51
|
Pierce JE, Péron JA. Reward-Based Learning and Emotional Habit Formation in the Cerebellum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:125-140. [DOI: 10.1007/978-3-030-99550-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
52
|
Principles of Brain and Emotion: Beyond the Cortico-Centric Bias. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:13-24. [DOI: 10.1007/978-3-030-99550-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
53
|
The Neurophysiology of the Cerebellum in Emotion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:87-108. [DOI: 10.1007/978-3-030-99550-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
54
|
Ji S, Liu B, Li Y, Chen N, Fu Y, Shi J, Zhao Z, Yao Z, Hu B. Trait and state alterations in excitatory connectivity between subgenual anterior cingulate cortex and cerebellum in patients with current and remitted depression. Psychiatry Res Neuroimaging 2021; 317:111356. [PMID: 34509806 DOI: 10.1016/j.pscychresns.2021.111356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 07/06/2021] [Accepted: 08/03/2021] [Indexed: 11/27/2022]
Abstract
Neuroimaging studies have indicated that the altered functional connectivity (FC) of the subgenual anterior cingulate cortex (sgACC) might be potential pathophysiology of major depressive disorder (MDD). However, directed connectivity is proven to be more closely to neurophysiological processes underlying brain activity than FC. This study aimed to identify the alterations underlying directed connectivity of the sgACC in patients with current and remitted MDD. We conducted a cross-sectional neuroimaging study by recruiting 36 patients with current MDD, 20 patients with remitted MDD, and 36 matched healthy controls. Multiple linear regression was employed to estimate bidirectional connectivity between bilateral sgACC and 115 brain regions over 230 time points. Besides, graph theory was applied to further investigate the information transfer across bilateral sgACC and abnormal brain regions. We found that both patients with current and remitted MDD showed a similar abnormality in bidirectional excitatory connectivity between the left sgACC and the right cerebellum. Patients with current MDD exhibited an increase in excitatory connectivity from the left cerebellum to the right sgACC, which was positively correlated with the HAMD score. Meanwhile, significantly decreased betweenness of the left sgACC was detected in all depressive patients. Our findings suggest that the changed bidirectional excitatory connectivity between the left sgACC and the right cerebellum might be a trait alteration and the abnormal increased excitatory connectivity from the left cerebellum to the right sgACC might be a state alteration of MDD. This work may provide a valuable contribution to identify trait and state alterations in the brain for depression.
Collapse
Affiliation(s)
- Shanling Ji
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Bangshan Liu
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Mental Health Institute of Central South University, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, PR China
| | - Yongchao Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Nan Chen
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Yu Fu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Jie Shi
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Ziyang Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China.
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
55
|
Prati JM, Guilherme EM, de Russo TL, Gianlorenço ACL. Neuronal activation of cerebellum functional circuits in motor and non-motor functions in mice. Neurosci Lett 2021; 765:136271. [PMID: 34597707 DOI: 10.1016/j.neulet.2021.136271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
The cerebellum is involved in the control of balance, movement and the acquisition of motor skills. Scientific and technological advances have shown that the cerebellum also participates in non-motor functions, such as emotional control, memory and language. However, which cerebellar areas and functional circuits are predominantly activated in these different functions is not known. The current study analyzed the neuronal activation of cerebellar areas and other brain structures (e.g., hippocampus, amygdala, prelimbic cortex and infralimbic cortex) after exposure to rotarod and inhibitory avoidance behavioral models to establish possible neuronal circuits for motor and non-motor functions. Naïve male Swiss albino mice weighing 25 to 35 g were used. The animals were subjected to three conditions for behavioral evaluation: inhibitory avoidance, which is a model used to infer emotional memory; rotarod, which assesses motor performance and motor learning; and housing box/control. The mice remained in their housing box in Condition 1. Mice in Condition 2 were exposed to the inhibitory avoidance box for 2 days, and mice in Condition 3 were exposed to the rotarod for 3 days. The animals were euthanized after the last exposure to the apparatus then perfused with paraformaldehyde. Brains were extracted and sectioned for immunofluorescence analysis of c-Fos protein in pre-established structures. Images of the brain structures were obtained, and neuronal activation was analyzed microscopically. One-way analysis of variance was used, followed by Tukey's post-hoc test. There was no significant difference in c-Fos expression in lobe VI of the cerebellum between the different conditions. Differences in c-Fos expression were observed in the basolateral amygdala, infralimbic cortex and prelimbic cortex, which are relevant to emotional processes, after exposure to the evaluation apparatuses. Pearson's r correlation coefficient test showed a positive correlation between the variables of structures related to emotional processes. We concluded that there was no significant difference in c-Fos expression in lobe VI of the cerebellum after exposure of the animals to the evaluation apparatus. However, there was a difference in c-Fos expression in other brain structures related to emotional processes after exposure of animals to the apparatus.
