51
|
Bettinger JC, Davies AG. The role of the BK channel in ethanol response behaviors: evidence from model organism and human studies. Front Physiol 2014; 5:346. [PMID: 25249984 PMCID: PMC4158801 DOI: 10.3389/fphys.2014.00346] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/22/2014] [Indexed: 11/30/2022] Open
Abstract
Alcohol abuse is a significant public health problem. Understanding the molecular effects of ethanol is important for the identification of at risk individuals, as well as the development of novel pharmacotherapies. The large conductance calcium sensitive potassium (BK) channel has emerged as an important player in the behavioral response to ethanol in genetic studies in several model organisms and in humans. The BK channel, slo-1, was identified in a forward genetics screen as a major ethanol target in C. elegans for the effects of ethanol on locomotion and egg-laying behaviors. Regulation of the expression of the BK channel, slo, in Drosophila underlies the development of rapid tolerance to ethanol and benzyl alcohol sedation. Rodent expression studies of the BK-encoding KCNMA1 gene have identified regulation of mRNA levels in response to ethanol exposure, and knock out studies in mice have demonstrated that the β subunits of the BK channel, β1 and β4, can modulate ethanol sensitivity of the channel in electrophysiological preparations, and can influence drinking behavior. In human genetics studies, both KCNMA1 and the genes encoding β subunits of the BK channel have been associated with alcohol dependence. This review describes the genetic data for a role for BK channels in mediating behavioral responses to ethanol across these species.
Collapse
Affiliation(s)
- Jill C Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University Richmond, VA, USA
| | - Andrew G Davies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University Richmond, VA, USA
| |
Collapse
|
52
|
Raabe RC, Mathies LD, Davies AG, Bettinger JC. The omega-3 fatty acid eicosapentaenoic acid is required for normal alcohol response behaviors in C. elegans. PLoS One 2014; 9:e105999. [PMID: 25162400 PMCID: PMC4146551 DOI: 10.1371/journal.pone.0105999] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/01/2014] [Indexed: 12/18/2022] Open
Abstract
Alcohol addiction is a widespread societal problem, for which there are few treatments. There are significant genetic and environmental influences on abuse liability, and understanding these factors will be important for the identification of susceptible individuals and the development of effective pharmacotherapies. In humans, the level of response to alcohol is strongly predictive of subsequent alcohol abuse. Level of response is a combination of counteracting responses to alcohol, the level of sensitivity to the drug and the degree to which tolerance develops during the drug exposure, called acute functional tolerance. We use the simple and well-characterized nervous system of Caenorhabditis elegans to model the acute behavioral effects of ethanol to identify genetic and environmental factors that influence level of response to ethanol. Given the strong molecular conservation between the neurobiological machinery of worms and humans, cellular-level effects of ethanol are likely to be conserved. Increasingly, variation in long-chain polyunsaturated fatty acid levels has been implicated in complex neurobiological phenotypes in humans, and we recently found that fatty acid levels modify ethanol responses in worms. Here, we report that 1) eicosapentaenoic acid, an omega-3 polyunsaturated fatty acid, is required for the development of acute functional tolerance, 2) dietary supplementation of eicosapentaenoic acid is sufficient for acute tolerance, and 3) dietary eicosapentaenoic acid can alter the wild-type response to ethanol. These results suggest that genetic variation influencing long-chain polyunsaturated fatty acid levels may be important abuse liability loci, and that dietary polyunsaturated fatty acids may be an important environmental modulator of the behavioral response to ethanol.
Collapse
Affiliation(s)
- Richard C. Raabe
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Laura D. Mathies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Andrew G. Davies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jill C. Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
53
|
Dwyer DS, Aamodt E, Cohen B, Buttner EA. Drug elucidation: invertebrate genetics sheds new light on the molecular targets of CNS drugs. Front Pharmacol 2014; 5:177. [PMID: 25120487 PMCID: PMC4112795 DOI: 10.3389/fphar.2014.00177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/09/2014] [Indexed: 02/02/2023] Open
Abstract
Many important drugs approved to treat common human diseases were discovered by serendipity, without a firm understanding of their modes of action. As a result, the side effects and interactions of these medications are often unpredictable, and there is limited guidance for improving the design of next-generation drugs. Here, we review the innovative use of simple model organisms, especially Caenorhabditis elegans, to gain fresh insights into the complex biological effects of approved CNS medications. Whereas drug discovery involves the identification of new drug targets and lead compounds/biologics, and drug development spans preclinical testing to FDA approval, drug elucidation refers to the process of understanding the mechanisms of action of marketed drugs by studying their novel effects in model organisms. Drug elucidation studies have revealed new pathways affected by antipsychotic drugs, e.g., the insulin signaling pathway, a trace amine receptor and a nicotinic acetylcholine receptor. Similarly, novel targets of antidepressant drugs and lithium have been identified in C. elegans, including lipid-binding/transport proteins and the SGK-1 signaling pathway, respectively. Elucidation of the mode of action of anesthetic agents has shown that anesthesia can involve mitochondrial targets, leak currents, and gap junctions. The general approach reviewed in this article has advanced our knowledge about important drugs for CNS disorders and can guide future drug discovery efforts.
Collapse
Affiliation(s)
- Donard S. Dwyer
- Department of Psychiatry–Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-ShreveportShreveport, LA, USA
| | - Eric Aamodt
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center-ShreveportShreveport, LA, USA
| | - Bruce Cohen
- Department of Psychiatry, Harvard Medical SchoolBoston, MA, USA
- Mailman Research Center, McLean HospitalBelmont, MA, USA
| | - Edgar A. Buttner
- Mailman Research Center, McLean HospitalBelmont, MA, USA
- Department of Neurology–Department of Psychiatry, McLean Hospital, Harvard Medical SchoolBelmont, MA, USA
| |
Collapse
|
54
|
Nematodes feel a craving--using Caenorhabditis elegans as a model to study alcohol addiction. Neurosci Bull 2014; 30:595-600. [PMID: 25008572 DOI: 10.1007/s12264-014-1451-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022] Open
Abstract
Alcohol is the most frequently-used addictive drug. However, the mechanism by which its consumption leads to addiction remains largely elusive. Given the conservation of behavioral reactions to alcohol, Caenorhabitis elegans (C. elegans) has been effectively used as a model system to investigate the relevant molecular targets and pathways mediating these responses. In this article, we review the roles of BK channels (also called SLO-1), the lipid microenvironment, receptors, the synaptic machinery, and neurotransmitters in both the acute and chronic effects of alcohol. We provide an overview of the genes and mechanisms involved in alcoholismrelated behaviors in C. elegans.
Collapse
|
55
|
Chan RF, Lewellyn L, DeLoyht JM, Sennett K, Coffman S, Hewitt M, Bettinger JC, Warrick JM, Grotewiel M. Contrasting influences of Drosophila white/mini-white on ethanol sensitivity in two different behavioral assays. Alcohol Clin Exp Res 2014; 38:1582-93. [PMID: 24890118 PMCID: PMC4049357 DOI: 10.1111/acer.12421] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/12/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND The fruit fly Drosophila melanogaster has been used extensively to investigate genetic mechanisms of ethanol (EtOH)-related behaviors. Many past studies in flies, including studies from our laboratory, have manipulated gene expression using transposons carrying the genetic-phenotypic marker mini-white(mini-w), a derivative of the endogenous gene white(w). Whether the mini-w transgenic marker or the endogenous w gene influences behavioral responses to acute EtOH exposure in flies has not been systematically investigated. METHODS We manipulated mini-w and w expression via (i) transposons marked with mini-w, (ii) RNAi against mini-w and w, and (iii) a null allele of w. We assessed EtOH sensitivity and tolerance using a previously described eRING assay (based on climbing in the presence of EtOH) and an assay based on EtOH-induced sedation. RESULTS In eRING assays, EtOH-induced impairment of climbing correlated inversely with expression of the mini-w marker from a series of transposon insertions. Additionally, flies harboring a null allele of w or flies with RNAi-mediated knockdown of mini-w were significantly more sensitive to EtOH in eRING assays than controls expressing endogenous w or the mini-w marker. In contrast, EtOH sensitivity and rapid tolerance measured in the EtOH sedation assay were not affected by decreased expression of mini-w or endogenous w in flies. CONCLUSIONS EtOH sensitivity measured in the eRING assay is noticeably influenced by w and mini-w, making eRING problematic for studies on EtOH-related behavior in Drosophila using transgenes marked with mini-w. In contrast, the EtOH sensitivity assay described here is a suitable behavioral paradigm for studies on EtOH sensitivity and rapid tolerance in Drosophila including those that use widely available transgenes marked with mini-w.
