51
|
Geeter ND, Dupré L, Crevecoeur G. Modeling transcranial magnetic stimulation from the induced electric fields to the membrane potentials along tractography-based white matter fiber tracts. J Neural Eng 2016; 13:026028. [PMID: 26934301 DOI: 10.1088/1741-2560/13/2/026028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Transcranial magnetic stimulation (TMS) is a promising non-invasive tool for modulating the brain activity. Despite the widespread therapeutic and diagnostic use of TMS in neurology and psychiatry, its observed response remains hard to predict, limiting its further development and applications. Although the stimulation intensity is always maximum at the cortical surface near the coil, experiments reveal that TMS can affect deeper brain regions as well. APPROACH The explanation of this spread might be found in the white matter fiber tracts, connecting cortical and subcortical structures. When applying an electric field on neurons, their membrane potential is altered. If this change is significant, more likely near the TMS coil, action potentials might be initiated and propagated along the fiber tracts towards deeper regions. In order to understand and apply TMS more effectively, it is important to capture and account for this interaction as accurately as possible. Therefore, we compute, next to the induced electric fields in the brain, the spatial distribution of the membrane potentials along the fiber tracts and its temporal dynamics. MAIN RESULTS This paper introduces a computational TMS model in which electromagnetism and neurophysiology are combined. Realistic geometry and tissue anisotropy are included using magnetic resonance imaging and targeted white matter fiber tracts are traced using tractography based on diffusion tensor imaging. The position and orientation of the coil can directly be retrieved from the neuronavigation system. Incorporating these features warrants both patient- and case-specific results. SIGNIFICANCE The presented model gives insight in the activity propagation through the brain and can therefore explain the observed clinical responses to TMS and their inter- and/or intra-subject variability. We aspire to advance towards an accurate, flexible and personalized TMS model that helps to understand stimulation in the connected brain and to target more focused and deeper brain regions.
Collapse
Affiliation(s)
- Nele De Geeter
- Department of Electrical Energy, Systems and Automation, Ghent University, Technologiepark 913, B-9052 Zwijnaarde, Belgium
| | | | | |
Collapse
|
52
|
Asymmetric Interhemispheric Transfer in the Auditory Network: Evidence from TMS, Resting-State fMRI, and Diffusion Imaging. J Neurosci 2016; 35:14602-11. [PMID: 26511249 DOI: 10.1523/jneurosci.2333-15.2015] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hemispheric asymmetries in human auditory cortical function and structure are still highly debated. Brain stimulation approaches can complement correlational techniques by uncovering causal influences. Previous studies have shown asymmetrical effects of transcranial magnetic stimulation (TMS) on task performance, but it is unclear whether these effects are task-specific or reflect intrinsic network properties. To test how modulation of auditory cortex (AC) influences functional networks and whether this influence is asymmetrical, the present study measured resting-state fMRI connectivity networks in 17 healthy volunteers before and immediately after TMS (continuous theta burst stimulation) to the left or right AC, and the vertex as a control. We also examined the relationship between TMS-induced interhemispheric signal propagation and anatomical properties of callosal auditory fibers as measured with diffusion-weighted MRI. We found that TMS to the right AC, but not the left, resulted in widespread connectivity decreases in auditory- and motor-related networks in the resting state. Individual differences in the degree of change in functional connectivity between auditory cortices after TMS applied over the right AC were negatively related to the volume of callosal auditory fibers. The findings show that TMS-induced network modulation occurs, even in the absence of an explicit task, and that the magnitude of the effect differs across individuals as a function of callosal structure, supporting a role for the corpus callosum in mediating functional asymmetry. The findings support theoretical models emphasizing hemispheric differences in network organization and are of practical significance in showing that brain stimulation studies need to take network-level effects into account.
Collapse
|
53
|
Non-invasive Human Brain Stimulation in Cognitive Neuroscience: A Primer. Neuron 2015; 87:932-45. [DOI: 10.1016/j.neuron.2015.07.032] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 06/07/2015] [Accepted: 07/16/2015] [Indexed: 11/21/2022]
|
54
|
Bonnì S, Koch G, Miniussi C, Bassi MS, Caltagirone C, Gainotti G. Role of the anterior temporal lobes in semantic representations: Paradoxical results of a cTBS study. Neuropsychologia 2015; 76:163-9. [DOI: 10.1016/j.neuropsychologia.2014.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 11/29/2022]
|
55
|
Hartwigsen G. The neurophysiology of language: Insights from non-invasive brain stimulation in the healthy human brain. BRAIN AND LANGUAGE 2015; 148:81-94. [PMID: 25468733 DOI: 10.1016/j.bandl.2014.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 06/04/2023]
Abstract
With the advent of non-invasive brain stimulation (NIBS), a new decade in the study of language has started. NIBS allows for testing the functional relevance of language-related brain activation and enables the researcher to investigate how neural activation changes in response to focal perturbations. This review focuses on the application of NIBS in the healthy brain. First, some basic mechanisms will be introduced and the prerequisites for carrying out NIBS studies of language are addressed. The next section outlines how NIBS can be used to characterize the contribution of the stimulated area to a task. In this context, novel approaches such as multifocal transcranial magnetic stimulation and the condition-and-perturb approach are discussed. The third part addresses the combination of NIBS and neuroimaging in the study of plasticity. These approaches are particularly suited to investigate short-term reorganization in the healthy brain and may inform models of language recovery in post-stroke aphasia.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Department of Psychology, Christian-Albrechts-University Kiel, Germany.
| |
Collapse
|
56
|
Hartwigsen G, Bergmann TO, Herz DM, Angstmann S, Karabanov A, Raffin E, Thielscher A, Siebner HR. Modeling the effects of noninvasive transcranial brain stimulation at the biophysical, network, and cognitive level. PROGRESS IN BRAIN RESEARCH 2015; 222:261-87. [PMID: 26541384 DOI: 10.1016/bs.pbr.2015.06.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Noninvasive transcranial brain stimulation (NTBS) is widely used to elucidate the contribution of different brain regions to various cognitive functions. Here we present three modeling approaches that are informed by functional or structural brain mapping or behavior profiling and discuss how these approaches advance the scientific potential of NTBS as an interventional tool in cognitive neuroscience. (i) Leveraging the anatomical information provided by structural imaging, the electric field distribution in the brain can be modeled and simulated. Biophysical modeling approaches generate testable predictions regarding the impact of interindividual variations in cortical anatomy on the injected electric fields or the influence of the orientation of current flow on the physiological stimulation effects. (ii) Functional brain mapping of the spatiotemporal neural dynamics during cognitive tasks can be used to construct causal network models. These models can identify spatiotemporal changes in effective connectivity during distinct cognitive states and allow for examining how effective connectivity is shaped by NTBS. (iii) Modeling the NTBS effects based on neuroimaging can be complemented by behavior-based cognitive models that exploit variations in task performance. For instance, NTBS-induced changes in response speed and accuracy can be explicitly modeled in a cognitive framework accounting for the speed-accuracy trade-off. This enables to dissociate between behavioral NTBS effects that emerge in the context of rapid automatic responses or in the context of slow deliberate responses. We argue that these complementary modeling approaches facilitate the use of NTBS as a means of dissecting the causal architecture of cognitive systems of the human brain.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Department of Psychology, Christian-Albrechts-University, Kiel, Germany.
| | - Til Ole Bergmann
- Department of Psychology, Christian-Albrechts-University, Kiel, Germany
| | - Damian Marc Herz
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Steffen Angstmann
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Anke Karabanov
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Estelle Raffin
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Grenoble Institute of Neuroscience, Research Centre U836 Inserm-UJF, Team 11 Brain Function & Neuromodulation, Grenoble, France
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Biomedical Engineering Section, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark.
| |
Collapse
|
57
|
Kim T, Allen EA, Pasley BN, Freeman RD. Transcranial Magnetic Stimulation Changes Response Selectivity of Neurons in the Visual Cortex. Brain Stimul 2015; 8:613-23. [PMID: 25862599 DOI: 10.1016/j.brs.2015.01.407] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/19/2014] [Accepted: 01/19/2015] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is used to selectively alter neuronal activity of specific regions in the cerebral cortex. TMS is reported to induce either transient disruption or enhancement of different neural functions. However, its effects on tuning properties of sensory neurons have not been studied quantitatively. OBJECTIVE/HYPOTHESIS Here, we use specific TMS application parameters to determine how they may alter tuning characteristics (orientation, spatial frequency, and contrast sensitivity) of single neurons in the cat's visual cortex. METHODS Single unit spikes were recorded with tungsten microelectrodes from the visual cortex of anesthetized and paralyzed cats (12 males). Repetitive TMS (4 Hz, 4 s) was delivered with a 70 mm figure-8 coil. We quantified basic tuning parameters of individual neurons for each pre- and post-TMS condition. The statistical significance of changes for each tuning parameter between the two conditions was evaluated with a Wilcoxon signed-rank test. RESULTS We generally find long-lasting suppression which persists well beyond the stimulation period. Pre- and post-TMS orientation tuning curves show constant peak values. However, strong suppression at non-preferred orientations tends to narrow the widths of tuning curves. Spatial frequency tuning exhibits an asymmetric change in overall shape, which results in an emphasis on higher frequencies. Contrast tuning curves show nonlinear changes consistent with a gain control mechanism. CONCLUSIONS These findings suggest that TMS causes extended interruption of the balance between sub-cortical and intra-cortical inputs.