Collapse
Affiliation(s)
- José Mário Prati
- Laboratory of Neuroscience, Department of Physiotherapy, Federal University of São Carlos, Brazil.
| | - Evelyn Maria Guilherme
- Laboratory of Neuroscience, Department of Physiotherapy, Federal University of São Carlos, Brazil.
| | - Thiago Luiz de Russo
- Laboratory of Neurological Physiotherapy, Department of Physiotherapy, Federal University of São Carlos, Brazil.
| | | |
Collapse
|
56
|
Tu S, Huang M, Caga J, Mahoney CJ, Kiernan MC. Brainstem Correlates of Pathological Laughter and Crying Frequency in ALS. Front Neurol 2021; 12:704059. [PMID: 34305804 PMCID: PMC8296641 DOI: 10.3389/fneur.2021.704059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/14/2021] [Indexed: 11/14/2022] Open
Abstract
Pseudobulbar affect is a disorder of emotional expression commonly observed in amyotrophic lateral sclerosis (ALS), presenting as episodes of involuntary laughter, or crying. The objective of the current study was to determine the association between frequency of pathological laughter and crying (PLC) episodes with clinical features, cognitive impairment, and brainstem pathology. Thirty-five sporadic ALS patients underwent neuropsychological assessment, with a subset also undergoing brain imaging. The Center for Neurological Study Lability Scale (CNS-LS) was used to screen for presence and severity of pseudobulbar affect (CNS-LS ≥ 13) and frequency of PLC episodes. Presence of pseudobulbar affect was significantly higher in bulbar onset ALS (p = 0.02). Frequency of PLC episodes was differentially associated with cognitive performance and brainstem integrity. Notably pathological laughter frequency, but not crying, showed a significant positive association with executive dysfunction on the Trail Making Test B-A (R2 = 0.14, p = 0.04). Similarly, only pathological laughter frequency demonstrated a significant negative correlation with gray matter volume of the brainstem (R2 = 0.46, p < 0.01), and mean fractional anisotropy of the superior cerebellar peduncles (left: R2 = 0.44, p < 0.01; right: R2 = 0.44, p < 0.01). Hierarchical regression indicated brainstem imaging in combination with site of symptom onset explained 73% of the variance in pathological laughter frequency in ALS. The current findings suggest emotional lability is underpinned by degeneration across distinct neural circuits, with brainstem integrity critical in the emergence of pathological laughter.
Collapse
Affiliation(s)
- Sicong Tu
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Mengjie Huang
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Jashelle Caga
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Colin J Mahoney
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
57
|
Pierce JE, Péron J. The basal ganglia and the cerebellum in human emotion. Soc Cogn Affect Neurosci 2021; 15:599-613. [PMID: 32507876 PMCID: PMC7328022 DOI: 10.1093/scan/nsaa076] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/03/2020] [Accepted: 06/02/2020] [Indexed: 12/26/2022] Open
Abstract
The basal ganglia (BG) and the cerebellum historically have been relegated to a functional role in producing or modulating motor output. Recent research, however, has emphasized the importance of these subcortical structures in multiple functional domains, including affective processes such as emotion recognition, subjective feeling elicitation and reward valuation. The pathways through the thalamus that connect the BG and cerebellum directly to each other and with extensive regions of the cortex provide a structural basis for their combined influence on limbic function. By regulating cortical oscillations to guide learning and strengthening rewarded behaviors or thought patterns to achieve a desired goal state, these regions can shape the way an individual processes emotional stimuli. This review will discuss the basic structure and function of the BG and cerebellum and propose an updated view of their functional role in human affective processing.
Collapse
Affiliation(s)
- Jordan E Pierce
- Clinical and Experimental Neuropsychology Laboratory, University of Geneva, 1205 Geneva, Switzerland
| | - Julie Péron
- Clinical and Experimental Neuropsychology Laboratory, University of Geneva, 1205 Geneva, Switzerland.,Neuropsychology Unit, Neurology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
58
|
Ruggiero F, Dini M, Cortese F, Vergari M, Nigro M, Poletti B, Priori A, Ferrucci R. Anodal Transcranial Direct Current Stimulation over the Cerebellum Enhances Sadness Recognition in Parkinson's Disease Patients: a Pilot Study. THE CEREBELLUM 2021; 21:234-243. [PMID: 34159563 PMCID: PMC8993778 DOI: 10.1007/s12311-021-01295-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 12/05/2022]
Abstract
Emotional processing impairments, resulting in a difficulty to decode emotions from faces especially for negative emotions, are characteristic non-motor features of Parkinson’s disease (PD). There is limited evidence about the specific contribution of the cerebellum to the recognition of emotional contents in facial expressions even though patients with cerebellar dysfunction often lose this ability. In this study, we aimed to evaluate whether the recognition of facial expressions can be modulated by cerebellar transcranial direct current stimulation (tDCS) in PD patients. Nine PD patients were enrolled and received anodal and sham tDCS (2 mA, 20 min), for 5 consecutive days, in two separate cycles at intervals of at least 1 month. The facial emotion recognition task was administered at baseline (T0) and after cerebellar tDCS on day 5 (T1). Our preliminary study showed that anodal cerebellar tDCS significantly enhanced emotional recognition in response to sad facial expressions by about 16%, but left recognition of anger, happiness, and neutral facial expressions unchanged. Despite the small sample size, our preliminary results show that anodal tDCS applied for five consecutive days over the cerebellum modulates the way PD patients recognize specific facial expressions, thus suggesting that the cerebellum plays a crucial role in recognition of negative emotions and corroborating previous knowledge on the link between social cognition and the cerebellum.