Collapse
Affiliation(s)
- Robin F. Chan
- Molecular Biology and Genetics Program, Virginia Commonwealth University, Richmond, VA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA
| | - Lara Lewellyn
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA
| | - Jacqueline M. DeLoyht
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA
- Neuroscience Graduate Program, Virginia Commonwealth University, Richmond, VA
| | - Kristyn Sennett
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA
| | - Scarlett Coffman
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA
| | - Matthew Hewitt
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA
| | - Jill C. Bettinger
- Molecular Biology and Genetics Program, Virginia Commonwealth University, Richmond, VA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA
- Virginia Commonwealth University Alcohol Research Center, Virginia Commonwealth University, Richmond, VA
| | | | - Mike Grotewiel
- Molecular Biology and Genetics Program, Virginia Commonwealth University, Richmond, VA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA
- Neuroscience Graduate Program, Virginia Commonwealth University, Richmond, VA
- Virginia Commonwealth University Alcohol Research Center, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
56
|
Topper SM, Aguilar SC, Topper VY, Elbel E, Pierce-Shimomura JT. Alcohol disinhibition of behaviors in C. elegans. PLoS One 2014; 9:e92965. [PMID: 24681782 PMCID: PMC3969370 DOI: 10.1371/journal.pone.0092965] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/27/2014] [Indexed: 11/30/2022] Open
Abstract
Alcohol has a wide variety of effects on physiology and behavior. One of the most well-recognized behavioral effects is disinhibition, where behaviors that are normally suppressed are displayed following intoxication. A large body of evidence has shown that alcohol-induced disinhibition in humans affects attention, verbal, sexual, and locomotor behaviors. Similar behavioral disinhibition is also seen in many animal models of ethanol response, from invertebrates to mammals and primates. Here we describe several examples of disinhibition in the nematode C. elegans. The nematode displays distinct behavioral states associated with locomotion (crawling on land and swimming in water) that are mediated by dopamine. On land, animals crawl and feed freely, but these behaviors are inhibited in water. We found that additional behaviors, including a variety of escape responses are also inhibited in water. Whereas alcohol non-specifically impaired locomotion, feeding, and escape responses in worms on land, alcohol specifically disinhibited these behaviors in worms immersed in water. Loss of dopamine signaling relieved disinhibition of feeding behavior, while loss of the D1-like dopamine receptor DOP-4 impaired the ethanol-induced disinhibition of crawling. The powerful genetics and simple nervous system of C. elegans may help uncover conserved molecular mechanisms that underlie alcohol-induced disinhibition of behaviors in higher animals.
Collapse
Affiliation(s)
- Stephen M. Topper
- Waggoner Center for Alcohol and Addiction Research, Cell & Molecular Biology, Department of Neuroscience, The University of Texas at Austin, Austin, Texas, United States of America
| | - Sara C. Aguilar
- Waggoner Center for Alcohol and Addiction Research, Cell & Molecular Biology, Department of Neuroscience, The University of Texas at Austin, Austin, Texas, United States of America
| | - Viktoria Y. Topper
- Waggoner Center for Alcohol and Addiction Research, Cell & Molecular Biology, Department of Neuroscience, The University of Texas at Austin, Austin, Texas, United States of America
| | - Erin Elbel
- Waggoner Center for Alcohol and Addiction Research, Cell & Molecular Biology, Department of Neuroscience, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jonathan T. Pierce-Shimomura
- Waggoner Center for Alcohol and Addiction Research, Cell & Molecular Biology, Department of Neuroscience, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
57
|
Nagy S, Raizen DM, Biron D. Measurements of behavioral quiescence in Caenorhabditis elegans. Methods 2014; 68:500-7. [PMID: 24642199 DOI: 10.1016/j.ymeth.2014.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/06/2014] [Accepted: 03/08/2014] [Indexed: 10/25/2022] Open
Abstract
The nematode Caenorhabditis (C.) elegans, a long time work horse for behavioral genetic studies of locomotion, has recently been studied for quiescent behavior. Methods previously established for the study of C. elegans locomotion are not well-suited for the study of quiescent behavior. We describe in detail two computer vision approaches to distinguish quiescent from movement bouts focusing on the behavioral quiescence that occurs during fourth larval stage lethargus, a transition stage between the larva and the adult. The first is the frame subtraction method, which consists of subtraction of temporally adjacent images as a sensitive way to detect motion. The second, which is more computationally intensive, is the posture analysis method, which consists of analysis of the rate of local angle change of the animal's body. Quiescence measurements should be done continuously while minimizing sensory perturbation of the animal.
Collapse
Affiliation(s)
- Stanislav Nagy
- The institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, United States
| | - David M Raizen
- Department of Neurology, Pereleman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - David Biron
- The institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, United States; Department of Physics, James Franck Institute, The University of Chicago, Chicago, IL 60637, United States
| |
Collapse
|
58
|
Andersen EC, Bloom JS, Gerke JP, Kruglyak L. A variant in the neuropeptide receptor npr-1 is a major determinant of Caenorhabditis elegans growth and physiology. PLoS Genet 2014; 10:e1004156. [PMID: 24586193 PMCID: PMC3937155 DOI: 10.1371/journal.pgen.1004156] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/17/2013] [Indexed: 01/10/2023] Open
Abstract
The mechanistic basis for how genetic variants cause differences in phenotypic traits is often elusive. We identified a quantitative trait locus in Caenorhabditis elegans that affects three seemingly unrelated phenotypic traits: lifetime fecundity, adult body size, and susceptibility to the human pathogen Staphyloccus aureus. We found a QTL for all three traits arises from variation in the neuropeptide receptor gene npr-1. Moreover, we found that variation in npr-1 is also responsible for differences in 247 gene expression traits. Variation in npr-1 is known to determine whether animals disperse throughout a bacterial lawn or aggregate at the edges of the lawn. We found that the allele that leads to aggregation is associated with reduced growth and reproductive output. The altered gene expression pattern caused by this allele suggests that the aggregation behavior might cause a weak starvation state, which is known to reduce growth rate and fecundity. Importantly, we show that variation in npr-1 causes each of these phenotypic differences through behavioral avoidance of ambient oxygen concentrations. These results suggest that variation in npr-1 has broad pleiotropic effects mediated by altered exposure to bacterial food. Using the nematode roundworm Caenorhabditis elegans, we identified differences in lifetime fecundity, adult body size, and susceptibility to the human pathogen Staphyloccus aureus between the laboratory strain (N2) from Bristol, England and a wild strain (CB4856) from Hawaii, USA. Using linkage mapping and other genetic tests, we found a QTL for all three traits arises from variation in the neuropeptide receptor gene npr-1. Moreover, we found that variation in npr-1 is also responsive for differences in 247 gene expression traits. Variation in npr-1 is known to determine whether animals disperse throughout a bacterial lawn or aggregate at the edges of the lawn. We found that the allele that leads to aggregation is associated with reduced growth and reproductive output likely caused by a weak chronic starvation state. These results suggest that variation in npr-1 has broad effects on the phenotype of an organism mediated by altered exposure to bacterial food.
Collapse
Affiliation(s)
- Erik C. Andersen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- * E-mail: (ECA); (LK)
| | - Joshua S. Bloom
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Justin P. Gerke
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Leonid Kruglyak
- Departments of Human Genetics and Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail: (ECA); (LK)
| |
Collapse
|
59
|
Peymen K, Watteyne J, Frooninckx L, Schoofs L, Beets I. The FMRFamide-Like Peptide Family in Nematodes. Front Endocrinol (Lausanne) 2014; 5:90. [PMID: 24982652 PMCID: PMC4058706 DOI: 10.3389/fendo.2014.00090] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/31/2014] [Indexed: 12/31/2022] Open
Abstract
In the three decades since the FMRFamide peptide was isolated from the mollusk Macrocallista nimbosa, structurally similar peptides sharing a C-terminal RFamide motif have been identified across the animal kingdom. FMRFamide-like peptides (FLPs) represent the largest known family of neuropeptides in invertebrates. In the phylum Nematoda, at least 32 flp-genes are classified, making the FLP system of nematodes unusually complex. The diversity of the nematode FLP complement is most extensively mapped in Caenorhabditis elegans, where over 70 FLPs have been predicted. FLPs have shown to be expressed in the majority of the 302 C. elegans neurons including interneurons, sensory neurons, and motor neurons. The vast expression of FLPs is reflected in the broad functional repertoire of nematode FLP signaling, including neuroendocrine and neuromodulatory effects on locomotory activity, reproduction, feeding, and behavior. In contrast to the many identified nematode FLPs, only few peptides have been assigned a receptor and there is the need to clarify the pathway components and working mechanisms of the FLP signaling network. Here, we review the diversity, distribution, and functions of FLPs in nematodes.
Collapse
Affiliation(s)
- Katleen Peymen
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jan Watteyne
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Lotte Frooninckx
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Isabel Beets
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
- *Correspondence: Isabel Beets, Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Naamsestraat 59, Leuven 3000, Belgium e-mail:
| |
Collapse
|
60
|
Patten AR, Fontaine CJ, Christie BR. A comparison of the different animal models of fetal alcohol spectrum disorders and their use in studying complex behaviors. Front Pediatr 2014; 2:93. [PMID: 25232537 PMCID: PMC4153370 DOI: 10.3389/fped.2014.00093] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/20/2014] [Indexed: 12/31/2022] Open
Abstract
Prenatal ethanol exposure (PNEE) has been linked to widespread impairments in brain structure and function. There are a number of animal models that are used to study the structural and functional deficits caused by PNEE, including, but not limited to invertebrates, fish, rodents, and non-human primates. Animal models enable a researcher to control important variables such as the route of ethanol administration, as well as the timing, frequency and amount of ethanol exposure. Each animal model and system of exposure has its place, depending on the research question being undertaken. In this review, we will examine the different routes of ethanol administration and the various animal models of fetal alcohol spectrum disorders (FASD) that are commonly used in research, emphasizing their strengths and limitations. We will also present an up-to-date summary on the effects of prenatal/neonatal ethanol exposure on behavior across the lifespan, focusing on learning and memory, olfaction, social, executive, and motor functions. Special emphasis will be placed where the various animal models best represent deficits observed in the human condition and offer a viable test bed to examine potential therapeutics for human beings with FASD.