Collapse
Affiliation(s)
- Taekjun Kim
- Vision Science Graduate Group, School of Optometry, University of California, Berkeley, CA 94720, USA
| | - Elena A Allen
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Brian N Pasley
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Ralph D Freeman
- Vision Science Graduate Group, School of Optometry, University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
58
|
Emergence of deglutology: a transdisciplinary field. Clin Gastroenterol Hepatol 2014; 12:2046-8. [PMID: 25194805 PMCID: PMC4465559 DOI: 10.1016/j.cgh.2014.08.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 02/07/2023]
|
59
|
Krause BM, Raz A, Uhlrich DJ, Smith PH, Banks MI. Spiking in auditory cortex following thalamic stimulation is dominated by cortical network activity. Front Syst Neurosci 2014; 8:170. [PMID: 25285071 PMCID: PMC4168681 DOI: 10.3389/fnsys.2014.00170] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 08/31/2014] [Indexed: 12/23/2022] Open
Abstract
The state of the sensory cortical network can have a profound impact on neural responses and perception. In rodent auditory cortex, sensory responses are reported to occur in the context of network events, similar to brief UP states, that produce "packets" of spikes and are associated with synchronized synaptic input (Bathellier et al., 2012; Hromadka et al., 2013; Luczak et al., 2013). However, traditional models based on data from visual and somatosensory cortex predict that ascending sensory thalamocortical (TC) pathways sequentially activate cells in layers 4 (L4), L2/3, and L5. The relationship between these two spatio-temporal activity patterns is unclear. Here, we used calcium imaging and electrophysiological recordings in murine auditory TC brain slices to investigate the laminar response pattern to stimulation of TC afferents. We show that although monosynaptically driven spiking in response to TC afferents occurs, the vast majority of spikes fired following TC stimulation occurs during brief UP states and outside the context of the L4>L2/3>L5 activation sequence. Specifically, monosynaptic subthreshold TC responses with similar latencies were observed throughout layers 2-6, presumably via synapses onto dendritic processes located in L3 and L4. However, monosynaptic spiking was rare, and occurred primarily in L4 and L5 non-pyramidal cells. By contrast, during brief, TC-induced UP states, spiking was dense and occurred primarily in pyramidal cells. These network events always involved infragranular layers, whereas involvement of supragranular layers was variable. During UP states, spike latencies were comparable between infragranular and supragranular cells. These data are consistent with a model in which activation of auditory cortex, especially supragranular layers, depends on internally generated network events that represent a non-linear amplification process, are initiated by infragranular cells and tightly regulated by feed-forward inhibitory cells.
Collapse
Affiliation(s)
- Bryan M Krause
- Neuroscience Training Program, University of Wisconsin Madison, WI, USA
| | - Aeyal Raz
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA ; Department of Anesthesiology, Rabin Medical Center, Petah-Tikva, Israel, affiliated with Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Daniel J Uhlrich
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA
| | - Philip H Smith
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA
| | - Matthew I Banks
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA ; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA
| |
Collapse
|
60
|
Li CT, Hsieh JC, Huang HH, Chen MH, Juan CH, Tu PC, Lee YC, Wang SJ, Cheng CM, Su TP. Cognition-Modulated Frontal Activity in Prediction and Augmentation of Antidepressant Efficacy: A Randomized Controlled Pilot Study. Cereb Cortex 2014; 26:202-10. [DOI: 10.1093/cercor/bhu191] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
61
|
Pashut T, Magidov D, Ben-Porat H, Wolfus S, Friedman A, Perel E, Lavidor M, Bar-Gad I, Yeshurun Y, Korngreen A. Patch-clamp recordings of rat neurons from acute brain slices of the somatosensory cortex during magnetic stimulation. Front Cell Neurosci 2014; 8:145. [PMID: 24917788 PMCID: PMC4042461 DOI: 10.3389/fncel.2014.00145] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 05/06/2014] [Indexed: 11/13/2022] Open
Abstract
Although transcranial magnetic stimulation (TMS) is a popular tool for both basic research and clinical applications, its actions on nerve cells are only partially understood. We have previously predicted, using compartmental modeling, that magnetic stimulation of central nervous system neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. The simulations also predict that neurons with low current threshold are more susceptible to magnetic stimulation. Here we tested these theoretical predictions by combining in vitro patch-clamp recordings from rat brain slices with magnetic stimulation and compartmental modeling. In agreement with the modeling, our recordings demonstrate the dependence of magnetic stimulation-triggered action potentials on the type and state of the neuron and its orientation within the magnetic field. Our results suggest that the observed effects of TMS are deeply rooted in the biophysical properties of single neurons in the central nervous system and provide a framework both for interpreting existing TMS data and developing new simulation-based tools and therapies.
Collapse
Affiliation(s)
- Tamar Pashut
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel
| | - Dafna Magidov
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel
| | - Hana Ben-Porat
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University Ramat-Gan, Israel
| | - Shuki Wolfus
- Department of Physics, Bar-Ilan University Ramat-Gan, Israel
| | - Alex Friedman
- Department of Physics, Bar-Ilan University Ramat-Gan, Israel
| | - Eli Perel
- Department of Physics, Bar-Ilan University Ramat-Gan, Israel
| | - Michal Lavidor
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel ; Department of Psychology, Bar-Ilan University Ramat-Gan, Israel
| | - Izhar Bar-Gad
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel
| | - Yosef Yeshurun
- Department of Physics, Bar-Ilan University Ramat-Gan, Israel
| | - Alon Korngreen
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel ; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University Ramat-Gan, Israel
| |
Collapse
|
62
|
Bancroft TD, Hogeveen J, Hockley WE, Servos P. TMS-induced neural noise in sensory cortex interferes with short-term memory storage in prefrontal cortex. Front Comput Neurosci 2014; 8:23. [PMID: 24634653 PMCID: PMC3942793 DOI: 10.3389/fncom.2014.00023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 02/10/2014] [Indexed: 11/13/2022] Open
Abstract
In a previous study, Harris et al. (2002) found disruption of vibrotactile short-term memory after applying single-pulse transcranial magnetic stimulation (TMS) to primary somatosensory cortex (SI) early in the maintenance period, and suggested that this demonstrated a role for SI in vibrotactile memory storage. While such a role is compatible with recent suggestions that sensory cortex is the storage substrate for working memory, it stands in contrast to a relatively large body of evidence from human EEG and single-cell recording in primates that instead points to prefrontal cortex as the storage substrate for vibrotactile memory. In the present study, we use computational methods to demonstrate how Harris et al.'s results can be reproduced by TMS-induced activity in sensory cortex and subsequent feedforward interference with memory traces stored in prefrontal cortex, thereby reconciling discordant findings in the tactile memory literature.
