51
|
Mark KG, Rape M. Ubiquitin-dependent regulation of transcription in development and disease. EMBO Rep 2021; 22:e51078. [PMID: 33779035 DOI: 10.15252/embr.202051078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/29/2020] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Transcription is an elaborate process that is required to establish and maintain the identity of the more than two hundred cell types of a metazoan organism. Strict regulation of gene expression is therefore vital for tissue formation and homeostasis. An accumulating body of work found that ubiquitylation of histones, transcription factors, or RNA polymerase II is crucial for ensuring that transcription occurs at the right time and place during development. Here, we will review principles of ubiquitin-dependent control of gene expression and discuss how breakdown of these regulatory circuits leads to a wide array of human diseases.
Collapse
Affiliation(s)
- Kevin G Mark
- Department of Molecular Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Michael Rape
- Department of Molecular Cell Biology, University of California at Berkeley, Berkeley, CA, USA.,Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| |
Collapse
|
52
|
Kwon OS, Mishra R, Safieddine A, Coleno E, Alasseur Q, Faucourt M, Barbosa I, Bertrand E, Spassky N, Le Hir H. Exon junction complex dependent mRNA localization is linked to centrosome organization during ciliogenesis. Nat Commun 2021; 12:1351. [PMID: 33649372 PMCID: PMC7921557 DOI: 10.1038/s41467-021-21590-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 01/14/2021] [Indexed: 12/17/2022] Open
Abstract
Exon junction complexes (EJCs) mark untranslated spliced mRNAs and are crucial for the mRNA lifecycle. An imbalance in EJC dosage alters mouse neural stem cell (mNSC) division and is linked to human neurodevelopmental disorders. In quiescent mNSC and immortalized human retinal pigment epithelial (RPE1) cells, centrioles form a basal body for ciliogenesis. Here, we report that EJCs accumulate at basal bodies of mNSC or RPE1 cells and decline when these cells differentiate or resume growth. A high-throughput smFISH screen identifies two transcripts accumulating at centrosomes in quiescent cells, NIN and BICD2. In contrast to BICD2, the localization of NIN transcripts is EJC-dependent. NIN mRNA encodes a core component of centrosomes required for microtubule nucleation and anchoring. We find that EJC down-regulation impairs both pericentriolar material organization and ciliogenesis. An EJC-dependent mRNA trafficking towards centrosome and basal bodies might contribute to proper mNSC division and brain development. Exon junction complexes (EJCs) that mark untranslated mRNA are involved in transport, translation and nonsense-mediated mRNA decay. Here the authors show centrosomal localization of EJCs which appears to be required for both the localization of NIN mRNA around centrosomes and ciliogenesis.
Collapse
Affiliation(s)
- Oh Sung Kwon
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Rahul Mishra
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Adham Safieddine
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Emeline Coleno
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Quentin Alasseur
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Marion Faucourt
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Isabelle Barbosa
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Hervé Le Hir
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France.
| |
Collapse
|
53
|
Iegiani G, Gai M, Di Cunto F, Pallavicini G. CENPE Inhibition Leads to Mitotic Catastrophe and DNA Damage in Medulloblastoma Cells. Cancers (Basel) 2021; 13:cancers13051028. [PMID: 33804489 PMCID: PMC7957796 DOI: 10.3390/cancers13051028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Medulloblastoma (MB) is the most frequent brain tumor in children. The standard treatment consists in surgery, followed by radiotherapy and chemotherapy. These therapies are only partially effective, since many patients still die and those who survive suffer from neurological and endocrine disorders. Therefore, more effective therapies are needed. CENPE is a gene critical for normal proliferation and survival of neural progenitors. Since there is evidence that MB cells are very similar to neural progenitors, we hypothesized that CENPE could be an effective target for MB treatment. In MB cell lines, CENPE depletion induced defects in division and resulted in cell death. To consolidate CENPE as a target for MB treatment, we tested GSK923295, a specific inhibitor already in clinical trials for other cancer types. GSK923295 induced effects similar to CENPE depletion at low nM levels, supporting the idea that CENPE’s inhibition could be a viable strategy for MB treatment. Abstract Medulloblastoma (MB) is the most frequent brain tumor in children. The standard treatment consists in surgery, followed by radiotherapy and chemotherapy. These therapies are only partially effective since many patients still die and those who survive suffer from neurological and endocrine disorders. Therefore, more effective therapies are needed. Primary microcephaly (MCPH) is a rare disorder caused by mutations in 25 different genes. Centromere-associated protein E (CENPE) heterozygous mutations cause the MCPH13 syndrome. As for other MCPH genes, CENPE is required for normal proliferation and survival of neural progenitors. Since there is evidence that MB shares many molecular features with neural progenitors, we hypothesized that CENPE could be an effective target for MB treatment. In ONS-76 and DAOY cells, CENPE knockdown induced mitotic defects and apoptosis. Moreover, CENPE depletion induced endogenous DNA damage accumulation, activating TP53 or TP73 as well as cell death signaling pathways. To consolidate CENPE as a target for MB treatment, we tested GSK923295, an allosteric inhibitor already in clinical trial for other cancer types. GSK923295, induced effects similar to CENPE depletion with higher penetrance, at low nM levels, suggesting that CENPE’s inhibition could be a therapeutic strategy for MB treatment.
Collapse
Affiliation(s)
- Giorgia Iegiani
- Neuroscience Institute Cavalieri Ottolenghi, 10043 Turin, Italy;
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, 10126 Turin, Italy
| | - Marta Gai
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy;
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, 10043 Turin, Italy;
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, 10126 Turin, Italy
- Correspondence: (F.D.C.); (G.P.)
| | - Gianmarco Pallavicini
- Neuroscience Institute Cavalieri Ottolenghi, 10043 Turin, Italy;
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, 10126 Turin, Italy
- Correspondence: (F.D.C.); (G.P.)
| |
Collapse
|
54
|
Klingler E, Francis F, Jabaudon D, Cappello S. Mapping the molecular and cellular complexity of cortical malformations. Science 2021; 371:371/6527/eaba4517. [PMID: 33479124 DOI: 10.1126/science.aba4517] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cerebral cortex is an intricate structure that controls human features such as language and cognition. Cortical functions rely on specialized neurons that emerge during development from complex molecular and cellular interactions. Neurodevelopmental disorders occur when one or several of these steps is incorrectly executed. Although a number of causal genes and disease phenotypes have been identified, the sequence of events linking molecular disruption to clinical expression mostly remains obscure. Here, focusing on human malformations of cortical development, we illustrate how complex interactions at the genetic, cellular, and circuit levels together contribute to diversity and variability in disease phenotypes. Using specific examples and an online resource, we propose that a multilevel assessment of disease processes is key to identifying points of vulnerability and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Esther Klingler
- Department of Basic Neurosciences, University of Geneva, CH-1202 Geneva, Switzerland
| | - Fiona Francis
- INSERM U 1270, F-75005 Paris, France.,Sorbonne University, UMR-S 1270, F-75005 Paris, France.,Institut du Fer à Moulin, F-75005 Paris, France
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, CH-1202 Geneva, Switzerland. .,Clinic of Neurology, Geneva University Hospital, 1211 Geneva, Switzerland
| | | |
Collapse
|
55
|
Loss of Coiled-Coil Protein Cep55 Impairs Neural Stem Cell Abscission and Results in p53-Dependent Apoptosis in Developing Cortex. J Neurosci 2021; 41:3344-3365. [PMID: 33622776 DOI: 10.1523/jneurosci.1955-20.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/24/2020] [Accepted: 02/13/2021] [Indexed: 12/23/2022] Open
Abstract
To build the brain, embryonic neural stem cells (NSCs) tightly regulate their cell divisions, undergoing a polarized form of cytokinesis that is poorly understood. Cytokinetic abscission is mediated by the midbody to sever the daughter cells at the apical membrane. In cell lines, the coiled-coil protein Cep55 was reported to be required for abscission. Mutations of Cep55 in humans cause a variety of cortical malformations. However, its role in the specialized divisions of NSCs is unclear. Here, we elucidate the roles of Cep55 in abscission and brain development. KO of Cep55 in mice causes abscission defects in neural and non-neural cell types, and postnatal lethality. The brain is disproportionately affected, with severe microcephaly at birth. Quantitative analyses of abscission in fixed and live cortical NSCs show that Cep55 acts to increase the speed and success rate of abscission, by facilitating ESCRT recruitment and timely microtubule disassembly. However, most NSCs complete abscission successfully in the absence of Cep55 Those that fail show a tissue-specific response: binucleate NSCs and neurons elevate p53, but binucleate fibroblasts do not. This leads to massive apoptosis in the brain, but not other tissues. Double KO of both p53 and Cep55 blocks apoptosis but only partially rescues Cep55 -/- brain size. This may be because of the persistent NSC cell division defects and p53-independent premature cell cycle exit. This work adds to emerging evidence that abscission regulation and error tolerance vary by cell type and are especially crucial in neural stem cells as they build the brain.SIGNIFICANCE STATEMENT During brain growth, embryonic neural stem cells (NSCs) must divide many times. In the last step of cell division, the daughter cell severs its connection to the mother stem cell, a process called abscission. The protein Cep55 is thought to be essential for recruiting proteins to the mother-daughter cell connection to complete abscission. We find that Cep55 mutants have very small brains with disturbed structure, but almost normal size bodies. NSC abscission can occur, but it is slower than normal, and failures are increased. Furthermore, NSCs that do fail abscission activate a signal for programmed cell death, whereas non-neural cells do not. Blocking this signal only partly restores brain growth, showing that regulation of abscission is crucial for brain development.
