51
|
Gu MY, Kim J, Yang HO. The Neuroprotective Effects of Justicidin A on Amyloid Beta25–35-Induced Neuronal Cell Death Through Inhibition of Tau Hyperphosphorylation and Induction of Autophagy in SH-SY5Y Cells. Neurochem Res 2016; 41:1458-67. [DOI: 10.1007/s11064-016-1857-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 01/20/2023]
|
52
|
Ke Z, Liu J, Xu P, Gao A, Wang L, Ji L. The Cardioprotective Effect of Icariin on Ischemia-Reperfusion Injury in Isolated Rat Heart: Potential Involvement of the PI3K-Akt Signaling Pathway. Cardiovasc Ther 2016; 33:134-40. [PMID: 25847837 DOI: 10.1111/1755-5922.12121] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIMS Icariin (ICA), a flavonoid isolated from epimedii, has been reported to have potential protective effects on the cardiovascular system. This study is to investigate the effect and the underlying mechanisms of ICA on ischemia/reperfusion (I/R) injury. METHODS Wister rat hearts were subjected to I/R using Langendorff perfusion system. Cardiac function, myocardial infarct size, lactate dehydrogenase (LDH), and creatine kinase-MB (CK-MB) activities in coronary effluent, and superoxide dismutase (SOD) and malondialdehyde (MDA) content in heart tissue and cardiomyocyte apoptosis were assayed. RESULTS Compared with the I/R group, ICA treatment significantly improved cardiac function, decreased myocardial infarct size, enzyme activity, oxidative stress, and apoptosis. In addition, ICA treatment lead to an increased p-Akt level, which was partially reversed by LY294002, a PI3K pathway inhibitor. CONCLUSION Our study suggests that ICA has a cardioprotective effect against I/R injury, which is associated with its antioxidative and anti-apoptotic effect, at least partially, through the activation of PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Zunping Ke
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Jingjing Liu
- Department of Nephrology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Peng Xu
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Aimei Gao
- Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Lei Wang
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lijuan Ji
- Department of Rehabilitation, The Second People's Hospital of Huai'an, Huai'an, Jiangsu, China
| |
Collapse
|
53
|
Icaritin requires Phosphatidylinositol 3 kinase (PI3K)/Akt signaling to counteract skeletal muscle atrophy following mechanical unloading. Sci Rep 2016; 6:20300. [PMID: 26831566 PMCID: PMC4735824 DOI: 10.1038/srep20300] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/30/2015] [Indexed: 12/12/2022] Open
Abstract
Counteracting muscle atrophy induced by mechanical unloading/inactivity is of great clinical need and challenge. A therapeutic agent that could counteract muscle atrophy following mechanical unloading in safety is desired. This study showed that natural product Icaritin (ICT) could increase the phosphorylation level of Phosphatidylinositol 3 kinase (PI3K) at p110 catalytic subunit and promote PI3K/Akt signaling markers in C2C12 cells. This study further showed that the high dose ICT treatment could significantly attenuate the decreases in the phosphorylation level of PI3K at p110 catalytic subunit and its downstream markers related to protein synthesis, and inhibit the increases in protein degradation markers at mRNA and protein levels in rat soleus muscle following 28-day hindlimb unloading. In addition, the decreases in soleus muscle mass, muscle fiber cross-sectional area, twitch force, specific force, contraction time and half relaxation time could be significantly attenuated by the high dose ICT treatment. The low dose ICT treatment could moderately attenuate the above changes induced by unloading. Wortmannin, a specific inhibitor of PI3K at p110 catalytic subunit, could abolish the above effects of ICT in vitro and in vivo, indicating that PI3K/Akt signaling could be required by ICT to counteract skeletal muscle atrophy following mechanical unloading.
Collapse
|
54
|
The Protective Effect of Icariin on Mitochondrial Transport and Distribution in Primary Hippocampal Neurons from 3× Tg-AD Mice. Int J Mol Sci 2016; 17:ijms17020163. [PMID: 26828481 PMCID: PMC4783897 DOI: 10.3390/ijms17020163] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 01/08/2023] Open
Abstract
Icariin, a pharmacologically active component isolated from the Chinese herb Epimedium, has been shown to improve spatial learning and memory abilities in Alzheimer's disease (AD) rats through inhibition of Aβ production and tau protein hyperphosphorylation. However, the potential mechanism of icariin-induced protective effects against mitochondrial dysfunctions in AD still remains unclear. In the present study, we investigated the effect of icariin on the modulation of mitochondrial transport and distribution in primary hippocampal cultures from triple-transgenic (3× Tg) AD mice. The results showed that icariin enhanced mitochondrial motility and increased mitochondrial index and mitochondrial length and size in the diseased neurons. Additionally, the expression of the key mitochondrial enzyme, pyruvate dehydrogenase-E1α (PDHE1α), and the post synaptic density protein 95 (PSD95), was preserved in AD neurons after icariin treatment, accompanied by a downregulation of Aβ and phosphorylated tau expression in the corresponding areas. Further study showed that icariin treatment resulted in a decrease in mitochondrial fission protein dynamin-related protein 1 (Drp1) and an increase in fusion protein Mitofusin 2 (Mfn2). These data indicate that icariin can promote mitochondrial transport, protect mitochondria against fragmentation and preserve the expression of mitochondrial and synaptic functional proteins in AD neurons. Thus, icariin may be a potential therapeutic complement for AD and other mitochondrial malfunction-related neuronal degenerative diseases.
Collapse
|
55
|
Cui Z, Sheng Z, Yan X, Cao Z, Tang K. In Silico Insight into Potential Anti-Alzheimer's Disease Mechanisms of Icariin. Int J Mol Sci 2016; 17:ijms17010113. [PMID: 26784184 PMCID: PMC4730354 DOI: 10.3390/ijms17010113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/04/2016] [Accepted: 01/11/2016] [Indexed: 02/07/2023] Open
Abstract
Herbal compounds that have notable therapeutic effect upon Alzheimer's disease (AD) have frequently been found, despite the recent failure of late-stage clinical drugs. Icariin, which is isolated from Epimedium brevicornum, is widely reported to exhibit significant anti-AD effects in in vitro and in vivo studies. However, the molecular mechanism remains thus far unclear. In this work, the anti-AD mechanisms of icariin were investigated at a target network level assisted by an in silico target identification program (INVDOCK). The results suggested that the anti-AD effects of icariin may be contributed by: attenuation of hyperphosphorylation of tau protein, anti-inflammation and regulation of Ca2+ homeostasis. Our results may provide assistance in understanding the molecular mechanism and further developing icariin into promising anti-AD agents.