Collapse
Affiliation(s)
- Anna R Patten
- Division of Medical Sciences, University of Victoria , Victoria, BC , Canada
| | | | - Brian R Christie
- Division of Medical Sciences, University of Victoria , Victoria, BC , Canada ; Department of Biology, University of Victoria , Victoria, BC , Canada ; Program in Neuroscience, The Brain Research Centre, University of British Columbia , Vancouver, BC , Canada ; Department of Cellular and Physiological Sciences, University of British Columbia , Vancouver, BC , Canada
| |
Collapse
|
61
|
Peltonen J, Aarnio V, Heikkinen L, Lakso M, Wong G. Chronic ethanol exposure increases cytochrome P-450 and decreases activated in blocked unfolded protein response gene family transcripts in caenorhabditis elegans. J Biochem Mol Toxicol 2013; 27:219-28. [PMID: 23381935 DOI: 10.1002/jbt.21473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/19/2012] [Indexed: 02/02/2023]
Abstract
Ethanol is a widely consumed and rapidly absorbed toxin. While the physiological effects of ethanol consumption are well known, the underlying biochemical and molecular changes at the gene expression level in whole animals remain obscure. We exposed the model organism Caenorhabditis elegans to 0.2 M ethanol from the embryo to L4 larva stage and assayed gene expression changes in whole animals using RNA-Seq and quantitative real-time PCR. We observed gene expression changes in 1122 genes (411 up, 711 down). Cytochrome P-450 (CYP) gene family members (12 of 78) were upregulated, whereas activated in blocked unfolded protein response (ABU) (7 of 15) were downregulated. Other detoxification gene family members were also regulated including four glutathione-S-transferases and three flavin monooxygenases. The results presented show specific gene expression changes following chronic ethanol exposure in C. elegans that indicate both persistent upregulation of detoxification response genes and downregulation of endoplasmic reticulum stress pathway genes.
Collapse
Affiliation(s)
- Juhani Peltonen
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Yliopistonranta 1E, 70210, Kuopio, Finland
| | | | | | | | | |
Collapse
|
62
|
Gilpin NW. Neuropeptide Y (NPY) in the extended amygdala is recruited during the transition to alcohol dependence. Neuropeptides 2012; 46:253-9. [PMID: 22938859 PMCID: PMC3508396 DOI: 10.1016/j.npep.2012.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/11/2012] [Accepted: 08/03/2012] [Indexed: 11/26/2022]
Abstract
Neuropeptide Y (NPY) is abundant in the extended amygdala, a conceptual macrostructure in the basal forebrain important for regulation of negative affective states. NPY has been attributed a central role in anxiety-like behavior, fear, nociception, and reward in rodents. Deletion of the NPY gene in mice produces a high-anxiety high-alcohol-drinking phenotype. NPY infused into the brains of rats selectively bred to consume high quantities of alcohol suppresses alcohol drinking by those animals, an effect that is mediated by central amygdala (CeA). Likewise, alcohol-preferring rats exhibit basal NPY deficits in CeA. NPY infused into the brains of alcohol-dependent rats blocks excessive alcohol drinking by those animals, an effect that also has been localized to the CeA. NPY in CeA may rescue dependence-induced increases in anxiety and alcohol drinking via inhibition of downstream effector regions that receive GABAergic inputs from CeA. It is hypothesized here that NPY modulates anxiety-like behavior via Y2R regulation of NPY release, whereas NPY modulation of alcohol-drinking behavior in alcohol-dependent animals occurs via Y2R regulation of GABA release.
Collapse
Affiliation(s)
- Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States.
| |
Collapse
|
63
|
|
64
|
Abstract
Neuropeptides modulate neural circuits controlling adaptive animal behaviors and physiological processes, such as feeding/metabolism, reproductive behaviors, circadian rhythms, central pattern generation, and sensorimotor integration. Invertebrate model systems have enabled detailed experimental analysis using combined genetic, behavioral, and physiological approaches. Here we review selected examples of neuropeptide modulation in crustaceans, mollusks, insects, and nematodes, with a particular emphasis on the genetic model organisms Drosophila melanogaster and Caenorhabditis elegans, where remarkable progress has been made. On the basis of this survey, we provide several integrating conceptual principles for understanding how neuropeptides modulate circuit function, and also propose that continued progress in this area requires increased emphasis on the development of richer, more sophisticated behavioral paradigms.
Collapse
Affiliation(s)
- Paul H. Taghert
- Department of Anatomy & Neurobiology, Washington University Medical School, St. Louis, MO
| | - Michael N. Nitabach
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT
- Department of Genetics, Yale School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneraton and Repair, Yale School of Medicine, New Haven, CT
| |
Collapse
|
65
|
Jee C, Lee J, Lim JP, Parry D, Messing RO, McIntire SL. SEB-3, a CRF receptor-like GPCR, regulates locomotor activity states, stress responses and ethanol tolerance in Caenorhabditis elegans. GENES BRAIN AND BEHAVIOR 2012; 12:250-62. [PMID: 22853648 DOI: 10.1111/j.1601-183x.2012.00829.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 02/15/2012] [Accepted: 07/21/2012] [Indexed: 11/27/2022]
Abstract
The CRF (corticotropin-releasing factor) system is a key mediator of the stress response. Alterations in CRF signaling have been implicated in drug craving and ethanol consumption. The development of negative reinforcement via activation of brain stress systems has been proposed as a mechanism that contributes to alcohol dependence. Here, we isolated a gain-of-function allele of seb-3, a CRF receptor-like GPCR in Caenorhabditis elegans, providing an in vivo model of a constitutively activated stress system. We also characterized a loss-of-function allele of seb-3 and showed that SEB-3 positively regulates a stress response that leads to an enhanced active state of locomotion, behavioral arousal and tremor. SEB-3 also contributed to acute tolerance to ethanol and to the development of tremor during ethanol withdrawal. Furthermore, we found that a specific CRF(1) receptor antagonist reduced acute functional tolerance to ethanol in mice. These findings demonstrate functional conservation of the CRF system in responses to stress and ethanol in vertebrates and invertebrates.
Collapse
Affiliation(s)
- C Jee
- The Ernest Gallo Clinic and Research Center, Department of Neurology, University of California, San Francisco, Emeryville, CA, USA.
| | | | | | | | | | | |
Collapse
|
66
|
Neuronal microcircuits for decision making in C. elegans. Curr Opin Neurobiol 2012; 22:580-91. [PMID: 22699037 DOI: 10.1016/j.conb.2012.05.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/15/2012] [Accepted: 05/17/2012] [Indexed: 01/11/2023]
Abstract
The simplicity and genetic tractability of the nervous system of the nematode Caenorhabditis elegans make it an attractive system in which to seek biological mechanisms of decision making. Although work in this area remains at an early stage, four basic types paradigms of behavioral choice, a simple form of decision making, have now been demonstrated in C. elegans. A recent series of pioneering studies, combining genetics and molecular biology with new techniques such as microfluidics and calcium imaging in freely moving animals, has begun to elucidate the neuronal mechanisms underlying behavioral choice. The new research has focussed on choice behaviors in the context of habitat and resource localization, for which the neuronal circuit has been identified. Three main circuit motifs for behavioral choice have been identified. One motif is based mainly on changes in the strength of synaptic connections whereas the other two motifs are based on changes in the basal activity of an interneuron and the sensory neuron to which it is electrically coupled. Peptide signaling seems to play a prominent role in all three motifs, and it may be a general rule that concentrations of various peptides encode the internal states that influence behavioral decisions in C. elegans.
Collapse
|
67
|
Bettinger JC, Leung K, Bolling MH, Goldsmith AD, Davies AG. Lipid environment modulates the development of acute tolerance to ethanol in Caenorhabditis elegans. PLoS One 2012; 7:e35192. [PMID: 22574115 PMCID: PMC3344825 DOI: 10.1371/journal.pone.0035192] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/10/2012] [Indexed: 11/18/2022] Open
Abstract
The development of tolerance to a drug at the level of the neuron reflects a homeostatic mechanism by which neurons respond to perturbations of their function by external stimuli. Acute functional tolerance (AFT) to ethanol is a fast compensatory response that develops within a single drug session and normalizes neuronal function despite the continued presence of the drug. We performed a genetic screen to identify genes required for the development of acute functional tolerance to ethanol in the nematode C. elegans. We identified mutations affecting multiple genes in a genetic pathway known to regulate levels of triacylglycerols (TAGs) via the lipase LIPS-7, indicating that there is an important role for TAGs in the development of tolerance. Genetic manipulation of lips-7 expression, up or down, produced opposing effects on ethanol sensitivity and on the rate of development of AFT. Further, decreasing cholesterol levels through environmental manipulation mirrored the effects of decreased TAG levels. Finally, we found that genetic alterations in the levels of the TAG lipase LIPS-7 can modify the phenotype of gain-of-function mutations in the ethanol-inducible ion channel SLO-1, the voltage- and calcium-sensitive BK channel. This study demonstrates that the lipid milieu modulates neuronal responses to ethanol that include initial sensitivity and the development of acute tolerance. These results lend new insight into studies of alcohol dependence, and suggest a model in which TAG levels are important for the development of AFT through alterations of the action of ethanol on membrane proteins.
Collapse
Affiliation(s)
- Jill C Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America.
| | | | | | | | | |
Collapse
|
68
|
Alaimo JT, Davis SJ, Song SS, Burnette CR, Grotewiel M, Shelton KL, Pierce-Shimomura JT, Davies AG, Bettinger JC. Ethanol metabolism and osmolarity modify behavioral responses to ethanol in C. elegans. Alcohol Clin Exp Res 2012; 36:1840-50. [PMID: 22486589 DOI: 10.1111/j.1530-0277.2012.01799.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/10/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND Ethanol (EtOH) is metabolized by a 2-step process in which alcohol dehydrogenase (ADH) oxidizes EtOH to acetaldehyde, which is further oxidized to acetate by aldehyde dehydrogenase (ALDH). Although variation in EtOH metabolism in humans strongly influences the propensity to chronically abuse alcohol, few data exist on the behavioral effects of altered EtOH metabolism. Here, we used the nematode Caenorhabditis elegans to directly examine how changes in EtOH metabolism alter behavioral responses to alcohol during an acute exposure. Additionally, we investigated EtOH solution osmolarity as a potential explanation for contrasting published data on C. elegans EtOH sensitivity. METHODS We developed a gas chromatography assay and validated a spectrophotometric method to measure internal EtOH in EtOH-exposed worms. Further, we tested the effects of mutations in ADH and ALDH genes on EtOH tissue accumulation and behavioral sensitivity to the drug. Finally, we tested the effects of EtOH solution osmolarity on behavioral responses and tissue EtOH accumulation. RESULTS Only a small amount of exogenously applied EtOH accumulated in the tissues of C. elegans and consequently their tissue concentrations were similar to those that intoxicate humans. Independent inactivation of an ADH-encoding gene (sodh-1) or an ALDH-encoding gene (alh-6 or alh-13) increased the EtOH concentration in worms and caused hypersensitivity to the acute sedative effects of EtOH on locomotion. We also found that the sensitivity to the depressive effects of EtOH on locomotion is strongly influenced by the osmolarity of the exogenous EtOH solution. CONCLUSIONS Our results indicate that EtOH metabolism via ADH and ALDH has a statistically discernable but surprisingly minor influence on EtOH sedation and internal EtOH accumulation in worms. In contrast, the osmolarity of the medium in which EtOH is delivered to the animals has a more substantial effect on the observed sensitivity to EtOH.