Collapse
|
56
|
Li G, Chen S, Zhang Y, Xu H, Xu D, Wei Z, Gao X, Cai W, Mao N, Zhang L, Li S, Yang F, Liu H, Li S. Matrix stiffness regulates α-TAT1-mediated acetylation of α-tubulin and promotes silica-induced epithelial-mesenchymal transition via DNA damage. J Cell Sci 2021; 134:224091. [PMID: 33310909 DOI: 10.1242/jcs.243394] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Silicosis is characterized by silica exposure-induced lung interstitial fibrosis and formation of silicotic nodules, resulting in lung stiffening. The acetylation of microtubules mediated by α-tubulin N-acetyltransferase 1 (α-TAT1) is a posttranslational modification that promotes microtubule stability in response to mechanical stimulation. α-TAT1 and downstream acetylated α-tubulin (Ac-α-Tub) are decreased in silicosis, promoting the epithelial-mesenchymal transition (EMT); however, the underlying mechanisms are unknown. We found that silica, matrix stiffening or their combination triggered Ac-α-Tub downregulation in alveolar epithelial cells, followed by DNA damage and replication stress. α-TAT1 elevated Ac-α-Tub to limit replication stress and the EMT via trafficking of p53-binding protein 1 (53BP1, also known as TP53BP1). The results provide evidence that α-TAT1 and Ac-α-Tub inhibit the EMT and silicosis fibrosis by preventing 53BP1 mislocalization and relieving DNA damage. This study provides insight into how the cell cycle is regulated during the EMT and why the decrease in α-TAT1 and Ac-α-Tub promotes silicosis fibrosis.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Gengxu Li
- Basic Medicine College, North China University of Science and Technology, Tangshan 063210, China
| | - Si Chen
- Department of Neurosurgery, Tangshan People's Hospital, Tangshan 063210, China
| | - Yi Zhang
- Basic Medicine College, North China University of Science and Technology, Tangshan 063210, China
| | - Hong Xu
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| | - Dingjie Xu
- College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan 063210, China
| | - Zhongqiu Wei
- Basic Medicine College, North China University of Science and Technology, Tangshan 063210, China
| | - Xuemin Gao
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| | - Wenchen Cai
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| | - Na Mao
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| | - Lijuan Zhang
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| | - Shumin Li
- Basic Medicine College, North China University of Science and Technology, Tangshan 063210, China
| | - Fang Yang
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| | - Heliang Liu
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| | - Shifeng Li
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
57
|
Phan TP, Maryniak AL, Boatwright CA, Lee J, Atkins A, Tijhuis A, Spierings DCJ, Bazzi H, Foijer F, Jordan PW, Stracker TH, Holland AJ. Centrosome defects cause microcephaly by activating the 53BP1-USP28-TP53 mitotic surveillance pathway. EMBO J 2021; 40:e106118. [PMID: 33226141 PMCID: PMC7780150 DOI: 10.15252/embj.2020106118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Abstract
Mutations in centrosome genes deplete neural progenitor cells (NPCs) during brain development, causing microcephaly. While NPC attrition is linked to TP53-mediated cell death in several microcephaly models, how TP53 is activated remains unclear. In cultured cells, mitotic delays resulting from centrosome loss prevent the growth of unfit daughter cells by activating a pathway involving 53BP1, USP28, and TP53, termed the mitotic surveillance pathway. Whether this pathway is active in the developing brain is unknown. Here, we show that the depletion of centrosome proteins in NPCs prolongs mitosis and increases TP53-mediated apoptosis. Cell death after a delayed mitosis was rescued by inactivation of the mitotic surveillance pathway. Moreover, 53BP1 or USP28 deletion restored NPC proliferation and brain size without correcting the upstream centrosome defects or extended mitosis. By contrast, microcephaly caused by the loss of the non-centrosomal protein SMC5 is also TP53-dependent but is not rescued by loss of 53BP1 or USP28. Thus, we propose that mutations in centrosome genes cause microcephaly by delaying mitosis and pathologically activating the mitotic surveillance pathway in the developing brain.
Collapse
Affiliation(s)
- Thao P Phan
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Aubrey L Maryniak
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | | | - Junsu Lee
- Johns Hopkins UniversityBaltimoreMDUSA
| | - Alisa Atkins
- Department of Biochemistry and Molecular BiologyBloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMDUSA
| | - Andrea Tijhuis
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Diana CJ Spierings
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Hisham Bazzi
- Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Department of Dermatology and VenereologyUniversity Hospital of CologneKölnGermany
| | - Floris Foijer
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Philip W Jordan
- Department of Biochemistry and Molecular BiologyBloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMDUSA
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Andrew J Holland
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
58
|
Abstract
The mammalian cerebral cortex is the pinnacle of brain evolution, reaching its maximum complexity in terms of neuron number, diversity and functional circuitry. The emergence of this outstanding complexity begins during embryonic development, when a limited number of neural stem and progenitor cells manage to generate myriads of neurons in the appropriate numbers, types and proportions, in a process called neurogenesis. Here we review the current knowledge on the regulation of cortical neurogenesis, beginning with a description of the types of progenitor cells and their lineage relationships. This is followed by a review of the determinants of neuron fate, the molecular and genetic regulatory mechanisms, and considerations on the evolution of cortical neurogenesis in vertebrates leading to humans. We finish with an overview on how dysregulation of neurogenesis is a leading cause of human brain malformations and functional disabilities.
Collapse
Affiliation(s)
- Ana Villalba
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Magdalena Götz
- Institute for Stem Cell Research, Helmholtz Zentrum München & Biomedical Center, Ludwig-Maximilians Universitaet, Planegg-Martinsried, Germany
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain.
| |
Collapse
|
59
|
Soto-Perez J, Baumgartner M, Kanadia RN. Role of NDE1 in the Development and Evolution of the Gyrified Cortex. Front Neurosci 2020; 14:617513. [PMID: 33390896 PMCID: PMC7775536 DOI: 10.3389/fnins.2020.617513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
An expanded cortex is a hallmark of human neurodevelopment and endows increased cognitive capabilities. Recent work has shown that the cell cycle-related gene NDE1 is essential for proper cortical development. Patients who have mutations in NDE1 exhibit congenital microcephaly as a primary phenotype. At the cellular level, NDE1 is essential for interkinetic nuclear migration and mitosis of radial glial cells, which translates to an indispensable role in neurodevelopment. The nuclear migration function of NDE1 is well conserved across Opisthokonta. In mammals, multiple isoforms containing alternate terminal exons, which influence the functionality of NDE1, have been reported. It has been noted that the pattern of terminal exon usage mirrors patterns of cortical complexity in mammals. To provide context to these findings, here, we provide a comprehensive review of the literature regarding NDE1, its molecular biology and physiological relevance at the cellular and organismal levels. In particular, we outline the potential roles of NDE1 in progenitor cell behavior and explore the spectrum of NDE1 pathogenic variants. Moreover, we assessed the evolutionary conservation of NDE1 and interrogated whether the usage of alternative terminal exons is characteristic of species with gyrencephalic cortices. We found that gyrencephalic species are more likely to express transcripts that use the human-associated terminal exon, whereas lissencephalic species tend to express transcripts that use the mouse-associated terminal exon. Among gyrencephalic species, the human-associated terminal exon was preferentially expressed by those with a high order of gyrification. These findings underscore phylogenetic relationships between the preferential usage of NDE1 terminal exon and high-order gyrification, which provide insight into cortical evolution underlying high-order brain functions.
Collapse
Affiliation(s)
- Jaseph Soto-Perez
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | | | - Rahul N. Kanadia
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
60
|
Lago-Baldaia I, Fernandes VM, Ackerman SD. More Than Mortar: Glia as Architects of Nervous System Development and Disease. Front Cell Dev Biol 2020; 8:611269. [PMID: 33381506 PMCID: PMC7767919 DOI: 10.3389/fcell.2020.611269] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Glial cells are an essential component of the nervous system of vertebrates and invertebrates. In the human brain, glia are as numerous as neurons, yet the importance of glia to nearly every aspect of nervous system development has only been expounded over the last several decades. Glia are now known to regulate neural specification, synaptogenesis, synapse function, and even broad circuit function. Given their ubiquity, it is not surprising that the contribution of glia to neuronal disease pathogenesis is a growing area of research. In this review, we will summarize the accumulated evidence of glial participation in several distinct phases of nervous system development and organization-neural specification, circuit wiring, and circuit function. Finally, we will highlight how these early developmental roles of glia contribute to nervous system dysfunction in neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Inês Lago-Baldaia
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Vilaiwan M. Fernandes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Sarah D. Ackerman
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, United States
| |
Collapse
|
61
|
Di Marco B, Crouch EE, Shah B, Duman C, Paredes MF, Ruiz de Almodovar C, Huang EJ, Alfonso J. Reciprocal Interaction between Vascular Filopodia and Neural Stem Cells Shapes Neurogenesis in the Ventral Telencephalon. Cell Rep 2020; 33:108256. [PMID: 33053356 DOI: 10.1016/j.celrep.2020.108256] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/30/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis and neurogenesis are tightly coupled during embryonic brain development. However, little is known about how these two processes interact. We show that nascent blood vessels actively contact dividing neural stem cells by endothelial filopodia in the ventricular zone (VZ) of the murine ventral telencephalon; this association is conserved in the human ventral VZ. Using mouse mutants with altered vascular filopodia density, we show that this interaction leads to prolonged cell cycle of apical neural progenitors (ANPs) and favors early neuronal differentiation. Interestingly, pharmacological experiments reveal that ANPs induce vascular filopodia formation by upregulating vascular endothelial growth factor (VEGF)-A in a cell-cycle-dependent manner. This mutual relationship between vascular filopodia and ANPs works as a self-regulatory system that senses ANP proliferation rates and rapidly adjusts neuronal production levels. Our findings indicate a function of vascular filopodia in fine-tuning neural stem cell behavior, which is the basis for proper brain development.
Collapse
Affiliation(s)
- Barbara Di Marco
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Elizabeth E Crouch
- Department of Pediatrics, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Bhavin Shah
- European Center for Angioscience, Medicine Faculty Mannheim and Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany; Institute for Transfusion Medicine and Immunology, Medicine Faculty Mannheim and Heidelberg University, Friedrich-Ebert-Straße 107, 68167 Mannheim, Germany
| | - Ceren Duman
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Mercedes F Paredes
- Department of Neurology, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Carmen Ruiz de Almodovar
- European Center for Angioscience, Medicine Faculty Mannheim and Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany; Institute for Transfusion Medicine and Immunology, Medicine Faculty Mannheim and Heidelberg University, Friedrich-Ebert-Straße 107, 68167 Mannheim, Germany
| | - Eric J Huang
- Department of Pathology, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Julieta Alfonso
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
62
|
Pavone P, Pappalardo XG, Praticò AD, Polizzi A, Ruggieri M, Piccione M, Corsello G, Falsaperla R. Primary Microcephaly with Novel Variant of MCPH1 Gene in Twins: Both Manifesting in Childhood at the Same Time with Hashimoto's Thyroiditis. J Pediatr Genet 2020; 9:177-182. [PMID: 32714618 DOI: 10.1055/s-0040-1710046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
Abstract
This study is a clinical report on twin females affected by primary microcephaly who displayed at molecular analysis of heterozygous novel MCPH1 variant. The twins at the age of 10 years developed, in coincidental time, a diagnosis of autoimmune juvenile thyroiditis. The main clinical features presented by the twins consisted of primary microcephaly with occipitofrontal circumference measuring -2 or -3 standard deviation, facial dysmorphism, typical nonsyndromic microcephaly, and mild intellectual disability. Molecular analysis of the major genes involved in primary microcephaly was performed and the following result was found in the twins: MCPH1 ; chr8.6357416; c.2180 C > T (rs 199861426), p.Pro727. Leu; heterozygous; missense; variant of uncertain significance (class 3). At the age of 10 years, the twins started to have, in coincidental time, marked asthenia and episodes of emotiveness, and laboratory exams disclosed a high level of antithyroid peroxidase leading to the diagnosis of autoimmune juvenile thyroiditis with normal thyroid function. The novel heterozygous MCPH1 variant found in the twins may be directly or indirectly involved in the onset of the primary microcephaly. The thyroid disorder in the twins and its onset, in a coincidental time, confirmed the effect of genetic predisposition on the pathogenesis of the immune thyroiditis.