Collapse
Affiliation(s)
- Zhijie Cui
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Zhen Sheng
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Xinmiao Yan
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Zhiwei Cao
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Kailin Tang
- Advanced Institute of Translational Medicine, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
56
|
Jiang J, Zhao BJ, Song J, Jia XB. Pharmacology and Clinical Application of Plants in Epimedium L. CHINESE HERBAL MEDICINES 2016. [DOI: 10.1016/s1674-6384(16)60003-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
57
|
Chen YJ, Zheng HY, Huang XX, Han SX, Zhang DS, Ni JZ, He XY. Neuroprotective Effects of Icariin on Brain Metabolism, Mitochondrial Functions, and Cognition in Triple-Transgenic Alzheimer's Disease Mice. CNS Neurosci Ther 2015; 22:63-73. [PMID: 26584824 DOI: 10.1111/cns.12473] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/18/2015] [Accepted: 10/04/2015] [Indexed: 12/14/2022] Open
Abstract
AIMS This study investigated the neuroprotective properties of icariin (an effective component of traditional Chinese herbal medicine Epimedium) on neuronal function and brain energy metabolism maintenance in a triple-transgenic mouse model of Alzheimer's disease (3 × Tg-AD). METHODS 3 × Tg-AD mice as well as primary neurons were subjected to icariin treatment. Morris water maze assay, magnetic resonance spectroscopy (MRS), Western blotting, ELISA, and immunohistochemistry analysis were used to evaluate the effects of icariin administration. RESULTS Icariin significantly improved spatial learning and memory retention in 3 × Tg-AD mice, promoted neuronal cell activity as identified by the enhancement of brain metabolite N-acetylaspartate level and ATP production in AD mice, preserved the expressions of mitochondrial key enzymes COX IV, PDHE1α, and synaptic protein PSD95, reduced Aβ plaque deposition in the cortex and hippocampus of AD mice, and inhibited β-site APP cleavage enzyme 1 (BACE1) expression. Icariin treatment also decreased the levels of extracellular and intracellular Aβ1-42 in 3 × Tg-AD primary neurons, modulated the distribution of Aβ along the neurites, and protected against mitochondrial fragmentation in 3 × Tg-AD neurons. CONCLUSIONS Icariin shows neuroprotective effects in 3 × Tg-AD mice and may be a promising multitarget drug in the prevention/protection against AD.
Collapse
Affiliation(s)
- Yi-Jing Chen
- College of Life Science, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen University, Shenzhen, China
| | - Hai-Yang Zheng
- College of Life Science, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen University, Shenzhen, China
| | - Xiu-Xian Huang
- College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Shuang-Xue Han
- College of Life Science, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen University, Shenzhen, China
| | - Dong-Sheng Zhang
- College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Jia-Zuan Ni
- College of Life Science, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen University, Shenzhen, China
| | - Xiao-Yang He
- College of Life Science, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen University, Shenzhen, China
| |
Collapse
|
58
|
Jiang F, Mao Y, Liu H, Xu P, Zhang L, Qian X, Sun X. Magnesium Lithospermate B Protects Neurons Against Amyloid β (1–42)-Induced Neurotoxicity Through the NF-κB Pathway. Neurochem Res 2015; 40:1954-65. [DOI: 10.1007/s11064-015-1691-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/20/2015] [Accepted: 08/05/2015] [Indexed: 12/17/2022]
|
59
|
Zhang Y, Lin C, Zhang L, Cui Y, Gu Y, Guo J, Wu D, Li Q, Song W. Cognitive Improvement during Treatment for Mild Alzheimer's Disease with a Chinese Herbal Formula: A Randomized Controlled Trial. PLoS One 2015; 10:e0130353. [PMID: 26076022 PMCID: PMC4468068 DOI: 10.1371/journal.pone.0130353] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 05/14/2015] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES To explore the efficacy of Chinese herbal formula compared with donepezil 5 mg/day in patients with mild Alzheimer's disease (AD). METHODS Patients with mild AD meeting the criteria were randomized into Chinese herbal formula Yishen Huazhuo decoction (YHD) group and donepezil hydrochloride (DH) group during the 24-week trial. The outcomes were measured by ADAS-cog, MMSE, ADL, and NPI with linear mixed-effect models. RESULTS 144 patients were randomized. The mean scores of ADAS-cog and MMSE in both YHD group and DH group both improved at the end of the 24-week treatment period. The results also revealed that YHD was better at improving the mean scores of ADAS-cog and MMSE than DH. Linear mixed-effect models with repeated measures showed statistical significance in time × group interaction effect of ADAS-cog and also in time × group interaction effect of MMSE. The data showed YHD was superior to DH in improving the scores and long term efficacy. CONCLUSIONS Our study suggests that Chinese herbal formula YHD is beneficial and effective for cognitive improvement in patients with mild AD and the mechanism might be through reducing amyloid-β (Aβ) plaque deposition in the hippocampus. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR-TRC-12002846.
