51
|
Tan T, Wang W, Xu H, Huang Z, Wang YT, Dong Z. Low-Frequency rTMS Ameliorates Autistic-Like Behaviors in Rats Induced by Neonatal Isolation Through Regulating the Synaptic GABA Transmission. Front Cell Neurosci 2018. [PMID: 29541022 PMCID: PMC5835518 DOI: 10.3389/fncel.2018.00046] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Patients with autism spectrum disorder (ASD) display abnormalities in neuronal development, synaptic function and neural circuits. The imbalance of excitatory and inhibitory (E/I) synaptic transmission has been proposed to cause the main behavioral characteristics of ASD. Repetitive transcranial magnetic stimulation (rTMS) can directly or indirectly induce excitability and synaptic plasticity changes in the brain noninvasively. However, whether rTMS can ameliorate autistic-like behaviors in animal model via regulating the balance of E/I synaptic transmission is unknown. By using our recent reported animal model with autistic-like behaviors induced by neonatal isolation (postnatal days 1-9), we found that low-frequency rTMS (LF-rTMS, 1 Hz) treatment for 2 weeks effectively alleviated the acquired autistic-like symptoms, as reflected by an increase in social interaction and decrease in self-grooming, anxiety- and depressive-like behaviors in young adult rats compared to those in untreated animals. Furthermore, the amelioration in autistic-like behavior was accompanied by a restoration of the balance between E/I activity, especially at the level of synaptic transmission and receptors in synaptosomes. These findings indicated that LF-rTMS may alleviate the symptoms of ASD-like behaviors caused by neonatal isolation through regulating the synaptic GABA transmission, suggesting that LF-rTMS may be a potential therapeutic technique to treat ASD.
Collapse
Affiliation(s)
- Tao Tan
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Wang
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Haitao Xu
- Wuhan Yiruide Medical Equipment Co., Ltd., Wuhan, China
| | - Zhilin Huang
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Tian Wang
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Brain Research Center, The University of British Columbia, Vancouver, BC, Canada
| | - Zhifang Dong
- Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
52
|
Hoeijmakers L, Lesuis SL, Krugers H, Lucassen PJ, Korosi A. A preclinical perspective on the enhanced vulnerability to Alzheimer's disease after early-life stress. Neurobiol Stress 2018; 8:172-185. [PMID: 29888312 PMCID: PMC5991337 DOI: 10.1016/j.ynstr.2018.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022] Open
Abstract
Stress experienced early in life (ES), in the form of childhood maltreatment, maternal neglect or trauma, enhances the risk for cognitive decline in later life. Several epidemiological studies have now shown that environmental and adult life style factors influence AD incidence or age-of-onset and early-life environmental conditions have attracted attention in this respect. There is now emerging interest in understanding whether ES impacts the risk to develop age-related neurodegenerative disorders, and their severity, such as in Alzheimer's disease (AD), which is characterized by cognitive decline and extensive (hippocampal) neuropathology. While this might be relevant for the identification of individuals at risk and preventive strategies, this topic and its possible underlying mechanisms have been poorly studied to date. In this review, we discuss the role of ES in modulating AD risk and progression, primarily from a preclinical perspective. We focus on the possible involvement of stress-related, neuro-inflammatory and metabolic factors in mediating ES-induced effects on later neuropathology and the associated impairments in neuroplasticity. The available studies suggest that the age of onset and progression of AD-related neuropathology and cognitive decline can be affected by ES, and may aggravate the progression of AD neuropathology. These relevant changes in AD pathology after ES exposure in animal models call for future clinical studies to elucidate whether stress exposure during the early-life period in humans modulates later vulnerability for AD.
Collapse
Affiliation(s)
| | | | | | | | - Aniko Korosi
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| |
Collapse
|
53
|
Changes in the cannabinoids receptors in rats following treatment with antidepressants. Neurotoxicology 2017; 63:13-20. [DOI: 10.1016/j.neuro.2017.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/17/2017] [Accepted: 08/24/2017] [Indexed: 11/23/2022]
|
54
|
Doherty TS, Blaze J, Keller SM, Roth TL. Phenotypic outcomes in adolescence and adulthood in the scarcity-adversity model of low nesting resources outside the home cage. Dev Psychobiol 2017; 59:703-714. [PMID: 28767135 PMCID: PMC5569321 DOI: 10.1002/dev.21547] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/27/2017] [Indexed: 01/10/2023]
Abstract
Early life adversity is known to disrupt behavioral trajectories and many rodent models have been developed to characterize these stress-induced outcomes. One example is the scarcity-adversity model of low nesting resources. This model employs resource scarcity (i.e., low nesting materials) to elicit adverse caregiving conditions (including maltreatment) toward rodent neonates. Our lab utilizes a version of this model wherein caregiving exposures occur outside the home cage during the first postnatal week. The aim of this study was to determine adolescent and adult phenotypic outcomes associated with this model, including assessment of depressive- and anxiety-like behaviors and performance in different cognitive domains. Exposure to adverse caregiving had no effect on adolescent behavioral performance whereas exposure significantly impaired adult behavioral performance. Further, adult behavioral assays revealed substantial differences between sexes. Overall, data demonstrate the ability of repeated exposure to brief bouts of maltreatment outside the home cage in infancy to impact the development of several behavioral domains later in life.
Collapse
Affiliation(s)
- Tiffany S. Doherty
- Department of Psychological and Brain Sciences, University of Delaware,
Newark DE 19716
| | | | | | - Tania L. Roth
- Department of Psychological and Brain Sciences, University of Delaware,
Newark DE 19716
| |
Collapse
|
55
|
Maternal separation induces hippocampal changes in cadherin-1 ( CDH-1 ) mRNA and recognition memory impairment in adolescent mice. Neurobiol Learn Mem 2017; 141:157-167. [DOI: 10.1016/j.nlm.2017.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/16/2017] [Accepted: 04/17/2017] [Indexed: 01/09/2023]
|
56
|
Bath KG, Nitenson AS, Lichtman E, Lopez C, Chen W, Gallo M, Goodwill H, Manzano-Nieves G. Early life stress leads to developmental and sex selective effects on performance in a novel object placement task. Neurobiol Stress 2017; 7:57-67. [PMID: 28462362 PMCID: PMC5408156 DOI: 10.1016/j.ynstr.2017.04.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 01/06/2023] Open
Abstract
Disruptions in early life care, including neglect, extreme poverty, and trauma, influence neural development and increase the risk for and severity of pathology. Significant sex disparities have been identified for affective pathology, with females having an increased risk of developing anxiety and depressive disorder. However, the effects of early life stress (ELS) on cognitive development have not been as well characterized, especially in reference to sex specific impacts of ELS on cognitive abilities over development. In mice, fragmented maternal care resulting from maternal bedding restriction, was used to induce ELS. The development of spatial abilities were tracked using a novel object placement (NOP) task at several different ages across early development (P21, P28, P38, P50, and P75). Male mice exposed to ELS showed significant impairments in the NOP task compared with control reared mice at all ages tested. In female mice, ELS led to impaired NOP performance immediately following weaning (P21) and during peri-adolescence (P38), but these effects did not persist into early adulthood. Prior work has implicated impaired hippocampus neurogenesis as a possible mediator of negative outcomes in ELS males. In the hippocampus of behaviorally naïve animals there was a significant decrease in expression of Ki-67 (proliferative marker) and doublecortin (DCX-immature cell marker) as mice aged, and a more rapid developmental decline in these markers in ELS reared mice. However, the effect of ELS dissipated by P28 and no main effect of sex were observed. Together these results indicate that ELS impacts the development of spatial abilities in both male and female mice and that these effects are more profound and lasting in males. ELS leads to sex differences in spatial memory abilities in mice. Female mice show impaired performance that resolve prior to adolescence. Male mice show persistent impairments across early life. Effects are restricted to spatial abilities and not other task dimensions. Effects are not related to markers of proliferation and differentiation in hippocampus.