Collapse
Affiliation(s)
- Piero Pavone
- Department of Clinical and Experimental Medicine, Pediatric Clinic, University Hospital, A.U.O. "Policlinico-Vittorio Emanuele," Catania, Italy
| | - Xena Giada Pappalardo
- National Council of Research, Institute for Biomedical Research and Innovation (IRIB), Unit of Catania, Catania, Italy.,Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Andrea Domenico Praticò
- Department of Clinical and Experimental Medicine, Pediatric Clinic, University Hospital, A.U.O. "Policlinico-Vittorio Emanuele," Catania, Italy
| | - Agata Polizzi
- Department of Educational Sciences, Chair of Pediatrics, University of Catania, Catania, Italy
| | - Martino Ruggieri
- Department of Clinical and Experimental Medicine, Pediatric Clinic, University Hospital, A.U.O. "Policlinico-Vittorio Emanuele," Catania, Italy
| | - Maria Piccione
- Operative Unit of Pediatrics and Neonatal Intensive Therapy, Department of Mother and Child, University of Palermo, Palermo, Italy
| | - Giovanni Corsello
- Operative Unit of Pediatrics and Neonatal Intensive Therapy, Department of Mother and Child, University of Palermo, Palermo, Italy
| | - Raffaele Falsaperla
- Department of Pediatrics and Pediatric Emergency, University Hospital, A.U.O. "Policlinico Vittorio Emanuele," Catania, Italy
| |
Collapse
|
63
|
Chan WK, Griffiths R, Price DJ, Mason JO. Cerebral organoids as tools to identify the developmental roots of autism. Mol Autism 2020; 11:58. [PMID: 32660622 PMCID: PMC7359249 DOI: 10.1186/s13229-020-00360-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Some autism spectrum disorders (ASD) likely arise as a result of abnormalities during early embryonic development of the brain. Studying human embryonic brain development directly is challenging, mainly due to ethical and practical constraints. However, the recent development of cerebral organoids provides a powerful tool for studying both normal human embryonic brain development and, potentially, the origins of neurodevelopmental disorders including ASD. Substantial evidence now indicates that cerebral organoids can mimic normal embryonic brain development and neural cells found in organoids closely resemble their in vivo counterparts. However, with prolonged culture, significant differences begin to arise. We suggest that cerebral organoids, in their current form, are most suitable to model earlier neurodevelopmental events and processes such as neurogenesis and cortical lamination. Processes implicated in ASDs which occur at later stages of development, such as synaptogenesis and neural circuit formation, may also be modeled using organoids. The accuracy of such models will benefit from continuous improvements to protocols for organoid differentiation.
Collapse
Affiliation(s)
- Wai Kit Chan
- Centre for Discovery Brain Sciences and Simons Initiative for the Developing Brain, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - Rosie Griffiths
- Centre for Discovery Brain Sciences and Simons Initiative for the Developing Brain, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - David J Price
- Centre for Discovery Brain Sciences and Simons Initiative for the Developing Brain, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - John O Mason
- Centre for Discovery Brain Sciences and Simons Initiative for the Developing Brain, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
64
|
Sepe RM, Ghiron JHL, Zucchetti I, Caputi L, Tarallo R, Crocetta F, De Santis R, D'Aniello S, Sordino P. The EJC component Magoh in non-vertebrate chordates. Dev Genes Evol 2020; 230:295-304. [PMID: 32632492 DOI: 10.1007/s00427-020-00664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 07/01/2020] [Indexed: 11/26/2022]
Abstract
Earliest craniates possess a newly enlarged, elaborated forebrain with new cell types and neuronal networks. A key question in vertebrate evolution is when and how this cerebral expansion took place. The exon-junction complex (EJC) plays an essential role in mRNA processing of all Eukarya. Recently, it has been proposed that the EJC represses recursive RNA splicing in Deuterostomes, with implication in human brain diseases like microcephaly and depression. However, the EJC or EJC subunit contribution to brain development in non-vertebrate Deuterostomes remained unknown. Being interested in the evolution of chordate characters, we focused on the model species, Branchiostoma lanceolatum (Cephalochordata) and Ciona robusta (Tunicata), with the aim to investigate the ancestral and the derived expression state of Magoh orthologous genes. This study identifies that Magoh is part of a conserved syntenic group exclusively in vertebrates and suggests that Magoh has experienced duplication and loss events in mammals. During early development in amphioxus and ascidian, maternal contribution and zygotic expression of Magoh genes in various types of progenitor cells and tissues are consistent with the condition observed in other Bilateria. Later in development, we also show expression of Magoh in the brain of cephalochordate and ascidian larvae. Collectively, these results provide a basis to further define what functional role(s) Magoh exerted during nervous system development and evolution.
Collapse
Affiliation(s)
- Rosa Maria Sepe
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, 80121, Naples, Italy
| | - Jung Hee Levialdi Ghiron
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, 80121, Naples, Italy
| | - Ivana Zucchetti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, 80121, Naples, Italy
| | - Luigi Caputi
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, 80121, Naples, Italy
| | - Raffaella Tarallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, 80121, Naples, Italy
| | - Fabio Crocetta
- Department of Integrated Marine Ecology, Stazione Zoologica Anton Dohrn Napoli, 80121, Naples, Italy
| | - Rosaria De Santis
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, 80121, Naples, Italy
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, 80121, Naples, Italy.
| | - Paolo Sordino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, 80121, Naples, Italy.
| |
Collapse
|
65
|
Esgleas M, Falk S, Forné I, Thiry M, Najas S, Zhang S, Mas-Sanchez A, Geerlof A, Niessing D, Wang Z, Imhof A, Götz M. Trnp1 organizes diverse nuclear membrane-less compartments in neural stem cells. EMBO J 2020; 39:e103373. [PMID: 32627867 PMCID: PMC7429739 DOI: 10.15252/embj.2019103373] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 11/09/2022] Open
Abstract
TMF1‐regulated nuclear protein 1 (Trnp1) has been shown to exert potent roles in neural development affecting neural stem cell self‐renewal and brain folding, but its molecular function in the nucleus is still unknown. Here, we show that Trnp1 is a low complexity protein with the capacity to phase separate. Trnp1 interacts with factors located in several nuclear membrane‐less organelles, the nucleolus, nuclear speckles, and condensed chromatin. Importantly, Trnp1 co‐regulates the architecture and function of these nuclear compartments in vitro and in the developing brain in vivo. Deletion of a highly conserved region in the N‐terminal intrinsic disordered region abolishes the capacity of Trnp1 to regulate nucleoli and heterochromatin size, proliferation, and M‐phase length; decreases the capacity to phase separate; and abrogates most of Trnp1 protein interactions. Thus, we identified Trnp1 as a novel regulator of several nuclear membrane‐less compartments, a function important to maintain cells in a self‐renewing proliferative state.
Collapse
Affiliation(s)
- Miriam Esgleas
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians Universitaet Muenchen, Planegg/Munich, Germany.,Institute for Stem Cell Research, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sven Falk
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians Universitaet Muenchen, Planegg/Munich, Germany.,Institute for Stem Cell Research, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ignasi Forné
- Protein Analysis Unit, BioMedical Center (BMC), Ludwig-Maximilians-Universitaet Muenchen, Planegg/Munich, Germany
| | - Marc Thiry
- Cell and Tissue Biology Unit, GIGA-Neurosciences, University of Liege, C.H.U. Sart Tilman, Liege, Belgium
| | - Sonia Najas
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians Universitaet Muenchen, Planegg/Munich, Germany.,Institute for Stem Cell Research, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sirui Zhang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Aina Mas-Sanchez
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians Universitaet Muenchen, Planegg/Munich, Germany.,Institute for Stem Cell Research, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| | - Dierk Niessing
- Group Intracellular Transport and RNA Biology at the Institute of Structural Biology, Helmholtz Zentrum Muenchen, Neuherberg, Germany.,Department of Cell Biology, BioMedical Center (BMC), Ludwig-Maximilians-Universitaet Muenchen, Planegg/Munich, Germany
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Axel Imhof
- Protein Analysis Unit, BioMedical Center (BMC), Ludwig-Maximilians-Universitaet Muenchen, Planegg/Munich, Germany.,SYNERGY, Excellence Cluster of Systems Neurology, BioMedical Center (BMC), Ludwig-Maximilians-Universitaet Muenchen, Planegg/Munich, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians Universitaet Muenchen, Planegg/Munich, Germany.,Institute for Stem Cell Research, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany.,SYNERGY, Excellence Cluster of Systems Neurology, BioMedical Center (BMC), Ludwig-Maximilians-Universitaet Muenchen, Planegg/Munich, Germany
| |
Collapse
|
66
|
Mitchell-Dick A, Chalem A, Pilaz LJ, Silver DL. Acute Lengthening of Progenitor Mitosis Influences Progeny Fate during Cortical Development in vivo. Dev Neurosci 2020; 41:300-317. [PMID: 32541147 DOI: 10.1159/000507113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/10/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND/AIMS Prenatal microcephaly is posited to arise from aberrant mitosis of neural progenitors, which disrupts both neuronal production and survival. Although microcephaly has both a genetic and environmental etiology, the mechanisms by which dysregulation of mitosis causes microcephaly are poorly understood. We previously discovered that prolonged mitosis of mouse neural progenitors, either ex vivo or in vitro, directly alters progeny cell fate, -resulting in precocious differentiation and apoptosis. This raises questions as to whether prolonged progenitor mitosis affects cell fate and neurogenesis in vivo, and what are the underlying mechanisms? METHODS/RESULTS Towards addressing these knowledge gaps, we developed an in vivo model of mitotic delay. This uses pharmacological inhibition to acutely and reversibly prolong mitosis during cortical development, and fluorescent dyes to label direct progeny. Using this model, we discovered that a causal relationship between mitotic delay of neural progenitors and altered progeny cell fate is evident in vivo. Using transcriptome analyses to investigate the state of delayed cells and their progeny, we uncovered potential molecular mechanisms by which prolonged mitosis induces altered cell fates, including DNA damage and p53 signaling. We then extended our studies to human neural progenitors, demonstrating that lengthened mitosis duration also directly alters neuronal cell fate. CONCLUSIONS This study establishes a valuable new experimental paradigm towards understanding mechanisms whereby lengthened mitosis duration may explain some cases of microcephaly.
Collapse
Affiliation(s)
- Aaron Mitchell-Dick
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Andrea Chalem
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Louis-Jan Pilaz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA.,Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA, .,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA, .,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA, .,Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina, USA,
| |
Collapse
|
67
|
Hagey DW, Topcic D, Kee N, Reynaud F, Bergsland M, Perlmann T, Muhr J. CYCLIN-B1/2 and -D1 act in opposition to coordinate cortical progenitor self-renewal and lineage commitment. Nat Commun 2020; 11:2898. [PMID: 32518258 PMCID: PMC7283355 DOI: 10.1038/s41467-020-16597-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 05/13/2020] [Indexed: 11/09/2022] Open
Abstract
The sequential generation of layer-specific cortical neurons requires radial glia cells (RGCs) to precisely balance self-renewal and lineage commitment. While specific cell-cycle phases have been associated with these decisions, the mechanisms linking the cell-cycle machinery to cell-fate commitment remain obscure. Using single-cell RNA-sequencing, we find that the strongest transcriptional signature defining multipotent RGCs is that of G2/M-phase, and particularly CYCLIN-B1/2, while lineage-committed progenitors are enriched in G1/S-phase genes, including CYCLIN-D1. These data also reveal cell-surface markers that allow us to isolate RGCs and lineage-committed progenitors, and functionally confirm the relationship between cell-cycle phase enrichment and cell fate competence. Finally, we use cortical electroporation to demonstrate that CYCLIN-B1/2 cooperate with CDK1 to maintain uncommitted RGCs by activating the NOTCH pathway, and that CYCLIN-D1 promotes differentiation. Thus, this work establishes that cell-cycle phase-specific regulators act in opposition to coordinate the self-renewal and lineage commitment of RGCs via core stem cell regulatory pathways.