Collapse
Affiliation(s)
- Tyler D Bancroft
- Department of Psychology, Wilfrid Laurier University Waterloo, ON, Canada
| | - Jeremy Hogeveen
- Department of Psychology, Wilfrid Laurier University Waterloo, ON, Canada
| | - William E Hockley
- Department of Psychology, Wilfrid Laurier University Waterloo, ON, Canada
| | - Philip Servos
- Department of Psychology, Wilfrid Laurier University Waterloo, ON, Canada
| |
Collapse
|
63
|
Zhang Y, Mao RR, Chen ZF, Tian M, Tong DL, Gao ZR, Huang M, Li X, Xu X, Zhou WH, Li CY, Wang J, Xu L, Qiu Z. Deep-brain magnetic stimulation promotes adult hippocampal neurogenesis and alleviates stress-related behaviors in mouse models for neuropsychiatric disorders. Mol Brain 2014; 7:11. [PMID: 24512669 PMCID: PMC3928113 DOI: 10.1186/1756-6606-7-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 02/06/2014] [Indexed: 12/24/2022] Open
Abstract
Background Repetitive Transcranial Magnetic Stimulation (rTMS)/ Deep-brain Magnetic Stimulation (DMS) is an effective therapy for various neuropsychiatric disorders including major depression disorder. The molecular and cellular mechanisms underlying the impacts of rTMS/DMS on the brain are not yet fully understood. Results Here we studied the effects of deep-brain magnetic stimulation to brain on the molecular and cellular level. We examined the adult hippocampal neurogenesis and hippocampal synaptic plasticity of rodent under stress conditions with deep-brain magnetic stimulation treatment. We found that DMS promotes adult hippocampal neurogenesis significantly and facilitates the development of adult new-born neurons. Remarkably, DMS exerts anti-depression effects in the learned helplessness mouse model and rescues hippocampal long-term plasticity impaired by restraint stress in rats. Moreover, DMS alleviates the stress response in a mouse model for Rett syndrome and prolongs the life span of these animals dramatically. Conclusions Deep-brain magnetic stimulation greatly facilitates adult hippocampal neurogenesis and maturation, also alleviates depression and stress-related responses in animal models.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Lin Xu
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | | |
Collapse
|
64
|
Evidence for metaplasticity in the human visual cortex. J Neural Transm (Vienna) 2013; 121:221-31. [PMID: 24162796 DOI: 10.1007/s00702-013-1104-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
Abstract
The threshold and direction of excitability changes induced by low- and high-frequency repetitive transcranial magnetic stimulation (rTMS) in the primary motor cortex can be effectively reverted by a preceding session of transcranial direct current stimulation (tDCS), a phenomenon referred to as "metaplasticity". Here, we used a combined tDCS-rTMS protocol and visual evoked potentials (VEPs) in healthy subjects to provide direct electrophysiological evidence for metaplasticity in the human visual cortex. Specifically, we evaluated changes in VEPs at two different contrasts (90 and 20 %) before and at different time points after the application of anodal or cathodal tDCS to occipital cortex (i.e., priming), followed by an additional conditioning with low- or high-frequency rTMS. Anodal tDCS increased the amplitude of VEPs and this effect was paradoxically reverted by applying high-frequency (5 Hz), conventionally excitatory rTMS (p < 0.0001). Similarly, cathodal tDCS led to a decrease in VEPs amplitude, which was reverted by a subsequent application of conventionally inhibitory, 1 Hz rTMS (p < 0.0001). Similar changes were observed for both the N1 and P1 component of the VEP. There were no significant changes in resting motor threshold values (p > 0.5), confirming the spatial selectivity of our conditioning protocol. Our findings show that preconditioning primary visual area excitability with tDCS can modulate the direction and strength of plasticity induced by subsequent application of 1 or 5 Hz rTMS. These data indicate the presence of mechanisms of metaplasticity that keep synaptic strengths within a functional dynamic range in the human visual cortex.
Collapse
|
65
|
Modelling non-invasive brain stimulation in cognitive neuroscience. Neurosci Biobehav Rev 2013; 37:1702-12. [DOI: 10.1016/j.neubiorev.2013.06.014] [Citation(s) in RCA: 364] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/18/2013] [Accepted: 06/20/2013] [Indexed: 12/17/2022]
|
66
|
Krause BM, Banks MI. Analysis of stimulus-related activity in rat auditory cortex using complex spectral coefficients. J Neurophysiol 2013; 110:621-39. [DOI: 10.1152/jn.00187.2013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neural mechanisms of sensory responses recorded from the scalp or cortical surface remain controversial. Evoked vs. induced response components (i.e., changes in mean vs. variance) are associated with bottom-up vs. top-down processing, but trial-by-trial response variability can confound this interpretation. Phase reset of ongoing oscillations has also been postulated to contribute to sensory responses. In this article, we present evidence that responses under passive listening conditions are dominated by variable evoked response components. We measured the mean, variance, and phase of complex time-frequency coefficients of epidurally recorded responses to acoustic stimuli in rats. During the stimulus, changes in mean, variance, and phase tended to co-occur. After the stimulus, there was a small, low-frequency offset response in the mean and modest, prolonged desynchronization in the alpha band. Simulations showed that trial-by-trial variability in the mean can account for most of the variance and phase changes observed during the stimulus. This variability was state dependent, with smallest variability during periods of greatest arousal. Our data suggest that cortical responses to auditory stimuli reflect variable inputs to the cortical network. These analyses suggest that caution should be exercised when interpreting variance and phase changes in terms of top-down cortical processing.
Collapse
Affiliation(s)
- Bryan M. Krause
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin; and
| | - Matthew I. Banks
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
67
|
Zanto TP, Chadick JZ, Gazzaley A. Anticipatory alpha phase influences visual working memory performance. Neuroimage 2013; 85 Pt 2:794-802. [PMID: 23891902 DOI: 10.1016/j.neuroimage.2013.07.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/01/2013] [Accepted: 07/18/2013] [Indexed: 11/27/2022] Open
Abstract
Alpha band (8-12 Hz) phase dynamics in the visual cortex are thought to reflect fluctuations in cortical excitability that influences perceptual processing. As such, visual stimuli are better detected when their onset is concurrent with specific phases of the alpha cycle. However, it is unclear whether alpha phase differentially influences cognitive performance at specific times relative to stimulus onset (i.e., is the influence of phase maximal before, at, or after stimulus onset?). To address this, participants performed a delayed-recognition, working memory (WM) task for visual motion direction during two separate visits. The first visit utilized functional magnetic resonance (fMRI) imaging to identify neural regions associated with task performance. Replicating previous studies, fMRI data showed engagement of visual cortical area V5, as well as a prefrontal cortical region, the inferior frontal junction (IFJ). During the second visit, transcranial magnetic stimulation (TMS) was applied separately to both the right IFJ and right V5 (with the vertex as a control region) while electroencephalography (EEG) was simultaneously recorded. During each trial, a single pulse of TMS (spTMS) was applied at one of six time points (-200, -100, -50, 0, 80, 160 ms) relative to the encoded stimulus onset. Results demonstrated a relationship between the phase of the posterior alpha signal prior to stimulus encoding and subsequent response times to the memory probe two seconds later. Specifically, spTMS to V5, and not the IFJ or vertex, yielded faster response times, indicating improved WM performance, when delivered during the peak, compared to the trough, of the alpha cycle, but only when spTMS was applied 100 ms prior to stimulus onset. These faster responses to the probe correlated with decreased early event related potential (ERP) amplitudes (i.e., P1) to the probe stimuli. Moreover, participants that were least affected by spTMS exhibited greater functional connectivity between V5 and fronto-parietal regions. These results suggest that posterior alpha phase indexes a critical time period for motion processing in the context of WM encoding goals, which occurs in anticipation of stimulus onset.
Collapse
Affiliation(s)
- Theodore P Zanto
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| | | | | |
Collapse
|
68
|
Akaishi R, Ueda N, Sakai K. Task-related modulation of effective connectivity during perceptual decision making: dissociation between dorsal and ventral prefrontal cortex. Front Hum Neurosci 2013; 7:365. [PMID: 23874285 PMCID: PMC3710996 DOI: 10.3389/fnhum.2013.00365] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 06/25/2013] [Indexed: 11/13/2022] Open
Abstract
The dorsal and ventral parts of the lateral prefrontal cortex have been thought to play distinct roles in decision making. Although its dorsal part such as the frontal eye field (FEF) is shown to play roles in accumulation of sensory information during perceptual decision making, the role of the ventral prefrontal cortex (PFv) is not well-documented. Previous studies have suggested that the PFv is involved in selective attention to the task-relevant information and is associated with accuracy of the behavioral performance. It is unknown, however, whether the accumulation and selection processes are anatomically dissociated between the FEF and PFv. Here we show that, by using concurrent TMS and EEG recording, the short-latency (20-40 ms) TMS-evoked potentials after stimulation of the FEF change as a function of the time to behavioral response, whereas those after stimulation of the PFv change depending on whether the response is correct or not. The potentials after stimulation of either region did not show significant interaction between time to response and performance accuracy, suggesting dissociation between the processes subserved by the FEF and PFv networks. The results are consistent with the idea that the network involving the FEF plays a role in information accumulation, whereas the network involving the PFv plays a role in selecting task relevant information. In addition, stimulation of the FEF and PFv induced activation in common regions in the dorsolateral and medial frontal cortices, suggesting convergence of information processed in the two regions. Taken together, the results suggest dissociation between the FEF and PFv networks for their computational roles in perceptual decision making. The study also highlights the advantage of TMS-EEG technique in investigating the computational processes subserved by the neural network in the human brain with a high temporal resolution.