Collapse
Affiliation(s)
- Kevin G Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence RI 02912, United States
| | | | - Ezra Lichtman
- Yale School of Medicine, New Haven, CT 06510, United States
| | - Chelsea Lopez
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence RI 02912, United States
| | - Whitney Chen
- Department of Neuroscience, University of California at San Francisco, San Francisco, CA 94158, United States
| | - Meghan Gallo
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence RI 02912, United States
| | - Haley Goodwill
- Department of Neuroscience, Brown University, Providence, RI 02912, United States
| | | |
Collapse
|
57
|
Mela V, Piscitelli F, Berzal AL, Chowen J, Silvestri C, Viveros MP, Di Marzo V. Sex-dependent effects of neonatal maternal deprivation on endocannabinoid levels in the adipose tissue: influence of diet. J Physiol Biochem 2017; 73:349-357. [DOI: 10.1007/s13105-017-0558-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 03/08/2017] [Indexed: 12/27/2022]
|
58
|
Tabbaa M, Lei K, Liu Y, Wang Z. Paternal deprivation affects social behaviors and neurochemical systems in the offspring of socially monogamous prairie voles. Neuroscience 2017; 343:284-297. [PMID: 27998780 PMCID: PMC5266501 DOI: 10.1016/j.neuroscience.2016.12.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 12/13/2022]
Abstract
Early life experiences, particularly the experience with parents, are crucial to phenotypic outcomes in both humans and animals. Although the effects of maternal deprivation on offspring well-being have been studied, paternal deprivation (PD) has received little attention despite documented associations between father absence and children health problems in humans. In the present study, we utilized the socially monogamous prairie vole (Microtus ochrogaster), which displays male-female pair bonding and bi-parental care, to examine the effects of PD on adult behaviors and neurochemical expression in the hippocampus. Male and female subjects were randomly assigned into one of two experimental groups that grew up with both the mother and father (MF) or with the mother-only (MO, to generate PD experience). Our data show that MO subjects received less parental licking/grooming and carrying and were left alone in the nest more frequently than MF subjects. At adulthood (∼75days of age), MO subjects displayed increased social affiliation (SOA) toward a conspecific compared to MF subjects, but the two groups did not differ in social recognition (SOR) and anxiety-like behavior. Interestingly, MO subjects showed consistent increases in both gene and protein expression of the brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) as well as the levels of total histone 3 and histone 3 acetylation in the hippocampus compared to MF subjects. Further, PD experience increased glucocorticoid receptor beta (GRβ) protein expression in the hippocampus of females as well as increased corticotrophin receptor 2 (CRHR2) protein expression in the hippocampus of males, but decreased CRHR2 mRNA in both sexes. Together, our data suggest that PD has a long-lasting, behavior-specific effect on SOA and alters hippocampal neurochemical systems in the vole brain. The functional role of such altered neurochemical systems in social behaviors and the potential involvement of epigenetic events should be further studied.
Collapse
Affiliation(s)
- Manal Tabbaa
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Kelly Lei
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
59
|
Effects of early-life stress on cognitive function and hippocampal structure in female rodents. Neuroscience 2017; 342:101-119. [DOI: 10.1016/j.neuroscience.2015.08.024] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/06/2015] [Accepted: 08/12/2015] [Indexed: 01/30/2023]
|
60
|
Marco EM, Ballesta JA, Irala C, Hernández MD, Serrano ME, Mela V, López-Gallardo M, Viveros MP. Sex-dependent influence of chronic mild stress (CMS) on voluntary alcohol consumption; study of neurobiological consequences. Pharmacol Biochem Behav 2017; 152:68-80. [DOI: 10.1016/j.pbb.2016.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/25/2016] [Accepted: 11/23/2016] [Indexed: 01/04/2023]
|
61
|
Dalaveri F, Nakhaee N, Esmaeilpour K, Mahani SE, Sheibani V. Effects of maternal separation on nicotine-induced conditioned place preference and subsequent learning and memory in adolescent female rats. Neurosci Lett 2016; 639:151-156. [PMID: 27931777 DOI: 10.1016/j.neulet.2016.11.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/09/2016] [Accepted: 11/28/2016] [Indexed: 11/17/2022]
Abstract
Adverse early life experiences can potentially increase risk for drug abuse later in life. However, little research has been conducted studying the effects of maternal separation (MS), an experimental model for early life stress, on the rewarding effects of nicotine. Cognitive function may be affected by MS. So, we also investigated whether nicotine administration affect spatial learning and memory in MS adolescent female rats. Rat pups were subjected to daily MS for 15min (MS15) or 180min (MS180) during the first 2 weeks of life or reared under normal animal facility rearing (AFR) conditions. The place preference test was performed with nicotine (0.6mg/kg,s.c.) or vehicle over a period of 6 conditioning trials during adolescence. Spatial learning and memory performance was evaluated by using Morris water maze (MWM). In our study, adolescent female rats exposed to MS180 shown a significantly greater preference for a nicotine-paired compartment during the testing phase than the MS15 group. Nicotine altered the MS-induced spatial learning defects in the MS180 group. These findings suggest that MS may increase sensitivity to the rewarding effects of nicotine and also it is possible to suggest that nicotine administration may influence learning dysfunction induced by MS in adolescent female rats.
Collapse
Affiliation(s)
- Fatemeh Dalaveri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Nouzar Nakhaee
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili Mahani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
62
|
Derks NAV, Krugers HJ, Hoogenraad CC, Joëls M, Sarabdjitsingh RA. Effects of Early Life Stress on Synaptic Plasticity in the Developing Hippocampus of Male and Female Rats. PLoS One 2016; 11:e0164551. [PMID: 27723771 PMCID: PMC5056718 DOI: 10.1371/journal.pone.0164551] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/08/2016] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Early life stress (ELS) increases the risk for developing psychopathology in adulthood. When these effects occur is largely unknown. We here studied at which time during development ELS affects hippocampal synaptic plasticity, from early life to adulthood, in a rodent ELS model. Moreover, we investigated whether the sensitivity of synaptic plasticity to the stress-hormone corticosterone is altered by exposure to ELS. MATERIALS & METHODS Male and female Wistar rats were exposed to maternal deprivation (MD) for 24h on postnatal day (P)3 or left undisturbed with their mother (control). On P8-9, 22-24 and P85-95, plasma corticosterone (CORT) levels, body weight, and thymus and adrenal weights were determined to validate the neuroendocrine effects of MD. Field potentials in the CA1 hippocampus were recorded in vitro before and after high frequency stimulation. Brain slices were incubated for 20 min with 100nM CORT or vehicle 1-4h prior to high frequency stimulation, to mimic high-stress conditions in vitro. RESULTS & DISCUSSION Body weight was decreased by MD only at P4 (p = 0.02). There were minimal effects on P8-9, 22-24 or 85-95 thymus and adrenal weight and basal CORT levels. Glutamate transmission underwent strong developmental changes: half-maximal signal size strongly increased (p<0.0001) while the required half-maximal stimulation intensity concomitantly decreased with age (p = 0.04). Synaptic plasticity developed from long-term depression at P8-9 to increasing levels of long-term potentiation at later ages (p = 0.0001). MD caused a significant increase in long-term potentiation of P22-24 males (p = 0.03) and P85-95 females (p = 0.04). Bayesian modeling strongly supported the age-dependent development, with some evidence for accelerated maturation after MD in males (Bayes factor 1.23). CORT suppressed LTP in adult males; synaptic plasticity at other ages and in females remained unaffected. Thus, MD affects the development of synaptic plasticity in the CA1 hippocampus in a sex-dependent manner, with some support for the notion that maturation is accelerated in MD males.
Collapse
Affiliation(s)
- Nienke A. V. Derks
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| | - Harm J. Krugers
- Swammerdam Institute for Life Sciences-Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Casper C. Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Marian Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- University Medical Center Groningen, Groningen, The Netherlands
| | - R. Angela Sarabdjitsingh
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
63
|
Alteba S, Korem N, Akirav I. Cannabinoids reverse the effects of early stress on neurocognitive performance in adulthood. ACTA ACUST UNITED AC 2016; 23:349-58. [PMID: 27317195 PMCID: PMC4918780 DOI: 10.1101/lm.041608.116] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/22/2016] [Indexed: 11/24/2022]
Abstract
Early life stress (ES) significantly increases predisposition to psychopathologies. Cannabinoids may cause cognitive deficits and exacerbate the effects of ES. Nevertheless, the endocannabinoid system has been suggested as a therapeutic target for the treatment of stress- and anxiety-related disorders. Here we examined whether cannabinoids administered during "late adolescence" (extensive cannabis use in humans at the ages 18-25) could reverse the long-term adverse effects of ES on neurocognitive function in adulthood. Male and female rats were exposed to ES during post-natal days (P) 7-14, injected with the cannabinoid CB1/2 receptor agonist WIN55,212-2 (WIN; 1.2 mg/kg, i.p.) for 2 wk during late adolescence (P45-60) and tested in adulthood (P90) for working memory, anxiety, and alterations in CB1 receptors (CB1r), and glucocorticoid receptors (GRs) in the stress circuit [hippocampus, prefrontal cortex (PFC), and basolateral amygdala (BLA)]. ES males and females exhibited impaired performance in short-term memory in adulthood in the spatial location and social recognition tasks; males were also impaired in the novel object recognition task. WIN administered during late adolescence prevented these stress-induced impairments and reduced anxiety levels. WIN normalized the ES-induced up-regulation in PFC-GRs and CA1-CB1r in females. In males, WIN normalized the ES-induced up-regulation in PFC-GR and down-regulation in BLA-CB1r. There is a crucial role of the endocannabinoid system in the effects of early life stress on behavior at adulthood. Differences in recognition memory and in the expression of GRs and CB1r in the fear circuit suggest sex differences in the mechanism underlying coping with stress.