Collapse
Affiliation(s)
- Daniel W Hagey
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65, Stockholm, Sweden.
| | - Danijal Topcic
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65, Stockholm, Sweden
| | - Nigel Kee
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65, Stockholm, Sweden
| | - Florie Reynaud
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65, Stockholm, Sweden
| | - Maria Bergsland
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65, Stockholm, Sweden
| | - Thomas Perlmann
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65, Stockholm, Sweden
| | - Jonas Muhr
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65, Stockholm, Sweden.
| |
Collapse
|
68
|
Li X, Feng Y, Yan M, Tu X, Xie B, Ni F, Qu C, Chen JG. Inhibition of Autism-Related Crm1 Disrupts Mitosis and Induces Apoptosis of the Cortical Neural Progenitors. Cereb Cortex 2020; 30:3960-3976. [PMID: 32008040 DOI: 10.1093/cercor/bhaa011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/06/2019] [Accepted: 01/11/2020] [Indexed: 11/14/2022] Open
Abstract
De novo microdeletion of chromosome 2p15-16.1 presents clinically recognizable phenotypes that include mental retardation, autism, and microcephaly. Chromosomal maintenance 1 (CRM1) is a gene commonly missing in patients with 2p15-16.1 microdeletion and one of two genes found in the smallest deletion case. In this study, we investigate the role and mechanism of Crm1 in the developing mouse brain by inhibiting the protein or knocking down the gene in vivo. Inhibition of Crm1 reduces the proliferation and increases p53-dependent apoptosis of the cortical neural progenitors, thereby impeding the growth of embryonic cerebral cortex. Live imaging of mitosis in ex vivo embryonic brain slices reveals that inhibition of CRM1 arrests the cortical progenitors at metaphase. The arrested cells eventually slip into a pseudo-G1 phase without chromosome segregation. The mitotic slippage cells are marked by persistent expression of the spindle assembly checkpoint (SAC), repressing of which rescues the cells from apoptosis. Our study reveals that activating the SAC and inducing the mitotic slippage may lead to apoptosis of the cortical neural progenitors. The resulting cell death may well contribute to microcephaly associated with microdeletion of chromosome 2p15-16.1 involving CRM1.
Collapse
Affiliation(s)
- Xue Li
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang 325027, P.R. China
| | - Yue Feng
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang 325027, P.R. China
| | - Meifang Yan
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang 325027, P.R. China
| | - Xiaomeng Tu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang 325027, P.R. China
| | - Bin Xie
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang 325027, P.R. China
| | - Fangfang Ni
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang 325027, P.R. China
| | - Chunsheng Qu
- Clinical Laboratory of Lishui People's Hospital, Sixth Affiliated Hospital, Wenzhou Medical University, LiShui, Zhejiang 323000, China
| | - Jie-Guang Chen
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
69
|
Stracker TH, Morrison CG, Gergely F. Molecular causes of primary microcephaly and related diseases: a report from the UNIA Workshop. Chromosoma 2020; 129:115-120. [PMID: 32424716 DOI: 10.1007/s00412-020-00737-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022]
Abstract
The International University of Andalucía (UNIA) Current Trends in Biomedicine Workshop on Molecular Causes of Primary Microcephaly and Related Diseases took place in Baeza, Spain, November 18-20, 2019. This meeting brought together scientists from Europe, the USA and China to discuss recent advances in our molecular and genetic understanding of a group of rare neurodevelopmental diseases characterised by primary microcephaly, a condition in which head circumference is smaller than normal at birth. Microcephaly can be caused by inherited mutations that affect key cellular processes, or environmental exposure to radiation or other toxins. It can also result from viral infection, as exemplified by the recent Zika virus outbreak in South America. Here we summarise a number of the scientific advances presented and topics discussed at the meeting.
Collapse
Affiliation(s)
- Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona) and Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
| | - Ciaran G Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Biosciences Building, Dangan, Galway, H91 TK33, Ireland
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| |
Collapse
|
70
|
Gangras P, Gallagher TL, Parthun MA, Yi Z, Patton RD, Tietz KT, Deans NC, Bundschuh R, Amacher SL, Singh G. Zebrafish rbm8a and magoh mutants reveal EJC developmental functions and new 3'UTR intron-containing NMD targets. PLoS Genet 2020; 16:e1008830. [PMID: 32502192 PMCID: PMC7310861 DOI: 10.1371/journal.pgen.1008830] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 06/23/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
Many post-transcriptional mechanisms operate via mRNA 3'UTRs to regulate protein expression, and such controls are crucial for development. We show that homozygous mutations in two zebrafish exon junction complex (EJC) core genes rbm8a and magoh leads to muscle disorganization, neural cell death, and motor neuron outgrowth defects, as well as dysregulation of mRNAs subjected to nonsense-mediated mRNA decay (NMD) due to translation termination ≥ 50 nts upstream of the last exon-exon junction. Intriguingly, we find that EJC-dependent NMD also regulates a subset of transcripts that contain 3'UTR introns (3'UI) < 50 nts downstream of a stop codon. Some transcripts containing such stop codon-proximal 3'UI are also NMD-sensitive in cultured human cells and mouse embryonic stem cells. We identify 167 genes that contain a conserved proximal 3'UI in zebrafish, mouse and humans. foxo3b is one such proximal 3'UI-containing gene that is upregulated in zebrafish EJC mutant embryos, at both mRNA and protein levels, and loss of foxo3b function in EJC mutant embryos significantly rescues motor axon growth defects. These data are consistent with EJC-dependent NMD regulating foxo3b mRNA to control protein expression during zebrafish development. Our work shows that the EJC is critical for normal zebrafish development and suggests that proximal 3'UIs may serve gene regulatory function in vertebrates.
Collapse
Affiliation(s)
- Pooja Gangras
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
| | - Thomas L. Gallagher
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
| | - Michael A. Parthun
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
| | - Zhongxia Yi
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
| | - Robert D. Patton
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
- Department of Physics, The Ohio State University, Ohio, United States of America
| | - Kiel T. Tietz
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
| | - Natalie C. Deans
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
| | - Ralf Bundschuh
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
- Department of Physics, The Ohio State University, Ohio, United States of America
- Department of Chemistry and Biochemistry, The Ohio State University, Ohio, United States of America
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Ohio, United States of America
| | - Sharon L. Amacher
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Ohio, United States of America
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children’s Hospital, Ohio, United States of America
| | - Guramrit Singh
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
| |
Collapse
|
71
|
Eastman AE, Guo S. The palette of techniques for cell cycle analysis. FEBS Lett 2020; 594:10.1002/1873-3468.13842. [PMID: 32441778 PMCID: PMC9261528 DOI: 10.1002/1873-3468.13842] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
Abstract
The cell division cycle is the generational period of cellular growth and propagation. Cell cycle progression needs to be highly regulated to preserve genomic fidelity while increasing cell number. In multicellular organisms, the cell cycle must also coordinate with cell fate specification during development and tissue homeostasis. Altered cell cycle dynamics play a central role also in a number of pathophysiological processes. Thus, extensive effort has been made to define the biochemical machineries that execute the cell cycle and their regulation, as well as implementing more sensitive and accurate cell cycle measurements. Here, we review the available techniques for cell cycle analysis, revisiting the assumptions behind conventional population-based measurements and discussing new tools to better address cell cycle heterogeneity in the single-cell era. We weigh the strengths, weaknesses, and trade-offs of methods designed to measure temporal aspects of the cell cycle. Finally, we discuss emerging techniques for capturing cell cycle speed at single-cell resolution in live animals.
Collapse
Affiliation(s)
- Anna E Eastman
- Department of Cell Biology and Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Shangqin Guo
- Department of Cell Biology and Yale Stem Cell Center, Yale University, New Haven, CT, USA
| |
Collapse
|
72
|
Ou MY, Ju XC, Cai YJ, Sun XY, Wang JF, Fu XQ, Sun Q, Luo ZG. Heterogeneous nuclear ribonucleoprotein A3 controls mitotic progression of neural progenitors via interaction with cohesin. Development 2020; 147:dev185132. [PMID: 32321712 DOI: 10.1242/dev.185132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/03/2020] [Indexed: 01/13/2023]
Abstract
Cortex development is controlled by temporal patterning of neural progenitor (NP) competence with sequential generation of deep and superficial layer neurons, but underlying mechanisms remain elusive. Here, we report a role for heterogeneous nuclear ribonucleoprotein A3 (HNRNPA3) in regulating the division of early cortical NPs that mainly give rise to deep-layer neurons via direct neurogenesis. HNRNPA3 is expressed at high levels in NPs of mouse and human cortex at early stages, with a unique peri-chromosome pattern. Intriguingly, downregulation of HNRNPA3 caused chromosome disarrangement, which hindered normal separation of chromosomes during NP division, leading to mitotic delay. Furthermore, HNRNPA3 is associated with the cohesin-core subunit SMC1A and controls its association with chromosomes, implicating a mechanism for the role of HNRNPA3 in regulating chromosome segregation in dividing NPs. Hnrnpa3-deficient mice exhibited reduced cortical thickness, especially of deep layers. Moreover, downregulation of HNRNPA3 in cultured human cerebral organoids led to marked reduction in NPs and deep-layer neurons. Thus, this study has identified a crucial role for HNRNPA3 in NP division and highlighted the relationship between mitosis progression and early neurogenesis.
Collapse
Affiliation(s)
- Min-Yi Ou
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Chun Ju
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi-Jun Cai
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin-Yao Sun
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Feng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiu-Qing Fu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qiang Sun
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhen-Ge Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
73
|
MCPH1 Lack of Function Enhances Mitotic Cell Sensitivity Caused by Catalytic Inhibitors of Topo II. Genes (Basel) 2020; 11:genes11040406. [PMID: 32276518 PMCID: PMC7231051 DOI: 10.3390/genes11040406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 11/23/2022] Open
Abstract
The capacity of Topoisomerase II (Topo II) to remove DNA catenations that arise after replication is essential to ensure faithful chromosome segregation. Topo II activity is monitored during G2 by a specific checkpoint pathway that delays entry into mitosis until the chromosomes are properly decatenated. Recently, we demonstrated that the mitotic defects that are characteristic of cells depleted of MCPH1 function, a protein mutated in primary microcephaly, are not a consequence of a weakened G2 decatenation checkpoint response. However, the mitotic defects could be accounted for by a minor defect in the activity of Topo II during G2/M. To test this hypothesis, we have tracked at live single cell resolution the dynamics of mitosis in MCPH1 depleted HeLa cells upon catalytic inhibition of Topo II. Our analyses demonstrate that neither chromosome alignment nor segregation are more susceptible to minor perturbation in decatenation in MCPH1 deficient cells, as compared with control cells. Interestingly, MCPH1 depleted cells were more prone to mitotic cell death when decatenation was perturbed. Furthermore, when the G2 arrest that was induced by catalytic inhibition of Topo II was abrogated by Chk1 inhibition, the incidence of mitotic cell death was also increased. Taken together, our data suggest that the MCPH1 lack of function increases mitotic cell hypersensitivity to the catalytic inhibition of Topo II.
Collapse
|
74
|
Marthiens V, Basto R. Centrosomes: The good and the bad for brain development. Biol Cell 2020; 112:153-172. [PMID: 32170757 DOI: 10.1111/boc.201900090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 12/15/2022]
Abstract
Centrosomes nucleate and organise the microtubule cytoskeleton in animal cells. These membraneless organelles are key structures for tissue organisation, polarity and growth. Centrosome dysfunction, defined as deviation in centrosome numbers and/or structural integrity, has major impact on brain size and functionality, as compared with other tissues of the organism. In this review, we discuss the contribution of centrosomes to brain growth during development. We discuss in particular the impact of centrosome dysfunction in Drosophila and mammalian neural stem cell division and fitness, which ultimately underlie brain growth defects.