Collapse
Affiliation(s)
- Yulian Zhang
- Department of Acupuncture and Cerebropathy, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Cuiru Lin
- Department of Acupuncture and Cerebropathy, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linlin Zhang
- Department of Geriatric, Longhua Hospital of Shanghai University of Traditional Chinese Medicine, Tianjin, China
| | - Yuanwu Cui
- Department of Acupuncture and Cerebropathy, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun Gu
- Department of Geriatric, Longhua Hospital of Shanghai University of Traditional Chinese Medicine, Tianjin, China
| | - Jiakui Guo
- Department of Acupuncture and Cerebropathy, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Di Wu
- Department of Traditional Chinese Medicine, Tianjin Huanhu Hospital, Tianjin, China
| | - Qiang Li
- Graduate Institutes, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wanshan Song
- Department of Acupuncture and Cerebropathy, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
60
|
Li F, Dong HX, Gong QH, Wu Q, Jin F, Shi JS. Icariin decreases both APP and Aβ levels and increases neurogenesis in the brain of Tg2576 mice. Neuroscience 2015; 304:29-35. [PMID: 26079110 DOI: 10.1016/j.neuroscience.2015.06.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/30/2015] [Accepted: 06/06/2015] [Indexed: 01/13/2023]
Abstract
Icariin is derived most commonly from the traditional Chinese herb Epimedium brevicornum Maxim. Our previous studies have shown that icariin protects neurons from neurotoxic and ischemic conditions. This study aims to investigate the effect of icariin on the expression of amyloid precursor protein (APP) and the level of amyloid-β peptide (Aβ), as well as neurogenesis in the brain of Tg2576 mice, an animal model of Alzheimer's disease (AD). Tg2576 mice and wild-type littermates (WT) were randomized into the following three groups: Tg2576, Tg2576+icariin, and WT groups. All 9-month-old mice were treated with icariin (60mg/kg/d) or distilled water for 3months. Following this, the spatial working memory of Tg2576+icariin mice, as examined in the Y-maze task, was found to improve. Furthermore, reduced levels of insoluble Aβ1-40 (69%) and Aβ1-42 (50%) after icariin treatment were determined in the brain by enzyme-linked immunosorbent assay (ELISA). Western blot analysis indicated the downregulation of APP expression after icariin treatment, and double staining showed an increased number of 5-bromo-2-deoxyuridine (BrdU)/Neuron-specific nuclear protein (NeuN) double-positive cells in the dentate gyrus region of the hippocampus in Tg2576+icariin mice compared with the Tg2576 mice. The current study demonstrated that icariin improved memory function, decreased the levels of Aβ and APP in the brain, and enhanced neurogenesis in the hippocampus of Tg2576 mice. Collectively, these results suggest the potential therapeutic value of icariin in AD.
Collapse
Affiliation(s)
- F Li
- Department of Pharmacology and Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - H X Dong
- Department of Pharmacology and Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Q H Gong
- Department of Pharmacology and Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Q Wu
- Department of Pharmacology and Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - F Jin
- Department of Pharmacology and Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - J S Shi
- Department of Pharmacology and Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
61
|
Li F, Gao B, Dong H, Shi J, Fang D. Icariin induces synoviolin expression through NFE2L1 to protect neurons from ER stress-induced apoptosis. PLoS One 2015; 10:e0119955. [PMID: 25806530 PMCID: PMC4373914 DOI: 10.1371/journal.pone.0119955] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/26/2014] [Indexed: 11/19/2022] Open
Abstract
By suppressing neuronal apoptosis, Icariin is a potential therapeutic drug for neuronal degenerative diseases. The molecular mechanisms of Icariin anti-apoptotic functions are still largely unclear. In this report, we found that Icariin induces the expression of Synoviolin, an endoplasmic reticulum (ER)-anchoring E3 ubiquitin ligase that functions as a suppressor of ER stress-induced apoptosis. The nuclear factor erythroid 2-related factor 1 (NFE2L1) is responsible for Icariin-mediated Synoviolin gene expression. Mutation of the NFE2L1-binding sites in a distal region of the Synoviolin promoter abolished Icariin-induced Synoviolin promoter activity, and knockdown of NFE2L1 expression prevented Icariin-stimulated Synoviolin expression. More importantly, Icariin protected ER stress-induced apoptosis of PC12 cells in a Synoviolin-dependent manner. Therefore, our study reveals Icariin-induced Synoviolin expression through NFE2L1 as a previously unappreciated molecular mechanism underlying the neuronal protective function of Icariin.
Collapse
Affiliation(s)
- Fei Li
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Zunyi, China
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, United States of America
- * E-mail: (FL); (DF)
| | - Beixue Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, United States of America
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, United States of America
| | - Jingshan Shi
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Zunyi, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, United States of America
| |
Collapse
|
62
|
Zhang Z, Zhang T, Dong K. Icariin upregulates phosphorylated cyclic adenosine monophosphate response element binding protein levels in the hippocampus of the senescence- accelerated mouse. Neural Regen Res 2015; 7:885-90. [PMID: 25722670 PMCID: PMC4341281 DOI: 10.3969/j.issn.1673-5374.2012.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 02/24/2012] [Indexed: 12/12/2022] Open
Abstract
At 8 weeks after intragastric administration of icariin to senescence-accelerated mice (P8 strain), Morris water maze results showed that escape latency was shortened, and the number of platform crossings was increased. Immunohistochemical staining and western blot assay detected significantly increased levels of cyclic adenosine monophosphate response element binding protein. These results suggest that icariin upregulates phosphorylated cyclic adenosine monophosphate response element binding protein levels and improves learning and memory functions in hippocampus of the senescence-accelerated mouse.
Collapse
Affiliation(s)
- Zhanwei Zhang
- Department of Neurosurgery, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Ting Zhang
- Department of Traditional Chinese Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Keli Dong
- Department of Traditional Chinese Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
63
|
Icariin Prevents Amyloid Beta-Induced Apoptosis via the PI3K/Akt Pathway in PC-12 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:235265. [PMID: 25705234 PMCID: PMC4326344 DOI: 10.1155/2015/235265] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/05/2015] [Indexed: 01/01/2023]
Abstract
Icariin is a prenylated flavonol glycoside derived from the Chinese herb Epimedium sagittatum that exerts a variety of pharmacological activities and shows promise in the treatment and prevention of Alzheimer's disease. In this study, we investigated the neuroprotective effects of icariin against amyloid beta protein fragment 25–35 (Aβ25–35) induced neurotoxicity in cultured rat pheochromocytoma PC12 cells and explored potential underlying mechanisms. Our results showed that icariin dose-dependently increased cell viability and decreased Aβ25–35-induced apoptosis, as assessed by MTT assay and Annexin V/propidium iodide staining, respectively. Results of western blot analysis revealed that the selective phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 suppressed icariin-induced Akt phosphorylation, suggesting that the protective effects of icariin are associated with activation of the PI3K/Akt signaling pathway. LY294002 also blocked the icariin-induced downregulation of proapoptotic factors Bax and caspase-3 and upregulation of antiapoptotic factor Bcl-2 in Aβ25–35-treated PC12 cells. These findings provide further evidence for the clinical efficacy of icariin in the treatment of Alzheimer's disease.