Collapse
Affiliation(s)
- Shirley Alteba
- Department of Psychology, University of Haifa, Haifa 3498838, Israel
| | - Nachshon Korem
- Department of Psychology, University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- Department of Psychology, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
64
|
Morris MJ, Le V, Maniam J. The impact of poor diet and early life stress on memory status. Curr Opin Behav Sci 2016. [DOI: 10.1016/j.cobeha.2016.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
65
|
Calabrese F, Riva MA, Molteni R. Synaptic alterations associated with depression and schizophrenia: potential as a therapeutic target. Expert Opin Ther Targets 2016; 20:1195-207. [PMID: 27167520 DOI: 10.1080/14728222.2016.1188080] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION In recent years, the concept of 'synaptopathy' has been extended from neurodegenerative and neurological disorders to psychiatric diseases. According to this nascent line of research, disruption in synaptic structure and function acts as the main determinant of mental illness. Therefore, molecular systems and processes crucial for synaptic activity may represent promising therapeutic targets. AREAS COVERED We review data on synaptic structural alterations in depression and schizophrenia and on specific molecular systems and/or mechanisms important for the maintenance of proper synaptic function. Specifically, we examine the involvement of the neuroligin system, the local protein translation, and the neurotrophin BDNF by reviewing clinical and preclinical studies, with particular attention to results provided by using animal models based on the role of stress in psychiatric diseases. Finally, we also discuss the impact of pharmacological treatment on these molecular systems/mechanisms. EXPERT OPINION The relevance of synaptic dysfunctions in psychiatric diseases is undoubted and the potential to normalize, ameliorate, and shape such alterations by acting on molecular systems crucial to ensure synaptic function property is fascinating. However, future studies are required to elucidate several open issues.
Collapse
Affiliation(s)
- Francesca Calabrese
- a Dipartimento di Scienze Farmacologiche e Biomolecolari , Università degli Studi di Milano , Milan , Italy
| | - Marco A Riva
- a Dipartimento di Scienze Farmacologiche e Biomolecolari , Università degli Studi di Milano , Milan , Italy
| | - Raffaella Molteni
- a Dipartimento di Scienze Farmacologiche e Biomolecolari , Università degli Studi di Milano , Milan , Italy
| |
Collapse
|
66
|
Darcet F, Gardier AM, Gaillard R, David DJ, Guilloux JP. Cognitive Dysfunction in Major Depressive Disorder. A Translational Review in Animal Models of the Disease. Pharmaceuticals (Basel) 2016; 9:ph9010009. [PMID: 26901205 PMCID: PMC4812373 DOI: 10.3390/ph9010009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 02/07/2023] Open
Abstract
Major Depressive Disorder (MDD) is the most common psychiatric disease, affecting millions of people worldwide. In addition to the well-defined depressive symptoms, patients suffering from MDD consistently complain about cognitive disturbances, significantly exacerbating the burden of this illness. Among cognitive symptoms, impairments in attention, working memory, learning and memory or executive functions are often reported. However, available data about the heterogeneity of MDD patients and magnitude of cognitive symptoms through the different phases of MDD remain difficult to summarize. Thus, the first part of this review briefly overviewed clinical studies, focusing on the cognitive dysfunctions depending on the MDD type. As animal models are essential translational tools for underpinning the mechanisms of cognitive deficits in MDD, the second part of this review synthetized preclinical studies observing cognitive deficits in different rodent models of anxiety/depression. For each cognitive domain, we determined whether deficits could be shared across models. Particularly, we established whether specific stress-related procedures or unspecific criteria (such as species, sex or age) could segregate common cognitive alteration across models. Finally, the role of adult hippocampal neurogenesis in rodents in cognitive dysfunctions during MDD state was also discussed.
Collapse
Affiliation(s)
- Flavie Darcet
- Université Paris-Saclay, University Paris-Sud, Faculté de Pharmacie, CESP, INSERM UMRS1178, Chatenay-Malabry 92296, France.
| | - Alain M Gardier
- Université Paris-Saclay, University Paris-Sud, Faculté de Pharmacie, CESP, INSERM UMRS1178, Chatenay-Malabry 92296, France.
| | - Raphael Gaillard
- Laboratoire de "Physiopathologie des maladies Psychiatriques", Centre de Psychiatrie et Neurosciences U894, INSERM, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France.
- Service de Psychiatrie, Centre Hospitalier Sainte-Anne, Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France.
- Human Histopathology and Animal Models, Infection and Epidemiology Department, Institut Pasteur, Paris 75015, France.
| | - Denis J David
- Université Paris-Saclay, University Paris-Sud, Faculté de Pharmacie, CESP, INSERM UMRS1178, Chatenay-Malabry 92296, France.
| | - Jean-Philippe Guilloux
- Université Paris-Saclay, University Paris-Sud, Faculté de Pharmacie, CESP, INSERM UMRS1178, Chatenay-Malabry 92296, France.
| |
Collapse
|
67
|
Chen L, Jackson T. Early maternal separation and responsiveness to thermal nociception in rodent offspring: A meta-analytic review. Behav Brain Res 2016; 299:42-50. [DOI: 10.1016/j.bbr.2015.11.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/15/2015] [Accepted: 11/17/2015] [Indexed: 01/07/2023]
|
68
|
Dimatelis JJ, Vermeulen IM, Bugarith K, Stein DJ, Russell VA. Female rats are resistant to developing the depressive phenotype induced by maternal separation stress. Metab Brain Dis 2016; 31:109-19. [PMID: 26344502 DOI: 10.1007/s11011-015-9723-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
Many stress-related psychiatric disorders are more common in women than in men. We aimed to determine how female rats respond to maternal separation (MS; removal of the dam from the litter for 3 h/day from postnatal day (P) 2-14)). A subset of MS females were also exposed to chronic constant light for 3 weeks during adolescence (P42-63) to investigate whether the antidepressant effect of light treatment, previously observed in male rats, could be seen in female rats. Ultrasonic vocalizations (22 kHz) were recorded and the forced swim test was conducted immediately after light exposure (P65-67) and 33 days later (P98-99) to determine depressive-like behaviour. Key proteins in the MAPK signal transduction pathway (MKP-1, phospho-ERK, total ERK) and a synaptosomal marker (synaptophysin) were measured in the ventral hippocampus. We found that MS decreased the duration of 22 kHz vocalizations at P65 which was reversed by subsequent light. Light exposure increased time spent in the inner zone of the open field and the number of 22 kHz calls in response to novelty at P98. MS decreased the time females spent immobile and increased time actively swimming in the forced swim test at P67 but not at P99. MKP-1 and synaptophysin levels remained unchanged while MS decreased phospho-ERK levels in the ventral hippocampus. In contrast to clinical findings, the results suggest that female rats may be resistant to MS-induced depression-like behaviour. The behavioural effects of MS and light treatment in female rats may involve the MAPK/ERK signal transduction pathway.
Collapse
Affiliation(s)
- J J Dimatelis
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, South Africa, 7925.
| | - I M Vermeulen
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, South Africa, 7925.
| | - K Bugarith
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, South Africa, 7925.
| | - D J Stein
- Department of Psychiatry and Mental Health, Groote Schuur Hospital, MRC Unit on Anxiety & Stress Disorders, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| | - V A Russell
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, South Africa, 7925.
| |
Collapse
|
69
|
Mela V, Díaz F, Vázquez MJ, Argente J, Tena-Sempere M, Viveros MP, Chowen JA. Interaction between neonatal maternal deprivation and serum leptin levels on metabolism, pubertal development, and sexual behavior in male and female rats. Biol Sex Differ 2016; 7:2. [PMID: 26759712 PMCID: PMC4710050 DOI: 10.1186/s13293-015-0054-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/23/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Maternal deprivation (MD) during neonatal life can have long-term effects on metabolism and behavior, with males and females responding differently. We previously reported that MD during 24 h at postnatal day (PND) 9 blocks the physiological neonatal leptin surge in both sexes. It is known that modifications in neonatal leptin levels can affect metabolism in adulthood. Thus, we hypothesized that at least some of the long-term metabolic changes that occur in response to MD are due to the decline in serum leptin during this critical period of development. Hence, we predicted that treatment with leptin during MD would normalize these metabolic changes, with this response also differing between the sexes. METHODS MD was carried-out in Wistar rats for 24 h on PND9. Control and MD rats of both sexes were treated from PND 9 to 13 with leptin (3 mg/kg/day sc) or vehicle. Weight gain, food intake, glucose tolerance, and pubertal onset were monitored. Sexual behavior was analyzed in males. Rats were killed at PND90, and serum hormones and hypothalamic neuropeptides involved in metabolic control and reproduction were measured. Results were analyzed by three-way analysis of covariance using sex, MD, and leptin treatment as factors and litter as the covariate and employing repeated measures where appropriate. RESULTS In males, MD advanced the external signs of puberty and increased serum insulin and triglyceride levels and hypothalamic proopiomelanocortin mRNA levels at PND90. Neonatal leptin treatment normalized these effects. In contrast, MD decreased circulating triglycerides, as well as estradiol levels, in females at PND90 and these changes were also normalized by neonatal leptin treatment. Neonatal leptin treatment also had long-term effects in control rats as it advanced the external signs of puberty in control males, but delayed them in females. Neonatal leptin treatment increased serum insulin and hypothalamic mRNA levels of the leptin receptor and cocaine- and amphetamine-regulated transcript in control males and increased orexin mRNA levels in controls of both sexes. Although pubertal onset in males was advanced by either MD or neonatal leptin treatment in males and delayed by leptin treatment in females, the mRNA levels of hypothalamic neuropeptides and receptors related to reproduction were not affected by MD or neonatal leptin treatment in either sex at PND90. CONCLUSIONS These findings indicate that some of the long-term changes in metabolic and reproductive parameters induced by MD, such as advanced pubertal onset and increased hypothalamic proopiomelanocortin (POMC) expression, hyperinsulinemia, and hypertriglyceridemia in adult males and decreased serum triglyceride and estradiol levels in females, are most likely due to the decrease in leptin levels during the period of MD.