Collapse
Affiliation(s)
- Véronique Marthiens
- Biology of Centrosomes and Genetic Instability Laboratory, Institut Curie, PSL Research University, CNRS, UMR144, Paris, 75005, France
| | - Renata Basto
- Biology of Centrosomes and Genetic Instability Laboratory, Institut Curie, PSL Research University, CNRS, UMR144, Paris, 75005, France
| |
Collapse
|
75
|
Johnson CA, Ghashghaei HT. Sp2 regulates late neurogenic but not early expansive divisions of neural stem cells underlying population growth in the mouse cortex. Development 2020; 147:dev186056. [PMID: 32001437 PMCID: PMC7044455 DOI: 10.1242/dev.186056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/23/2020] [Indexed: 12/18/2022]
Abstract
Cellular and molecular mechanisms underlying the switch from self-amplification of cortical stem cells to neuronal and glial generation are incompletely understood, despite their importance for neural development. Here, we have investigated the role of the transcription factor specificity protein 2 (Sp2) in expansive and neurogenic divisions of the developing cerebral cortex by combining conditional genetic deletion with the mosaic analysis with double markers (MADM) system in mice. We find that loss of Sp2 in progenitors undergoing neurogenic divisions results in prolonged mitosis due to extension of early mitotic stages. This disruption is correlated with depletion of the populations of upper layer neurons in the cortex. In contrast, early cortical neural stem cells proliferate and expand normally in the absence of Sp2. These results indicate a stage-specific requirement for Sp2 in neural stem and progenitor cells, and reveal mechanistic differences between the early expansive and later neurogenic periods of cortical development.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Caroline A Johnson
- Department of Molecular Biomedical Sciences College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - H Troy Ghashghaei
- Department of Molecular Biomedical Sciences College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
76
|
Oh E, Mark KG, Mocciaro A, Watson ER, Prabu JR, Cha DD, Kampmann M, Gamarra N, Zhou CY, Rape M. Gene expression and cell identity controlled by anaphase-promoting complex. Nature 2020; 579:136-140. [PMID: 32076268 PMCID: PMC7402266 DOI: 10.1038/s41586-020-2034-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/01/2020] [Indexed: 01/08/2023]
Abstract
Metazoan development requires robust proliferation of progenitor cells, whose identities are established by tightly controlled transcriptional networks 1. As gene expression is globally inhibited during mitosis, the transcriptional programs defining cell identity must be restarted in each cell cycle 2-5, yet how this is accomplished is poorly understood. Here, we identified a ubiquitin-dependent mechanism that integrates gene expression with cell division to preserve cell identity. We found that WDR5 and TBP, which bind active interphase promoters 6,7, recruit the anaphase-promoting complex (APC/C) to specific transcription start sites (TSS) during mitosis. This allows APC/C to decorate histones with K11/K48-branched ubiquitin chains that recruit p97/VCP and the proteasome and ensure rapid expression of pluripotency genes in the next cell cycle. Mitotic exit and transcription re-initiation are thus controlled by the same regulator, APC/C, which provides a robust mechanism to maintain cell identity through cell division.
Collapse
Affiliation(s)
- Eugene Oh
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Kevin G Mark
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Annamaria Mocciaro
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.,Berkeley Lights, Emeryville, CA, USA
| | - Edmond R Watson
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J Rajan Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Denny D Cha
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Martin Kampmann
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.,Institute for Neurodegenerative Diseases, University of California at San Francisco, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Nathan Gamarra
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Coral Y Zhou
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Michael Rape
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA. .,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
77
|
Sheehan CJ, McMahon JJ, Serdar LD, Silver DL. Dosage-dependent requirements of Magoh for cortical interneuron generation and survival. Development 2020; 147:dev.182295. [PMID: 31857347 DOI: 10.1242/dev.182295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/30/2019] [Indexed: 12/15/2022]
Abstract
Embryonic interneuron development underlies cortical function and its disruption contributes to neurological disease. Yet the mechanisms by which viable interneurons are produced from progenitors remain poorly understood. Here, we demonstrate dosage-dependent requirements of the exon junction complex component Magoh for interneuron genesis in mouse. Conditional Magoh ablation from interneuron progenitors, but not post-mitotic neurons, depletes cortical interneuron number through adulthood, with increased severity in homozygotes. Using live imaging, we discover that Magoh deficiency delays progenitor mitotic progression in a dosage-sensitive fashion, with 40% of homozygous progenitors failing to divide. This shows that Magoh is required in progenitors for both generation and survival of newborn progeny. Transcriptome analysis implicates p53 signaling; moreover, p53 ablation in Magoh haploinsufficient progenitors rescues apoptosis, completely recovering interneuron number. In striking contrast, in Magoh homozygotes, p53 loss fails to rescue interneuron number and mitotic delay, further implicating mitotic defects in interneuron loss. Our results demonstrate that interneuron development is intimately dependent upon progenitor mitosis duration and uncover a crucial post-transcriptional regulator of interneuron fate relevant for neurodevelopmental pathologies.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Charles J Sheehan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - John J McMahon
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lucas D Serdar
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA .,Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.,Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
78
|
Bendriem RM, Singh S, Aleem AA, Antonetti DA, Ross ME. Tight junction protein occludin regulates progenitor Self-Renewal and survival in developing cortex. eLife 2019; 8:49376. [PMID: 31794381 PMCID: PMC6890460 DOI: 10.7554/elife.49376] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/18/2019] [Indexed: 12/31/2022] Open
Abstract
Occludin (OCLN) mutations cause human microcephaly and cortical malformation. A tight junction component thought absent in neuroepithelium after neural tube closure, OCLN isoform-specific expression extends into corticogenesis. Full-length and truncated isoforms localize to neuroprogenitor centrosomes, but full-length OCLN transiently localizes to plasma membranes while only truncated OCLN continues at centrosomes throughout neurogenesis. Mimicking human mutations, full-length OCLN depletion in mouse and in human CRISPR/Cas9-edited organoids produce early neuronal differentiation, reduced progenitor self-renewal and increased apoptosis. Human neural progenitors were more severely affected, especially outer radial glial cells, which mouse embryonic cortex lacks. Rodent and human mutant progenitors displayed reduced proliferation and prolonged M-phase. OCLN interacted with mitotic spindle regulators, NuMA and RAN, while full-length OCLN loss impaired spindle pole morphology, astral and mitotic microtubule integrity. Thus, early corticogenesis requires full-length OCLN to regulate centrosome organization and dynamics, revealing a novel role for this tight junction protein in early brain development.
Collapse
Affiliation(s)
- Raphael M Bendriem
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, United States.,Graduate School of Medical Sciences, Weill Cornell Medicine, New York, United States
| | - Shawn Singh
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, United States
| | | | - David A Antonetti
- Kellogg Eye Center, Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, United States
| | - M Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, United States.,Graduate School of Medical Sciences, Weill Cornell Medicine, New York, United States
| |
Collapse
|
79
|
Abstract
The neocortex is the largest part of the mammalian brain and is the seat of our higher cognitive functions. This outstanding neural structure increased massively in size and complexity during evolution in a process recapitulated today during the development of extant mammals. Accordingly, defects in neocortical development commonly result in severe intellectual and social deficits. Thus, understanding the development of the neocortex benefits from understanding its evolution and disease and also informs about their underlying mechanisms. Here, I briefly summarize the most recent and outstanding advances in our understanding of neocortical development and focus particularly on dorsal progenitors and excitatory neurons. I place special emphasis on the specification of neural stem cells in distinct classes and their proliferation and production of neurons and then discuss recent findings on neuronal migration. Recent discoveries on the genetic evolution of neocortical development are presented with a particular focus on primates. Progress on all these fronts is being accelerated by high-throughput gene expression analyses and particularly single-cell transcriptomics. I end with novel insights into the involvement of microglia in embryonic brain development and how improvements in cultured cerebral organoids are gradually consolidating them as faithful models of neocortex development in humans.
Collapse
Affiliation(s)
- Victor Borrell
- Institute of Neuroscience, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Miguel Hernández, Ramon y Cajal s/n, 03550 San Juan de Alicante, Spain
| |
Collapse
|
80
|
Gong Y, He X, Li Q, He J, Bian B, Li Y, Ge L, Zeng Y, Xu H, Yin ZQ. SCF/SCFR signaling plays an important role in the early morphogenesis and neurogenesis of human embryonic neural retina. Development 2019; 146:dev.174409. [PMID: 31548215 DOI: 10.1242/dev.174409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
Abstract
The stem cell factor receptor (SCFR) has been demonstrated to be expressed in the neural retina of mice, rat and human for decades. Previous reports indicated that the SCFR correlates with glia differentiation of late retinal progenitor cells (RPCs), retinal vasculogenesis and homeostasis of the blood-retinal barrier. However, the role of SCF/SCFR signaling in the growth and development of the neural retina (NR), especially in the early embryonic stage, remains poorly understood. Here, we show that SCF/SCFR signaling orchestrates invagination of the human embryonic stem cell (hESC)-derived NR via regulation of cell cycle progression, cytoskeleton dynamic and apical constriction of RPCs in the ciliary marginal zone (CMZ). Furthermore, activation of SCF/SCFR signaling promotes neurogenesis in the central-most NR via acceleration of the migration of immature ganglion cells and repressing apoptosis. Our study reveals an unreported role for SCF/SCFR signaling in controlling ciliary marginal cellular behaviors during early morphogenesis and neurogenesis of the human embryonic NR, providing a new potential therapeutic target for human congenital eye diseases such as anophthalmia, microphthalmia and congenital high myopia.
Collapse
Affiliation(s)
- Yu Gong
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Xiangyu He
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Qiyou Li
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Juncai He
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Baishijiao Bian
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Yijian Li
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Linlin Ge
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Yuxiao Zeng
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Haiwei Xu
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China .,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Zheng Qin Yin
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China .,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| |
Collapse
|
81
|
Hu X, Eastman AE, Guo S. Cell cycle dynamics in the reprogramming of cellular identity. FEBS Lett 2019; 593:2840-2852. [PMID: 31562821 DOI: 10.1002/1873-3468.13625] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022]
Abstract
Reprogramming of cellular identity is fundamentally at odds with replication of the genome: cell fate reprogramming requires complex multidimensional epigenomic changes, whereas genome replication demands fidelity. In this review, we discuss how the pace of the genome's replication and cell cycle influences the way daughter cells take on their identity. We highlight several biochemical processes that are pertinent to cell fate control, whose propagation into the daughter cells should be governed by more complex mechanisms than simple templated replication. With this mindset, we summarize multiple scenarios where rapid cell cycle could interfere with cell fate copying and promote cell fate reprogramming. Prominent examples of cell fate regulation by specific cell cycle phases are also discussed. Overall, there is much to be learned regarding the relationship between cell fate reprogramming and cell cycle control. Harnessing cell cycle dynamics could greatly facilitate the derivation of desired cell types.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Cell Biology, Yale University, New Haven, CT, USA.,Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Anna E Eastman
- Department of Cell Biology, Yale University, New Haven, CT, USA.,Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Shangqin Guo
- Department of Cell Biology, Yale University, New Haven, CT, USA.,Yale Stem Cell Center, Yale University, New Haven, CT, USA
| |
Collapse
|
82
|
Translating neural stem cells to neurons in the mammalian brain. Cell Death Differ 2019; 26:2495-2512. [PMID: 31551564 DOI: 10.1038/s41418-019-0411-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/05/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
The mammalian neocortex underlies our perception of sensory information, performance of motor activities, and higher-order cognition. During mammalian embryogenesis, radial glial precursor cells sequentially give rise to diverse populations of excitatory cortical neurons, followed by astrocytes and oligodendrocytes. A subpopulation of these embryonic neural precursors persists into adulthood as neural stem cells, which give rise to inhibitory interneurons and glia. Although the intrinsic mechanisms instructing the genesis of these distinct progeny have been well-studied, most work to date has focused on transcriptional, epigenetic, and cell-cycle control. Recent studies, however, have shown that posttranscriptional mechanisms also regulate the cell fate choices of transcriptionally primed neural precursors during cortical development. These mechanisms are mediated primarily by RNA-binding proteins and microRNAs that coordinately regulate mRNA translation, stability, splicing, and localization. Together, these findings point to an extensive network of posttranscriptional control and provide insight into both normal cortical development and disease. They also add another layer of complexity to brain development and raise important biological questions for future investigation.