Collapse
Affiliation(s)
- Rei Akaishi
- Department of Cognitive Neuroscience, Graduate School of Medicine, The University of Tokyo Tokyo, Japan ; Department of Experimental Psychology, University of Oxford Oxford, UK
| | | | | |
Collapse
|
69
|
Noninvasive brain stimulation: from physiology to network dynamics and back. Nat Neurosci 2013; 16:838-44. [PMID: 23799477 DOI: 10.1038/nn.3422] [Citation(s) in RCA: 394] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/06/2013] [Indexed: 02/07/2023]
Abstract
Noninvasive brain stimulation techniques have been widely used for studying the physiology of the CNS, identifying the functional role of specific brain structures and, more recently, exploring large-scale network dynamics. Here we review key findings that contribute to our understanding of the mechanisms underlying the physiological and behavioral effects of these techniques. We highlight recent innovations using noninvasive stimulation to investigate global brain network dynamics and organization. New combinations of these techniques, in conjunction with neuroimaging, will further advance the utility of their application.
Collapse
|
70
|
Sommer M, Rummel M, Norden C, Rothkegel H, Lang N, Paulus W. Mechanisms of human motor cortex facilitation induced by subthreshold 5-Hz repetitive transcranial magnetic stimulation. J Neurophysiol 2013; 109:3060-6. [PMID: 23536708 DOI: 10.1152/jn.01089.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our knowledge about the mechanisms of human motor cortex facilitation induced by repetitive transcranial magnetic stimulation (rTMS) is still incomplete. Here we used pharmacological conditioning with carbamazepine, dextrometorphan, lorazepam, and placebo to elucidate the type of plasticity underlying this facilitation, and to probe if mechanisms reminiscent of long-term potentiation are involved. Over the primary motor cortex of 10 healthy subjects, we applied biphasic rTMS pulses of effective posterior current direction in the brain. We used six blocks of 200 pulses at 5-Hz frequency and 90% active motor threshold intensity and controlled for corticospinal excitability changes using motor-evoked potential (MEP) amplitudes and latencies elicited by suprathreshold pulses before, in between, and after rTMS. Target muscle was the dominant abductor digiti minimi muscle; we coregistered the dominant extensor carpi radialis muscle. We found a lasting facilitation induced by this type of rTMS. The GABAergic medication lorazepam and to a lesser extent the ion channel blocker carbamazepine reduced the MEP facilitation after biphasic effective posteriorly oriented rTMS, whereas the N-methyl-d-aspartate receptor-antagonist dextrometorphan had no effect. Our main conclusion is that the mechanism of the facilitation induced by biphasic effective posterior rTMS is more likely posttetanic potentiation than long-term potentiation. Additional findings were prolonged MEP latency under carbamazepine, consistent with sodium channel blockade, and larger MEP amplitudes from extensor carpi radialis under lorazepam, suggesting GABAergic involvement in the center-surround balance of excitability.
Collapse
Affiliation(s)
- Martin Sommer
- Dept. of Clinical Neurophysiology, Univ. of Goettingen, Goettingen, Germany.
| | | | | | | | | | | |
Collapse
|
71
|
Transcranial Magnetic and Electric Stimulation in Perception and Cognition Research. ACTA ACUST UNITED AC 2013. [DOI: 10.1201/b14174-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
72
|
Liu S, Shi L, Wang D, Chen J, Jiang Z, Wang W, Chu WCW, Wang T, Ahuja AT. MRI-GUIDED NAVIGATION AND POSITIONING SOLUTION FOR REPETITIVE TRANSCRANIAL MAGNETIC STIMULATION. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS 2013. [DOI: 10.4015/s1016237213500129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A MRI-guided navigation solution for repetitive transcranial magnetic stimulation (rTMS)was designed in this study which integrates optical positioning system to perform positioning and tracking of the magnetic stimulation coil in real-time. The system includes the following procedures: segmentation and 3D reconstruction of brain anatomy from T1-weighted (T1W) MRI, coil calibration and localization, spatial registration between the subject's head and the MRI data and 2D/3D navigation. The 2D/3D navigation provides the spatial relationship between actual sites of the coils and the cortical surface quantitively and allows visualization of the location and orientation of the coil over the brain/head. Verified through the experiments using a phantom human skull model and the head MRI data from a healthy human subject, the proposed navigation system was demonstrated to be flexible, safe, accurate and time efficient.
Collapse
Affiliation(s)
- Shangping Liu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong
- College of Bioengineering, Chongqing University, Chongqing, P. R. China
| | - Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong
| | - Defeng Wang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong
| | - Ji Chen
- College of Bioengineering, Chongqing University, Chongqing, P. R. China
| | - Zhimin Jiang
- School of Electronics Engineering and Computer Science, Peking University, Beijing, P. R. China
| | - Weimin Wang
- School of Electronics Engineering and Computer Science, Peking University, Beijing, P. R. China
| | - Winnie CW Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong
| | - Tianfu Wang
- Shenzhen Key Lab of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, P. R. China
| | - A. T. Ahuja
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong
| |
Collapse
|
73
|
Abstract
Noninvasive brain stimulation (NIBS) is a unique method for studying cognitive function. For the study of cognition, NIBS has gained popularity as a complementary method to functional neuroimaging. By bypassing the correlative approaches of standard imaging techniques, it is possible to establish a putative relationship between brain cognition. In fact, functional neuroimaging data cannot demonstrate the actual role of a particular cortical activation in a specific function because an activated area may simply be correlated with task performance, rather than being responsible for it. NIBS can induce a temporary modification of performance only if the stimulated area is causally engaged in the task. In analogy with lesion studies, NIBS can provide information about where and when a particular process occurs. Based on this assumption, NIBS has been used in many different cognitive domains. However, one of the most interesting questions in neuroscience may not be where and when, but how cognitive activity occurs. Beyond localization approaches, NIBS can be employed to study brain mechanisms. NIBS techniques have the potential to influence behavior transiently by altering neuronal activity, which may have facilitatory or inhibitory behavioral effects. NIBS techniques include transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES). TMS has been shown transiently to modulate neural excitability in a manner that is dependent mainly on the timing and frequency of stimulation (high versus low). The mechanism underlying tES is a change in neuronal membrane potentials that appears to be dependent mainly on the direction of current flow (anodal versus cathodal). Nevertheless, the final effects induced by TMS or tES depend on many technical parameters used during stimulation, such as the intensity of stimulation, coil orientation, site of the reference electrode, and time of application. Moreover, an important factor is the possible interactions between these factors and the physiological and cognitive state of the subject. To use NIBS in cognition, it is important to understand not only how NIBS functions but also the brain mechanisms being studied and the features of the area of interest. To describe better the advanced knowledge provided by NIBS in cognition, we will treat each NIBS technique separately and underline the related hypotheses beyond applications.