Collapse
Affiliation(s)
- Virginia Mela
- Department of Physiology (Animal Physiology II), Faculty of Biology. Complutense University Madrid, Madrid, Spain
| | - Francisca Díaz
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Avenida Menéndez Pelayo, 65, Madrid, 28009 Spain ; CIBEROBN, Instituto Carlos III Madrid, Madrid, Spain
| | - María Jesús Vázquez
- CIBEROBN, Instituto Carlos III Madrid, Madrid, Spain ; Department of Cell Biology, Physiology and Immunology, University of Cordoba & Instituto Maimónides de Investigación Biomédica (IMIBIC), Hospital Universitario Reina Sofia, Córdoba, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Avenida Menéndez Pelayo, 65, Madrid, 28009 Spain ; CIBEROBN, Instituto Carlos III Madrid, Madrid, Spain ; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Tena-Sempere
- CIBEROBN, Instituto Carlos III Madrid, Madrid, Spain ; Department of Cell Biology, Physiology and Immunology, University of Cordoba & Instituto Maimónides de Investigación Biomédica (IMIBIC), Hospital Universitario Reina Sofia, Córdoba, Spain
| | - Maria-Paz Viveros
- Department of Physiology (Animal Physiology II), Faculty of Biology. Complutense University Madrid, Madrid, Spain
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Avenida Menéndez Pelayo, 65, Madrid, 28009 Spain ; CIBEROBN, Instituto Carlos III Madrid, Madrid, Spain
| |
Collapse
|
70
|
Exposure to a mildly aversive early life experience leads to prefrontal cortex deficits in the rat. Brain Struct Funct 2015; 221:4141-4157. [DOI: 10.1007/s00429-015-1154-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/19/2015] [Indexed: 10/22/2022]
|
71
|
Ganguly P, Holland FH, Brenhouse HC. Functional Uncoupling NMDAR NR2A Subunit from PSD-95 in the Prefrontal Cortex: Effects on Behavioral Dysfunction and Parvalbumin Loss after Early-Life Stress. Neuropsychopharmacology 2015; 40:2666-75. [PMID: 25953359 PMCID: PMC4864660 DOI: 10.1038/npp.2015.134] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/30/2015] [Accepted: 04/13/2015] [Indexed: 11/09/2022]
Abstract
Exposure to early-life stress increases vulnerability to psychiatric disorders, including depression, schizophrenia, and anxiety. Growing evidence implicates aberrant development of the prefrontal cortex (PFC) in the effects of early-life stress, which often emerge in adolescence or young adulthood. Specifically, early-life stress in the form of maternal separation (MS) in rodents has been shown to decrease parvalbumin (PVB)-positive interneurons in the adolescent PFC; however, the mechanism underpinning behavioral dysfunction and PVB loss is not yet known. We recently reported that MS causes overexpression of the NMDA subunit NR2A in the PFC of adolescent rats. Elevated PFC NR2A is also found in developmental models of schizophrenia and is correlated with behavioral deficits, acting largely through its association with the postsynaptic protein PSD-95. In addition, adolescent maturation of PVB-positive interneurons relies on NR2A-driven NMDA activity. Therefore, it is possible that the NR2A/PSD-95 signaling complex has a role in adolescent MS effects. Here, we aimed to determine whether a discrete manipulation of PFC NR2A could prevent MS effects on PFC-controlled behaviors, including cognition, anxiety, and novelty-induced hyperlocomotion, as well as PVB loss in adolescence. We intracranially infused the NR2A-specific blocking peptide TAT2A in order to uncouple NR2A from PSD-95 in the early-adolescent PFC, without antagonizing the NMDA receptor. We demonstrated that MS rats treated with TAT2A during early adolescence were protected from MS-induced PVB loss and exhibited less anxious behavior than those infused with control peptide. These data implicate NR2A-related N-methyl-D-aspartate receptor development in adolescent behavioral and neural consequences of early-life stress.
Collapse
Affiliation(s)
- Prabarna Ganguly
- Department of Psychology, Northeastern University, Boston, MA, USA
| | | | - Heather C Brenhouse
- Department of Psychology, Northeastern University, Boston, MA, USA,Department of Psychology, Northeastern University, 125 NI, Boston, MA 02115, USA, Tel: +1 617 373 6856, Fax: +1 617 373 8714, E-mail:
| |
Collapse
|
72
|
Neves BH, Menezes J, Souza MA, Mello-Carpes PB. Physical exercise prevents short and long-term deficits on aversive and recognition memory and attenuates brain oxidative damage induced by maternal deprivation. Physiol Behav 2015; 152:99-105. [PMID: 26403760 DOI: 10.1016/j.physbeh.2015.09.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/07/2015] [Accepted: 09/20/2015] [Indexed: 11/28/2022]
Abstract
It is known from previous research that physical exercise prevents long-term memory deficits induced by maternal deprivation in rats. But we could not assume similar effects of physical exercise on short-term memory, as short- and long-term memories are known to result from some different memory consolidation processes. Here we demonstrated that, in addition to long-term memory deficit, the short-term memory deficit resultant from maternal deprivation in object recognition and aversive memory tasks is also prevented by physical exercise. Additionally, one of the mechanisms by which the physical exercise influences the memory processes involves its effects attenuating the oxidative damage in the maternal deprived rats' hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Ben-Hur Neves
- Physiology Research Group, Stress, Memory & Behavior Lab, Federal University of Pampa, BR 472, Km 592, Po Box 118, 97500-970 Uruguaiana, RS, Brazil
| | - Jefferson Menezes
- Physiology Research Group, Stress, Memory & Behavior Lab, Federal University of Pampa, BR 472, Km 592, Po Box 118, 97500-970 Uruguaiana, RS, Brazil
| | - Mauren Assis Souza
- Physiology Research Group, Stress, Memory & Behavior Lab, Federal University of Pampa, BR 472, Km 592, Po Box 118, 97500-970 Uruguaiana, RS, Brazil
| | - Pâmela B Mello-Carpes
- Physiology Research Group, Stress, Memory & Behavior Lab, Federal University of Pampa, BR 472, Km 592, Po Box 118, 97500-970 Uruguaiana, RS, Brazil; Graduate Program in Biological Sciences: Physiology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
73
|
Wang Q, Shao F, Wang W. Maternal separation produces alterations of forebrain brain-derived neurotrophic factor expression in differently aged rats. Front Mol Neurosci 2015; 8:49. [PMID: 26388728 PMCID: PMC4555027 DOI: 10.3389/fnmol.2015.00049] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/18/2015] [Indexed: 01/06/2023] Open
Abstract
Early life adversity, such as postnatal maternal separation (MS), play a central role in the development of psychopathologies during individual ontogeny. In this study, we investigated the effects of repeated MS (4 h per day from postnatal day (PND) 1-21) on the brain-derived neurotrophic factor (BDNF) expression in the medial prefrontal cortex (mPFC), the nucleus accumbens (NAc) and the hippocampus of male and female juvenile (PND 21), adolescent (PND 35) and young adult (PND 56) Wistar rats. The results indicated that MS increased BDNF in the CA1 and the dentate gyrus (DG) of adolescent rats as well as in the DG of young adult rats. However, the expression of BDNF in the mPFC in the young adult rats was decreased by MS. Additionally, in the hippocampus, there was decreased BDNF expression with age in both the MS and non separated rats. However, in the mPFC, the BDNF expression was increased with age in the non separated rats; nevertheless, the BDNF expression was significantly decreased in the MS young adult rats. In the NAc, the BDNF expression was increased with age in the male non-maternal separation (NMS) rats, and the young adult female MS rats had less BDNF expression than the adolescent female MS rats. The present study shows unique age-differently changes on a molecular level induced by MS and advances the use of MS as a valid animal model to detect the underlying neurobiological mechanisms of mental disorders.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Psychology, Peking University Beijing, China
| | - Feng Shao
- Department of Psychology, Peking University Beijing, China
| | - Weiwen Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| |
Collapse
|
74
|
López-Gallardo M, Antón-Fernández A, Llorente R, Mela V, Llorente-Berzal A, Prada C, Viveros MP. Neonatal Treatment with a Pegylated Leptin Antagonist Induces Sexually Dimorphic Effects on Neurones and Glial Cells, and on Markers of Synaptic Plasticity in the Developing Rat Hippocampal Formation. J Neuroendocrinol 2015; 27:658-69. [PMID: 25981175 DOI: 10.1111/jne.12294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/04/2015] [Accepted: 04/11/2015] [Indexed: 01/03/2023]
Abstract
The present study aimed to better understand the role of the neonatal leptin surge, which peaks on postnatal day (PND)9-10, on the development of the hippocampal formation. Accordingly, male and female rats were administered with a pegylated leptin antagonist on PND9 and the expression of neurones, glial cells and diverse markers of synaptic plasticity was then analysed by immunohistochemistry in the hippocampal formation. Antagonism of the actions of leptin at this specific postnatal stage altered the number of glial fibrillary acidic protein positive cells, and also affected type 1 cannabinoid receptors, synaptophysin and brain-derived neurotrophic factor (BDNF), with the latter effect being sexually dimorphic. The results indicate that the physiological leptin surge occurring around PND 9-10 is critical for hippocampal formation development and that the dynamics of leptin activity might be different in males and females. The data obtained also suggest that some but not all the previously reported effects of maternal deprivation on hippocampal formation development (which markedly reduces leptin levels at PND 9-10) might be mediated by leptin deficiency in these animals.