Collapse
Affiliation(s)
- Fabiana Ruggiero
- Neurophysiology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Michelangelo Dini
- Department of Health Science , "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
- III Neurology Clinic, ASST Santi Paolo E Carlo, Milan, Italy
| | | | - Maurizio Vergari
- Neurophysiology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Martina Nigro
- Neurophysiology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Poletti
- Neurology Unit, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Alberto Priori
- Department of Health Science , "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
- III Neurology Clinic, ASST Santi Paolo E Carlo, Milan, Italy
| | - Roberta Ferrucci
- Department of Health Science , "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy.
- III Neurology Clinic, ASST Santi Paolo E Carlo, Milan, Italy.
| |
Collapse
|
59
|
Rutherford HJV, Potenza MN, Mayes LC, Scheinost D. The Application of Connectome-Based Predictive Modeling to the Maternal Brain: Implications for Mother-Infant Bonding. Cereb Cortex 2021; 30:1538-1547. [PMID: 31690936 DOI: 10.1093/cercor/bhz185] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/16/2022] Open
Abstract
Maternal bonding early postpartum lays an important foundation for child development. Changing brain structure and function during pregnancy and postpartum may underscore maternal bonding. We employed connectome-based predictive modeling (CPM) to measure brain functional connectivity and predict self-reported maternal bonding in mothers at 2 and 8 months postpartum. At 2 months, CPM predicted maternal anxiety in the bonding relationship: Greater integration between cerebellar and motor-sensory-auditory networks and between frontoparietal and motor-sensory-auditory networks were associated with more maternal anxiety toward their infant. Furthermore, greater segregation between the cerebellar and frontoparietal, and within the motor-sensory-auditory networks, was associated with more maternal anxiety regarding their infant. We did not observe CPM prediction of maternal bonding impairments or rejection/anger toward the infant. Finally, considering 2 and 8 months of data, changes in network connectivity were associated with changes in maternal anxiety in the bonding relationship. Our results suggest that changing connectivity among maternal brain networks may provide insight into the mother-infant bond, specifically in the context of anxiety and the representation of the infant in the mother's mind. These findings provide an opportunity to mechanistically investigate approaches to enhance the connectivity of these networks to optimize the representational and behavioral quality of the caregiving relationship.
Collapse
Affiliation(s)
| | - Marc N Potenza
- Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA.,Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA.,Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.,The Connecticut Mental Health Center, New Haven, CT 06519, USA.,The Connecticut Council on Problem Gambling, Wethersfield, CT 06109, USA
| | - Linda C Mayes
- Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Dustin Scheinost
- Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA.,Radiology and Bioimaging Sciences, Yale School of Medicine, New Haven, CT, 06510, USA.,Statistics and Data Science, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
60
|
Hertrich I, Dietrich S, Blum C, Ackermann H. The Role of the Dorsolateral Prefrontal Cortex for Speech and Language Processing. Front Hum Neurosci 2021; 15:645209. [PMID: 34079444 PMCID: PMC8165195 DOI: 10.3389/fnhum.2021.645209] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
This review article summarizes various functions of the dorsolateral prefrontal cortex (DLPFC) that are related to language processing. To this end, its connectivity with the left-dominant perisylvian language network was considered, as well as its interaction with other functional networks that, directly or indirectly, contribute to language processing. Language-related functions of the DLPFC comprise various aspects of pragmatic processing such as discourse management, integration of prosody, interpretation of nonliteral meanings, inference making, ambiguity resolution, and error repair. Neurophysiologically, the DLPFC seems to be a key region for implementing functional connectivity between the language network and other functional networks, including cortico-cortical as well as subcortical circuits. Considering clinical aspects, damage to the DLPFC causes psychiatric communication deficits rather than typical aphasic language syndromes. Although the number of well-controlled studies on DLPFC language functions is still limited, the DLPFC might be an important target region for the treatment of pragmatic language disorders.