Collapse
|
64
|
Li C, Li Q, Mei Q, Lu T. Pharmacological effects and pharmacokinetic properties of icariin, the major bioactive component in Herba Epimedii. Life Sci 2015; 126:57-68. [PMID: 25634110 DOI: 10.1016/j.lfs.2015.01.006] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/22/2014] [Accepted: 01/10/2015] [Indexed: 12/22/2022]
Abstract
Herba Epimedii is an important medicinal plant which has been used in various traditional Chinese formulations for thousands of years as well as in modern proprietary traditional Chinese medicine products. It has extensive clinical indications, especially for the treatment of sexual dysfunction and osteoporosis. There have been more than 260 chemical moieties identified in the genus Epimedium most of which belong to flavonoids. Icariin is the most abundant constituent in Herba Epimedii. Icariin is pharmacologically bioactive and demonstrates extensive therapeutic capacities such as osteoprotective effect, neuroprotective effect, cardiovascular protective effect, anti-cancer effect, anti-inflammation effect, immunoprotective effect and reproductive function. Particularly, the significant osteogenic effect of icariin made it a promising drug candidate in bone tissue engineering. The current review paper aims to summarize the literatures reporting the pharmacological effects of icariin. The pharmacokinetic properties of bioactive ingredients in Herba Epimedii have also been discussed.
Collapse
Affiliation(s)
- Chenrui Li
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Qiang Li
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qibing Mei
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Tingli Lu
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
65
|
Stancu IC, Vasconcelos B, Terwel D, Dewachter I. Models of β-amyloid induced Tau-pathology: the long and "folded" road to understand the mechanism. Mol Neurodegener 2014; 9:51. [PMID: 25407337 PMCID: PMC4255655 DOI: 10.1186/1750-1326-9-51] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 10/14/2014] [Indexed: 02/28/2023] Open
Abstract
The amyloid cascade hypothesis has been the prevailing hypothesis in Alzheimer’s Disease research, although the final and most wanted proof i.e. fully successful anti-amyloid clinical trials in patients, is still lacking. This may require a better in depth understanding of the cascade. Particularly, the exact toxic forms of Aβ and Tau, the molecular link between them and their respective contributions to the disease process need to be identified in detail. Although the lack of final proof has raised substantial criticism on the hypothesis per se, accumulating experimental evidence in in vitro models, in vivo models and from biomarkers analysis in patients supports the amyloid cascade and particularly Aβ-induced Tau-pathology, which is the focus of this review. We here discuss available models that recapitulate Aβ-induced Tau-pathology and review some potential underlying mechanisms. The availability and diversity of these models that mimic the amyloid cascade partially or more complete, provide tools to study remaining questions, which are crucial for development of therapeutic strategies for Alzheimer’s Disease.
Collapse
Affiliation(s)
| | | | | | - Ilse Dewachter
- Catholic University of Louvain, Institute of Neuroscience, Alzheimer Dementia, Av, E, Mounier 53, Av, Hippocrate 54, B-1200 Brussels, Belgium.
| |
Collapse
|
66
|
Jin Q, Lee C, Lee JW, Yeon ET, Lee D, Han SB, Hong JT, Kim Y, Lee MK, Hwang BY. 2-Phenoxychromones and prenylflavonoids from Epimedium koreanum and their inhibitory effects on LPS-induced nitric oxide and interleukin-1β production. JOURNAL OF NATURAL PRODUCTS 2014; 77:1724-1728. [PMID: 24963714 DOI: 10.1021/np400831p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Two new 2-phenoxychromones 1 and 2 and two prenylflavonoids 3 and 4 along with 12 known compounds (5-16) were isolated from the CH2Cl2-soluble fraction of a methanol extract of Epimedium koreanum. Compounds 1, 4, 6, 7, 9, 10, 12, and 15 exhibit inhibitory effects on nitric oxide production with IC50 values ranging from 16.8 to 49.3 μM. Compounds 1, 4, 7, and 12 also showed inhibitory effects on interleukin-1β production with IC50 values ranging from 8.6 to 38.9 μM in RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Qinghao Jin
- College of Pharmacy, Chungbuk National University , Cheongju 361-763, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Lucke-Wold BP, Turner RC, Logsdon AF, Bailes JE, Huber JD, Rosen CL. Linking traumatic brain injury to chronic traumatic encephalopathy: identification of potential mechanisms leading to neurofibrillary tangle development. J Neurotrauma 2014; 31:1129-38. [PMID: 24499307 PMCID: PMC4089022 DOI: 10.1089/neu.2013.3303] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Significant attention has recently been drawn to the potential link between head trauma and the development of neurodegenerative disease, namely chronic traumatic encephalopathy (CTE). The acute neurotrauma associated with sports-related concussions in athletes and blast-induced traumatic brain injury in soldiers elevates the risk for future development of chronic neurodegenerative diseases such as CTE. CTE is a progressive disease distinguished by characteristic tau neurofibrillary tangles (NFTs) and, occasionally, transactive response DNA binding protein 43 (TDP43) oligomers, both of which have a predilection for perivascular and subcortical areas near reactive astrocytes and microglia. The disease is currently only diagnosed postmortem by neuropathological identification of NFTs. A recent workshop sponsored by National Institute of Neurological Disorders and Stroke emphasized the need for premortem diagnosis, to better understand disease pathophysiology and to develop targeted treatments. In order to accomplish this objective, it is necessary to discover the mechanistic link between acute neurotrauma and the development of chronic neurodegenerative and neuropsychiatric disorders such as CTE. In this review, we briefly summarize what is currently known about CTE development and pathophysiology, and subsequently discuss injury-induced pathways that warrant further investigation. Understanding the mechanistic link between acute brain injury and chronic neurodegeneration will facilitate the development of appropriate diagnostic and therapeutic options for CTE and other related disorders.