Collapse
Affiliation(s)
- Carlo Miniussi
- Department of Clinical and Experimental Sciences, National Institute of Neuroscience, University of Brescia, Brescia, Italy; Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | | |
Collapse
|
74
|
Lefebvre J, Hutt A, Leblanc VG, Longtin A. Reduced dynamics for delayed systems with harmonic or stochastic forcing. CHAOS (WOODBURY, N.Y.) 2012; 22:043121. [PMID: 23278056 DOI: 10.1063/1.4760250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The analysis of nonlinear delay-differential equations (DDEs) subjected to external forcing is difficult due to the infinite dimensionality of the space in which they evolve. To simplify the analysis of such systems, the present work develops a non-homogeneous center manifold (CM) reduction scheme, which allows the derivation of a time-dependent order parameter equation in finite dimension. This differential equation captures the major dynamical features of the delayed system. The forcing is assumed to be small compared to the amplitude of the autonomous system, in order to cause only small variations of the fixed points and of the autonomous CM. The time-dependent CM is shown to satisfy a non-homogeneous partial differential equation. We first briefly review CM theory for DDEs. Then we show, for the general scalar case, how an ansatz that separates the CM into one for the autonomous problem plus an additional time-dependent order-two correction leads to satisfying results. The paper then details the application to a transcritical bifurcation subjected to single or multiple periodic forcings. The validity limits of the reduction scheme are also highlighted. Finally, we characterize the specific case of additive stochastic driving of the transcritical bifurcation, where additive white noise shifts the mode of the probability density function of the state variable to larger amplitudes.
Collapse
Affiliation(s)
- Jérémie Lefebvre
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada.
| | | | | | | |
Collapse
|
75
|
Changes in basal ganglia processing of cortical input following magnetic stimulation in Parkinsonism. Neurobiol Dis 2012; 48:464-73. [PMID: 22885186 DOI: 10.1016/j.nbd.2012.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/01/2012] [Accepted: 07/22/2012] [Indexed: 11/22/2022] Open
Abstract
Parkinsonism is associated with major changes in neuronal activity throughout the cortico-basal ganglia loop. Current measures quantify changes in baseline neuronal and network activity but do not capture alterations in information propagation throughout the system. Here, we applied a novel non-invasive magnetic stimulation approach using a custom-made mini-coil that enabled us to study transmission of neuronal activity throughout the cortico-basal ganglia loop in both normal and parkinsonian primates. By magnetically perturbing cortical activity while simultaneously recording neuronal responses along the cortico-basal ganglia loop, we were able to directly investigate modifications in descending cortical activity transmission. We found that in both the normal and parkinsonian states, cortical neurons displayed similar multi-phase firing rate modulations in response to magnetic stimulation. However, in the basal ganglia, large synaptically driven stereotypic neuronal modulation was present in the parkinsonian state that was mostly absent in the normal state. The stimulation-induced neuronal activity pattern highlights the change in information propagation along the cortico-basal ganglia loop. Our findings thus point to the role of abnormal dynamic activity transmission rather than changes in baseline activity as a major component in parkinsonian pathophysiology. Moreover, our results hint that the application of transcranial magnetic stimulation (TMS) in human patients of different disorders may result in different neuronal effects than the one induced in normal subjects.
Collapse
|
76
|
Richardson AG, Fetz EE. Brain state-dependence of electrically evoked potentials monitored with head-mounted electronics. IEEE Trans Neural Syst Rehabil Eng 2012; 20:756-61. [PMID: 22801526 DOI: 10.1109/tnsre.2012.2204902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Inferring changes in brain connectivity is critical to studies of learning-related plasticity and stimulus-induced conditioning of neural circuits. In addition, monitoring spontaneous fluctuations in connectivity can provide insight into information processing during different brain states. Here, we quantified state-dependent connectivity changes throughout the 24-h sleep-wake cycle in freely behaving monkeys. A novel, head-mounted electronic device was used to electrically stimulate at one site and record evoked potentials at other sites. Electrically evoked potentials (EEPs) revealed the connectivity pattern between several cortical sites and the basal forebrain. We quantified state-dependent changes in the EEPs. Cortico-cortical EEP amplitude increased during slow-wave sleep, compared to wakefulness, while basal-cortical EEP amplitude decreased. The results demonstrate the utility of using portable electronics to document state-dependent connectivity changes in freely behaving primates.
Collapse
Affiliation(s)
- Andrew G Richardson
- Department of Physiology and Biophysics and Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
77
|
Weisz N, Steidle L, Lorenz I. Formerly known as inhibitory: effects of 1-Hz rTMS on auditory cortex are state-dependent. Eur J Neurosci 2012; 36:2077-87. [PMID: 22591265 DOI: 10.1111/j.1460-9568.2012.08097.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The major repetitive transcranial magnetic stimulation (rTMS) paradigm applied to the treatment of tinnitus has been the 1-Hz variant due to its alleged inhibitory effects. Clinical effects have, however, been hampered by great interindividual variability as well as the fact that TMS includes no explicit mechanism to modulate excitability in circumscribed regions of tonotopically organised auditory fields. Following studies showing that the effect of TMS depends on the activational state preceding the stimulation, participants were exposed to 10 min of either notch- or bandpass-filtered noise prior to 1-Hz rTMS applied to the left auditory cortex. A control group was additionally assessed using bandpass noise - albeit with subsequent sham stimulation - to assess whether effects were due to the differential sounds alone or to a genuine interaction between sound and rTMS. Electroencephalogram was recorded from 128 electrodes before and after the experimental treatment while participants performed an auditory intensity discrimination task. While state-dependency effects from the behavioural data are not conclusive, several condition × (sound) frequency effects (some specific to the stimulated side) could be observed. Importantly, many of these could not be explained by the use of rTMS or the filtered noise alone. The resulting patterns are, however, complex and temporally variable, which currently prohibits recommendations on how to design a clinically effective approach to treat tinnitus. Nevertheless, our study gives the first evidence that state-dependency principles can induce sound frequency-specific effects in the auditory cortex, providing a crucial proof-of-principle upon which future studies can build.
Collapse
Affiliation(s)
- Nathan Weisz
- Department of Psychology, University of Konstanz, Konstanz, Germany.
| | | | | |
Collapse
|
78
|
Abstract
When attempting to identify an object based on smell alone, people often visualize the perceived source of the odorant. This close association between olfactory and visual functions is supported by neuroimaging studies demonstrating activation of visual cortex during performance of purely olfactory tasks. Such activation might simply reflect the correlation between olfactory percepts and the corresponding visual images, or it might reflect a causal contribution of visual processing to olfactory perception. Here we provide evidence in support of the latter possibility. Using repetitive transcranial magnetic stimulation, we show that stimulating human visual cortex improves performance on a task requiring discrimination among different odor qualities. No significant improvement is found for tasks involving discrimination between intensities of the same odor, from stimulation of auditory cortex, or from "sham" stimulation. These results are thus consistent with a specific visual cortical influence on high-level olfactory perception. They also demonstrate that unimodal perceptual tasks are influenced by processing within cortical areas of other, seemingly unrelated, sensory systems.
Collapse
|
79
|
Vanneste S, De Ridder D. Noninvasive and Invasive Neuromodulation for the Treatment of Tinnitus: An Overview. Neuromodulation 2012; 15:350-60. [DOI: 10.1111/j.1525-1403.2012.00447.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
80
|
Abstract
A recent study (Di Lazzaro et al. J Neurophysiol 105: 2150-2156, 2011) describes the findings from a rigorous comparison on the effects of several popular variations of transcranial magnetic stimulation (TMS) protocols. The results demonstrate that excitatory and inhibitory neural networks may be independently modulated based on TMS protocol selection. Moreover, the within-group replication of multiple between-group experiments suggests that independent evaluations of TMS parameters will continue to inform and guide future TMS research.
Collapse
Affiliation(s)
- Michael T Rubens
- Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA, USA.
| | | |
Collapse
|
81
|
Richter L, Ernst F, Schlaefer A, Schweikard A. Robust real-time robot-world calibration for robotized transcranial magnetic stimulation. Int J Med Robot 2011; 7:414-22. [PMID: 21834131 DOI: 10.1002/rcs.411] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2011] [Indexed: 11/08/2022]
Abstract
BACKGROUND For robotized transcranial magnetic stimulation (TMS), the magnetic coil is placed on the patient's head by a robot. As the robotized TMS system requires tracking of head movements, robot and tracking camera need to be calibrated. However, for robotized TMS in a clinical setting, such calibration is required frequently. Mounting/unmounting a marker to the end effector and moving the robot into different poses is impractical. Moreover, if either system is moved during treatment, recalibration is required. METHODS To overcome this limitation, we propose to directly track a marker at link three of the articulated arm. Using forward kinematics and a constant marker transform to link three, the calibration can be performed instantly. RESULTS Our experimental results indicate an accuracy similar to standard hand-eye calibration approaches. It also outperforms classical hand-held navigated TMS systems. CONCLUSION This robust online calibration greatly enhances the system's user-friendliness and safety.