Collapse
|
83
|
Vargas-Hurtado D, Brault JB, Piolot T, Leconte L, Da Silva N, Pennetier C, Baffet A, Marthiens V, Basto R. Differences in Mitotic Spindle Architecture in Mammalian Neural Stem Cells Influence Mitotic Accuracy during Brain Development. Curr Biol 2019; 29:2993-3005.e9. [DOI: 10.1016/j.cub.2019.07.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/31/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022]
|
84
|
Bartkowska K, Tepper B, Turlejski K, Djavadian RL. Roles of the exon junction complex components in the central nervous system: a mini review. Rev Neurosci 2019; 29:817-824. [PMID: 29791316 DOI: 10.1515/revneuro-2017-0113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/22/2018] [Indexed: 01/02/2023]
Abstract
The exon junction complex (EJC) consists of four core proteins: Magoh, RNA-binding motif 8A (Rbm8a, also known as Y14), eukaryotic initiation factor 4A3 (eIF4A3, also known as DDX48), and metastatic lymph node 51 (MLN51, also known as Casc3 or Barentsz), which are involved in the regulation of many processes occurring between gene transcription and protein translation. Its main role is to assemble into spliceosomes at the exon-exon junction of mRNA during splicing. It is, therefore, a range of functions concerning post-splicing events such as mRNA translocation, translation, and nonsense-mediated mRNA decay (NMD). Apart from this, proteins of the EJC control the splicing of specific pre-mRNAs, for example, splicing of the mapk transcript. Recent studies support essential functions of EJC proteins in oocytes and, after fertilization, in all stages of zygote development, as well as the growth of the embryo, including the development of the nervous system. During the development of the central nervous system (CNS), the EJC controls mitosis, regulating both symmetric and asymmetric cell divisions. Reduced levels of EJC components cause microcephaly. In the adult brain, Y14 and eIF4A3 appear to be involved in synaptic plasticity and in learning and memory. In this review, we focus on the involvement of EJC components in brain development and its functioning under normal conditions.
Collapse
Affiliation(s)
- Katarzyna Bartkowska
- Department of Molecular and Cellular Biology, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland
| | - Beata Tepper
- Department of Molecular and Cellular Biology, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland
| | - Kris Turlejski
- Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University, Warsaw, Poland
| | - Ruzanna L Djavadian
- Department of Molecular and Cellular Biology, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw 02-093, Poland
| |
Collapse
|
85
|
Edens BM, Vissers C, Su J, Arumugam S, Xu Z, Shi H, Miller N, Rojas Ringeling F, Ming GL, He C, Song H, Ma YC. FMRP Modulates Neural Differentiation through m 6A-Dependent mRNA Nuclear Export. Cell Rep 2019; 28:845-854.e5. [PMID: 31340148 PMCID: PMC6687293 DOI: 10.1016/j.celrep.2019.06.072] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/09/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
N6-methyladenosine (m6A) modification of mRNA is emerging as a vital mechanism regulating RNA function. Here, we show that fragile X mental retardation protein (FMRP) reads m6A to promote nuclear export of methylated mRNA targets during neural differentiation. Fmr1 knockout (KO) mice show delayed neural progenitor cell cycle progression and extended maintenance of proliferating neural progenitors into postnatal stages, phenocopying methyltransferase Mettl14 conditional KO (cKO) mice that have no m6A modification. RNA-seq and m6A-seq reveal that both Mettl14cKO and Fmr1KO lead to the nuclear retention of m6A-modified FMRP target mRNAs regulating neural differentiation, indicating that both m6A and FMRP are required for the nuclear export of methylated target mRNAs. FMRP preferentially binds m6A-modified RNAs to facilitate their nuclear export through CRM1. The nuclear retention defect can be mitigated by wild-type but not nuclear export-deficient FMRP, establishing a critical role for FMRP in mediating m6A-dependent mRNA nuclear export during neural differentiation.
Collapse
Affiliation(s)
- Brittany M Edens
- Departments of Pediatrics, Neurology, and Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Caroline Vissers
- Biochemistry, Molecular and Cellular Biology Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jing Su
- Departments of Pediatrics, Neurology, and Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Saravanan Arumugam
- Departments of Pediatrics, Neurology, and Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Zhaofa Xu
- Departments of Pediatrics, Neurology, and Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Han Shi
- Departments of Pediatrics, Neurology, and Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Nimrod Miller
- Departments of Pediatrics, Neurology, and Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | | | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neuroscience, Department of Cell and Developmental Biology, Institute for Regeneration, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chuan He
- Departments of Chemistry and Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neuroscience, Department of Cell and Developmental Biology, Institute for Regeneration, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Yongchao C Ma
- Departments of Pediatrics, Neurology, and Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
| |
Collapse
|
86
|
Little JN, Dwyer ND. p53 deletion rescues lethal microcephaly in a mouse model with neural stem cell abscission defects. Hum Mol Genet 2019; 28:434-447. [PMID: 30304535 DOI: 10.1093/hmg/ddy350] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/28/2018] [Indexed: 12/17/2022] Open
Abstract
Building a cerebral cortex of the proper size involves balancing rates and timing of neural stem cell (NSC) proliferation, neurogenesis and cell death. The cellular mechanisms connecting genetic mutations to brain malformation phenotypes are still poorly understood. Microcephaly may result when NSC divisions are too slow, produce neurons too early or undergo apoptosis but the relative contributions of these cellular mechanisms to various types of microcephaly are not understood. We previously showed that mouse mutants in Kif20b (formerly called Mphosph1, Mpp1 or KRMP1) have small cortices that show elevated apoptosis and defects in maturation of NSC midbodies, which mediate cytokinetic abscission. Here we test the contribution of intrinsic NSC apoptosis to brain size reduction in this lethal microcephaly model. By making double mutants with the pro-apoptotic genes Bax and Trp53 (p53), we find that p53-dependent apoptosis of cortical NSCs accounts for most of the microcephaly, but that there is a significant apoptosis-independent contribution as well. Remarkably, heterozygous p53 deletion is sufficient to fully rescue survival of the Kif20b mutant into adulthood. In addition, the NSC midbody maturation defects are not rescued by p53 deletion, showing that they are either upstream of p53 activation, or in a parallel pathway. Accumulation of p53 in the nucleus of mutant NSCs at midbody stage suggests the possibility of a novel midbody-mediated pathway for p53 activation. This work elucidates both NSC apoptosis and abscission mechanisms that could underlie human microcephaly or other brain malformations.
Collapse
Affiliation(s)
- Jessica Neville Little
- Department of Cell Biology.,Cell and Developmental Biology Graduate Program.,Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | |
Collapse
|
87
|
Abstract
In spite of the high metabolic cost of cellular production, the brain contains only a fraction of the neurons generated during embryonic development. In the rodent cerebral cortex, a first wave of programmed cell death surges at embryonic stages and affects primarily progenitor cells. A second, larger wave unfolds during early postnatal development and ultimately determines the final number of cortical neurons. Programmed cell death in the developing cortex is particularly dependent on neuronal activity and unfolds in a cell-specific manner with precise temporal control. Pyramidal cells and interneurons adjust their numbers in sync, which is likely crucial for the establishment of balanced networks of excitatory and inhibitory neurons. In contrast, several other neuronal populations are almost completely eliminated through apoptosis during the first two weeks of postnatal development, highlighting the importance of programmed cell death in sculpting the mature cerebral cortex.
Collapse
Affiliation(s)
- Fong Kuan Wong
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; .,MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; .,MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
88
|
Ansar M, Ullah F, Paracha SA, Adams DJ, Lai A, Pais L, Iwaszkiewicz J, Millan F, Sarwar MT, Agha Z, Shah SF, Qaisar AA, Falconnet E, Zoete V, Ranza E, Makrythanasis P, Santoni FA, Ahmed J, Katsanis N, Walsh C, Davis EE, Antonarakis SE. Bi-allelic Variants in DYNC1I2 Cause Syndromic Microcephaly with Intellectual Disability, Cerebral Malformations, and Dysmorphic Facial Features. Am J Hum Genet 2019; 104:1073-1087. [PMID: 31079899 PMCID: PMC6556908 DOI: 10.1016/j.ajhg.2019.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/01/2019] [Indexed: 12/30/2022] Open
Abstract
Cargo transport along the cytoplasmic microtubular network is essential for neuronal function, and cytoplasmic dynein-1 is an established molecular motor that is critical for neurogenesis and homeostasis. We performed whole-exome sequencing, homozygosity mapping, and chromosomal microarray studies in five individuals from three independent pedigrees and identified likely-pathogenic variants in DYNC1I2 (Dynein Cytoplasmic 1 Intermediate Chain 2), encoding a component of the cytoplasmic dynein 1 complex. In a consanguineous Pakistani family with three affected individuals presenting with microcephaly, severe intellectual disability, simplification of cerebral gyration, corpus callosum hypoplasia, and dysmorphic facial features, we identified a homozygous splice donor site variant (GenBank: NM_001378.2:c.607+1G>A). We report two additional individuals who have similar neurodevelopmental deficits and craniofacial features and harbor deleterious variants; one individual bears a c.740A>G (p.Tyr247Cys) change in trans with a 374 kb deletion encompassing DYNC1I2, and an unrelated individual harbors the compound-heterozygous variants c.868C>T (p.Gln290∗) and c.740A>G (p.Tyr247Cys). Zebrafish larvae subjected to CRISPR-Cas9 gene disruption or transient suppression of dync1i2a displayed significantly altered craniofacial patterning with concomitant reduction in head size. We monitored cell death and cell cycle progression in dync1i2a zebrafish models and observed significantly increased apoptosis, likely due to prolonged mitosis caused by abnormal spindle morphology, and this finding offers initial insights into the cellular basis of microcephaly. Additionally, complementation studies in zebrafish demonstrate that p.Tyr247Cys attenuates gene function, consistent with protein structural analysis. Our genetic and functional data indicate that DYNC1I2 dysfunction probably causes an autosomal-recessive microcephaly syndrome and highlight further the critical roles of the dynein-1 complex in neurodevelopment.