Collapse
Affiliation(s)
- Joseph T Alaimo
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Shohat-Ophir G, Kaun KR, Azanchi R, Mohammed H, Heberlein U. Sexual deprivation increases ethanol intake in Drosophila. Science 2012; 335:1351-5. [PMID: 22422983 DOI: 10.1126/science.1215932] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The brain's reward systems reinforce behaviors required for species survival, including sex, food consumption, and social interaction. Drugs of abuse co-opt these neural pathways, which can lead to addiction. Here, we used Drosophila melanogaster to investigate the relationship between natural and drug rewards. In males, mating increased, whereas sexual deprivation reduced, neuropeptide F (NPF) levels. Activation or inhibition of the NPF system in turn reduced or enhanced ethanol preference. These results thus link sexual experience, NPF system activity, and ethanol consumption. Artificial activation of NPF neurons was in itself rewarding and precluded the ability of ethanol to act as a reward. We propose that activity of the NPF-NPF receptor axis represents the state of the fly reward system and modifies behavior accordingly.
Collapse
Affiliation(s)
- G Shohat-Ophir
- Department of Anatomy, University of California, San Francisco, CA 94143-2822, USA.
| | | | | | | | | |
Collapse
|
70
|
Wright GA, Lillvis JL, Bray HJ, Mustard JA. Physiological state influences the social interactions of two honeybee nest mates. PLoS One 2012; 7:e32677. [PMID: 22427864 PMCID: PMC3302875 DOI: 10.1371/journal.pone.0032677] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/02/2012] [Indexed: 11/17/2022] Open
Abstract
Physiological state profoundly influences the expression of the behaviour of individuals and can affect social interactions between animals. How physiological state influences food sharing and social behaviour in social insects is poorly understood. Here, we examined the social interactions and food sharing behaviour of honeybees with the aim of developing the honeybee as a model for understanding how an individual's state influences its social interactions. The state of individual honeybees was manipulated by either starving donor bees or feeding them sucrose or low doses of ethanol to examine how a change in hunger or inebriation state affected the social behaviours exhibited by two closely-related nestmates. Using a lab-based assay for measuring individual motor behaviour and social behaviour, we found that behaviours such as antennation, willingness to engage in trophallaxis, and mandible opening were affected by both hunger and ethanol intoxication. Inebriated bees were more likely to exhibit mandible opening, which may represent a form of aggression, than bees fed sucrose alone. However, intoxicated bees were as willing to engage in trophallaxis as the sucrose-fed bees. The effects of ethanol on social behaviors were dose-dependent, with higher doses of ethanol producing larger effects on behaviour. Hungry donor bees, on the other hand, were more likely to engage in begging for food and less likely to antennate and to display mandible opening. We also found that when nestmates received food from donors previously fed ethanol, they began to display evidence of inebriation, indicating that ethanol can be retained in the crop for several hours and that it can be transferred between honeybee nestmates during trophallaxis.
Collapse
Affiliation(s)
- Geraldine A Wright
- Centre for Behaviour and Evolution, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | | | | | | |
Collapse
|
71
|
Morozova TV, Goldman D, Mackay TFC, Anholt RRH. The genetic basis of alcoholism: multiple phenotypes, many genes, complex networks. Genome Biol 2012; 13:239. [PMID: 22348705 PMCID: PMC3334563 DOI: 10.1186/gb-2012-13-2-239] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 02/09/2012] [Indexed: 12/02/2022] Open
Abstract
Alcoholism is a significant public health problem. A picture of the genetic architecture underlying alcohol-related phenotypes is emerging from genome-wide association studies and work on genetically tractable model organisms.
Collapse
Affiliation(s)
- Tatiana V Morozova
- Department of Biology, Box 7617, North Carolina State University, Raleigh, NC 27695, USA
- WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - David Goldman
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Trudy FC Mackay
- WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
- Department of Genetics, North Carolina State University, Raleigh, NC 27695, USA
| | - Robert RH Anholt
- Department of Biology, Box 7617, North Carolina State University, Raleigh, NC 27695, USA
- WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
- Department of Genetics, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
72
|
Bhandari P, Hill JS, Farris SP, Costin B, Martin I, Chan CL, Alaimo JT, Bettinger JC, Davies AG, Miles MF, Grotewiel M. Chloride intracellular channels modulate acute ethanol behaviors in Drosophila, Caenorhabditis elegans and mice. GENES BRAIN AND BEHAVIOR 2012; 11:387-97. [PMID: 22239914 DOI: 10.1111/j.1601-183x.2012.00765.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Identifying genes that influence behavioral responses to alcohol is critical for understanding the molecular basis of alcoholism and ultimately developing therapeutic interventions for the disease. Using an integrated approach that combined the power of the Drosophila, Caenorhabditis elegans and mouse model systems with bioinformatics analyses, we established a novel, conserved role for chloride intracellular channels (CLICs) in alcohol-related behavior. CLIC proteins might have several biochemical functions including intracellular chloride channel activity, modulation of transforming growth factor (TGF)-β signaling, and regulation of ryanodine receptors and A-kinase anchoring proteins. We initially identified vertebrate Clic4 as a candidate ethanol-responsive gene via bioinformatic analysis of data from published microarray studies of mouse and human ethanol-related genes. We confirmed that Clic4 expression was increased by ethanol treatment in mouse prefrontal cortex and also uncovered a correlation between basal expression of Clic4 in prefrontal cortex and the locomotor activating and sedating properties of ethanol across the BXD mouse genetic reference panel. Furthermore, we found that disruption of the sole Clic Drosophila orthologue significantly blunted sensitivity to alcohol in flies, that mutations in two C. elegans Clic orthologues, exc-4 and exl-1, altered behavioral responses to acute ethanol in worms and that viral-mediated overexpression of Clic4 in mouse brain decreased the sedating properties of ethanol. Together, our studies demonstrate key roles for Clic genes in behavioral responses to acute alcohol in Drosophila, C. elegans and mice.
Collapse
Affiliation(s)
- P Bhandari
- Department of Human and Molecular Genetics, Department of Pharmacology and Toxicology, Virginia Commonwealth University Alcohol Research Center, Richmond, VA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Duveau F, Félix MA. Role of pleiotropy in the evolution of a cryptic developmental variation in Caenorhabditis elegans. PLoS Biol 2012; 10:e1001230. [PMID: 22235190 PMCID: PMC3250502 DOI: 10.1371/journal.pbio.1001230] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 11/18/2011] [Indexed: 12/20/2022] Open
Abstract
Using vulval phenotypes in Caenorhabditis elegans, the authors show that cryptic genetic variation can evolve through selection for pleiotropic effects that alter fitness, and identify a cryptic variant that has conferred enhanced fitness on domesticated worms under laboratory conditions. Robust biological systems are expected to accumulate cryptic genetic variation that does not affect the system output in standard conditions yet may play an evolutionary role once phenotypically expressed under a strong perturbation. Genetic variation that is cryptic relative to a robust trait may accumulate neutrally as it does not change the phenotype, yet it could also evolve under selection if it affects traits related to fitness in addition to its cryptic effect. Cryptic variation affecting the vulval intercellular signaling network was previously uncovered among wild isolates of Caenorhabditis elegans. Using a quantitative genetic approach, we identify a non-synonymous polymorphism of the previously uncharacterized nath-10 gene that affects the vulval phenotype when the system is sensitized with different mutations, but not in wild-type strains. nath-10 is an essential protein acetyltransferase gene and the homolog of human NAT10. The nath-10 polymorphism also presents non-cryptic effects on life history traits. The nath-10 allele carried by the N2 reference strain leads to a subtle increase in the egg laying rate and in the total number of sperm, a trait affecting the trade-off between fertility and minimal generation time in hermaphrodite individuals. We show that this allele appeared during early laboratory culture of N2, which allowed us to test whether it may have evolved under selection in this novel environment. The derived allele indeed strongly outcompetes the ancestral allele in laboratory conditions. In conclusion, we identified the molecular nature of a cryptic genetic variation and characterized its evolutionary history. These results show that cryptic genetic variation does not necessarily accumulate neutrally at the whole-organism level, but may evolve through selection for pleiotropic effects that alter fitness. In addition, cultivation in the laboratory has led to adaptive evolution of the reference strain N2 to the laboratory environment, which may modify other phenotypes of interest. Robustness is a property of biological systems that ensures the production of reproducible phenotypes in spite of underlying environmental, stochastic, and genetic variability. A consequence of robustness is that potentially functional genetic variation is free to accumulate in natural populations because it is buffered at the phenotypic level. Even if this so-called “cryptic” genetic variation has no obvious effects under standard conditions, it may become phenotypically expressed upon major genetic or environmental perturbations. Here we used the model organism Caenorhabditis elegans to identify genetic variations involved in the cryptic evolution of vulval cell fate induction between wild strains. We found that a mutation in the essential nath-10 gene not only contributes to cryptic genetic variation in the vulval system, but also affects key life history traits that are expected to be under a strong selective pressure (brood size, age at sexual maturity, sperm number and rate of progeny production). Indeed, an allele of nath-10 that emerged during the laboratory domestication of C. elegans about 50 years ago confers a strong competitive advantage over the ancestral allele under laboratory conditions. A genetic variation that is cryptic for a robust trait can therefore affect more sensitive phenotypes and thus evolve under selection.