Collapse
Affiliation(s)
- Lars Richter
- Institute for Robotics and Cognitive Systems, University of Lübeck, Germany.
| | | | | | | |
Collapse
|
82
|
Reithler J, Peters J, Sack A. Multimodal transcranial magnetic stimulation: Using concurrent neuroimaging to reveal the neural network dynamics of noninvasive brain stimulation. Prog Neurobiol 2011; 94:149-65. [DOI: 10.1016/j.pneurobio.2011.04.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/31/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
|
83
|
Miniussi C, Rossini PM. Transcranial magnetic stimulation in cognitive rehabilitation. Neuropsychol Rehabil 2011; 21:579-601. [PMID: 21462081 DOI: 10.1080/09602011.2011.562689] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) can generate an increase or a decrease of neuronal excitability, which can modulate cognition and behaviour. Transcranial magnetic stimulation-induced cortical changes have been shown to result in neural plasticity. Thus, TMS provides an important opportunity to gain more insight into the mechanisms responsible for the remarkable flexibility of the central nervous system. The aim of this review was to cover the topics that could be useful when using TMS in the cognitive rehabilitation field after brain damage. The basic TMS principles are introduced, together with the clinical application for diagnosis and prognosis, the biological aspects, and the use in cognitive neuroscience studies. Finally, several hypotheses are discussed to explain the likely mechanisms induced by TMS that favour the recovery of a function after brain damage and cause the adult brain to undergo plasticity. The possibility of non-invasively interacting with the functioning of the brain and its plasticity mechanisms - a possibility that may eventually lead to cognitive and behavioural modifications - opens new and exciting scenarios in the cognitive neurorehabilitation field.
Collapse
Affiliation(s)
- Carlo Miniussi
- Dept of Biomedical Sciences and Biotechnologies, National Institute of Neuroscience, University of Brescia, Brescia, Italy.
| | | |
Collapse
|
84
|
Stochastic resonance effects reveal the neural mechanisms of transcranial magnetic stimulation. J Neurosci 2011; 31:3143-7. [PMID: 21368025 DOI: 10.1523/jneurosci.4863-10.2011] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a popular method for studying causal relationships between neural activity and behavior. However, its mode of action remains controversial, and so far there is no framework to explain its wide range of facilitatory and inhibitory behavioral effects. While some theoretical accounts suggest that TMS suppresses neuronal processing, other competing accounts propose that the effects of TMS result from the addition of noise to neuronal processing. Here we exploited the stochastic resonance phenomenon to distinguish these theoretical accounts and determine how TMS affects neuronal processing. Specifically, we showed that online TMS can induce stochastic resonance in the human brain. At low intensity, TMS facilitated the detection of weak motion signals, but with higher TMS intensities and stronger motion signals, we found only impairment in detection. These findings suggest that TMS acts by adding noise to neuronal processing, at least in an online TMS protocol. Importantly, such stochastic resonance effects may also explain why TMS parameters that under normal circumstances impair behavior can induce behavioral facilitations when the stimulated area is in an adapted or suppressed state.
Collapse
|
85
|
Transcranial magnetic stimulation of macaque frontal eye fields decreases saccadic reaction time. Exp Brain Res 2011; 212:143-52. [PMID: 21544509 DOI: 10.1007/s00221-011-2710-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 04/20/2011] [Indexed: 10/18/2022]
Abstract
Transcranial magnetic stimulation (TMS) is increasingly used to perturb targeted human brain sites non-invasively, to test for causal effects on performance of cognitive tasks. TMS might also be used in non-human primates to complement invasive work and compare with human studies. Here, we targeted the frontal eye fields (FEF) in two macaques with a continuous theta-burst (cTBS) protocol, testing the impact on visually guided saccades. After unilateral cTBS over the FEF in either hemisphere, a small (mean 7 ms) but highly consistent decrease in saccadic reaction times (RTs) was observed. Lower latencies arose for saccades both contra- and ipsilateral to the stimulated FEF after cTBS. These results provide the first demonstration that TMS can be used to affect saccadic behavior in non-human primates. The unexpectedly bilateral impact on RTs may reflect an impact on 'fixation' neurons in the FEF and/or transcallosal modulation of both FEFs induced by unilateral cTBS. In either case, this study demonstrates a clear behavioral effect induced by TMS in awake behaving monkeys performing a cognitive task. This opens new opportunities for investigating the causal roles of targeted brain areas in behavior, for measuring physiological consequences of TMS in the primate brain, and ultimately for human-monkey comparisons.
Collapse
|
86
|
Ruzzoli M, Abrahamyan A, Clifford CWG, Marzi CA, Miniussi C, Harris JA. The effect of TMS on visual motion sensitivity: an increase in neural noise or a decrease in signal strength? J Neurophysiol 2011; 106:138-43. [PMID: 21543749 DOI: 10.1152/jn.00746.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The underlying mechanisms of action of transcranial magnetic stimulation (TMS) are still a matter of debate. TMS may impair a subject's performance by increasing neural noise, suppressing the neural signal, or both. Here, we delivered a single pulse of TMS (spTMS) to V5/MT during a motion direction discrimination task while concurrently manipulating the level of noise in the motion stimulus. Our results indicate that spTMS essentially acts by suppressing the strength of the relevant visual signal. We suggest that TMS may induce a pattern of neural activity that complements the ongoing activation elicited by the sensory signal in a manner that partially impoverishes that signal.
Collapse
Affiliation(s)
- Manuela Ruzzoli
- Department of Neurological, Neuropsychological, Morphological and Motor Sciences, University of Verona, Verona, Italy.
| | | | | | | | | | | |
Collapse
|
87
|
McAllister SM, Rothwell JC, Ridding MC. Cortical oscillatory activity and the induction of plasticity in the human motor cortex. Eur J Neurosci 2011; 33:1916-24. [DOI: 10.1111/j.1460-9568.2011.07673.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
88
|
Espinosa N, Mariño J, de Labra C, Cudeiro J. Cortical modulation of the transient visual response at thalamic level: a TMS study. PLoS One 2011; 6:e17041. [PMID: 21347322 PMCID: PMC3037393 DOI: 10.1371/journal.pone.0017041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 01/12/2011] [Indexed: 11/19/2022] Open
Abstract
The transient visual response of feline dorsal lateral geniculate nucleus (dLGN) cells was studied under control conditions and during the application of repetitive transcranial magnetic stimulation at 1 Hz (rTMS@1Hz) on the primary visual cortex (V1). The results show that rTMS@1Hz modulates the firing mode of Y cells, inducing an increase in burst spikes and a decrease in tonic firing. On the other hand, rTMS@1Hz modifies the spatiotemporal characteristics of receptive fields of X cells, inducing a delay and a decrease of the peak response, and a change of the surround/center amplitude ratio of RF profiles. These results indicate that V1 controls the activity of the visual thalamus in a different way in the X and Y pathways, and that this feedback control is consistent with functional roles associated with each cell type.
Collapse
Affiliation(s)
- Nelson Espinosa
- Neuroscience and Motor Control Group (NEUROcom) and Biomedical Institute of A Coruña (INIBIC), University of A Coruña, A Coruña, Spain
| | - Jorge Mariño
- Neuroscience and Motor Control Group (NEUROcom) and Biomedical Institute of A Coruña (INIBIC), University of A Coruña, A Coruña, Spain
| | - Carmen de Labra
- Neuroscience and Motor Control Group (NEUROcom) and Biomedical Institute of A Coruña (INIBIC), University of A Coruña, A Coruña, Spain
| | - Javier Cudeiro
- Neuroscience and Motor Control Group (NEUROcom) and Biomedical Institute of A Coruña (INIBIC), University of A Coruña, A Coruña, Spain
| |
Collapse
|
89
|
Verstynen T, Ivry RB. Network dynamics mediating ipsilateral motor cortex activity during unimanual actions. J Cogn Neurosci 2011; 23:2468-80. [PMID: 21268666 DOI: 10.1162/jocn.2011.21612] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Executing difficult actions with the left hand results in bilateral activity of motor areas along the precentral gyrus. Using TMS and fMRI, we explored the functional relationship between primary (M1) and premotor areas during unimanual actions, focusing on M1 activity in the ipsilateral hemisphere. Single-pulse TMS revealed that the amplitude of motor-evoked potentials (MEPs), elicited in the stationary right-hand muscles following left M1 stimulation, fluctuated with the state of homologous muscles in the moving left hand. This ipsilateral excitability was pronounced when the left-hand movements were more complex. We used fMRI to visualize the cortical dynamics during unimanual actions. Trial-by-trial fluctuations in ipsilateral M1 activity were correlated with contralateral M1 responses and this correlation increased with movement complexity. Consistent with previous studies, the left caudal precentral premotor area (pcPM) was engaged during movements of either hand. Following low-frequency rTMS over left pcPM, the correlation between the activity level in the two M1s increased. This finding indicates that left pcPM may regulate the unintentional mirroring of motor commands in M1 during unilateral movement.
