gulban OF, Schneider M, Marquardt I, Haast RAM, De Martino F. A scalable method to improve gray matter segmentation at ultra high field MRI. PLoS One 2018; 13:e0198335. [PMID: 29874295 PMCID: PMC5991408 DOI: 10.1371/journal.pone.0198335] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/17/2018] [Indexed: 11/19/2022] Open
Abstract
High-resolution (functional) magnetic resonance imaging (MRI) at ultra high magnetic fields (7 Tesla and above) enables researchers to study how anatomical and functional properties change within the cortical ribbon, along surfaces and across cortical depths. These studies require an accurate delineation of the gray matter ribbon, which often suffers from inclusion of blood vessels, dura mater and other non-brain tissue. Residual segmentation errors are commonly corrected by browsing the data slice-by-slice and manually changing labels. This task becomes increasingly laborious and prone to error at higher resolutions since both work and error scale with the number of voxels. Here we show that many mislabeled, non-brain voxels can be corrected more efficiently and semi-automatically by representing three-dimensional anatomical images using two-dimensional histograms. We propose both a uni-modal (based on first spatial derivative) and multi-modal (based on compositional data analysis) approach to this representation and quantify the benefits in 7 Tesla MRI data of nine volunteers. We present an openly accessible Python implementation of these approaches and demonstrate that editing cortical segmentations using two-dimensional histogram representations as an additional post-processing step aids existing algorithms and yields improved gray matter borders. By making our data and corresponding expert (ground truth) segmentations openly available, we facilitate future efforts to develop and test segmentation algorithms on this challenging type of data.
Collapse
Affiliation(s)
- Omer Faruk Gulban
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Marian Schneider
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Ingo Marquardt
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Roy A. M. Haast
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, The Netherlands
| | - Federico De Martino
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, United States of America
| |
Collapse
|
52
|
Gulban OF, De Martino F, Vu AT, Yacoub E, Uğurbil K, Lenglet C. Cortical fibers orientation mapping using in-vivo whole brain 7 T diffusion MRI. Neuroimage 2018; 178:104-118. [PMID: 29753105 DOI: 10.1016/j.neuroimage.2018.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/28/2018] [Accepted: 05/02/2018] [Indexed: 01/11/2023] Open
Abstract
Diffusion MRI of the cortical gray matter is challenging because the micro-environment probed by water molecules is much more complex than within the white matter. High spatial and angular resolutions are therefore necessary to uncover anisotropic diffusion patterns and laminar structures, which provide complementary (e.g. to anatomical and functional MRI) microstructural information about the cortex architectonic. Several ex-vivo and in-vivo MRI studies have recently addressed this question, however predominantly with an emphasis on specific cortical areas. There is currently no whole brain in-vivo data leveraging multi-shell diffusion MRI acquisition at high spatial resolution, and depth dependent analysis, to characterize the complex organization of cortical fibers. Here, we present unique in-vivo human 7T diffusion MRI data, and a dedicated cortical depth dependent analysis pipeline. We leverage the high spatial (1.05 mm isotropic) and angular (198 diffusion gradient directions) resolution of this whole brain dataset to improve cortical fiber orientations mapping, and study neurites (axons and/or dendrites) trajectories across cortical depths. Tangential fibers in superficial cortical depths and crossing fiber configurations in deep cortical depths are identified. Fibers gradually inserting into the gyral walls are visualized, which contributes to mitigating the gyral bias effect. Quantitative radiality maps and histograms in individual subjects and cortex-based aligned datasets further support our results.