Collapse
|
74
|
Frooninckx L, Van Rompay L, Temmerman L, Van Sinay E, Beets I, Janssen T, Husson SJ, Schoofs L. Neuropeptide GPCRs in C. elegans. Front Endocrinol (Lausanne) 2012; 3:167. [PMID: 23267347 PMCID: PMC3527849 DOI: 10.3389/fendo.2012.00167] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/04/2012] [Indexed: 12/19/2022] Open
Abstract
Like most organisms, the nematode Caenorhabditis elegans relies heavily on neuropeptidergic signaling. This tiny animal represents a suitable model system to study neuropeptidergic signaling networks with single cell resolution due to the availability of powerful molecular and genetic tools. The availability of the worm's complete genome sequence allows researchers to browse through it, uncovering putative neuropeptides and their cognate G protein-coupled receptors (GPCRs). Many predictions have been made about the number of C. elegans neuropeptide GPCRs. In this review, we report the state of the art of both verified as well as predicted C. elegans neuropeptide GPCRs. The predicted neuropeptide GPCRs are incorporated into the receptor classification system based on their resemblance to orthologous GPCRs in insects and vertebrates. Appointing the natural ligand(s) to each predicted neuropeptide GPCR (receptor deorphanization) is a crucial step during characterization. The development of deorphanization strategies resulted in a significant increase in the knowledge of neuropeptidergic signaling in C. elegans. Complementary localization and functional studies demonstrate that neuropeptides and their GPCRs represent a rich potential source of behavioral variability in C. elegans. Here, we review all neuropeptidergic signaling pathways that so far have been functionally characterized in C. elegans.
Collapse
Affiliation(s)
- Lotte Frooninckx
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Liesbeth Van Rompay
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Liesbet Temmerman
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Elien Van Sinay
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Isabel Beets
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Tom Janssen
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Steven J. Husson
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Liliane Schoofs
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
- *Correspondence: Liliane Schoofs, Laboratory of Functional Genomics and Proteomics, Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium. e-mail:
| |
Collapse
|
75
|
Wang Y, Tang L, Feng X, Du W, Liu BF. Ethanol interferes with gustatory plasticity in Caenorhabditis elegans. Neurosci Res 2011; 71:341-7. [DOI: 10.1016/j.neures.2011.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/25/2011] [Accepted: 08/18/2011] [Indexed: 12/01/2022]
|
76
|
Hu Z, Pym ECG, Babu K, Vashlishan Murray AB, Kaplan JM. A neuropeptide-mediated stretch response links muscle contraction to changes in neurotransmitter release. Neuron 2011; 71:92-102. [PMID: 21745640 DOI: 10.1016/j.neuron.2011.04.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2011] [Indexed: 11/27/2022]
Abstract
Although Caenorhabditis elegans has been utilized extensively to study synapse formation and function, relatively little is known about synaptic plasticity in C. elegans. We show that a brief treatment with the cholinesterase inhibitor aldicarb induces a form of presynaptic potentiation whereby ACh release at neuromuscular junctions (NMJs) is doubled. Aldicarb-induced potentiation was eliminated by mutations that block processing of proneuropeptides, by mutations inactivating a single proneuropeptide (NLP-12), and by those inactivating an NLP-12 receptor (CKR-2). NLP-12 expression is limited to a single stretch-activated neuron, DVA. Analysis of a YFP-tagged NLP-12 suggests that aldicarb stimulates DVA secretion of NLP-12. Mutations disrupting the DVA mechanoreceptor (TRP-4) decreased aldicarb-induced NLP-12 secretion and blocked aldicarb-induced synaptic potentiation. Mutants lacking NLP-12 or CKR-2 have decreased locomotion rates. Collectively, these results suggest that NLP-12 mediates a mechanosensory feedback loop that couples muscle contraction to changes in presynaptic release, thereby providing a mechanism for proprioceptive control of locomotion.
Collapse
Affiliation(s)
- Zhitao Hu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
77
|
Caenorhabditis elegans as a platform for molecular quantitative genetics and the systems biology of natural variation. Genet Res (Camb) 2011; 92:331-48. [PMID: 21429266 DOI: 10.1017/s0016672310000601] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Over the past 30 years, the characteristics that have made the nematode Caenorhabditis elegans one of the premier animal model systems have also allowed it to emerge as a powerful model system for determining the genetic basis of quantitative traits, particularly for the identification of naturally segregating and/or lab-adapted alleles with large phenotypic effects. To better understand the genetic underpinnings of natural variation in other complex phenotypes, C. elegans is uniquely poised in the emerging field of quantitative systems biology because of the extensive knowledge of cellular and neural bases to such traits. However, perturbations in standing genetic variation and patterns of linkage disequilibrium among loci are likely to limit our ability to tie understanding of molecular function to a broader evolutionary context. Coupling the experimental strengths of the C. elegans system with the ecological advantages of closely related nematodes should provide a powerful means of understanding both the molecular and evolutionary genetics of quantitative traits.
Collapse
|
78
|
Wang X, Sliwoski GR, Buttner EA. The relevance of Caenorhabditis elegans genetics for understanding human psychiatric disease. Harv Rev Psychiatry 2011; 19:210-8. [PMID: 21790269 DOI: 10.3109/10673229.2011.599185] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
79
|
Pavlicev M, Norgard EA, Fawcett GL, Cheverud JM. Evolution of pleiotropy: epistatic interaction pattern supports a mechanistic model underlying variation in genotype-phenotype map. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:371-85. [PMID: 21462316 DOI: 10.1002/jez.b.21410] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 02/25/2011] [Accepted: 03/02/2011] [Indexed: 11/10/2022]
Abstract
The genotype-phenotype (GP) map consists of developmental and physiological mechanisms mapping genetic onto phenotypic variation. It determines the distribution of heritable phenotypic variance on which selection can act. Comparative studies of morphology as well as of gene regulatory networks show that the GP map itself evolves, yet little is known about the actual evolutionary mechanisms involved. The study of such mechanisms requires exploring the variation in GP maps at the population level, which presently is easier to quantify by statistical genetic methods rather than by regulatory network structures. We focus on the evolution of pleiotropy, a major structural aspect of the GP map. Pleiotropic genes affect multiple traits and underlie genetic covariance between traits, often causing evolutionary constraints. Previous quantitative genetic studies have demonstrated population-level variation in pleiotropy in the form of loci, at which genotypes differ in the genetic covariation between traits. This variation can potentially fuel evolution of the GP map under selection and/or drift. Here, we propose a developmental mechanism underlying population genetic variation in covariance and test its predictions. Specifically, the mechanism predicts that the loci identified as responsible for genetic variation in pleiotropy are involved in trait-specific epistatic interactions. We test this prediction for loci affecting allometric relationships between traits in an advanced intercross between inbred mouse strains. The results consistently support the prediction. We further find a high degree of sign epistasis in these interactions, which we interpret as an indication of adaptive gene complexes within the diverged parental lines.
Collapse
Affiliation(s)
- Mihaela Pavlicev
- Center for Ecological and Evolutionary Synthesis, Department of Biology, University of Oslo, Norway.
| | | | | | | |
Collapse
|
80
|
Heat avoidance is regulated by transient receptor potential (TRP) channels and a neuropeptide signaling pathway in Caenorhabditis elegans. Genetics 2011; 188:91-103. [PMID: 21368276 DOI: 10.1534/genetics.111.127100] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability to avoid noxious extremes of hot and cold is critical for survival and depends on thermal nociception. The TRPV subset of transient receptor potential (TRP) channels is heat activated and proposed to be responsible for heat detection in vertebrates and fruit flies. To gain insight into the genetic and neural basis of thermal nociception, we developed assays that quantify noxious heat avoidance in the nematode Caenorhabditis elegans and used them to investigate the genetic basis of this behavior. First, we screened mutants for 18 TRP channel genes (including all TRPV orthologs) and found only minor defects in heat avoidance in single and selected double and triple mutants, indicating that other genes are involved. Next, we compared two wild isolates of C. elegans that diverge in their threshold for heat avoidance and linked this phenotypic variation to a polymorphism in the neuropeptide receptor gene npr-1. Further analysis revealed that loss of either the NPR-1 receptor or its ligand, FLP-21, increases the threshold for heat avoidance. Cell-specific rescue of npr-1 implicates the interneuron RMG in the circuit regulating heat avoidance. This neuropeptide signaling pathway operates independently of the TRPV genes, osm-9 and ocr-2, since mutants lacking npr-1 and both TRPV channels had more severe defects in heat avoidance than mutants lacking only npr-1 or both osm-9 and ocr-2. Our results show that TRPV channels and the FLP-21/NPR-1 neuropeptide signaling pathway determine the threshold for heat avoidance in C. elegans.