Collapse
Affiliation(s)
- Brandon Peter Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, West Virginia
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Ryan Coddington Turner
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, West Virginia
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Aric Flint Logsdon
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Julian Edwin Bailes
- Department of Neurosurgery, NorthShore University Health System, University of Chicago Pritzker School of Medicine, Evanston, Illinois
| | - Jason Delwyn Huber
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Charles Lee Rosen
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, West Virginia
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
68
|
McIntire LBJ, Landman N, Kang MS, Finan GM, Hwang JC, Moore AZ, Park LS, Lin CS, Kim TW. Phenotypic assays for β-amyloid in mouse embryonic stem cell-derived neurons. ACTA ACUST UNITED AC 2014; 20:956-67. [PMID: 23890013 DOI: 10.1016/j.chembiol.2013.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/07/2013] [Accepted: 06/13/2013] [Indexed: 10/26/2022]
Abstract
Given the complex nature of Alzheimer's disease (AD), a cell-based model that recapitulates the physiological properties of the target neuronal population would be extremely valuable for discovering improved drug candidates and chemical probes to uncover disease mechanisms. We established phenotypic neuronal assays for the biogenesis and synaptic action of amyloid β peptide (Aβ) based on embryonic stem cell-derived neurons (ESNs). ESNs enriched with pyramidal neurons were robust, scalable, and amenable to a small-molecule screening assay, overcoming the apparent limitations of neuronal models derived from human pluripotent cells. Small-molecule screening of clinical compounds identified four compounds capable of reducing Aβ levels in ESNs derived from the Tg2576 mouse model of AD. Our approach is therefore highly suitable for phenotypic screening in AD drug discovery and has the potential to identify therapeutic candidates with improved efficacy and safety potential.
Collapse
Affiliation(s)
- Laura Beth J McIntire
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Huang JH, Cai WJ, Zhang XM, Shen ZY. Icariin promotes self-renewal of neural stem cells: An involvement of extracellular regulated kinase signaling pathway. Chin J Integr Med 2014; 20:107-15. [DOI: 10.1007/s11655-013-1583-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Indexed: 12/16/2022]
|
70
|
Liu P, Zou LB, Wang LH, Jiao Q, Chi TY, Ji XF, Jin G. Xanthoceraside attenuates tau hyperphosphorylation and cognitive deficits in intracerebroventricular-streptozotocin injected rats. Psychopharmacology (Berl) 2014; 231:345-56. [PMID: 23958944 DOI: 10.1007/s00213-013-3240-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 08/05/2013] [Indexed: 12/26/2022]
Abstract
RATIONALE Xanthoceraside, a novel triterpenoid saponin extracted from the fruit husks of Xanthoceras sorbifolia Bunge, reverses cognitive deficits in intracerebroventricular injection of Aβ25-35 or Aβ1-42 mice. However, whether xanthoceraside has a positive effect on hyperphosphorylated tau protein remains unclear. OBJECTIVES We investigated the effects of xanthoceraside on behavioural impairments induced by intracerebroventricular injection of streptozotocin (STZ) in rats and its potential mechanisms. MATERIALS AND METHODS The rats were administered with xanthoceraside (0.06, 0.12 or 0.24 mg/kg) or vehicle once daily after STZ intracerebroventricular injections. The Y-maze test and novel object recognition test were performed 21 and 22 days after the second STZ injection, respectively. The levels of hyperphosphorylated tau, phosphatidylinositol-3-kinase (PI3K)/serine/threonine protein kinase B (Akt), glycogen synthase kinase-3β (GSK-3β), protein phosphatase 1 (PP-1) and protein phosphatase 2A (PP-2A) were also tested by Western blot. RESULTS Xanthoceraside treatment significantly attenuated learning and memory impairments and reduced the level of STZ-induced hyperphosphorylated tau protein. Xanthoceraside also enhanced PP-2A and PP-1 expressions, increased PI3K (p85) and Akt (Ser473) phosphorylation and decreased GSK-3β (tyr216) phosphorylation. CONCLUSIONS Xanthoceraside has protective effect against learning and memory impairments and inhibits tau hyperphosphorylation in the hippocampus, possibly through the inhibition of the PI3K/Akt-dependent GSK-3β signalling pathway and an enhancement of phosphatases activity.
Collapse
|
71
|
Schluesener JK, Schluesener H. Plant polyphenols in the treatment of age-associated diseases: revealing the pleiotropic effects of icariin by network analysis. Mol Nutr Food Res 2013; 58:49-60. [PMID: 24311544 DOI: 10.1002/mnfr.201300409] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 10/18/2013] [Accepted: 10/30/2013] [Indexed: 12/15/2022]
Abstract
Polyphenols are a broad class of compounds. Some are ingested in substantial quantities from nutritional sources, more are produced by medicinal plants, and some of them are taken as drugs. It is becoming clear, that a single polyphenol is impacting several cellular pathways. Thus, a network approach is becoming feasible, describing the interaction of a single polyphenol with cellular networks. Here we have selected icariin to draw a prototypic network of icariin activities. Icariin appears to be a promising drug to treat major age-related diseases, like neurodegeneration, memory and depressive disorders, chronic inflammation, diabetes, and osteoporosis. It interacts with several relevant pathways, like PDE, TGF-ß, MAPK, PPAR, NOS, IGF, Sirtuin, and others. Such networks will be useful to future comparative studies of complex effects of polyphenols.