Collapse
Affiliation(s)
- M López-Gallardo
- Department of Physiology, Faculty of Medicine, Universidad Complutense, Madrid, Spain
| | - A Antón-Fernández
- Department of Physiology, Faculty of Medicine, Universidad Complutense, Madrid, Spain
| | - R Llorente
- Department of Physiology (Animal Physiology II), Faculty of Biology, Universidad Complutense, Madrid, Spain
| | - V Mela
- Department of Physiology (Animal Physiology II), Faculty of Biology, Universidad Complutense, Madrid, Spain
| | - A Llorente-Berzal
- Department of Physiology (Animal Physiology II), Faculty of Biology, Universidad Complutense, Madrid, Spain
| | - C Prada
- Department of Physiology, Faculty of Medicine, Universidad Complutense, Madrid, Spain
| | - M P Viveros
- Department of Physiology (Animal Physiology II), Faculty of Biology, Universidad Complutense, Madrid, Spain
| |
Collapse
|
75
|
Assessment of disease-related cognitive impairments using the novel object recognition (NOR) task in rodents. Behav Brain Res 2015; 285:176-93. [DOI: 10.1016/j.bbr.2014.10.025] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/16/2014] [Accepted: 10/19/2014] [Indexed: 12/11/2022]
|
76
|
Consequences of early life stress on the expression of endocannabinoid-related genes in the rat brain. Behav Pharmacol 2015; 25:547-56. [PMID: 25083571 DOI: 10.1097/fbp.0000000000000068] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The endocannabinoid system is involved in several physiological and pathological states including anxiety, depression, addiction and other neuropsychiatric disorders. Evidence from human and rodent studies suggests that exposure to early life stress may increase the risk of psychopathology later in life. Indeed, maternal deprivation (MD) (24 h at postnatal day 9) in rats induces behavioural alterations associated with depressive-like and psychotic-like symptoms, as well as important changes in the endocannabinoid system. As most neuropsychiatric disorders first appear at adolescence, and show remarkable sexual dimorphisms in their prevalence and severity, in the present study, we analysed the gene expression of the main components of the brain cannabinoid system in adolescent (postnatal day 46) Wistar male and female rats reared under standard conditions or exposed to MD. For this, we analysed, by real-time quantitative PCR, the expression of genes encoding for CB1 and CB2 receptors, TRPV1 and GPR55 (Cnr1, Cnr2a, Cnr2b, Trpv1, and Gpr55), for the major enzymes of synthesis, N-acyl phosphatidyl-ethanolamine phospholipase D (NAPE-PLD) and diacylglycerol lipase (DAGL) (Nape-pld, Dagla and Daglb), and degradation, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) (Faah, Magl and Cox-2), in specific brain regions, that is, the frontal cortex, ventral and dorsal striatum, dorsal hippocampus and amygdala. In males, MD increased the genetic expression of all the genes studied within the frontal cortex, whereas in females such an increase was observed only in the hippocampus. In conclusion, the endocannabinoid system is sensitive to early life stress at the gene expression level in a sex-dependent and region-dependent manner, and these changes are already evident in the adolescent brain.
Collapse
|
77
|
Early maternal deprivation enhances voluntary alcohol intake induced by exposure to stressful events later in life. Neural Plast 2015; 2015:342761. [PMID: 25821601 PMCID: PMC4363574 DOI: 10.1155/2015/342761] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/14/2015] [Accepted: 01/29/2015] [Indexed: 11/24/2022] Open
Abstract
In the present study, we aimed to assess the impact of early life stress, in the form of early maternal deprivation (MD, 24 h on postnatal day, pnd, 9), on voluntary alcohol intake in adolescent male and female Wistar rats. During adolescence, from pnd 28 to pnd 50, voluntary ethanol intake (20%, v/v) was investigated using the two-bottle free choice paradigm. To better understand the relationship between stress and alcohol consumption, voluntary alcohol intake was also evaluated following additional stressful events later in life, that is, a week of alcohol cessation and a week of alcohol cessation combined with exposure to restraint stress. Female animals consumed more alcohol than males only after a second episode of alcohol cessation combined with restraint stress. MD did not affect baseline voluntary alcohol intake but increased voluntary alcohol intake after stress exposure, indicating that MD may render animals more vulnerable to the effects of stress on alcohol intake. During adolescence, when animals had free access to alcohol, MD animals showed lower body weight gain but a higher growth rate than control animals. Moreover, the higher growth rate was accompanied by a decrease in food intake, suggesting an altered metabolic regulation in MD animals that may interact with alcohol intake.
Collapse
|
78
|
The maternal deprivation animal model revisited. Neurosci Biobehav Rev 2015; 51:151-63. [PMID: 25616179 DOI: 10.1016/j.neubiorev.2015.01.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/23/2014] [Accepted: 01/12/2015] [Indexed: 12/17/2022]
Abstract
Early life stress, in the form of MD (24h at pnd 9), interferes with brain developmental trajectories modifying both behavioral and neurobiochemical parameters. MD has been reported to enhance neuroendocrine responses to stress, to affect emotional behavior and to impair cognitive function. More recently, changes in body weight gain, metabolic parameters and immunological responding have also been described. Present data give support to the fact that neuronal degeneration and/or astrocyte proliferation are present in specific brain regions, mainly hippocampus, prefrontal cortex and hypothalamus, which are particularly vulnerable to the effects of neonatal stress. The MD animal model arises as a valuable tool for the investigation of the brain processes occurring at the narrow time window comprised between pnd 9 and 10 that are critical for the establishment of brain circuitries critical for the regulation of behavior, metabolism and energy homeostasis. In the present review we will discuss three possible mechanisms that might be crucial for the effects of MD, namely, the rapid increase in glucocorticoids, the lack of the neonatal leptin surge, and the enhanced endocannabinoid signaling during the specific critical period of MD. A better understanding of the mechanisms underlying the detrimental consequences of MD is a concern for public health and may provide new insights into mental health prevention strategies and into novel therapeutic approaches in neuropsychiatry.
Collapse
|
79
|
Smaga I, Bystrowska B, Gawliński D, Przegaliński E, Filip M. The endocannabinoid/endovanilloid system and depression. Curr Neuropharmacol 2014; 12:462-74. [PMID: 25426013 PMCID: PMC4243035 DOI: 10.2174/1570159x12666140923205412] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/15/2014] [Accepted: 09/12/2014] [Indexed: 12/20/2022] Open
Abstract
Depression is one of the most frequent causes of disability in the 21st century. Despite the many preclinical and clinical studies that have addressed this brain disorder, the pathophysiology of depression is not well understood and the available antidepressant drugs are therapeutically inadequate in many patients. In recent years, the potential role of lipid-derived molecules, particularly endocannabinoids (eCBs) and endovanilloids, has been highlighted in the pathogenesis of depression and in the action of antidepressants. There are many indications that the eCB/endovanilloid system is involved in the pathogenesis of depression, including the localization of receptors, modulation of monoaminergic transmission, inhibition of the stress axis and promotion of neuroplasticity in the brain. Preclinical pharmacological and genetic studies of eCBs in depression also suggest that facilitating the eCB system exerts antidepressant-like behavioral responses in rodents. In this article, we review the current knowledge of the role of the eCB/endovanilloid system in depression, as well as the effects of its ligands, models of depression and antidepressant drugs in preclinical and clinical settings.
Collapse
Affiliation(s)
- Irena Smaga
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University, College of Medicum, Medyczna 9, PL 30-688 Kraków, Poland
| | - Beata Bystrowska
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University, College of Medicum, Medyczna 9, PL 30-688 Kraków, Poland
| | - Dawid Gawliński
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University, College of Medicum, Medyczna 9, PL 30-688 Kraków, Poland
| | - Edmund Przegaliński
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| | - Małgorzata Filip
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University, College of Medicum, Medyczna 9, PL 30-688 Kraków, Poland ; Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| |
Collapse
|
80
|
Olza-Fernández I, Marín Gabriel MA, Gil-Sanchez A, Garcia-Segura LM, Arevalo MA. Neuroendocrinology of childbirth and mother-child attachment: the basis of an etiopathogenic model of perinatal neurobiological disorders. Front Neuroendocrinol 2014; 35:459-72. [PMID: 24704390 DOI: 10.1016/j.yfrne.2014.03.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 12/15/2022]
Abstract
This review focuses on the neuroendocrine mechanisms in the mother and the newborn that are involved in the generation and consolidation of mother-child attachment. The role that different hormones and neurotransmitters play on the regulation of these mechanisms during parturition, the immediate postpartum period and lactation is discussed. Interferences in the initiation of mother-child attachment may have potential long-term effects for the behavior and affection of the newborn. Therefore, the possible consequences of alterations in the physiological neuroendocrine mechanisms of attachment, caused by elective Cesarean section, intrapartum hormonal manipulations, preterm delivery, mother-infant postpartum separation and bottle-feeding instead of breastfeeding are also discussed.