Collapse
Affiliation(s)
- Ingo Hertrich
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Susanne Dietrich
- Evolutionary Cognition, Department of Psychology, University of Tübingen, Tübingen, Germany
| | - Corinna Blum
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Hermann Ackermann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
61
|
Spagnolo PA, Garvey M, Hallett M. A dimensional approach to functional movement disorders: Heresy or opportunity. Neurosci Biobehav Rev 2021; 127:25-36. [PMID: 33848511 DOI: 10.1016/j.neubiorev.2021.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/10/2021] [Accepted: 04/07/2021] [Indexed: 11/28/2022]
Abstract
Functional movement disorders (FMD) are a common and disabling neuropsychiatric condition, part of the spectrum of functional neurological/conversion disorder. FMD represent one of the most enigmatic disorders in the history of medicine. However, in the twenty years after the first report of distinctive abnormal brain activity associated with functional motor symptoms, there have been tremendous advances in the pathophysiologic understanding of these disorders. FMD can be characterized as a disorder of aberrant neurocircuitry interacting with environmental and genetic factors. These developments suggest that research on FMD could be better served by an integrative, neuroscience-based approach focused on functional domains and their neurobiological substrates. This approach has been developed in 'Research Domain Criteria' (RDoC) project, which promotes a dimensional approach to psychiatric disorders. Here, we use the RDoC conceptualization to review recent neuroscience research on FMD, focusing on the domains most relevant to these disorders. We discuss how the adoption of a similar integrative framework may facilitate the identification of the mechanisms underlying FMD and could also have potential clinical applicability.
Collapse
Affiliation(s)
- Primavera A Spagnolo
- Mary Horrigan Connors Center for Women's Health and Gender Biology, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Marjorie Garvey
- Novel Strategies for Treatment of Developmental Psychopathology Program, Biomarker and Intervention Development for Childhood-Onset Mental Disorders Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
62
|
Miguel JC, Perez SE, Malek-Ahmadi M, Mufson EJ. Cerebellar Calcium-Binding Protein and Neurotrophin Receptor Defects in Down Syndrome and Alzheimer's Disease. Front Aging Neurosci 2021; 13:645334. [PMID: 33776745 PMCID: PMC7994928 DOI: 10.3389/fnagi.2021.645334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cerebellar hypoplasia is a major characteristic of the Down syndrome (DS) brain. However, the consequences of trisomy upon cerebellar Purkinje cells (PC) and interneurons in DS are unclear. The present study performed a quantitative and qualitative analysis of cerebellar neurons immunostained with antibodies against calbindin D-28k (Calb), parvalbumin (Parv), and calretinin (Calr), phosphorylated and non-phosphorylated intermediate neurofilaments (SMI-34 and SMI-32), and high (TrkA) and low (p75NTR) affinity nerve growth factor (NGF) receptors as well as tau and amyloid in DS (n = 12), Alzheimer's disease (AD) (n = 10), and healthy non-dementia control (HC) (n = 8) cases. Our findings revealed higher Aβ42 plaque load in DS compared to AD and HC but no differences in APP/Aβ plaque load between HC, AD, and DS. The cerebellar cortex neither displayed Aβ40 containing plaques nor pathologic phosphorylated tau in any of the cases examined. The number and optical density (OD) measurements of Calb immunoreactive (-ir) PC soma and dendrites were similar between groups, while the number of PCs positive for Parv and SMI-32 were significantly reduced in AD and DS compared to HC. By contrast, the number of SMI-34-ir PC dystrophic axonal swellings, termed torpedoes, was significantly greater in AD compared to DS. No differences in SMI-32- and Parv-ir PC OD measurements were observed between groups. Conversely, total number of Parv- (stellate/basket) and Calr (Lugaro, brush, and Golgi)-positive interneurons were significantly reduced in DS compared to AD and HC. A strong negative correlation was found between counts for Parv-ir interneurons, Calr-ir Golgi and brush cells, and Aβ42 plaque load. Number of TrkA and p75NTR positive PCs were reduced in AD compared to HC. These findings suggest that disturbances in calcium binding proteins play a critical role in cerebellar neuronal dysfunction in adults with DS.