Collapse
Affiliation(s)
- Jan Kevin Schluesener
- Division of Immunopathology of the Nervous System, Department of Neuropathology, Institute of Pathology and Neuropathology, University of Tuebingen, Tuebingen, Germany
| | | |
Collapse
|
72
|
|
73
|
Isorhynchophylline Protects PC12 Cells Against Beta-Amyloid-Induced Apoptosis via PI3K/Akt Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:163057. [PMID: 24319473 PMCID: PMC3836301 DOI: 10.1155/2013/163057] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/12/2013] [Accepted: 09/23/2013] [Indexed: 11/18/2022]
Abstract
The neurotoxicity of amyloid- β (A β ) has been implicated as a critical cause of Alzheimer's disease. Isorhynchophylline (IRN), an oxindole alkaloid isolated from Uncaria rhynchophylla, exerts neuroprotective effect against Aβ 25-35-induced neurotoxicity in vitro. However, the exact mechanism for its neuroprotective effect is not well understood. The present study aimed to investigate the molecular mechanisms underlying the protective action of IRN against Aβ 25-35-induced neurotoxicity in cultured rat pheochromocytoma (PC12) cells. Pretreatment with IRN significantly increased the cell viability, inhibited the release of lactate dehydrogenase and the extent of DNA fragmentation in Aβ 25-35-treated cells. IRN treatment was able to enhance the protein levels of phosphorylated Akt (p-Akt) and glycogen synthase kinase-3 β (p-GSK-3 β ). Lithium chloride blocked Aβ 25-35-induced cellular apoptosis in a similar manner as IRN, suggesting that GSK-3 β inhibition was involved in neuroprotective action of IRN. Pretreatment with LY294002 completely abolished the protective effects of IRN. Furthermore, IRN reversed Aβ 25-35-induced attenuation in the level of phosphorylated cyclic AMP response element binding protein (p-CREB) and the effect of IRN could be blocked by the PI3K inhibitor. These experimental findings unambiguously suggested that the protective effect of IRN against Aβ 25-35-induced apoptosis in PC12 cells was associated with the enhancement of p-CREB expression via PI3K/Akt/GSK-3 β signaling pathway.
Collapse
|
74
|
Icariin protects rat cardiac H9c2 cells from apoptosis by inhibiting endoplasmic reticulum stress. Int J Mol Sci 2013; 14:17845-60. [PMID: 23999590 PMCID: PMC3794756 DOI: 10.3390/ijms140917845] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/10/2013] [Accepted: 08/14/2013] [Indexed: 01/02/2023] Open
Abstract
Endoplasmic reticulum stress (ERS) is one of the mechanisms of apoptotic cell death. Inhibiting the apoptosis induced by ERS may be a novel therapeutic target in cardiovascular diseases. Icariin, a flavonoid isolated from Epimedium brevicornum Maxim, has been demonstrated to have cardiovascular protective effects, but its effects on ERS are unknown. In the present study, we focused on icariin and investigated whether it might protect the cardiac cell from apoptosis via inhibition of ERS. In H9c2 rat cardiomyoblast cells, pretreatment of icariin significantly inhibited cell apoptosis by tunicamycin, an ERS inducer. Icariin also decreased generation of reactive oxygen species (ROS), loss of mitochondrial membrane potential and activation of caspase-3. Moreover, icariin inhibited upregulation of endoplasmic reticulum markers, GRP78, GRP94 and CHOP, elicited by tunicamycin. These results indicated that icariin could protect H9c2 cardiomyoblast cells from ERS-mitochondrial apoptosis in vitro, the mechanisms may be associated with its inhibiting of GRP78, GRP94 and CHOP and decreasing ROS generation directly. It may be a potential agent for treating cardiovascular disease.
Collapse
|
75
|
Lin LF, Liao MJ, Xue XY, Zhang W, Yan L, Cai L, Zhou XW, Zhou X, Luo HM. Combination of Aβ clearance and neurotrophic factors as a potential treatment for Alzheimer's disease. Neurosci Bull 2013; 29:111-20. [PMID: 23179066 PMCID: PMC5561854 DOI: 10.1007/s12264-012-1287-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/12/2012] [Indexed: 12/31/2022] Open
Abstract
There is no effective drug to treat Alzheimer's disease (AD), a neurodegenerative disease affecting an estimated 30 million people around the world. Strongly supported by preclinical and clinical studies, amyloid-beta (Aβ) may be a target for developing drugs against AD. Meanwhile, the fact that localized neuronal death/loss and synaptic impairment occur in AD should also be considered. Neuronal regeneration, which does not occur normally in the mammalian central nervous system, can be promoted by neurotrophic factors (NTFs). Evidence from clinical trials has shown that both Aβ clearance and NTFs are potentially effective in treating AD, thus a new approach combining Aβ clearance and administration of NTFs may be an effective therapeutic strategy.
Collapse
Affiliation(s)
- Lian-Feng Lin
- Department of Pharmacology, Jinan University, Guangzhou, 510632 China
| | - Min-Jing Liao
- Department of Pharmacology, Jinan University, Guangzhou, 510632 China
- Department of Laboratory Medicine, Medical College of Hunan Normal University, Changsha, 410013 China
| | - Xiao-Yan Xue
- Ganzhou People’s Hospital, Ganzhou, 341000 China
| | - Wei Zhang
- Department of Pharmacology, Jinan University, Guangzhou, 510632 China
| | - Li Yan
- Department of Pharmacology, Jinan University, Guangzhou, 510632 China
| | - Liang Cai
- Department of Pharmacology, Jinan University, Guangzhou, 510632 China
| | - Xiao-Wen Zhou
- Department of Pharmacology, Jinan University, Guangzhou, 510632 China
| | - Xing Zhou
- Department of Pharmacology, Jinan University, Guangzhou, 510632 China
| | - Huan-Min Luo
- Department of Pharmacology, Jinan University, Guangzhou, 510632 China
- Institute of Brain Sciences, School of Medicine, Jinan University, Guangzhou, 510632 China
- The Joint Laboratory of Brain Function and Health, Jinan University and The University of Hong Kong, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
76
|
Wang X, Li J, Qian L, Zang XF, Zhang SY, Wang XY, Jin JL, Zhu XL, Zhang XB, Wang ZY, Xu Y. Icariin promotes histone acetylation and attenuates post-stroke cognitive impairment in the central cholinergic circuits of mice. Neuroscience 2013; 236:281-8. [PMID: 23370322 DOI: 10.1016/j.neuroscience.2012.12.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/08/2012] [Accepted: 12/18/2012] [Indexed: 11/29/2022]
Abstract
Post-stroke dementia (PSD) is a common clinical disease and the central cholinergic circuits are important to cognitive function. Icariin (ICA), a flavonoid isolated from Herba Epimedii, was reported to improve cognitive function through modulating the cholinergic system. But there were no studies exploring the role of ICA in PSD animal models. In this study, we used transient middle cerebral artery occlusion mice with cognitive dysfunction in the PSD model. PSD mice were then randomly divided into six groups: Sham-operated+placebo group, Sham-operated+ICA group (60mg/kg), PSD model+placebo group, PSD model+ICA group (30, 60, or 120mg/kg). We observed spatial learning ability and memory by Morris water maze test. The levels of acetylcholine (ACH) and choline acetyltransferase (ChAT), the degree of histone acetylation and the cAMP response element-binding protein (CREB) phosphorylation in the central cholinergic circuits were investigated by Western blot and immunofluorescence. After the administration of various doses of ICA, the escape latency and searching distance of the PSD mice were reduced significantly compared with those without ICA treatment. While the levels of ACH and ChAT declined, the degree of histone acetylation and the CREB phosphorylation was improved in a dose-dependent manner in central cholinergic circuits. In conclusion, ICA can improve post-stroke dementia, and the mechanism is likely to enhance CREB phosphorylation in the central cholinergic circuits, thus improving the damage in cholinergic circuits histone acetylation homeostasis.