Collapse
|
81
|
Neuropeptide gene families in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 692:98-137. [PMID: 21189676 DOI: 10.1007/978-1-4419-6902-6_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neuropeptides are short sequences ofamino acids that function in all multicellular organisms to communicate information between cells. The first sequence ofa neuropeptide was reported in 1970' and the number of identified neuropeptides remained relatively small until the 1990s when the DNA sequence of multiple genomes revealed treasure troves ofinformation. Byblasting away at the genome, gene families, the sizes ofwhich were previously unknown, could now be determined. This information has led to an exponential increase in the number of putative neuropeptides and their respective gene families. The molecular biology age greatly benefited the neuropeptide field in the nematode Caenorhabditis elegans. Its genome was among the first to be sequenced and this allowed us the opportunity to screen the genome for neuropeptide genes. Initially, the screeningwas slow, as the Genefinder and BLAST programs had difficulty identifying small genes and peptides. However, as the bioinformatics programs improved, the extent of the neuropeptide gene families in C. elegans gradually emerged.
Collapse
|
82
|
Boender AJ, Roubos EW, van der Velde G. Together or alone?: foraging strategies in Caenorhabditis elegans. Biol Rev Camb Philos Soc 2011; 86:853-62. [PMID: 21314888 DOI: 10.1111/j.1469-185x.2011.00174.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A central goal in Life Sciences is to understand how genes encode behaviour and how environmental factors influence the expression of the genes concerned. To reach this goal a combined ecological, molecular biological and physiological approach is required in combination with a suitable model organism. Such an approach allows the elucidation of all parts of the complicated chain of events that lead from induction of gene expression to behaviour, i.e. from environmental stimulus, sensory organs and extracellular and intracellular neuronal signal processing to activation of effector organs. A particularly good model species with which to take this approach is the nematode Caenorhabditis elegans, as it has been described in great detail at the genomic, cellular and behavioural levels. Different strains of C. elegans display prominent behavioural variation in foraging behaviour. Some strains will form social feeding groups when subjected to certain environmental stimuli, while others do not. This variation is due to the existence of just two isoforms of the gene npr-1, namely 215F and 215V. Here, we describe these behavioural variations at the molecular and cellular levels to attempt to determine the environmental inputs that cause aggregation of these small nematodes. As many different stimuli affect aggregation either positively or negatively, aggregation behaviour seems to be displayed when it improves survival chances. However, not much is known about the ecological context in which C. elegans lives. Investigation of the habitats of different strains of C. elegans would help us to understand why and how a specific foraging strategy enhances survival. The relatively well-understood molecular pathways that direct its social feeding behaviour make C. elegans a highly suitable model organism to test ecological and behavioural hypotheses about the mechanisms that differentiate between aggregation and solitary behaviours.
Collapse
Affiliation(s)
- Arjen J Boender
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, The Netherlands
| | | | | |
Collapse
|
83
|
Wang Y, Wang J, Du W, Feng XJ, Liu BF. Identification of the neuronal effects of ethanol on C. elegans by in vivo fluorescence imaging on a microfluidic chip. Anal Bioanal Chem 2010; 399:3475-81. [DOI: 10.1007/s00216-010-4148-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 08/18/2010] [Accepted: 08/18/2010] [Indexed: 11/24/2022]
|
84
|
A differential role for neuropeptides in acute and chronic adaptive responses to alcohol: behavioural and genetic analysis in Caenorhabditis elegans. PLoS One 2010; 5:e10422. [PMID: 20454655 PMCID: PMC2862703 DOI: 10.1371/journal.pone.0010422] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 04/02/2010] [Indexed: 11/19/2022] Open
Abstract
Prolonged alcohol consumption in humans followed by abstinence precipitates a withdrawal syndrome consisting of anxiety, agitation and in severe cases, seizures. Withdrawal is relieved by a low dose of alcohol, a negative reinforcement that contributes to alcohol dependency. This phenomenon of ‘withdrawal relief’ provides evidence of an ethanol-induced adaptation which resets the balance of signalling in neural circuits. We have used this as a criterion to distinguish between direct and indirect ethanol-induced adaptive behavioural responses in C. elegans with the goal of investigating the genetic basis of ethanol-induced neural plasticity. The paradigm employs a ‘food race assay’ which tests sensorimotor performance of animals acutely and chronically treated with ethanol. We describe a multifaceted C. elegans ‘withdrawal syndrome’. One feature, decrease reversal frequency is not relieved by a low dose of ethanol and most likely results from an indirect adaptation to ethanol caused by inhibition of feeding and a food-deprived behavioural state. However another aspect, an aberrant behaviour consisting of spontaneous deep body bends, did show withdrawal relief and therefore we suggest this is the expression of ethanol-induced plasticity. The potassium channel, slo-1, which is a candidate ethanol effector in C. elegans, is not required for the responses described here. However a mutant deficient in neuropeptides, egl-3, is resistant to withdrawal (although it still exhibits acute responses to ethanol). This dependence on neuropeptides does not involve the NPY-like receptor npr-1, previously implicated in C. elegans ethanol withdrawal. Therefore other neuropeptide pathways mediate this effect. These data resonate with mammalian studies which report involvement of a number of neuropeptides in chronic responses to alcohol including corticotrophin-releasing-factor (CRF), opioids, tachykinins as well as NPY. This suggests an evolutionarily conserved role for neuropeptides in ethanol-induced plasticity and opens the way for a genetic analysis of the effects of alcohol on a simple model system.
Collapse
|
85
|
Lucas C, Kornfein R, Chakaborty-Chatterjee M, Schonfeld J, Geva N, Sokolowski MB, Ayali A. The locust foraging gene. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 74:52-66. [PMID: 20422718 DOI: 10.1002/arch.20363] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Our knowledge of how genes act on the nervous system in response to the environment to generate behavioral plasticity is limited. A number of recent advancements in this area concern food-related behaviors and a specific gene family called foraging (for), which encodes a cGMP-dependent protein kinase (PKG). The desert locust (Schistocerca gregaria) is notorious for its destructive feeding and long-term migratory behavior. Locust phase polyphenism is an extreme example of environmentally induced behavioral plasticity. In response to changes in population density, locusts dramatically alter their behavior, from solitary and relatively sedentary behavior to active aggregation and swarming. Very little is known about the molecular and genetic basis of this striking behavioral phenomenon. Here we initiated studies into the locust for gene by identifying, cloning, and studying expression of the gene in the locust brain. We determined the phylogenetic relationships between the locust PKG and other known PKG proteins in insects. FOR expression was found to be confined to neurons of the anterior midline of the brain, the pars intercerebralis. Our results suggest that differences in PKG enzyme activity are correlated to well-established phase-related behavioral differences. These results lay the groundwork for functional studies of the locust for gene and its possible relations to locust phase polyphenism.
Collapse
Affiliation(s)
- C Lucas
- Department of Biology, University of Toronto, Mississauga, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
86
|
Cutter AD, Yan W, Tsvetkov N, Sunil S, Félix MA. Molecular population genetics and phenotypic sensitivity to ethanol for a globally diverse sample of the nematode Caenorhabditis briggsae. Mol Ecol 2010; 19:798-809. [PMID: 20088888 DOI: 10.1111/j.1365-294x.2009.04491.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
New genomic resources and genetic tools of the past few years have advanced the nematode genus Caenorhabditis as a model for comparative biology. However, understanding of natural genetic variation at molecular and phenotypic levels remains rudimentary for most species in this genus, and for C. briggsae in particular. Here we characterize phenotypic variation in C. briggsae's sensitivity to the potentially important and variable environmental toxin, ethanol, for globally diverse strains. We also quantify nucleotide variation in a new sample of 32 strains from four continents, including small islands, and for the closest-known relative of this species (C. sp. 9). We demonstrate that C. briggsae exhibits little heritable variation for the effects of ethanol on the norm of reaction for survival and reproduction. Moreover, C. briggsae does not differ significantly from C. elegans in our assays of its response to this substance that both species likely encounter regularly in habitats of rotting fruit and vegetation. However, we uncover drastically more molecular genetic variation than was known previously for this species, despite most strains, including all island strains, conforming to the broad biogeographic patterns described previously. Using patterns of sequence divergence between populations and between species, we estimate that the self-fertilizing mode of reproduction by hermaphrodites in C. briggsae likely evolved sometime between 0.9 and 10 million generations ago. These insights into C. briggsae's natural history and natural genetic variation greatly expand the potential of this organism as an emerging model for studies in molecular and quantitative genetics, the evolution of development, and ecological genetics.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, Canada M5S 3B2.
| | | | | | | | | |
Collapse
|
87
|
Bhandari P, Kendler KS, Bettinger JC, Davies AG, Grotewiel M. An assay for evoked locomotor behavior in Drosophila reveals a role for integrins in ethanol sensitivity and rapid ethanol tolerance. Alcohol Clin Exp Res 2009; 33:1794-805. [PMID: 19645731 DOI: 10.1111/j.1530-0277.2009.01018.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Ethanol induces similar behavioral responses in mammals and the fruit fly, Drosophila melanogaster. By coupling assays for ethanol-related behavior to the genetic tools available in flies, a number of genes have been identified that influence physiological responses to ethanol. To enhance the utility of the Drosophila model for investigating genes involved in ethanol-related behavior, we explored the value of an assay that measures the sedative effects of ethanol on negative geotaxis, an evoked locomotor response. METHODS We established eRING (ethanol Rapid Iterative Negative Geotaxis) as an assay for quantitating the sedative effects of ethanol on negative geotaxis (i.e., startle-induced climbing). We validated the assay by assessing acute sensitivity to ethanol and rapid ethanol tolerance in several different control strains and in flies with mutations known to disrupt these behaviors. We also used eRING in a candidate screen to identify mutants with altered ethanol-related behaviors. RESULTS Negative geotaxis measured in eRING assays was dose-dependently impaired by ethanol exposure. Flies developed tolerance to the intoxicating effects of ethanol when tested during a second exposure. Ethanol sensitivity and rapid ethanol tolerance varied across 4 control strains, but internal ethanol concentrations were indistinguishable in the 4 strains during a first and second challenge with ethanol. Ethanol sensitivity and rapid ethanol tolerance, respectively, were altered in flies with mutations in amnesiac and hangover, genes known to influence these traits. Additionally, mutations in the beta integrin gene myospheroid and the alpha integrin gene scab increased the initial sensitivity to ethanol and enhanced the development of rapid ethanol tolerance without altering internal ethanol concentrations. CONCLUSIONS The eRING assay is suitable for investigating genetic mechanisms that influence ethanol sensitivity and rapid ethanol tolerance. Ethanol sensitivity and rapid ethanol tolerance depend on the function of alpha and beta integrins in flies.