Collapse
Affiliation(s)
- Ibone Olza-Fernández
- Department of Psychiatry, Autonomous University of Madrid, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | | | - Alfonso Gil-Sanchez
- Unidad Docente de Salud Mental de la Región de Murcia, Hospital General Universitario Santa María del Rosell de Cartagena, Murcia, Spain
| | | | | |
Collapse
|
81
|
Girardi CEN, Zanta NC, Suchecki D. Neonatal stress-induced affective changes in adolescent Wistar rats: early signs of schizophrenia-like behavior. Front Behav Neurosci 2014; 8:319. [PMID: 25309370 PMCID: PMC4159973 DOI: 10.3389/fnbeh.2014.00319] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/27/2014] [Indexed: 12/17/2022] Open
Abstract
Psychiatric disorders are multifactorial diseases with etiology that may involve genetic factors, early life environment and stressful life events. The neurodevelopmental hypothesis of schizophrenia is based on a wealth of data on increased vulnerability in individuals exposed to insults during the perinatal period. Maternal deprivation (MD) disinhibits the adrenocortical response to stress in neonatal rats and has been used as an animal model of schizophrenia. To test if long-term affective consequences of early life stress were influenced by maternal presence, we submitted 10-day old rats, either deprived (for 22 h) or not from their dams, to a stress challenge (i.p. saline injection). Corticosterone plasma levels were measured 2 h after the challenge, whereas another subgroup was assessed for behavior in the open field, elevated plus maze (EPM), social investigation and the negative contrast sucrose consumption test in adolescence (postnatal day 45). Maternally deprived rats exhibited increased plasma corticosterone (CORT) levels which were higher in maternally deprived and stress challenged pups. Social investigation was impaired in maternally deprived rats only, while saline injection, independently of MD, was associated with increased anxiety-like behavior in the EPM and an impaired intake decrement in the negative sucrose contrast. In the open field, center exploration was reduced in all maternally-deprived adolescents and in control rats challenged with saline injection. The most striking finding was that exposure to a stressful stimulus per se, regardless of MD, was linked to differential emotional consequences. We therefore propose that besides being a well-known and validated model of schizophrenia in adult rats, the MD paradigm could be extended to model early signs of psychiatric dysfunction, and would particularly be a useful tool to detect early signs that resemble schizophrenia.
Collapse
Affiliation(s)
- Carlos Eduardo Neves Girardi
- Department of Psychobiology - Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, SP, Brazil
| | - Natália Cristina Zanta
- Department of Psychobiology - Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, SP, Brazil
| | - Deborah Suchecki
- Department of Psychobiology - Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, SP, Brazil
| |
Collapse
|
82
|
Wu X, Bai Y, Tan T, Li H, Xia S, Chang X, Zhou Z, Zhou W, Li T, Wang YT, Dong Z. Lithium ameliorates autistic-like behaviors induced by neonatal isolation in rats. Front Behav Neurosci 2014; 8:234. [PMID: 25018711 PMCID: PMC4071979 DOI: 10.3389/fnbeh.2014.00234] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/13/2014] [Indexed: 11/21/2022] Open
Abstract
Neonatal isolation is a widely accepted model to study the long-term behavioral changes produced by the early life events. However, it remains unknown whether neonatal isolation can induce autistic-like behaviors, and if so, whether pharmacological treatment can overcome it. Here, we reported that newborn rats subjected to individual isolations from their mother and nest for 1 h per day from postnatal days 1–9 displayed apparent autistic-like symptoms including social deficits, excessive repetitive self-grooming behavior, and increased anxiety- and depressive-like behaviors tested in young adult (postnatal days 42–56) compared to normal reared controls. Furthermore, these behavioral changes were accompanied by impaired adult hippocampal neurogenesis and reduced the ratio of excitatory/inhibitory synaptic transmissions, as reflected by an increase in spontaneous inhibitory postsynaptic current (sIPSC) and normal spontaneous excitatory postsynaptic current (sEPSC) in the hippocampal CA1 pyramidal neuron. More importantly, chronic administration of lithium, a clinically used mood stabilizer, completely overcame neonatal isolation-induced autistic-like behaviors, and restored adult hippocampal neurogenesis as well as the balance between excitatory and inhibitory activities to physiological levels. These findings indicate that neonatal isolation may produce autistic-like behaviors, and lithium may be a potential therapeutic agent against autism spectrum disorders (ASD) during development.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University Chongqing, China ; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University Chongqing, China
| | - Yanrui Bai
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University Chongqing, China ; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University Chongqing, China
| | - Tao Tan
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University Chongqing, China ; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University Chongqing, China
| | - Hongjie Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University Chongqing, China ; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University Chongqing, China
| | - Shuting Xia
- Ministry of Education Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University Nanjing, China
| | - Xinxia Chang
- Ministry of Education Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University Nanjing, China
| | - Zikai Zhou
- Ministry of Education Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University Nanjing, China
| | - Weihui Zhou
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University Chongqing, China ; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University Chongqing, China
| | - Tingyu Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University Chongqing, China ; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University Chongqing, China
| | - Yu Tian Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University Chongqing, China ; Brain Research Centre, University of British Columbia Vancouver, BC, Canada
| | - Zhifang Dong
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University Chongqing, China ; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University Chongqing, China
| |
Collapse
|
83
|
Hill RA, Klug M, Kiss Von Soly S, Binder MD, Hannan AJ, van den Buuse M. Sex-specific disruptions in spatial memory and anhedonia in a "two hit" rat model correspond with alterations in hippocampal brain-derived neurotrophic factor expression and signaling. Hippocampus 2014; 24:1197-211. [PMID: 24802968 DOI: 10.1002/hipo.22302] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2014] [Indexed: 01/01/2023]
Abstract
Post-mortem studies have demonstrated reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus of schizophrenia and major depression patients. The "two hit" hypothesis proposes that two or more major disruptions at specific time points during development are involved in the pathophysiology of these mental illnesses. However, the role of BDNF in these "two hit" effects is unclear. Our aim was to behaviorally characterize a "two hit" rat model of developmental stress accompanied by an in-depth assessment of BDNF expression and signalling. Wistar rats were exposed to neonatal maternal separation (MS) stress and/or adolescent/young-adult corticosterone (CORT) treatment. In adulthood, models of cognitive and negative symptoms of mental illness were analyzed. The hippocampus was then dissected into dorsal (DHP) and ventral (VHP) regions and analyzed by qPCR for exon-specific BDNF gene expression or by Western blot for BDNF protein expression and downstream signaling. Male "two hit" rats showed marked disruptions in short-term spatial memory (Y-maze) which were absent in females. However, female "two hit" rats showed signs of anhedonia (sucrose preference test), which were absent in males. Novel object recognition and anxiety (elevated plus maze) were unchanged by either of the two "hits". In the DHP, MS caused a male-specific increase in BDNF Exons I, II, IV, VII, and IX mRNA but a decrease in mature BDNF and phosphorylated TrkB (pTrkB) protein expression in adulthood. In the VHP, BDNF transcript expression was unchanged; however, in female rats only, MS significantly decreased mature BDNF and pTrkB protein expression in adulthood. These data demonstrate that MS causes region-specific and sex-specific long-term effects on BDNF expression and signaling and, importantly, mRNA expression does not always infer protein expression. Alterations to BDNF signaling may mediate the sex-specific effects of developmental stress on anhedonic behaviors.
Collapse
Affiliation(s)
- Rachel A Hill
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
84
|
Escitalopram or novel herbal mixture treatments during or following exposure to stress reduce anxiety-like behavior through corticosterone and BDNF modifications. PLoS One 2014; 9:e91455. [PMID: 24690945 PMCID: PMC3972209 DOI: 10.1371/journal.pone.0091455] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 02/11/2014] [Indexed: 01/15/2023] Open
Abstract
Anxiety disorders are a major public health concern worldwide. Studies indicate that repeated exposure to adverse experiences early in life can lead to anxiety disorders in adulthood. Current treatments for anxiety disorders are characterized by a low success rate and are associated with a wide variety of side effects. The aim of the present study was to evaluate the anxiolytic effects of a novel herbal treatment, in comparison to treatment with the selective serotonin reuptake inhibitor escitalopram. We recently demonstrated the anxiolytic effects of these treatments in BALB mice previously exposed to one week of stress. In the present study, ICR mice were exposed to post natal maternal separation and to 4 weeks of unpredictable chronic mild stress in adolescence, and treated during or following exposure to stress with the novel herbal treatment or with escitalopram. Anxiety-like behavior was evaluated in the elevated plus maze. Blood corticosterone levels were evaluated using radioimmunoassay. Brain derived neurotrophic factor levels in the hippocampus were evaluated using enzyme-linked immunosorbent assay. We found that (1) exposure to stress in childhood and adolescence increased anxiety-like behavior in adulthood; (2) the herbal treatment reduced anxiety-like behavior, both when treated during or following exposure to stress; (3) blood corticosterone levels were reduced following treatment with the herbal treatment or escitalopram, when treated during or following exposure to stress; (4) brain derived neurotrophic factor levels in the hippocampus of mice treated with the herbal treatment or escitalopram were increased, when treated either during or following exposure to stress. This study expands our previous findings and further points to the proposed herbal compound's potential to be highly efficacious in treating anxiety disorders in humans.