Collapse
Affiliation(s)
- X Wang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
|
78
|
Ginsenoside Rg1 attenuates tau phosphorylation in SK-N-SH induced by Aβ‐stimulated THP-1 supernatant and the involvement of p38 pathway activation. Life Sci 2012; 91:809-15. [DOI: 10.1016/j.lfs.2012.08.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 06/19/2012] [Accepted: 08/25/2012] [Indexed: 01/12/2023]
|
79
|
Chen Y, Huang JH, Ning Y, Shen ZY. [Icariin and its pharmaceutical efficacy: research progress of molecular mechanism]. ACTA ACUST UNITED AC 2012; 9:1179-84. [PMID: 22088582 DOI: 10.3736/jcim20111104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Icariin is one of the key active components of Epimedium species, which is most widely applied to supplement the kidney in traditional Chinese medicine. Scientific research has found that icariin possesses extensive therapeutic effects such as protecting neurons from injury, promoting growth of neuronal synapse, improving sexual dysfunction and bone morphogenesis, as well as anti-inflammation, anti-tumor and anti-depression functions. Considering that molecular mechanism is the fundamental basis for pharmaceutical efficacy of icariin, in this article, the authors retrospectively retrieved 122 scientific papers recorded in the PubMed database with "icariin" in the title from January 1, 1995 to January 5, 2011. It was found that icariin has been closely highlighted in the intervention of p38 mitogen-activated protein kinases and phosphatidylinositol 3-kinase/Akt signal pathways, inhibition of phosphodiesterase 5, and regulation of nuclear receptors. Besides, the authors also discussed the main orientation for molecular mechanism of icariin in future research.
Collapse
Affiliation(s)
- Yang Chen
- Institute of Integrated Chinese and Western Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | | | | | | |
Collapse
|
80
|
Moosavi M, Khales GY, Abbasi L, Zarifkar A, Rastegar K. Agmatine protects against scopolamine-induced water maze performance impairment and hippocampal ERK and Akt inactivation. Neuropharmacology 2012; 62:2018-23. [PMID: 22248637 DOI: 10.1016/j.neuropharm.2011.12.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/27/2011] [Accepted: 12/29/2011] [Indexed: 02/08/2023]
Abstract
Cholinergic brain activity plays a significant role in memory. Scopolamine a muscarinic cholinergic antagonist is known to induce impairment in Morris water maze performance, the task which is mainly dependent on the hippocampus. It is suggested that hippocampal ERK and Akt activation play roles in synaptic plasticity and some types of learning and memory. Agmatine, a polyamine derived from l-arginine decarboxylation, is recently shown to exert some neuroprotective effects. This study was aimed to investigate if agmatine could reverse scopolamine-induced memory impairment and possible hippocampal ERK and Akt activity alteration. Adult male Sprague-Dawley rats weighing 200-250 g were randomly assigned into 5 groups. The animals were trained for 3 days in Morris water maze and in day 4 their memory retention was assessed in probe trial which was consisted of a 60 s trial with no platform. Scopolamine (1 mg/kg/ip) or saline were injected 30 min and agmatine (20 or 40 mg/kg/ip) was administered 60 min before each session. The hippocampi were isolated after behavioral studies and western blotting studies on hippocampal lysates were done to determine the levels of activated ERK and Akt. Scopolamine treatment not only impaired water maze learning and memory, but also decreased the amount of phosphorylated (activated) ERK and Akt. Agmatine pre-treatment prevented both the learning impairment and hippocampal ERK and Akt inactivation induced by scopolamine. It seems that agmatine may act as a candidate substance against amnesia.
Collapse
Affiliation(s)
- Maryam Moosavi
- Shiraz Neuroscience Research Center and department of Physiology, Shiraz University of Medical Sciences, Zand Street, Shiraz, Iran.
| | | | | | | | | |
Collapse
|
81
|
Li L, Liu J, Yan X, Qin K, Shi M, Lin T, Zhu Y, Kang T, Zhao G. Protective effects of ginsenoside Rd against okadaic acid-induced neurotoxicity in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2011; 138:135-141. [PMID: 21945003 DOI: 10.1016/j.jep.2011.08.068] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/02/2011] [Accepted: 08/29/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng, a traditional Chinese herbal medicine, has been widely used to restore the disease and enhance the healthy body in Asia for about 5000 years. The present study aimed to investigate the possible neuroprotective effects of ginsenoside Rd against OA-induced toxicity. MATERIALS AND METHODS Ginsenoside Rd was used in tauopahy models of Alzheimer's disease (AD). To mimic the in vivo or in vitro tau hyperphosphorylation, okadaic acid (OA), a protein phosphatase inhibitor, was bilaterally micro-infused into the cerebral ventricle of adult male Sprague-Dawley (SD) rats, or added in media of cultured cortical neurons. The phosphorylation levels of tau and the activities of protein phosphatase 2A (PP-2A) were measured and compared with ginsenoside Rd pretreated groups. RESULTS Pretreatment with ginsenoside Rd in SD rats (10mg/kg for 7 days) or in cultured cortical neurons (2.5 or 5μmol/L for 12h) reduced OA-induced neurotoxicity and tau hyperphosphorylation by enhancing the activities of PP-2A. CONCLUSIONS The result of the present work implied that ginsenoside Rd protected SD rats and cultured cortical neurons against OA-induced toxicity. The possible neuroprotective mechanism may be that ginsenoside Rd decreases OA-induced the hyperphosphorylation of tau by the increase in activities of PP-2A. Thus, this study promises that ginsenoside Rd might be a potential preventive drug candidate for AD and other tau pathology-related neuronal degenerative diseases.