Collapse
Affiliation(s)
- Muhammad Ansar
- Department of Genetic Medicine and Development, University of Geneva, 1206 Geneva, Switzerland
| | - Farid Ullah
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27701, USA; Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, 38000 Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences, 45650 Islamabad, Pakistan
| | - Sohail A Paracha
- Institute of Basic Medical Sciences, Khyber Medical University, 25100 Peshawar, Pakistan
| | - Darius J Adams
- Atlantic Health System, Goryeb Children's Hospital, Morristown, NJ 07960, USA
| | - Abbe Lai
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Neurology and Pediatrics, Harvard Medical School, Center for Life Sciences, Blackfan Circle, Boston, MA 02115, USA
| | - Lynn Pais
- Medical and Population Genetics Program, Broad Institute of MIT, Cambridge, MA 02142, USA; Center for Mendelian Genomics, Harvard University, Cambridge, MA 02142, USA
| | - Justyna Iwaszkiewicz
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Batiment Genopode, Unil Sorge, 1015 Lausanne, Switzerland
| | | | - Muhammad T Sarwar
- Institute of Basic Medical Sciences, Khyber Medical University, 25100 Peshawar, Pakistan
| | - Zehra Agha
- Department of Biosciences, COMSATS University, 45500 Islamabad, Pakistan
| | - Sayyed Fahim Shah
- Department of Medicine, KMU Institute of Medical Sciences, 26000 Kohat, Pakistan
| | - Azhar Ali Qaisar
- Radiology Department, Lady Reading Hospital, 25000 Peshawar, Pakistan
| | - Emilie Falconnet
- Department of Genetic Medicine and Development, University of Geneva, 1206 Geneva, Switzerland
| | - Vincent Zoete
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Batiment Genopode, Unil Sorge, 1015 Lausanne, Switzerland; Department of Fundamental Oncology, Lausanne University, Ludwig Institute for Cancer Research, Route de la Corniche 9A, 1066 Epalinges, Switzerland
| | - Emmanuelle Ranza
- Department of Genetic Medicine and Development, University of Geneva, 1206 Geneva, Switzerland; Service of Genetic Medicine, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Periklis Makrythanasis
- Department of Genetic Medicine and Development, University of Geneva, 1206 Geneva, Switzerland; Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
| | - Federico A Santoni
- Department of Genetic Medicine and Development, University of Geneva, 1206 Geneva, Switzerland; Department of Endocrinology Diabetes and Metabolism, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Jawad Ahmed
- Institute of Basic Medical Sciences, Khyber Medical University, 25100 Peshawar, Pakistan
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27701, USA
| | - Christopher Walsh
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Neurology and Pediatrics, Harvard Medical School, Center for Life Sciences, Blackfan Circle, Boston, MA 02115, USA; Medical and Population Genetics Program, Broad Institute of MIT, Cambridge, MA 02142, USA; Center for Mendelian Genomics, Harvard University, Cambridge, MA 02142, USA
| | - Erica E Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27701, USA.
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva, 1206 Geneva, Switzerland; Service of Genetic Medicine, University Hospitals of Geneva, 1205 Geneva, Switzerland; iGE3 Institute of Genetics and Genomics of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
89
|
Simmons AJ, Park R, Sterling NA, Jang MH, van Deursen JMA, Yen TJ, Cho SH, Kim S. Nearly complete deletion of BubR1 causes microcephaly through shortened mitosis and massive cell death. Hum Mol Genet 2019; 28:1822-1836. [PMID: 30668728 PMCID: PMC6522074 DOI: 10.1093/hmg/ddz022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/14/2018] [Accepted: 01/15/2019] [Indexed: 02/06/2023] Open
Abstract
BUB-related 1 (BubR1) encoded by Budding Uninhibited by Benzimidazole 1B (BUB1B) is a crucial mitotic checkpoint protein ensuring proper segregation of chromosomes during mitosis. Mutations of BUB1B are responsible for mosaic variegated aneuploidy (MVA), a human congenital disorder characterized by extensive abnormalities in chromosome number. Although microcephaly is a prominent feature of MVA carrying the BUB1B mutation, how BubR1 deficiency disturbs neural progenitor proliferation and neuronal output and leads to microcephaly is unknown. Here we show that conditional loss of BubR1 in mouse cerebral cortex recapitulates microcephaly. BubR1-deficient cortex includes a strikingly reduced number of late-born, but not of early-born, neurons, although BubR1 expression is substantially reduced from an early stage. Importantly, absence of BubR1 decreases the proportion of neural progenitors in mitosis, specifically in metaphase, suggesting shortened mitosis owing to premature chromosome segregation. In the BubR1 mutant, massive apoptotic cell death, which is likely due to the compromised genomic integrity that results from aberrant mitosis, depletes progenitors and neurons during neurogenesis. There is no apparent alteration in centrosome number, spindle formation or primary cilia, suggesting that the major effect of BubR1 deficiency on neural progenitors is to impair the mitotic checkpoint. This finding highlights the importance of the mitotic checkpoint in the pathogenesis of microcephaly. Furthermore, the ependymal cell layer does not form in the conditional knockout, revealing an unrecognized role of BubR1 in assuring the integrity of the ventricular system, which may account for the presence of hydrocephalus in some patients.
Collapse
Affiliation(s)
- Ambrosia J Simmons
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine Temple University, Philadelphia, PA, USA
- MD/Ph.D. program, Lewis Katz School of Medicine Temple University, Philadelphia, PA, USA
| | - Raehee Park
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine Temple University, Philadelphia, PA, USA
| | - Noelle A Sterling
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine Temple University, Philadelphia, PA, USA
| | - Mi-Hyeon Jang
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jan M A van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | - Seo-Hee Cho
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine Temple University, Philadelphia, PA, USA
| | - Seonhee Kim
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine Temple University, Philadelphia, PA, USA
| |
Collapse
|
90
|
Verification and rectification of cell type-specific splicing of a Seckel syndrome-associated ATR mutation using iPS cell model. J Hum Genet 2019; 64:445-458. [PMID: 30846821 PMCID: PMC8075875 DOI: 10.1038/s10038-019-0574-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/25/2018] [Accepted: 01/18/2019] [Indexed: 11/08/2022]
Abstract
Seckel syndrome (SS) is a rare spectrum of congenital severe microcephaly and dwarfism. One SS-causative gene is Ataxia Telangiectasia and Rad3-Related Protein (ATR), and ATR (c.2101 A>G) mutation causes skipping of exon 9, resulting in a hypomorphic ATR defect. This mutation is considered the cause of an impaired response to DNA replication stress, the main function of ATR, contributing to the pathogenesis of microcephaly. However, the precise behavior and impact of this splicing defect in human neural progenitor cells (NPCs) is unclear. To address this, we established induced pluripotent stem cells (iPSCs) from fibroblasts carrying the ATR mutation and an isogenic ATR-corrected counterpart iPSC clone. SS-patient-derived iPSCs (SS-iPSCs) exhibited cell type-specific splicing; exon 9 was dominantly skipped in fibroblasts and iPSC-derived NPCs, but it was included in undifferentiated iPSCs and definitive endodermal cells. SS-iPSC-derived NPCs (SS-NPCs) showed distinct expression profiles from ATR non-mutated NPCs with negative enrichment of neuronal genesis-related gene sets. In SS-NPCs, abnormal mitotic spindles occurred more frequently than in gene-corrected counterparts, and the alignment of NPCs in the surface of the neurospheres was perturbed. Finally, we tested several splicing-modifying compounds and found that TG003, a CLK1 inhibitor, could pharmacologically rescue the exon 9 skipping in SS-NPCs. Treatment with TG003 restored the ATR kinase activity in SS-NPCs and decreased the frequency of abnormal mitotic events. In conclusion, our iPSC model revealed a novel effect of the ATR mutation in mitotic processes of NPCs and NPC-specific missplicing, accompanied by the recovery of neuronal defects using a splicing rectifier.
Collapse
|
91
|
Abstract
The centriole is an ancient microtubule-based organelle with a conserved nine-fold symmetry. Centrioles form the core of centrosomes, which organize the interphase microtubule cytoskeleton of most animal cells and form the poles of the mitotic spindle. Centrioles can also be modified to form basal bodies, which template the formation of cilia and play central roles in cellular signaling, fluid movement, and locomotion. In this review, we discuss developments in our understanding of the biogenesis of centrioles and cilia and the regulatory controls that govern their structure and number. We also discuss how defects in these processes contribute to a spectrum of human diseases and how new technologies have expanded our understanding of centriole and cilium biology, revealing exciting avenues for future exploration.
Collapse
Affiliation(s)
- David K Breslow
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA;
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
92
|
Ruan W, Lim HH, Surana U. Mapping Mitotic Death: Functional Integration of Mitochondria, Spindle Assembly Checkpoint and Apoptosis. Front Cell Dev Biol 2019; 6:177. [PMID: 30687704 PMCID: PMC6335265 DOI: 10.3389/fcell.2018.00177] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/22/2018] [Indexed: 01/18/2023] Open
Abstract
Targeting the mitotic pathways of rapidly proliferating tumor cells has been an effective strategy in traditional cancer therapy. Chemotherapeutics such as taxanes and vinca alkaloids, which disrupt microtubule function, have enjoyed clinical success; however, the accompanying side effects, toxicity and multi drug resistance remain as serious concerns. The emerging classes of inhibitors targeting mitotic kinases and proteasome face their own set of challenges. It is hoped that elucidation of the regulatory interface between mitotic checkpoints, mitochondria and mitotic death will aid the development of more efficacious anti-mitotic agents and improved treatment protocols. The links between the spindle assembly checkpoint (SAC) and mitochondrial dynamics that control the progression of anti-mitotic agent-induced apoptosis have been under investigation for several years and the functional integration of these various signaling networks is now beginning to emerge. In this review, we highlight current research on the regulation of SAC, the death pathway and mitochondria with particular focus on their regulatory interconnections.
Collapse
Affiliation(s)
- Weimei Ruan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Hong Hwa Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Pharmacology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
93
|
Rushing GV, Bollig MK, Ihrie RA. Heterogeneity of Neural Stem Cells in the Ventricular-Subventricular Zone. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:1-30. [PMID: 31487016 DOI: 10.1007/978-3-030-24108-7_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this chapter, heterogeneity is explored in the context of the ventricular-subventricular zone, the largest stem cell niche in the mammalian brain. This niche generates up to 10,000 new neurons daily in adult mice and extends over a large spatial area with dorso-ventral and medio-lateral subdivisions. The stem cells of the ventricular-subventricular zone can be subdivided by their anatomical position and transcriptional profile, and the stem cell lineage can also be further subdivided into stages of pre- and post-natal quiescence and activation. Beyond the stem cells proper, additional differences exist in their interactions with other cellular constituents of the niche, including neurons, vasculature, and cerebrospinal fluid. These variations in stem cell potential and local interactions are discussed, as well as unanswered questions within this system.
Collapse
Affiliation(s)
- Gabrielle V Rushing
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Madelyn K Bollig
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Rebecca A Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Neuroscience Program, Vanderbilt University, Nashville, TN, USA. .,Department of Neurological Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
94
|
Jaffrey SR, Wilkinson MF. Nonsense-mediated RNA decay in the brain: emerging modulator of neural development and disease. Nat Rev Neurosci 2018; 19:715-728. [PMID: 30410025 PMCID: PMC6396682 DOI: 10.1038/s41583-018-0079-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Steady-state RNA levels are controlled by the balance between RNA synthesis and RNA turnover. A selective RNA turnover mechanism that has received recent attention in neurons is nonsense-mediated RNA decay (NMD). NMD has been shown to influence neural development, neural stem cell differentiation decisions, axon guidance and synaptic plasticity. In humans, NMD factor gene mutations cause some forms of intellectual disability and are associated with neurodevelopmental disorders, including schizophrenia and autism spectrum disorder. Impairments in NMD are linked to neurodegenerative disorders, including amyotrophic lateral sclerosis. We discuss these findings, their clinical implications and challenges for the future.