Collapse
Affiliation(s)
- Poonam Bhandari
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23113, USA
| | | | | | | | | |
Collapse
|
88
|
Abstract
Caenorhabditis elegans senses multiple environmental stimuli through sensory systems and rapidly changes its behaviors for survival. With a simple and well-characterized nervous system, C. elegans is a suitable animal model for studying behavioral plasticity. Previous studies have shown acute neurodepressive effects of ethanol on multiple behaviors of C. elegans similar to the effect of ethanol on other organisms. Caenorhabditis elegans also develops ethanol tolerance during continuous exposure to ethanol. In mammals, chronic ethanol exposure leads to ethanol tolerance as well as increased ethanol consumption. Ethanol preference is associated with the development of tolerance and may lead to the development of ethanol dependence. In this study, we show that C. elegans is a useful model organism for studying chronic effects of ethanol, including the development of ethanol preference. We designed a behavioral assay for testing ethanol preference after prolonged ethanol exposure. Despite baseline aversive responses to ethanol, animals show ethanol preference after 4 h of pre-exposure to ethanol and exhibit significantly enhanced preference for ethanol after a lifetime of ethanol exposure. The cat-2 and tph-1 mutant animals have defects in the synthetic enzymes for dopamine and serotonin, respectively. These mutants are deficient in the development of ethanol preference, indicating that dopamine and serotonin are required for this form of behavioral plasticity.
Collapse
Affiliation(s)
- J Lee
- Ernest Gallo Clinic and Research Center, Department of Neurology, Programs in Neuroscience and Biomedical Science, University of California, San Francisco, Emeryville, CA 94608, USA
| | | | | |
Collapse
|
89
|
Doroszuk A, Snoek LB, Fradin E, Riksen J, Kammenga J. A genome-wide library of CB4856/N2 introgression lines of Caenorhabditis elegans. Nucleic Acids Res 2009; 37:e110. [PMID: 19542186 PMCID: PMC2760803 DOI: 10.1093/nar/gkp528] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recombinant inbred lines (RILs) derived from Caenorhabditis elegans wild-type N2 and CB4856 are increasingly being used for mapping genes underlying complex traits. To speed up mapping and gene discovery, introgression lines (ILs) offer a powerful tool for more efficient QTL identification. We constructed a library of 90 ILs, each carrying a single homozygous CB4856 genomic segment introgressed into the genetic background of N2. The ILs were genotyped by 123 single-nucleotide polymorphism (SNP) markers. The proportion of the CB4856 segments in most lines does not exceed 3%, and together the introgressions cover 96% of the CB4856 genome. The value of the IL library was demonstrated by identifying novel loci underlying natural variation in two ageing-related traits, i.e. lifespan and pharyngeal pumping rate. Bin mapping of lifespan resulted in six QTLs, which all have a lifespan-shortening effect on the CB4856 allele. We found five QTLs for the decrease in pumping rate, of which four colocated with QTLs found for average lifespan. This suggests pleiotropic or closely linked QTL associated with lifespan and pumping rate. Overall, the presented IL library provides a versatile resource toward easier and efficient fine mapping and functional analyses of loci and genes underlying complex traits in C. elegans.
Collapse
Affiliation(s)
- Agnieszka Doroszuk
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
90
|
Clynen E, Husson SJ, Schoofs L. Identification of new members of the (short) neuropeptide F family in locusts and Caenorhabditis elegans. Ann N Y Acad Sci 2009; 1163:60-74. [PMID: 19456328 DOI: 10.1111/j.1749-6632.2008.03624.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Both the long and short neuropeptides F (NPF) represent important families of invertebrate neuropeptides that have been implicated in the regulation of reproduction and feeding behavior. In the present study, two short NPFs (SNRSPS(L/I)R(L/I)RFamide and SPS(L/I)R(L/I)RFamide) were de novo sequenced by mass spectrometry in two major pest insects, the desert locust Schistocerca gregaria and the African migratory locust Locusta migratoria. They are two of the most widespread peptides in the locust neuroendocrine system. A peptide that was previously reported to accelerate egg development in S. gregaria is shown to represent a truncated form of long NPF. This peptide is most likely derived by a novel processing mechanism involving cleavage at RY. In addition, an NPF peptide from the nematode Caenorhabditis elegans was isolated and sequenced by tandem mass spectrometry.
Collapse
Affiliation(s)
- Elke Clynen
- Research Group Functional Genomics and Proteomics, K.U. Leuven, Leuven, Belgium.
| | | | | |
Collapse
|
91
|
Macosko EZ, Pokala N, Feinberg EH, Chalasani SH, Butcher RA, Clardy J, Bargmann CI. A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature 2009; 458:1171-5. [PMID: 19349961 PMCID: PMC2760495 DOI: 10.1038/nature07886] [Citation(s) in RCA: 356] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Accepted: 02/11/2009] [Indexed: 11/29/2022]
Abstract
Innate social behaviors emerge from neuronal circuits that interpret sensory information based on an individual's own genotype, sex, and experience. The regulated aggregation behavior of C. elegans, a simple animal with only 302 neurons, is an attractive system to analyze these circuits. Wild social strains of the nematode Caenorhabditis elegans aggregate in the presence of specific sensory cues, but solitary strains do not1,2,3,4. Here we identify the RMG inter/motor neuron as the hub of a regulated circuit that controls aggregation and related behaviors. RMG is the central site of action of the neuropeptide receptor gene npr-1, which distinguishes solitary strains (high npr-1 activity) from wild social strains (low npr-1 activity); high RMG activity is essential for all aspects of social behavior. Anatomical gap junctions connect RMG to multiple classes of sensory neurons known to promote aggregation, and to ASK sensory neurons, which are implicated in male attraction to hermaphrodite pheromones5. We find that ASK neurons respond directly to pheromones, and that high RMG activity enhances ASK responses in social strains, causing hermaphrodite attraction to pheromones at concentrations that repel solitary hermaphrodites. The coordination of social behaviors by RMG suggests an anatomical hub-and-spoke model for sensory integration in aggregation, and points to functions for related circuit motifs in the C. elegans wiring diagram.
Collapse
Affiliation(s)
- Evan Z Macosko
- Howard Hughes Medical Institute, Laboratory of Neural Circuits and Behavior, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
92
|
Berri S, Boyle JH, Tassieri M, Hope IA, Cohen N. Forward locomotion of the nematode C. elegans is achieved through modulation of a single gait. HFSP JOURNAL 2009; 3:186-93. [PMID: 19639043 DOI: 10.2976/1.3082260] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Accepted: 01/28/2009] [Indexed: 11/19/2022]
Abstract
The ability of an animal to locomote through its environment depends crucially on the interplay between its active endogenous control and the physics of its interactions with the environment. The nematode worm Caenorhabditis elegans serves as an ideal model system for studying the respective roles of neural control and biomechanics, as well as the interaction between them. With only 302 neurons in a hard-wired neural circuit, the worm's apparent anatomical simplicity belies its behavioural complexity. Indeed, C. elegans exhibits a rich repertoire of complex behaviors, the majority of which are mediated by its adaptive undulatory locomotion. The conventional wisdom is that two kinematically distinct C. elegans locomotion behaviors-swimming in liquids and crawling on dense gel-like media-correspond to distinct locomotory gaits. Here we analyze the worm's motion through a series of different media and reveal a smooth transition from swimming to crawling, marked by a linear relationship between key locomotion metrics. These results point to a single locomotory gait, governed by the same underlying control mechanism. We further show that environmental forces play only a small role in determining the shape of the worm, placing conditions on the minimal pattern of internal forces driving locomotion.
Collapse
|
93
|
Rockman MV, Kruglyak L. Recombinational landscape and population genomics of Caenorhabditis elegans. PLoS Genet 2009; 5:e1000419. [PMID: 19283065 PMCID: PMC2652117 DOI: 10.1371/journal.pgen.1000419] [Citation(s) in RCA: 295] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 02/12/2009] [Indexed: 01/10/2023] Open
Abstract
Recombination rate and linkage disequilibrium, the latter a function of population genomic processes, are the critical parameters for mapping by linkage and association, and their patterns in Caenorhabditis elegans are poorly understood. We performed high-density SNP genotyping on a large panel of recombinant inbred advanced intercross lines (RIAILs) of C. elegans to characterize the landscape of recombination and, on a panel of wild strains, to characterize population genomic patterns. We confirmed that C. elegans autosomes exhibit discrete domains of nearly constant recombination rate, and we show, for the first time, that the pattern holds for the X chromosome as well. The terminal domains of each chromosome, spanning about 7% of the genome, exhibit effectively no recombination. The RIAILs exhibit a 5.3-fold expansion of the genetic map. With median marker spacing of 61 kb, they are a powerful resource for mapping quantitative trait loci in C. elegans. Among 125 wild isolates, we identified only 41 distinct haplotypes. The patterns of genotypic similarity suggest that some presumed wild strains are laboratory contaminants. The Hawaiian strain, CB4856, exhibits genetic isolation from the remainder of the global population, whose members exhibit ample evidence of intercrossing and recombining. The population effective recombination rate, estimated from the pattern of linkage disequilibrium, is correlated with the estimated meiotic recombination rate, but its magnitude implies that the effective rate of outcrossing is extremely low, corroborating reports of selection against recombinant genotypes. Despite the low population, effective recombination rate and extensive linkage disequilibrium among chromosomes, which are techniques that account for background levels of genomic similarity, permit association mapping in wild C. elegans strains. C. elegans is a model system for diverse fields of biology, but its ability to serve as a model for quantitative trait gene mapping depends on its recombination rate in the laboratory and in nature. The latter is a function of how worms mate and migrate in the wild. We examined the patterns of recombination in a population that we put through thousands of meioses in the laboratory and in a collection of strains isolated from nature. The data suggest that meiotic recombination rate is highly regular in worms, with discrete domains whose boundaries we identify. The pattern in natural strains suggests that population structure, population size, outcrossing rate, and selection combine to suppress the overall effects of recombination. Moreover, some “wild” strains appear to be laboratory contaminants. Nevertheless, the history of recombination in wild worms is sufficient to permit correlations between genotype and phenotype to pinpoint the loci responsible for phenotypic variation.