Collapse
Affiliation(s)
- Jennifer C. Miguel
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Sylvia E. Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Michael Malek-Ahmadi
- Department of Biomedical Informatics, Banner Alzheimer's Institute, Phoenix, AZ, United States
| | - Elliott J. Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
63
|
Li Z, Li Y, Li X, Zou F, Wang Y, Wu X, Luo Y, Zhang M. The spontaneous brain activity of disgust: Perspective from resting state fMRI and resting state EEG. Behav Brain Res 2021; 403:113135. [PMID: 33476686 DOI: 10.1016/j.bbr.2021.113135] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/31/2020] [Accepted: 01/11/2021] [Indexed: 11/29/2022]
Abstract
In recent years, more and more studies on disgust have shown the association between disgust and various psychopathologies. Revealing the spontaneous brain activity patterns associated with disgust sensitivity from the perspective of individual differences will give us an insight into the neurologic nature of disgust and its psychopathological vulnerability. Here, we used two modal brain imaging techniques (resting fMRI and resting EEG) to reveal spontaneous brain activity patterns closely related to disgust sensitivity. The amplitude of low-frequency fluctuation results showed that disgust sensitivity is negatively correlated with the spontaneous activity of the right cerebellum crus II and positively correlated with the spontaneous activity of the right superior frontal cortex, which are inhibition-related brain regions. Furthermore, the microstate results of rest EEG indicated that the corrected duration, occurrence rate, and contribution of Class C, which is related to the anterior default mode network and is considered to be related to subjective representation of one' own body by combining interoceptive information with affective salience, were significantly positively correlated with the disgust sensitivity level. This data-driven approach provides the first evidence on the intrinsic brain features of disgust sensitivity based on two resting-state brain modalities. The results represent an initial effort to uncover the neurological basis of disgust sensitivity and its connection to psychopathology.
Collapse
Affiliation(s)
- Zhaoxian Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China; Department of Psychology, Xinxiang Medical University, Henan, 453003, China.
| | - Yuwen Li
- Department of Psychology, Xinxiang Medical University, Henan, 453003, China
| | - Xianrui Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China; Department of Psychology, Xinxiang Medical University, Henan, 453003, China; Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Feng Zou
- Department of Psychology, Xinxiang Medical University, Henan, 453003, China
| | - Yufeng Wang
- Department of Psychology, Xinxiang Medical University, Henan, 453003, China
| | - Xin Wu
- Department of Psychology, Xinxiang Medical University, Henan, 453003, China
| | - Yanyan Luo
- School of Nursing, Xinxiang Medical University, Henan, 453003, China.
| | - Meng Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China; Department of Psychology, Xinxiang Medical University, Henan, 453003, China.
| |
Collapse
|
64
|
Gil‐Miravet I, Melchor‐Eixea I, Arias‐Sandoval E, Vasquez‐Celaya L, Guarque‐Chabrera J, Olucha‐Bordonau F, Miquel M. From back to front: A functional model for the cerebellar modulation in the establishment of conditioned preferences for cocaine-related cues. Addict Biol 2021; 26:e12834. [PMID: 31808992 DOI: 10.1111/adb.12834] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/30/2019] [Accepted: 09/09/2019] [Indexed: 01/07/2023]
Abstract
It is now increasingly clear that the cerebellum may modulate brain functions altered in drug addiction. We previously demonstrated that cocaine-induced conditioned preference increased activity at the dorsal posterior cerebellar vermis. Unexpectedly, a neurotoxic lesion at this region increased the probability of cocaine-induced conditioned preference acquisition. The present research aimed at providing an explanatory model for such as facilitative effect of the cerebellar lesion. First, we addressed a tracing study in which we found a direct projection from the lateral (dentate) nucleus to the ventral tegmental area (VTA) that also receives Purkinje axons from lobule VIII in the vermis. This pathway might control the activity and plasticity of the cortico-striatal circuitry. Then we evaluated cFos expression in different regions of the medial prefrontal cortex and striatum after a lesion in lobule VIII before conditioning. Additionally, perineuronal net (PNN) expression was assessed to explore whether the cerebellar lesion might affect synaptic stabilization mechanisms in the medial prefrontal cortex (mPFC). Damage in this region of the vermis induced general disinhibition of the mPFC and striatal subdivisions that receive dopaminergic projections, mainly from the VTA. Moreover, cerebellar impairment induced an upregulation of PNN expression in the mPFC. The major finding of this research was to provide an explanatory model for the function of the posterior cerebellar vermis on drug-related memory. In this model, damage of the posterior vermis would release striatum-cortical networks from the inhibitory tonic control exerted by the cerebellar cortex over VTA, thereby promoting drug effects.
Collapse
Affiliation(s)
- Isis Gil‐Miravet
- Área de Psicobiología Universitat Jaume I Castellón de la Plana Spain
| | | | | | | | | | | | - Marta Miquel
- Área de Psicobiología Universitat Jaume I Castellón de la Plana Spain
| |
Collapse
|
65
|
Guo C, Kang J, Johnson TD. A spatial Bayesian latent factor model for image-on-image regression. Biometrics 2020; 78:72-84. [PMID: 33368210 DOI: 10.1111/biom.13420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 11/30/2022]
Abstract
Image-on-image regression analysis, using images to predict images, is a challenging task, due to (1) the high dimensionality and (2) the complex spatial dependence structures in image predictors and image outcomes. In this work, we propose a novel image-on-image regression model, by extending a spatial Bayesian latent factor model to image data, where low-dimensional latent factors are adopted to make connections between high-dimensional image outcomes and image predictors. We assign Gaussian process priors to the spatially varying regression coefficients in the model, which can well capture the complex spatial dependence among image outcomes as well as that among the image predictors. We perform simulation studies to evaluate the out-of-sample prediction performance of our method compared with linear regression and voxel-wise regression methods for different scenarios. The proposed method achieves better prediction accuracy by effectively accounting for the spatial dependence and efficiently reduces image dimensions with latent factors. We apply the proposed method to analysis of multimodal image data in the Human Connectome Project where we predict task-related contrast maps using subcortical volumetric seed maps.