Collapse
Affiliation(s)
- Ling Li
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Howes MJR, Perry E. The Role of Phytochemicals in the Treatment and Prevention of Dementia. Drugs Aging 2011; 28:439-68. [DOI: 10.2165/11591310-000000000-00000] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
83
|
Ma H, He X, Yang Y, Li M, Hao D, Jia Z. The genus Epimedium: an ethnopharmacological and phytochemical review. JOURNAL OF ETHNOPHARMACOLOGY 2011; 134:519-41. [PMID: 21215308 DOI: 10.1016/j.jep.2011.01.001] [Citation(s) in RCA: 309] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 12/31/2010] [Accepted: 01/02/2011] [Indexed: 05/07/2023]
Abstract
Epimedium (Berberidaceae), is a genus of about 52 species in the family Berberidaceae, which also known as Rowdy Lamb Herb, Xianlinpi, Barrenwort, Bishop's Hat, Fairy Wings, Horny Goat Weed, and Yangheye or Yin Yang Huo (Chinese: ). Many plants have been proven to possess efficacy on sexual dysfunction and osteoporosis in traditional Chinese medicine (TCM). The paper reviews the ethnopharmacology, the biological activities and the correlated chemical compounds of Epimedium species. More than 260 compounds have been isolated; among them prenyl-flavonoids are the major constituents and also important chemotaxonomic markers. Modern pharmacology studies and clinical practice demonstrated that Epimedium and its active compounds possess wide pharmacological actions, especially in strengthening yang, hormone regulation, anti-osteoporosis, immunological function modulation, anti-oxidation and anti-tumor, anti-aging, anti-atherosclerosis and anti-depressant activities. Currently, effective monomeric compounds or active parts have been screened for pharmacological activity from Epimedium in vivo and in vitro.
Collapse
Affiliation(s)
- Huiping Ma
- Department of Pharmacy, Lanzhou General Hospital of PLA, Lanzhou 730050, PR China
| | | | | | | | | | | |
Collapse
|
84
|
Shih PH, Wu CH, Yeh CT, Yen GC. Protective effects of anthocyanins against amyloid β-peptide-induced damage in neuro-2A cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:1683-1689. [PMID: 21302893 DOI: 10.1021/jf103822h] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Alzheimer's disease is neuropathologically characterized by amyloid β-protein (Aβ) deposition, resulting in neurotoxicity. Herein, we focused on the prevention of anthocyanins from amyloid-mediated neurodysfunction. The data demonstrated that combined exposure of Aβ(1-40) and Aβ(25-35) to Neuro-2A cells resulted in reactive oxygen species (ROS) production and perturbation of calcium homeostasis. The expressions of LXRα, ApoE, ABCA1, and seladin-1 genes were significantly down-regulated upon Aβ challenge. β-Secretase, the rate-limiting enzyme that catalyzes amyloid precursor protein transform to Aβ, was up-regulated by Aβ treatment. For the duration of Aβ stimulation, malvidin (Mal) or oenin (Oen; malvidin-3-O-glucoside) was added, and the protective effects were observed. Mal and Oen showed protective effects against Aβ-induced neurotoxicity through blocking ROS formation, preserving Ca(2+) homeostasis, and preventing Aβ-mediated perturbation of certain genes involved in Aβ metabolism and cellular defense. The present study implicates anthocyanin as a potential therapeutic candidate for the prevention of amyloid-mediated neurodysfunction.
Collapse
Affiliation(s)
- Ping-Hsiao Shih
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan
| | | | | | | |
Collapse
|
85
|
Liu B, Zhang H, Xu C, Yang G, Tao J, Huang J, Wu J, Duan X, Cao Y, Dong J. Neuroprotective effects of icariin on corticosterone-induced apoptosis in primary cultured rat hippocampal neurons. Brain Res 2010; 1375:59-67. [PMID: 21182828 DOI: 10.1016/j.brainres.2010.12.053] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/12/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
Abstract
Neurons are damaged following prolonged exposure to high concentrations of corticosterone, particularly during chronic inflammatory and immune diseases. One of the main mechanisms underlying neuronal injury is apoptosis. In the present study the neuroprotective effects of icariin, an active natural ingredient from the Chinese plant Epimedium sagittatum maxim against corticosterone-induced apoptosis were examined in primary cultured rat hippocampal neuronal cells. Pre-treatment of neuronal cells with icariin suppressed corticosterone-induced cytotoxicity in a dose-dependent manner. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick-end-labeling assay (TUNEL) labeling demonstrated that icariin significantly reduced TUNEL-positive cell numbers induced by exposure of cultured neurons to corticosterone. Moreover, icariin markedly inhibited corticosterone-induced mitochondrial dysfunction, including improved mitochondrial membrane potential and inhibition of caspase-3 activation. Using western blot analysis, corticosterone activated p38MAPK, extracellular regulated kinase 1/2(ERK1/2) ,and c-jun N-terminal protein kinase 1(JNK1) ,while icariin blocked p38 MAPK, but not JNK1 or ERK1/2. Pharmacological approaches showed that the activation of p38MAPK plays a critical role in corticosterone-induced mitochondrial dysfunction and apoptosis. Taken together, the present results suggest that the protective effects of icariin on apoptosis in hippocampal neuronal cells are potentially mediated through blockade of p38 MAPK phosphorylation.
Collapse
Affiliation(s)
- Baojun Liu
- Laboratory of Lung, Inflammation and Cancers, Huashan Hospital, Fudan University, Shanghai, China 200040
| | | | | | | | | | | | | | | | | | | |
Collapse
|