Collapse
Affiliation(s)
- Timothy Verstynen
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
90
|
Tischler H, Wolfus S, Friedman A, Perel E, Pashut T, Lavidor M, Korngreen A, Yeshurun Y, Bar-Gad I. Mini-coil for magnetic stimulation in the behaving primate. J Neurosci Methods 2010; 194:242-51. [PMID: 20974177 DOI: 10.1016/j.jneumeth.2010.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 09/28/2010] [Accepted: 10/15/2010] [Indexed: 11/16/2022]
Abstract
Transcranial magnetic stimulation (TMS) is rapidly becoming a leading method in both cognitive neuroscience and clinical neurology. However, the cellular and network level effects of stimulation are still unclear and their study relies heavily on indirect physiological measurements in humans. Direct electrophysiological studies of the effect of magnetic stimulation on neuronal activity in behaving animals are severely limited by both the size of the stimulating coils, which affect large regions of the animal brain, and the large artifacts generated on the recording electrodes. We present a novel mini-coil which is specifically aimed at studying the neurophysiological mechanism of magnetic stimulation in behaving primates. The mini-coil fits into a chronic recording chamber and provides focal activation of brain areas while enabling simultaneous extracellular multi-electrode recordings. We present a comparison of this coil to a commercial coil based on the theoretical and recorded magnetic fields and induced electric fields they generate. Subsequently, we present the signal recorded in the behaving primate during stimulation and demonstrate the ability to extract the spike trains of multiple single units from each of the electrodes with minimal periods affected by the stimulus artifact (median period <2.5 ms). The directly recorded effect of the magnetic stimulation on cortical neurons is in line with peripheral recordings obtained in humans. This novel mini-coil is a key part of the infrastructure for studying the neurophysiological basis of magnetic stimulation, thereby enabling the development and testing of better magnetic stimulation tools and protocols for both neuroscientists and clinicians.
Collapse
Affiliation(s)
- Hadass Tischler
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Pasalar S, Ro T, Beauchamp MS. TMS of posterior parietal cortex disrupts visual tactile multisensory integration. Eur J Neurosci 2010; 31:1783-90. [PMID: 20584182 DOI: 10.1111/j.1460-9568.2010.07193.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Functional neuroimaging studies have implicated a number of brain regions, especially the posterior parietal cortex (PPC), as being potentially important for visual-tactile multisensory integration. However, neuroimaging studies are correlational and do not prove the necessity of a region for the behavioral improvements that are the hallmark of multisensory integration. To remedy this knowledge gap, we interrupted activity in the PPC, near the junction of the anterior intraparietal sulcus and the postcentral sulcus, using MRI-guided transcranial magnetic stimulation (TMS) while subjects localized touches delivered to different fingers. As the touches were delivered, subjects viewed a congruent touch video, an incongruent touch video, or no video. Without TMS, a strong effect of multisensory integration was observed, with significantly better behavioral performance for discrimination of congruent multisensory touch than for unisensory touch alone. Incongruent multisensory touch produced a smaller improvement in behavioral performance. TMS of the PPC eliminated the behavioral advantage of both congruent and incongruent multisensory stimuli, reducing performance to unisensory levels. These results demonstrate a causal role for the PPC in visual-tactile multisensory integration. Taken together with converging evidence from other studies, these results support a model in which the PPC contains a map of space around the hand that receives input from both the visual and somatosensory modalities. Activity in this map is likely to be the neural substrate for visual-tactile multisensory integration.
Collapse
Affiliation(s)
- Siavash Pasalar
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, 6431 Fannin St Suite G.550, Houston, TX 77030, USA
| | | | | |
Collapse
|
92
|
Vercammen A, Knegtering H, Liemburg EJ, den Boer JA, Aleman A. Functional connectivity of the temporo-parietal region in schizophrenia: effects of rTMS treatment of auditory hallucinations. J Psychiatr Res 2010; 44:725-31. [PMID: 20189190 DOI: 10.1016/j.jpsychires.2009.12.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 11/26/2009] [Accepted: 12/22/2009] [Indexed: 10/19/2022]
Abstract
Auditory-verbal hallucinations are a hallmark symptom of schizophrenia. In recent years, repetitive transcranial magnetic stimulation (rTMS) targeting speech perception areas has been advanced as a potential treatment of medication-resistant hallucinations. However, the underlying neural processes remain unclear. This study aimed to assess whether 1 Hz rTMS treatment would affect functional connectivity of the temporo-parietal junction (TPJ). Resting state fMRI scans were obtained from 18 patients with schizophrenia. Patients were assessed before and after a 6 day treatment with 1 Hz rTMS to the left TPJ, or placebo treatment with sham rTMS to the same location. We assessed functional connectivity between a priori defined regions-of-interest (ROIs) comprising the putative AVH network and the bilateral TPJ seed regions, targeted with rTMS. Symptom improvement following rTMS treatment was observed in the left rTMS group, whereas no change at occurred in the placebo group. Although no corresponding changes were observed in the functional connections previously found to be associated with AVH severity, an increase in connectivity between the left TPJ and the right insula was observed in group receiving rTMS to the left TPJ. The placebo group conversely showed a decrease in connectivity between the left TPJ and left anterior cingulate. We conclude that application of 1 Hz rTMS to the left TPJ region may affect functional connectivity of the targeted region. However, the relationship between these functional changes during the resting state and the rate of clinical improvement needs further clarification.
Collapse
Affiliation(s)
- Ans Vercammen
- Department of Neuroscience, University Medical Center Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
93
|
Hamidi M, Johson JS, Feredoes E, Postle BR. Does high-frequency repetitive transcranial magnetic stimulation produce residual and/or cumulative effects within an experimental session? Brain Topogr 2010; 23:355-67. [PMID: 20623171 DOI: 10.1007/s10548-010-0153-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 06/26/2010] [Indexed: 10/19/2022]
Abstract
A common procedure for studying the effects on cognition of repetitive transcranial magnetic stimulation (rTMS) is to deliver rTMS concurrent with task performance, and to compare task performance on these trials versus on trials without rTMS. Recent evidence that TMS can have effects on neural activity that persist longer than the experimental session itself, however, raise questions about the assumption of the transient nature of rTMS that underlies many concurrent (or "online") rTMS designs. To our knowledge, there have been no studies in the cognitive domain examining whether the application of brief trains of rTMS during specific epochs of a complex task may have effects that spill over into subsequent task epochs, and perhaps into subsequent trials. We looked for possible immediate spill-over and longer-term cumulative effects of rTMS in data from two studies of visual short-term delayed recognition. In 54 subjects, 10-Hz rTMS trains were applied to five different brain regions during the 3-s delay period of a spatial task, and in a second group of 15 subjects, electroencephalography (EEG) was recorded while 10-Hz rTMS was applied to two brain areas during the 3-s delay period of both spatial and object tasks. No evidence for immediate effects was found in the comparison of the memory probe-evoked response on trials that were vs. were not preceded by delay-period rTMS. No evidence for cumulative effects was found in analyses of behavioral performance, and of EEG signal, as a function of task block. The implications of these findings, and their relation to the broader literature on acute vs. long-lasting effects of rTMS, are considered.