Collapse
Affiliation(s)
- Cui Guo
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Jian Kang
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Timothy D Johnson
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
66
|
Wade-Bohleber LM, Thoma R, Gerber AJ. Neural correlates of subjective arousal and valence in health and panic disorder. Psychiatry Res Neuroimaging 2020; 305:111186. [PMID: 32957042 DOI: 10.1016/j.pscychresns.2020.111186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
Abstract
Aberrant emotion processing is a core characteristic of panic disorder (PD). Findings concerning the underlying neural pathways remain inconsistent. We applied functional magnetic resonance imaging (fMRI) in the context of a task based on the circumplex model of affect. This model links affective states to two underlying neurophysiological systems: arousal and valence. Twenty-two healthy participants and 20 participants with PD rated arousal and valence in response to affective faces during fMRI. In healthy controls, we found that arousal modulated the hemodynamic response in the parahippocampus, the ventromedial prefrontal cortex and the cuneus during face perception. Valence and extreme ratings of valence modulated the hemodynamic response in temporal, parietal, somatosensory, premotor and cerebellar regions. Comparing healthy controls to participants with PD, we found that healthy controls showed a stronger modulation of the hemodynamic response during face perception associated with extreme ratings of valence in the parahippocampus and the supplementary motor area. This suggests parahippocampal dysfunction in the processing of highly valenced affective faces in PD, which may underlie aberrant contextualization of strong affective stimuli. Our findings need to be interpreted with care as they were adjusted for multiple comparisons using a liberal correction procedure.
Collapse
Affiliation(s)
- L M Wade-Bohleber
- Psychological Institute, Zurich University of Applied Sciences, Zurich, Switzerland; Department of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital of Psychiatry Zurich, Switzerland.
| | - R Thoma
- Department of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital of Psychiatry Zurich, Switzerland
| | - A J Gerber
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Silver Hill Hospital, New Canaan, CT, USA
| |
Collapse
|
67
|
Batail JM, Coloigner J, Soulas M, Robert G, Barillot C, Drapier D. Structural abnormalities associated with poor outcome of a major depressive episode: The role of thalamus. Psychiatry Res Neuroimaging 2020; 305:111158. [PMID: 32889511 DOI: 10.1016/j.pscychresns.2020.111158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 12/28/2022]
Abstract
An identification of precise biomarkers contributing to poor outcome of a major depressive episode (MDE) has the potential to improve therapeutic strategies by reducing time to symptomatic relief. In a cross-sectional volumetric study with a 6 month clinical follow-up, we performed baseline brain grey matter volume analysis between 2 groups based on illness improvement: 27 MDD patients in the "responder" (R) group (Clinical Global Impression- Improvement (CGI-I) score ≤ 2) and 30 in the "non-responder" (NR) group (CGI-I > 2), using a Voxel Based-Morphometry analysis. NR had significantly smaller Grey Matter (GM) volume in the bilateral thalami, in precentral gyrus, middle temporal gyrus, precuneus and middle cingulum compared to R at baseline. Additionally, they exhibited significant greater GM volume increase in the left anterior lobe of cerebellum and posterior cingulate cortex. The latter result was not significant when participants with bipolar disorder were excluded from the analysis. NR group had higher baseline anxiety scores. Our study has pointed out the role of thalamus in prognosis of MDE. These findings highlight the involvement of emotion regulation in the outcome of MDE. The present study provides a step towards the understanding of neurobiological processes of treatment resistant depression.
Collapse
Affiliation(s)
- J M Batail
- Centre Hospitalier Guillaume Régnier, Academic Psychiatry Department, Rennes F-35703, France; Univ Rennes, INRIA, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes F-35042, France; Univ Rennes, "Comportement et noyaux gris centraux" research unit (EA 4712), Rennes F-35000, France.