Collapse
|
85
|
Fuentes S, Daviu N, Gagliano H, Garrido P, Zelena D, Monasterio N, Armario A, Nadal R. Sex-dependent effects of an early life treatment in rats that increases maternal care: vulnerability or resilience? Front Behav Neurosci 2014; 8:56. [PMID: 24616673 PMCID: PMC3934416 DOI: 10.3389/fnbeh.2014.00056] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 02/05/2014] [Indexed: 11/13/2022] Open
Abstract
Early life stress (ELS) in rodents has profound long-term effects that are partially mediated by changes in maternal care. ELS not only induces “detrimental” effects in adulthood, increasing psychopathology, but also promotes resilience to further stressors. In Long-Evans rats, we evaluated a combination of two procedures as a model of ELS: restriction of bedding during the first post-natal days and exposure to a “substitute” mother. The maternal care of biological and “substitute” mothers was measured. The male and female offspring were evaluated during adulthood in several contexts. Anxiety was measured by the elevated plus-maze (EPM), acoustic startle response (ASR) and forced swim test (FST). In other group of animals, novelty-seeking was measured (activity in an inescapable novel environment, preference for novel environments and exploration of novel objects). Plasmatic ACTH and corticosterone in basal conditions and in response to stress were also measured. Cognitive impulsivity was assessed by a delay-discounting paradigm, and impulsive action, attention and compulsive-like behavior by a five choice serial reaction time task (5CSRTT). ELS decreased pup body weight and increased the care of the biological mother; however, the “substitute” mother did not exhibit overt maltreatment. A mixture of “detrimental” and “beneficial” effects was shown. In the 5CSRTT, attention was impaired in both genders, and in females, ELS increased compulsive-like behavior. Novel object exploration was only increased by ELS in males, but the preference for novel spaces decreased in both genders. Baseline anxiety (EPM and ASR) and recognition memory were not affected. Unexpectedly, ELS decreased the ACTH response to novelty and swim stress and increased active coping in the FST in both genders. Cognitive impulsivity was decreased only in females, but impulsive action was not affected. The enhancement in maternal care may “buffer” the effects of ELS in a context-dependent manner.
Collapse
Affiliation(s)
- Sílvia Fuentes
- Institut de Neurociències, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Núria Daviu
- Institut de Neurociències, Universitat Autònoma de Barcelona Barcelona, Spain ; Animal Physiology Unit, School of Biosciences, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Humberto Gagliano
- Institut de Neurociències, Universitat Autònoma de Barcelona Barcelona, Spain ; Animal Physiology Unit, School of Biosciences, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Pedro Garrido
- Institut de Neurociències, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Dóra Zelena
- Institute of Experimental Medicine, Hungarian Academy of Science Budapest, Hungary
| | - Nela Monasterio
- Institut de Neurociències, Universitat Autònoma de Barcelona Barcelona, Spain ; Psychobiology Unit, School of Psychology, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona Barcelona, Spain ; Animal Physiology Unit, School of Biosciences, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Roser Nadal
- Institut de Neurociències, Universitat Autònoma de Barcelona Barcelona, Spain ; Psychobiology Unit, School of Psychology, Universitat Autònoma de Barcelona Barcelona, Spain
| |
Collapse
|
86
|
Bock J, Rether K, Gröger N, Xie L, Braun K. Perinatal programming of emotional brain circuits: an integrative view from systems to molecules. Front Neurosci 2014; 8:11. [PMID: 24550772 PMCID: PMC3913903 DOI: 10.3389/fnins.2014.00011] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/17/2014] [Indexed: 02/06/2023] Open
Abstract
Environmental influences such as perinatal stress have been shown to program the developing organism to adapt brain and behavioral functions to cope with daily life challenges. Evidence is now accumulating that the specific and individual effects of early life adversity on the functional development of brain and behavior emerge as a function of the type, intensity, timing and the duration of the adverse environment, and that early life stress (ELS) is a major risk factor for developing behavioral dysfunctions and mental disorders. Results from clinical as well as experimental studies in animal models support the hypothesis that ELS can induce functional “scars” in prefrontal and limbic brain areas, regions that are essential for emotional control, learning and memory functions. On the other hand, the concept of “stress inoculation” is emerging from more recent research, which revealed positive functional adaptations in response to ELS resulting in resilience against stress and other adversities later in life. Moreover, recent studies indicate that early life experiences and the resulting behavioral consequences can be transmitted to the next generation, leading to a transgenerational cycle of adverse or positive adaptations of brain function and behavior. In this review we propose a unifying view of stress vulnerability and resilience by connecting genetic predisposition and programming sensitivity to the context of experience-expectancy and transgenerational epigenetic traits. The adaptive maturation of stress responsive neural and endocrine systems requires environmental challenges to optimize their functions. Repeated environmental challenges can be viewed within the framework of the match/mismatch hypothesis, the outcome, psychopathology or resilience, depends on the respective predisposition and on the context later in life.
Collapse
Affiliation(s)
- Jörg Bock
- PG "Epigenetics and Structural Plasticity", Institute of Biology, Otto von Guericke University Magdeburg Magdeburg, Germany ; Center for Behavioral Brain Sciences Magdeburg, Germany
| | - Kathy Rether
- PG "Epigenetics and Structural Plasticity", Institute of Biology, Otto von Guericke University Magdeburg Magdeburg, Germany ; Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg Magdeburg, Germany
| | - Nicole Gröger
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg Magdeburg, Germany
| | - Lan Xie
- PG "Epigenetics and Structural Plasticity", Institute of Biology, Otto von Guericke University Magdeburg Magdeburg, Germany ; Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg Magdeburg, Germany
| | - Katharina Braun
- Center for Behavioral Brain Sciences Magdeburg, Germany ; Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg Magdeburg, Germany
| |
Collapse
|
87
|
Viviani B, Boraso M, Valero M, Gardoni F, Marco EM, Llorente R, Corsini E, Galli CL, Di Luca M, Marinovich M, López-Gallardo M, Viveros MP. Early maternal deprivation immunologically primes hippocampal synapses by redistributing interleukin-1 receptor type I in a sex dependent manner. Brain Behav Immun 2014; 35:135-43. [PMID: 24060584 DOI: 10.1016/j.bbi.2013.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 12/24/2022] Open
Abstract
Challenges experienced in early life cause an enduring phenotypical shift of immune cells towards a sensitised state that may lead to an exacerbated reaction later in life and contribute to increased vulnerability to neurological diseases. Peripheral and central inflammation may affect neuronal function through cytokines such as IL-1. The extent to which an early life challenge induces long-term alteration of immune receptors organization in neurons has not been shown. We investigated whether a single episode of maternal deprivation (MD) on post-natal day (PND) 9 affects: (i) the synapse distribution of IL-1RI together with subunits of NMDA and AMPA receptors; and (ii) the interactions between IL-1RI and the GluN2B subunit of the NMDAR in the long-term, at PND 45. MD increased IL-1RI levels and IL-1RI interactions with GluN2B at the synapse of male hippocampal neurons, without affecting the total number of IL-1RI or NMDAR subunits. Although GluN2B and GluN2A were slightly but not significantly changed at the synapse, their ratio was significantly decreased in the hippocampus of the male rats who had experienced MD; the levels of the GluA1 and GluA2 subunits of the AMPAR were also decreased. These changes were not observed immediately after the MD episode. None of the observed alterations occurred in the hippocampus of the females or in the prefrontal cortex of either sex. These data reveal a long-term, sex-dependent modification in receptor organisation at the hippocampal post-synapses following MD. We suggest that this effect might contribute to priming hippocampal synapses to the action of IL-1β.