Collapse
Affiliation(s)
- Samie R Jaffrey
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, USA.
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, La Jolla, CA, USA.
| |
Collapse
|
95
|
Jabaudon D, Lancaster M. Exploring landscapes of brain morphogenesis with organoids. Development 2018; 145:145/22/dev172049. [PMID: 30455367 DOI: 10.1242/dev.172049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The field of developmental neuroscience is benefitting from recent technological advances that allow access to organogenesis in vitro via organoid preparations. These methods have been applied to better understanding neural identity, and have opened up a window into the early events that occur during development of the human brain. However, current approaches are not without their limitations, and although brain organoids and other in vitro paradigms recapitulate many processes with remarkable fidelity, there are clear differences between brain organoid development in vitro and brain development in vivo These topics were discussed extensively at a recent workshop organized by The Company of Biologists entitled 'Thinking beyond the dish: taking in vitro neural differentiation to the next level'. Here, we summarize the common themes that emerged from the workshop and highlight some of the limitations and the potential of this emerging technology. In particular, we discuss how organoids can help us understand not only healthy and diseased brain, but also explore new arrays of cellular behaviors.
Collapse
Affiliation(s)
- Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, 1211 Geneva, Switzerland .,Clinic of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - Madeline Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
96
|
The Hippo Pathway Prevents YAP/TAZ-Driven Hypertranscription and Controls Neural Progenitor Number. Dev Cell 2018; 47:576-591.e8. [PMID: 30523785 DOI: 10.1016/j.devcel.2018.09.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/24/2018] [Accepted: 09/25/2018] [Indexed: 01/12/2023]
Abstract
The Hippo pathway controls the activity of YAP/TAZ transcriptional coactivators through a kinase cascade. Despite the critical role of this pathway in tissue growth and tumorigenesis, it remains unclear how YAP/TAZ-mediated transcription drives proliferation. By analyzing the effects of inactivating LATS1/2 kinases, the direct upstream inhibitors of YAP/TAZ, on mouse brain development and applying cell-number-normalized transcriptome analyses, we discovered that YAP/TAZ activation causes a global increase in transcription activity, known as hypertranscription, and upregulates many genes associated with cell growth and proliferation. In contrast, conventional read-depth-normalized RNA-sequencing analysis failed to detect the scope of the transcriptome shift and missed most relevant gene ontologies. Following a transient increase in proliferation, however, hypertranscription in neural progenitors triggers replication stress, DNA damage, and p53 activation, resulting in massive apoptosis. Our findings reveal a significant impact of YAP/TAZ activation on global transcription activity and have important implications for understanding YAP/TAZ function.
Collapse
|
97
|
Sanz-Gómez N, Freije A, Ceballos L, Obeso S, Sanz JR, García-Reija F, Morales-Angulo C, Gandarillas A. Response of head and neck epithelial cells to a DNA damage-differentiation checkpoint involving polyploidization. Head Neck 2018; 40:2487-2497. [PMID: 30311985 DOI: 10.1002/hed.25376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 04/03/2018] [Accepted: 05/23/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Squamous epithelia of the head and neck undergo continuous cell renewal and are continuously exposed to mutagenic hazard, the main cause of cancer. How they maintain homeostasis upon cell cycle deregulation is unclear. METHODS To elucidate how head and neck epithelia respond to cell cycle stress, we studied human keratinocytes from various locations (oral mucosa, tonsil, pharynx, larynx, and trachea). We made use of genotoxic or mitotic drugs (doxorubicin [DOXO], paclitaxel, and nocodazole), or chemical inhibitors of the mitotic checkpoint kinases, Aurora B and polo-like-1. We further tested the response to inactivation of p53, ectopic cyclin E, or to the chemical carcinogen 7,12-dimethylbenz[a]anthracene (DMBA). RESULTS All treatments provoked DNA damage or mitosis impairment and strikingly triggered squamous differentiation and polyploidization, resulting in irreversible loss of clonogenic capacity. CONCLUSION Keratinocytes from head and neck epithelia share a cell-autonomous squamous DNA damage-differentiation response that is common to the epidermis and might continuously protect them from cancer.
Collapse
Affiliation(s)
- Natalia Sanz-Gómez
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research of Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Ana Freije
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research of Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Laura Ceballos
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research of Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Sergio Obeso
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research of Marqués de Valdecilla (IDIVAL), Santander, Spain.,Otorhinolaryngology Unit, Valdecilla Hospital HUVM, Santander, Spain
| | - J Ramón Sanz
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research of Marqués de Valdecilla (IDIVAL), Santander, Spain.,Plastic Surgery Unit, Valdecilla Hospital HUVM, Santander, Spain
| | - Fe García-Reija
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research of Marqués de Valdecilla (IDIVAL), Santander, Spain.,Oral and Maxillofacial Surgery Unit, Valdecilla Hospital HUVM, Santander, Spain
| | - Carmelo Morales-Angulo
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research of Marqués de Valdecilla (IDIVAL), Santander, Spain.,Otorhinolaryngology Unit, Valdecilla Hospital HUVM, Santander, Spain
| | - Alberto Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research of Marqués de Valdecilla (IDIVAL), Santander, Spain.,INSERM, Languedoc-Roussillon, Montpellier, France
| |
Collapse
|
98
|
Baumgartner M, Olthof AM, Aquino GS, Hyatt KC, Lemoine C, Drake K, Sturrock N, Nguyen N, Al Seesi S, Kanadia RN. Minor spliceosome inactivation causes microcephaly, owing to cell cycle defects and death of self-amplifying radial glial cells. Development 2018; 145:dev166322. [PMID: 30093551 PMCID: PMC6141777 DOI: 10.1242/dev.166322] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/13/2018] [Indexed: 12/13/2022]
Abstract
Mutation in minor spliceosome components is linked to the developmental disorder microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1). Here, we inactivated the minor spliceosome in the developing mouse cortex (pallium) by ablating Rnu11, which encodes the crucial minor spliceosome small nuclear RNA (snRNA) U11. Rnu11 conditional knockout mice were born with microcephaly, which was caused by the death of self-amplifying radial glial cells (RGCs), while intermediate progenitor cells and neurons were produced. RNA sequencing suggested that this cell death was mediated by upregulation of p53 (Trp53 - Mouse Genome Informatics) and DNA damage, which were both observed specifically in U11-null RGCs. Moreover, U11 loss caused elevated minor intron retention in genes regulating the cell cycle, which was consistent with fewer RGCs in S-phase and cytokinesis, alongside prolonged metaphase in RGCs. In all, we found that self-amplifying RGCs are the cell type most sensitive to loss of minor splicing. Together, these findings provide a potential explanation of how disruption of minor splicing might cause microcephaly in MOPD1.
Collapse
Affiliation(s)
- Marybeth Baumgartner
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
- Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Anouk M Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Gabriela S Aquino
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Katery C Hyatt
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Christopher Lemoine
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
- College of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Kyle Drake
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Nikita Sturrock
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA
| | - Nhut Nguyen
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Sahar Al Seesi
- Computer Science Engineering Department, University of Connecticut, Storrs, CT 06269, USA
| | - Rahul N Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
- Institute of Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
99
|
Vitali I, Fièvre S, Telley L, Oberst P, Bariselli S, Frangeul L, Baumann N, McMahon JJ, Klingler E, Bocchi R, Kiss JZ, Bellone C, Silver DL, Jabaudon D. Progenitor Hyperpolarization Regulates the Sequential Generation of Neuronal Subtypes in the Developing Neocortex. Cell 2018; 174:1264-1276.e15. [PMID: 30057116 DOI: 10.1016/j.cell.2018.06.036] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/20/2018] [Accepted: 06/18/2018] [Indexed: 12/29/2022]
Abstract
During corticogenesis, ventricular zone progenitors sequentially generate distinct subtypes of neurons, accounting for the diversity of neocortical cells and the circuits they form. While activity-dependent processes are critical for the differentiation and circuit assembly of postmitotic neurons, how bioelectrical processes affect nonexcitable cells, such as progenitors, remains largely unknown. Here, we reveal that, in the developing mouse neocortex, ventricular zone progenitors become more hyperpolarized as they generate successive subtypes of neurons. Experimental in vivo hyperpolarization shifted the transcriptional programs and division modes of these progenitors to a later developmental status, with precocious generation of intermediate progenitors and a forward shift in the laminar, molecular, morphological, and circuit features of their neuronal progeny. These effects occurred through inhibition of the Wnt-beta-catenin signaling pathway by hyperpolarization. Thus, during corticogenesis, bioelectric membrane properties are permissive for specific molecular pathways to coordinate the temporal progression of progenitor developmental programs and thus neocortical neuron diversity.
Collapse
Affiliation(s)
- Ilaria Vitali
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Sabine Fièvre
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Ludovic Telley
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Polina Oberst
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Sebastiano Bariselli
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Laura Frangeul
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Natalia Baumann
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - John J McMahon
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 224 Carl Building, Durham, NC 27710, USA
| | - Esther Klingler
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Riccardo Bocchi
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Jozsef Z Kiss
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Camilla Bellone
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 224 Carl Building, Durham, NC 27710, USA
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland; Department of Neurology, Geneva University Hospital, 4 Rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland.
| |
Collapse
|
100
|
Uzquiano A, Gladwyn-Ng I, Nguyen L, Reiner O, Götz M, Matsuzaki F, Francis F. Cortical progenitor biology: key features mediating proliferation versus differentiation. J Neurochem 2018; 146:500-525. [PMID: 29570795 DOI: 10.1111/jnc.14338] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/26/2018] [Accepted: 03/08/2018] [Indexed: 12/18/2022]
Abstract
The cerebral cortex is a highly organized structure whose development depends on diverse progenitor cell types, namely apical radial glia, intermediate progenitors, and basal radial glia cells, which are responsible for the production of the correct neuronal output. In recent years, these progenitor cell types have been deeply studied, particularly basal radial glia and their role in cortical expansion and gyrification. We review here a broad series of factors that regulate progenitor behavior and daughter cell fate. We first describe the different neuronal progenitor types, emphasizing the differences between lissencephalic and gyrencephalic species. We then review key factors shown to influence progenitor proliferation versus differentiation, discussing their roles in progenitor dynamics, neuronal production, and potentially brain size and complexity. Although spindle orientation has been considered a critical factor for mode of division and daughter cell output, we discuss other features that are emerging as crucial for these processes such as organelle and cell cycle dynamics. Additionally, we highlight the importance of adhesion molecules and the polarity complex for correct cortical development. Finally, we briefly discuss studies assessing progenitor multipotency and its possible contribution to the production of specific neuronal populations. This review hence summarizes recent aspects of cortical progenitor cell biology, and pinpoints emerging features critical for their behavior.
Collapse
Affiliation(s)
- Ana Uzquiano
- INSERM, UMR-S 839, Paris, France.,Sorbonne Université, Université Pierre et Marie Curie, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Ivan Gladwyn-Ng
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Laurent Nguyen
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig Maximilians University Munich, Planegg/Munich, Germany.,Institute for Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilian University Munich, Planegg/Munich, Germany
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, Center for Developmental Biology, RIKEN Kobe Institute, Kobe, Hyogo, Japan
| | - Fiona Francis
- INSERM, UMR-S 839, Paris, France.,Sorbonne Université, Université Pierre et Marie Curie, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|