Collapse
Affiliation(s)
- Massihullah Hamidi
- Medical Scientist Training Program, University of Wisconsin, Madison, USA
| | | | | | | |
Collapse
|
94
|
Price GW, Lee JW, Garvey CAL, Gibson N. The use of background EEG activity to determine stimulus timing as a means of improving rTMS efficacy in the treatment of depression: A controlled comparison with standard techniques. Brain Stimul 2010; 3:140-52. [DOI: 10.1016/j.brs.2009.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 08/20/2009] [Accepted: 08/21/2009] [Indexed: 01/18/2023] Open
|
95
|
The use of transcranial magnetic stimulation in cognitive neuroscience: a new synthesis of methodological issues. Neurosci Biobehav Rev 2010; 35:516-36. [PMID: 20599555 DOI: 10.1016/j.neubiorev.2010.06.005] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 06/15/2010] [Accepted: 06/17/2010] [Indexed: 10/19/2022]
Abstract
Transcranial magnetic stimulation (TMS) has become a mainstay of cognitive neuroscience, thus facing new challenges due to its widespread application on behaviorally silent areas. In this review we will summarize the main technical and methodological considerations that are necessary when using TMS in cognitive neuroscience, based on a corpus of studies and technical improvements that has become available in most recent years. Although TMS has been applied only relatively recently on a large scale to the study of higher functions, a range of protocols that elucidate how this technique can be used to investigate a variety of issues is already available, such as single pulse, paired pulse, dual-site, repetitive and theta burst TMS. Finally, we will touch on recent promising approaches that provide powerful new insights about causal interactions among brain regions (i.e., TMS with other neuroimaging techniques) and will enable researchers to enhance the functional resolution of TMS (i.e., state-dependent TMS). We will end by briefly summarizing and discussing the implications of the newest safety guidelines.
Collapse
|
96
|
Ruzzoli M, Marzi CA, Miniussi C. The Neural Mechanisms of the Effects of Transcranial Magnetic Stimulation on Perception. J Neurophysiol 2010; 103:2982-9. [DOI: 10.1152/jn.01096.2009] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a technique used to study perceptual, motor, and cognitive functions in the human brain. Its effects have been likened to a “virtual brain lesion,” but a direct test of this assumption is lacking. To verify this hypothesis, we measured psychophysically the interaction between the neural activity induced by a visual motion-direction discrimination task and that induced by TMS. The visual stimulus featured two elements: a visual signal (dots that moved coherently in one direction) and visual noise (dots that moved randomly in many directions). Three hypotheses were tested to explain the impairment in performance as a result of TMS: 1) a decrease in signal strength; 2) an induction of randomly distributed neural noise with an accompanying decrement in system sensitivity; and 3) a suppression of relevant information processing and addition of neural noise. We provide evidence in favor of the second hypothesis by showing that TMS basically acts by adding neural noise to the perceptual process.
Collapse
Affiliation(s)
- Manuela Ruzzoli
- Department of Neurological and Vision Sciences, University of Verona, Verona
- Cognitive Neuroscience Section, IRCCS San Giovanni di Dio Fatebenefratelli, Brescia; and
| | - Carlo A. Marzi
- Department of Neurological and Vision Sciences, University of Verona, Verona
| | - Carlo Miniussi
- Cognitive Neuroscience Section, IRCCS San Giovanni di Dio Fatebenefratelli, Brescia; and
- Department of Biomedical Sciences and Biotechnologies, National Institute of Neuroscience, University of Brescia, Brescia, Italy
| |
Collapse
|
97
|
Waterston ML, Pack CC. Improved discrimination of visual stimuli following repetitive transcranial magnetic stimulation. PLoS One 2010; 5:e10354. [PMID: 20442776 PMCID: PMC2860988 DOI: 10.1371/journal.pone.0010354] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 03/30/2010] [Indexed: 11/18/2022] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) at certain frequencies increases thresholds for motor-evoked potentials and phosphenes following stimulation of cortex. Consequently rTMS is often assumed to introduce a “virtual lesion” in stimulated brain regions, with correspondingly diminished behavioral performance. Methodology/Principal Findings Here we investigated the effects of rTMS to visual cortex on subjects' ability to perform visual psychophysical tasks. Contrary to expectations of a visual deficit, we find that rTMS often improves the discrimination of visual features. For coarse orientation tasks, discrimination of a static stimulus improved consistently following theta-burst stimulation of the occipital lobe. Using a reaction-time task, we found that these improvements occurred throughout the visual field and lasted beyond one hour post-rTMS. Low-frequency (1 Hz) stimulation yielded similar improvements. In contrast, we did not find consistent effects of rTMS on performance in a fine orientation discrimination task. Conclusions/Significance Overall our results suggest that rTMS generally improves or has no effect on visual acuity, with the nature of the effect depending on the type of stimulation and the task. We interpret our results in the context of an ideal-observer model of visual perception.
Collapse
|
98
|
Caffeine enhances frontal relative negativity of slow brain potentials in a task-free experimental setup. Brain Res Bull 2010; 82:39-45. [DOI: 10.1016/j.brainresbull.2010.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 12/24/2009] [Accepted: 01/22/2010] [Indexed: 11/21/2022]
|
99
|
Blankenburg F, Ruff CC, Bestmann S, Bjoertomt O, Josephs O, Deichmann R, Driver J. Studying the role of human parietal cortex in visuospatial attention with concurrent TMS-fMRI. Cereb Cortex 2010; 20:2702-11. [PMID: 20176690 PMCID: PMC2951847 DOI: 10.1093/cercor/bhq015] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Combining transcranial magnetic stimulation (TMS) with concurrent functional magnetic resonance imaging (fMRI) allows study of how local brain stimulation may causally affect activity in remote brain regions. Here, we applied bursts of high- or low-intensity TMS over right posterior parietal cortex, during a task requiring sustained covert visuospatial attention to either the left or right hemifield, or in a neutral control condition, while recording blood oxygenation-level–dependent signal with a posterior MR surface coil. As expected, the active attention conditions activated components of the well-described “attention network,” as compared with the neutral baseline. Also as expected, when comparing left minus right attention, or vice versa, contralateral occipital visual cortex was activated. The critical new finding was that the impact of high- minus low-intensity parietal TMS upon these visual regions depended on the currently attended side. High- minus low-intensity parietal TMS increased the difference between contralateral versus ipsilateral attention in right extrastriate visual cortex. A related albeit less pronounced pattern was found for left extrastriate visual cortex. Our results confirm that right human parietal cortex can exert attention-dependent influences on occipital visual cortex and provide a proof of concept for the use of concurrent TMS–fMRI in studying how remote influences can vary in a purely top–down manner with attentional demands.
Collapse
Affiliation(s)
- Felix Blankenburg
- Department of Neurology and Bernstein Center for Computational Neuroscience, Charité, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
100
|
Hemond C, Brown RM, Robertson EM. A distraction can impair or enhance motor performance. J Neurosci 2010; 30:650-4. [PMID: 20071529 PMCID: PMC2823087 DOI: 10.1523/jneurosci.4592-09.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 11/04/2009] [Accepted: 11/11/2009] [Indexed: 11/21/2022] Open
Abstract
Humans have a prodigious capacity to perform multiple tasks simultaneously. Being distracted while, for example, performing a complex motor skill adds complexity to a task and thus leads to a performance impairment. Yet, it may not be just the presence or absence of a distraction that affects motor performance. Instead, the characteristics of the distraction may play a critical role in affecting human motor performance. Here, we show that performance of a motor sequence can be substantially enhanced by simultaneously learning an independent color sequence. In contrast, performance of the same motor sequence was impaired by concurrently counting the number of red cues that were in the color sequence. The color and motor sequences had different lengths (10 vs 12 items), different numbers of elements (five vs four elements), and different temporal patterns (randomly intermittent vs continuous) and thus were independent of one another. These observations show that distracting information does not always impair motor performance, and so is not a sufficient explanation for the impaired performance. Instead, the influence that a distraction exerts upon performance is mediated by the type of processes engaged: when similar core processes are engaged, motor performance is enhanced, whereas when very different processes are engaged (i.e., counting and sequence performance), performance is impaired. Thus, these observations deepen our understanding of how a distraction, depending on its characteristics, can either impair or enhance performance and may offer novel approaches to optimizing human cognition.
Collapse
Affiliation(s)
- Christopher Hemond
- Center for Noninvasive Brain Stimulation, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, and
| | - Rachel M. Brown
- Department of Psychology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Edwin M. Robertson
- Center for Noninvasive Brain Stimulation, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, and
| |
Collapse
|