| | - J Coloigner
- Univ Rennes, INRIA, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes F-35042, France
| | - M Soulas
- Centre Hospitalier Guillaume Régnier, Academic Psychiatry Department, Rennes F-35703, France
| | - G Robert
- Centre Hospitalier Guillaume Régnier, Academic Psychiatry Department, Rennes F-35703, France; Univ Rennes, INRIA, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes F-35042, France; Univ Rennes, "Comportement et noyaux gris centraux" research unit (EA 4712), Rennes F-35000, France
| | - C Barillot
- Univ Rennes, INRIA, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes F-35042, France
| | - D Drapier
- Centre Hospitalier Guillaume Régnier, Academic Psychiatry Department, Rennes F-35703, France; Univ Rennes, INRIA, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes F-35042, France; Univ Rennes, "Comportement et noyaux gris centraux" research unit (EA 4712), Rennes F-35000, France
| |
Collapse
|
68
|
Arioli M, Basso G, Poggi P, Canessa N. Fronto-temporal brain activity and connectivity track implicit attention to positive and negative social words in a novel socio-emotional Stroop task. Neuroimage 2020; 226:117580. [PMID: 33221447 DOI: 10.1016/j.neuroimage.2020.117580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Previous inconsistencies on the effects of implicitly processing positively - vs. negatively - connotated emotional words might reflect the influence of uncontrolled psycholinguistic dimensions, and/or social facets inherent in putative "emotional" stimuli. Based on the relevance of social features in semantic cognition, we developed a socio-emotional Stroop task to assess the influence of social vs. individual (non-social) emotional content, besides negative vs. positive valence, on implicit word processing. The effect of these variables was evaluated in terms of performance and RTs, alongside associated brain activity/connectivity. We matched conditions for several psycholinguistic variables, and assessed a modulation of brain activity/connectivity by trial-wise RT, to characterize the maximum of condition- and subject-specific variability. RTs were tracked by insular and anterior cingulate activations likely reflecting implicit attention to stimuli, interfering with task-performance based on condition-specific processing of their subjective salience. Slower performance for negative than neutral/positive words was tracked by left-hemispheric structures processing negative stimuli and emotions, such as fronto-insular cortex, while the lack of specific activations for positively-connotated words supported their marginal facilitatory effect. The speeding/slowing effects of processing positive/negative individual emotional stimuli were enhanced by social words, reflecting in specific activations of the right anterior temporal and orbitofrontal cortex, respectively. RTs to social positive and negative words modulated connectivity from these regions to fronto-striatal and sensorimotor structures, respectively, likely promoting approach vs. avoidance dispositions shaping their facilitatory vs. inhibitory effect. These results might help assessing the neural correlates of impaired social cognition and emotional regulation, and the effects of rehabilitative interventions.
Collapse
Affiliation(s)
- Maria Arioli
- NEtS center, Scuola Universitaria Superiore IUSS, Pavia 27100, Italy; Cognitive Neuroscience Laboratory, Istituti Clinici Scientifici Maugeri IRCCS, Pavia 27100, Italy
| | - Gianpaolo Basso
- Cognitive Neuroscience Laboratory, Istituti Clinici Scientifici Maugeri IRCCS, Pavia 27100, Italy; University of Milano-Bicocca, Milan 20126, Italy
| | - Paolo Poggi
- Radiology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia 27100, Italy
| | - Nicola Canessa
- NEtS center, Scuola Universitaria Superiore IUSS, Pavia 27100, Italy; Cognitive Neuroscience Laboratory, Istituti Clinici Scientifici Maugeri IRCCS, Pavia 27100, Italy.
| |
Collapse
|
69
|
Guo M, Wang T, Zhang Z, Chen N, Li Y, Wang Y, Yao Z, Hu B. Diagnosis of major depressive disorder using whole-brain effective connectivity networks derived from resting-state functional MRI. J Neural Eng 2020; 17:056038. [PMID: 32987369 DOI: 10.1088/1741-2552/abbc28] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE It is important to improve identification accuracy for possible early intervention of major depressive disorder (MDD). Recently, effective connectivity (EC), defined as the directed influence of spatially distant brain regions on each other, has been used to find the dysfunctional organization of brain networks in MDD. However, little is known about the ability of whole-brain resting-state EC features in identification of MDD. Here, we employed EC by whole-brain analysis to perform MDD diagnosis. APPROACH In this study, we proposed a high-order EC network capturing high-level relationship among multiple brain regions to discriminate 57 patients with MDD from 60 normal controls (NC). In high-order EC networks and traditional low-order EC networks, we utilized the network properties and connection strength for classification. Meanwhile, the support vector machine (SVM) was employed for model training. Generalization of the results was supported by 10-fold cross-validation. MAIN RESULTS The classification results showed that the high-order EC network performed better than the low-order EC network in diagnosing MDD, and the integration of these two networks yielded the best classification precision with 95% accuracy, 98.83% sensitivity, and 91% specificity. Furthermore, we found that the abnormal connections of high-order EC in MDD patients involved multiple widely concerned functional subnets, particularly the default mode network and the cerebellar network. SIGNIFICANCE The current study indicates whole-brain EC networks, measured by our high-order method, may be promising biomarkers for clinical diagnosis of MDD, and the complementary between high-order and low-order EC will better guide patients to get early interventions as well as treatments.