Collapse
Affiliation(s)
- Omer F Gulban
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Federico De Martino
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
| | - An T Vu
- Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Kamil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
53
|
|
54
|
Huber L, Handwerker DA, Jangraw DC, Chen G, Hall A, Stüber C, Gonzalez-Castillo J, Ivanov D, Marrett S, Guidi M, Goense J, Poser BA, Bandettini PA. High-Resolution CBV-fMRI Allows Mapping of Laminar Activity and Connectivity of Cortical Input and Output in Human M1. Neuron 2017; 96:1253-1263.e7. [PMID: 29224727 DOI: 10.1016/j.neuron.2017.11.005] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/25/2017] [Accepted: 11/02/2017] [Indexed: 10/18/2022]
Abstract
Layer-dependent fMRI allows measurements of information flow in cortical circuits, as afferent and efferent connections terminate in different cortical layers. However, it is unknown to what level human fMRI is specific and sensitive enough to reveal directional functional activity across layers. To answer this question, we developed acquisition and analysis methods for blood-oxygen-level-dependent (BOLD) and cerebral-blood-volume (CBV)-based laminar fMRI and used these to discriminate four different tasks in the human motor cortex (M1). In agreement with anatomical data from animal studies, we found evidence for somatosensory and premotor input in superficial layers of M1 and for cortico-spinal motor output in deep layers. Laminar resting-state fMRI showed directional functional connectivity of M1 with somatosensory and premotor areas. Our findings demonstrate that CBV-fMRI can be used to investigate cortical activity in humans with unprecedented detail, allowing investigations of information flow between brain regions and outperforming conventional BOLD results that are often buried under vascular biases.
Collapse
Affiliation(s)
| | | | | | | | | | - Carsten Stüber
- Department of Radiology, Weill Cornell Medical College, New York, NY 10044, USA; Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT 06511, USA
| | | | - Dimo Ivanov
- Maastricht Brain Imaging Centre, Maastricht University, Maastricht 6229, the Netherlands
| | | | - Maria Guidi
- NMR Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Jozien Goense
- School of Psychology and Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK
| | - Benedikt A Poser
- Maastricht Brain Imaging Centre, Maastricht University, Maastricht 6229, the Netherlands
| | | |
Collapse
|
55
|
De Martino F, Yacoub E, Kemper V, Moerel M, Uludağ K, De Weerd P, Ugurbil K, Goebel R, Formisano E. The impact of ultra-high field MRI on cognitive and computational neuroimaging. Neuroimage 2017; 168:366-382. [PMID: 28396293 DOI: 10.1016/j.neuroimage.2017.03.060] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/20/2017] [Accepted: 03/29/2017] [Indexed: 01/14/2023] Open
Abstract
The ability to measure functional brain responses non-invasively with ultra high field MRI (7 T and above) represents a unique opportunity in advancing our understanding of the human brain. Compared to lower fields (3 T and below), ultra high field MRI has an increased sensitivity, which can be used to acquire functional images with greater spatial resolution, and greater specificity of the blood oxygen level dependent (BOLD) signal to the underlying neuronal responses. Together, increased resolution and specificity enable investigating brain functions at a submillimeter scale, which so far could only be done with invasive techniques. At this mesoscopic spatial scale, perception, cognition and behavior can be probed at the level of fundamental units of neural computations, such as cortical columns, cortical layers, and subcortical nuclei. This represents a unique and distinctive advantage that differentiates ultra high from lower field imaging and that can foster a tighter link between fMRI and computational modeling of neural networks. So far, functional brain mapping at submillimeter scale has focused on the processing of sensory information and on well-known systems for which extensive information is available from invasive recordings in animals. It remains an open challenge to extend this methodology to uniquely human functions and, more generally, to systems for which animal models may be problematic. To succeed, the possibility to acquire high-resolution functional data with large spatial coverage, the availability of computational models of neural processing as well as accurate biophysical modeling of neurovascular coupling at mesoscopic scale all appear necessary.
Collapse
Affiliation(s)
- Federico De Martino
- Department of Cognitive Neurosciences, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 sixth street SE, 55455 Minneapolis, MN, USA.
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 sixth street SE, 55455 Minneapolis, MN, USA
| | - Valentin Kemper
- Department of Cognitive Neurosciences, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands
| | - Michelle Moerel
- Department of Cognitive Neurosciences, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands; Maastricht Center for System Biology, Maastricht University, Universiteitssingel 60, 6229 ER Maastricht, The Netherlands
| | - Kâmil Uludağ
- Department of Cognitive Neurosciences, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands
| | - Peter De Weerd
- Department of Cognitive Neurosciences, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 sixth street SE, 55455 Minneapolis, MN, USA
| | - Rainer Goebel
- Department of Cognitive Neurosciences, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands
| | - Elia Formisano
- Department of Cognitive Neurosciences, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands; Maastricht Center for System Biology, Maastricht University, Universiteitssingel 60, 6229 ER Maastricht, The Netherlands
| |
Collapse
|