Collapse
Affiliation(s)
- Matthew V. Rockman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Department of Biology, New York University, New York, New York, United States of America
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- * E-mail: (MVR); (LK)
| | - Leonid Kruglyak
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail: (MVR); (LK)
| |
Collapse
|
94
|
Abstract
Two naturally-occurring alleles in the nematode Caenorhabditis elegans that differ by a single amino acid and cause striking differences in foraging behavior are probably maintained by selection in patchy environments.
Collapse
Affiliation(s)
- Karin Kiontke
- Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
95
|
Gloria-Soria A, Azevedo RBR. npr-1 Regulates foraging and dispersal strategies in Caenorhabditis elegans. Curr Biol 2009; 18:1694-9. [PMID: 18993077 DOI: 10.1016/j.cub.2008.09.043] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Revised: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 10/21/2022]
Abstract
Wild isolates of Caenorhabditis elegans differ in their tendency to aggregate on food [1, 2]. Most quantitative variation in this behavior is explained by a polymorphism at a single amino acid in the G protein-coupled receptor NPR-1: gregarious strains carry the 215F allele, and solitary strains carry the 215V allele [2]. Although npr-1 regulates a behavioral syndrome with potential adaptive implications, the evolutionary causes and consequences of this natural polymorphism remain unclear. Here we show that npr-1 regulates two behaviors that can promote coexistence of the two alleles. First, gregarious and solitary worms differ in their responses to food such that they can partition a single, continuous patch of food. Second, gregarious worms disperse more readily from patch to patch than do solitary worms, which can cause partitioning of a fragmented resource. The dispersal propensity of both gregarious and solitary worms increases with density. npr-1-dependent dispersal is independent of aggregation and could be part of a food-searching strategy. The gregarious allele is favored in a fragmented relative to a continuous food environment in competition experiments. We conclude that the npr-1 polymorphism could be maintained by a trade-off between dispersal and competitive ability.
Collapse
Affiliation(s)
- Andrea Gloria-Soria
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | | |
Collapse
|
96
|
|
97
|
Guo AY, Webb BT, Miles MF, Zimmerman MP, Kendler KS, Zhao Z. ERGR: An ethanol-related gene resource. Nucleic Acids Res 2008; 37:D840-5. [PMID: 18978021 PMCID: PMC2686553 DOI: 10.1093/nar/gkn816] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Over the last decade rapid progress has been made in the study of ethanol-related traits including alcohol abuse and dependence, and behavioral responses to ethanol in both humans and animal models. To collect, curate, integrate these results so as to make them easily accessible and interpretable for researchers, we developed ERGR, a comprehensive ethanol-related gene resource. We collected and curated more than 30 large-scale data sets including linkage, association and microarray gene expression from the literature and 21 mouse QTLs from public databases. At present, the ERGR deposits ethanol-related information of ∼7000 genes from five organisms: human (3311), mouse (2129), rat (679), fly (614) and worm (228). ERGR provides gene annotations and orthologs, detailed gene study information (e.g. fold changes of gene expression, P-values), and both the text and BLAST searches. Moreover, ERGR has data integration tools such as for data union and intersection, and candidate gene selection based on evidence in multiple datasets or organisms. The ERGR database is evolving with new data releases. More functions will also be added. ERGR has a user-friendly web interface with browse and search functions at multiple levels. It is freely available at http://bioinfo.vipbg.vcu.edu/ERGR/.
Collapse
Affiliation(s)
- An-Yuan Guo
- Department of Psychiatry and Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
98
|
Graham ME, Edwards MR, Holden-Dye L, Morgan A, Burgoyne RD, Barclay JW. UNC-18 modulates ethanol sensitivity in Caenorhabditis elegans. Mol Biol Cell 2008; 20:43-55. [PMID: 18923141 DOI: 10.1091/mbc.e08-07-0689] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Acute ethanol exposure affects the nervous system as a stimulant at low concentrations and as a depressant at higher concentrations, eventually resulting in motor dysfunction and uncoordination. A recent genetic study of two mouse strains with varying ethanol preference indicated a correlation with a polymorphism (D216N) in the synaptic protein Munc18-1. Munc18-1 functions in exocytosis via a number of discrete interactions with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein syntaxin-1. We report that the mutation affects binding to syntaxin but not through either a closed conformation mode of interaction or through binding to the syntaxin N terminus. The D216N mutant instead has a specific impairment in binding the assembled SNARE complex. Furthermore, the mutation broadens the duration of single exocytotic events. Expression of the orthologous mutation (D214N) in the Caenorhabditis elegans UNC-18 null background generated transgenic rescues with phenotypically similar locomotion to worms rescued with the wild-type protein. Strikingly, D214N worms were strongly resistant to both stimulatory and sedative effects of acute ethanol. Analysis of an alternative Munc18-1 mutation (I133V) supported the link between reduced SNARE complex binding and ethanol resistance. We conclude that ethanol acts, at least partially, at the level of vesicle fusion and that its acute effects are ameliorated by point mutations in UNC-18.
Collapse
Affiliation(s)
- Margaret E Graham
- The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, United Kingdom
| | | | | | | | | | | |
Collapse
|
99
|
Donohoe DR, Phan T, Weeks K, Aamodt EJ, Dwyer DS. Antipsychotic drugs up-regulate tryptophan hydroxylase in ADF neurons of Caenorhabditis elegans: role of calcium-calmodulin-dependent protein kinase II and transient receptor potential vanilloid channel. J Neurosci Res 2008; 86:2553-63. [PMID: 18438926 DOI: 10.1002/jnr.21684] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Antipsychotic drugs produce acute behavioral effects through antagonism of dopamine and serotonin receptors, and long-term adaptive responses that are not well understood. The goal of the study presented here was to use Caenorhabditis elegans to investigate the molecular mechanism or mechanisms that contribute to adaptive responses produced by antipsychotic drugs. First-generation antipsychotics, trifluoperazine and fluphenazine, and second-generation drugs, clozapine and olanzapine, increased the expression of tryptophan hydroxylase-1::green fluorescent protein (TPH-1::GFP) and serotonin in the ADF neurons of C. elegans. This response was absent or diminished in mutant strains lacking the transient receptor potential vanilloid channel (TRPV; osm-9) or calcium/calmodulin-dependent protein kinase II (CaMKII; unc-43). The role of calcium signaling was further implicated by the finding that a selective antagonist of calmodulin and a calcineurin inhibitor also enhanced TPH-1::GFP expression. The ADF neurons modulate foraging behavior (turns/reversals off food) through serotonin production. We found that short-term exposure to the antipsychotic drugs altered the frequency of turns/reversals off food. This response was mediated through dopamine and serotonin receptors and was abolished in serotonin-deficient mutants (tph-1) and strains lacking the SER-1 and MOD-1 serotonin receptors. Consistent with the increase in serotonin in the ADF neurons induced by the drugs, drug withdrawal after 24-hr treatment was accompanied by a rebound in the number of turns/reversals, which demonstrates behavioral adaptation in serotonergic systems. Characterization of the cellular, molecular, and behavioral adaptations to continuous exposure to antipsychotic drugs may provide insight into the long-term clinical effects of these medications.
Collapse
Affiliation(s)
- Dallas R Donohoe
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana 71130, USA
| | | | | | | | | |
Collapse
|
100
|
Abstract
The role of neuropeptides in modulating behavior is slowly being elucidated. With the sequencing of the C. elegans genome, the extent of the neuropeptide genes in C. elegans can be determined. To date, 113 neuropeptide genes encoding over 250 distinct neuropeptides have been identified. Of these, 40 genes encode insulin-like peptides, 31 genes encode FMRFamide-related peptides, and 42 genes encode non-insulin, non-FMRFamide-related neuropeptides. As in other systems, C. elegans neuropeptides are derived from precursor molecules that must be post-translationally processed to yield the active peptides. These precursor molecules contain a single peptide, multiple copies of a single peptide, multiple distinct peptides, or any combination thereof. The neuropeptide genes are expressed extensively throughout the nervous system, including in sensory, motor, and interneurons. In addition, some of the genes are also expressed in non-neuronal tissues, such as the somatic gonad, intestine, and vulval hypodermis. To address the effects of neuropeptides on C. elegans behavior, animals in which the different neuropeptide genes are inactivated or overexpressed are being isolated. In a complementary approach the receptors to which the neuropeptides bind are also being identified and examined. Among the knockout animals analyzed thus far, defects in locomotion, dauer formation, egg laying, ethanol response, and social behavior have been reported. These data suggest that neuropeptides have a modulatory role in many, if not all, behaviors in C. elegans.
Collapse
Affiliation(s)
- Chris Li
- Department of Biology, City College of New York, New York, NY 10031, USA.
| | | |
Collapse
|