Collapse
Affiliation(s)
- Barbara Viviani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| | - Mariaserena Boraso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Manuel Valero
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Fabrizio Gardoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Eva Maria Marco
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Ricardo Llorente
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Emanuela Corsini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Corrado Lodovico Galli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Monica Di Luca
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Marina Marinovich
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Meritxell López-Gallardo
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain; Departamento de Fisiología Humana, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Maria-Paz Viveros
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| |
Collapse
|
88
|
Feng M, Sheng G, Li Z, Wang J, Ren K, Jin X, Jiang K. Postnatal maternal separation enhances tonic GABA current of cortical layer 5 pyramidal neurons in juvenile rats and promotes genesis of GABAergic neurons in neocortical molecular layer and subventricular zone in adult rats. Behav Brain Res 2013; 260:74-82. [PMID: 24304720 DOI: 10.1016/j.bbr.2013.11.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/24/2013] [Indexed: 02/07/2023]
Abstract
Postnatal maternal separation (PMS) has been shown to be associated with an increased vulnerability to psychiatric illnesses in adulthood. However, the underlying neurological mechanisms are not well understood. Here we evaluated its effects on neurogenesis and tonic GABA currents of cortical layer 5 (L5) pyramidal neurons. PMS not only increased cell proliferation in the subventricular zone, cortical layer 1 and hippocampal dentate gyrus in the adult brain, but also promoted the newly generated cells to differentiate into GABAergic neurons, and PMS adult brain maintained higher ratios of GABAergic neurons in the survival of newly generated cells within 5 days immediately post PMS. Additionally, PMS increased the tonic currents at P7-10 and P30-35 in cortical L5 pyramidal cells. Our results suggest that the newly generated GABAergic neurons and the low GABA concentration-activated tonic currents may be involved in the development of psychiatric disorders after PMS.
Collapse
Affiliation(s)
- Mei Feng
- Department of Neurology, The Children's Hospital Zhejiang University School of Medicine, 57 Zhugan Lane, Yanan Road, Hangzhou 310003, China
| | - Guoxia Sheng
- Department of Neurology, The Children's Hospital Zhejiang University School of Medicine, 57 Zhugan Lane, Yanan Road, Hangzhou 310003, China
| | - Zhongxia Li
- Department of Neurology, The Children's Hospital Zhejiang University School of Medicine, 57 Zhugan Lane, Yanan Road, Hangzhou 310003, China
| | - Jiangping Wang
- Department of rehabilitation, The Children's Hospital Zhejiang University School of Medicine, 57 Zhugan Lane, Yanan Road, Hangzhou 310003, China
| | - Keming Ren
- Department of Neurology, The Children's Hospital Zhejiang University School of Medicine, 57 Zhugan Lane, Yanan Road, Hangzhou 310003, China
| | - Xiaoming Jin
- Stark Neurosciences Research Institute Indiana University School of Medicine, 980 W, Walnut Street, R3, Room C432A, Indianapolis, IN 46202, USA
| | - Kewen Jiang
- Department of Neurology, The Children's Hospital Zhejiang University School of Medicine, 57 Zhugan Lane, Yanan Road, Hangzhou 310003, China; Department of Laboratory, The Children's Hospital Zhejiang University School of Medicine, 57 Zhugan Lane, Yanan Road, Hangzhou 310003, China.
| |
Collapse
|
89
|
Burke NN, Llorente R, Marco EM, Tong K, Finn DP, Viveros MP, Roche M. Maternal deprivation is associated with sex-dependent alterations in nociceptive behavior and neuroinflammatory mediators in the rat following peripheral nerve injury. THE JOURNAL OF PAIN 2013; 14:1173-84. [PMID: 23850096 DOI: 10.1016/j.jpain.2013.05.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 04/24/2013] [Accepted: 05/02/2013] [Indexed: 12/30/2022]
Abstract
UNLABELLED Early-life stress is associated with an increased risk of developing affective disorders and chronic pain conditions. This study examined the effect of maternal deprivation (MD) on nociceptive responding prior to and following peripheral nerve injury (L5-L6 spinal nerve ligation [SNL]). Because neuroimmune signaling plays an important role in pain and affective disorders, associated alterations in glial and cytokine expression were assessed in key brain regions associated with emotional and nociceptive responding, the hippocampus and prefrontal cortex. MD female, but not male, rats exhibited thermal hypoalgesia and mechanical allodynia compared with control (non-MD) counterparts. SNL resulted in mechanical and cold allodynia in MD and control rats of both sexes. However, MD females exhibited enhanced SNL-induced allodynic responding compared with non-MD counterparts. Interleukin 6 (IL-6) expression was reduced in the prefrontal cortex of MD-SNL males when compared with non-SNL counterparts. Glial fibrillary acidic protein and IL-1β expression in the hippocampus of MD-SNL males was increased compared with non-MD controls. MD-SNL females exhibited reduced tumor necrosis factor alpha in the prefrontal cortex with a concomitant increase in IL-6 and tumor necrosis factor alpha expression in the hippocampus, compared with either MD or SNL alone. In conclusion, MD female, but not male, rats exhibit enhanced nociceptive responding following peripheral nerve injury, effects that may relate to the distinct neuroinflammatory profile observed in female versus male rats. PERSPECTIVE This study demonstrates that females rats exposed to early-life stress exhibit enhanced neuropathic pain responding, effects that are associated with alterations in neuroinflammatory mediators. Increased understanding of the interactions among early-life stress, gender, and pain may lead to the identification of novel therapeutic targets for the treatment of chronic pain disorders.
Collapse
Affiliation(s)
- Nikita N Burke
- Physiology, School of Medicine, NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | | | | | | | | | | | | |
Collapse
|
90
|
Wang H, Gondré-Lewis MC. Prenatal nicotine and maternal deprivation stress de-regulate the development of CA1, CA3, and dentate gyrus neurons in hippocampus of infant rats. PLoS One 2013; 8:e65517. [PMID: 23785432 PMCID: PMC3681797 DOI: 10.1371/journal.pone.0065517] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 04/29/2013] [Indexed: 12/13/2022] Open
Abstract
Adverse experiences by the developing fetus and in early childhood are associated with profound effects on learning, emotional behavior, and cognition as a whole. In this study we investigated the effects of prenatal nicotine exposure (NIC), postnatal maternal deprivation (MD) or the combination of the two (NIC+MD) to determine if hippocampal neuron development is modulated by exposure to drugs of abuse and/or stress. Growth of rat offspring exposed to MD alone or NIC+MD was repressed until after weaning. In CA1 but not CA3 of postnatal day 14 (P14) pups, MD increased pyramidal neurons, however, in dentate gyrus (DG), decreased granule neurons. NIC had no effect on neuron number in CA1, CA3 or DG. Unexpectedly, NIC plus MD combined caused a synergistic increase in the number of CA1 or CA3 neurons. Neuron density in CA regions was unaffected by treatment, but in the DG, granule neurons had a looser packing density after NIC, MD or NIC+MD exposure. When septotemporal axes were analyzed, the synergism of stress and drug exposure in CA1 and CA3 was associated with rostral, whereas MD effects were predominantly associated with caudal neurons. TUNEL labeling suggests no active apoptosis at P14, and doublecortin positive neurons and mossy fibers were diminished in NIC+MD relative to controls. The laterality of the effect of nicotine and/or maternal deprivation in right versus left hippocampus was also analyzed and found to be insiginificant. We report for the first time that early life stressors such as postnatal MD and prenatal NIC exposure, when combined, may exhibit synergistic consequences for CA1 and CA3 pyramidal neuron development, and a potential antagonistic influence on developing DG neurons. These results suggest that early stressors may modulate neurogenesis, apoptosis, or maturation of glutamatergic neurons in the hippocampus in a region-specific manner during critical periods of neurodevelopment.
Collapse
Affiliation(s)
- Hong Wang
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington, D.C., United States of America
| | - Marjorie C. Gondré-Lewis
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
91
|
Llorente-Berzal A, Assis MA, Rubino T, Zamberletti E, Marco EM, Parolaro D, Ambrosio E, Viveros MP. Sex-dependent changes in brain CB1R expression and functionality and immune CB2R expression as a consequence of maternal deprivation and adolescent cocaine exposure. Pharmacol Res 2013; 74:23-33. [PMID: 23680694 DOI: 10.1016/j.phrs.2013.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 01/03/2023]
Abstract
Early life stress has been associated with several psychiatric disorders, including drug addiction. Actually, maternal deprivation (MD) alters the endocannabinoid system, which participates in motivation and reward for drugs, including cocaine. At youth, the rate of cocaine abuse is alarmingly increasing. Herein, we have investigated the consequences of MD and/or adolescent cocaine exposure in brain CB1Rs and CB2Rs in immune tissues. Control and maternally deprived (24h on postnatal day, pnd, 9) male and female Wistar rats were administered cocaine (8mg/kg/day) or saline during adolescence (pnd 28-42). At adulthood, [(3)H]-CP-55,940 autoradiographic binding was employed for the analysis of CB1R density and CP-55,940-stimulated [(35)S]-GTPgammaS binding for CB1R functionality; CB2R expression was analyzed by Western blotting. Sex differences in CB1R expression and functionality were found, and MD induced important and enduring sex-dependent changes. In addition, the plastic changes induced by adolescent cocaine administration in brain CB1Rs were differentially influenced by early life events. MD increased spleen CB2R expression while adolescent cocaine administration attenuated this effect; cocaine exposure also diminished CB2R expression in bone marrow. Present findings provide evidence for changes in brain CB1R expression and functionality and immune CB2R expression as a consequence of early life stress and adolescent cocaine exposure, and indicate functional interactions between both treatments, which in many regions differ between males and females.
Collapse
Affiliation(s)
- Alvaro Llorente-Berzal
- Departamento de Fisiología (Fisiología Animal II), Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|