Collapse
Affiliation(s)
- Man Guo
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Neuropsychiatric Symptoms as a Reliable Phenomenology of Cerebellar Ataxia. THE CEREBELLUM 2020; 20:141-150. [PMID: 33000380 DOI: 10.1007/s12311-020-01195-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
While cerebellar ataxia (CA) is a neurodegenerative disease known for motor impairment, changes in mood have also been reported. A full account of neuropsychiatric symptomology in CA may guide improvements in treatment regimes, measure the presence and severity of sub-clinical neuropsychiatric disturbance symptomology in CA, and compare patient versus informant symptom recognition. Neuropsychiatric phenomena were gathered from CA patients with genetic and unknown etiologies and their informants (e.g., spouse or parent). Information was obtained from in-person interviews and the Center for Epidemiologic Studies Depression Scale. Responses were converted to the Neuropsychiatric Inventory-Questionnaire (NPI-Q) scores by consensus ratings. Patient NPI-Q scores were evaluated for symptom prevalence and severity relative to those obtained from healthy controls. Patient-informant NPI-Q score disagreements were evaluated. In this cohort, 95% of patients presented with at least one neuropsychiatric symptom and 51% of patients with three or more symptoms. The most common symptoms were anxiety, depression, nighttime behaviors (e.g., interrupted sleep), irritability, disinhibition, abnormal appetite, and agitation. The prevalence of these neuropsychiatric symptoms was uniform across patients with genetic versus unknown etiologies. Patient and informant symptom report disagreements reflected that patients noted sleep impairment and depression, while informants noted irritability and agitation. Neuropsychiatric disturbance is highly prevalent in patients with CA and contributes to the phenomenology of CA, regardless of etiology. Clinicians should monitor psychiatric health in their CA patients, considering that supplemental information from informants can help gauge the impact on family members and caregivers.
Collapse
|
71
|
MacIlvane N, Fede SJ, Pearson EE, Diazgranados N, Momenan R. A Distinct Neurophenotype of Fearful Face Processing in Alcohol Use Disorder With and Without Comorbid Anxiety. Alcohol Clin Exp Res 2020; 44:2212-2224. [PMID: 32981080 DOI: 10.1111/acer.14465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Individuals with alcohol use disorder (AUD) can present with comorbid anxiety symptoms and often have deficits in emotional processing. Previous research suggests brain response is altered during facial affect recognition tasks, especially in limbic areas, due to either AUD or anxiety symptomology; however, the impact of both AUD and clinically significant anxiety symptoms during these tasks has not yet been examined. METHODS In this study, we investigated neural activation differences during an emotional face-matching task. Participants (N = 232) underwent fMRI scanning, as part of a larger study. Three groups were investigated: individuals with diagnosed AUD and elevated anxiety traits (AUD + ANX, n = 90), individuals with diagnosed AUD but non-clinically significant levels of anxiety (AUD-ANX, n = 39), and healthy controls (HC, n = 103). RESULTS Our results illustrate distinct neurophenotypes of AUD, where individuals with comorbid anxiety symptomology have blunted emotional face processing while those with singular AUD are hyperresponsive. CONCLUSIONS This suggests AUD with anxiety symptomology may have a unique neurobiological underpinning, and treatment and intervention should be tailored to individual constellations of symptoms.
Collapse
Affiliation(s)
- Nicole MacIlvane
- From the, Clinical NeuroImaging Research Core, (NM, SJF, EEP, RM), National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Samantha J Fede
- From the, Clinical NeuroImaging Research Core, (NM, SJF, EEP, RM), National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Emma E Pearson
- From the, Clinical NeuroImaging Research Core, (NM, SJF, EEP, RM), National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Nancy Diazgranados
- Office of Clinical Director (ND), National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Reza Momenan
- From the, Clinical NeuroImaging Research Core, (NM, SJF, EEP, RM), National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
72
|
Lindquist DH. Emotion in motion: A three-stage model of aversive classical conditioning. Neurosci Biobehav Rev 2020; 115:363-377. [DOI: 10.1016/j.neubiorev.2020.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 01/12/2023]
|
73
|
Fraunberger EA, DeJesus P, Zanier ER, Shutt TE, Esser MJ. Acute and Persistent Alterations of Cerebellar Inflammatory Networks and Glial Activation in a Rat Model of Pediatric Mild Traumatic Brain Injury. J Neurotrauma 2020; 37:1315-1330. [DOI: 10.1089/neu.2019.6714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Erik A. Fraunberger
- Hotchkiss Brain Institute, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Pauline DeJesus
- Hotchkiss Brain Institute, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Elisa R. Zanier
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Timothy E. Shutt
- Hotchkiss Brain Institute, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Department of Medical Genetics, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Michael J. Esser
- Hotchkiss Brain Institute, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Cumming School of Medicine, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
74
|
Klepzig K, Horn U, König J, Holtz K, Wendt J, Hamm A, Lotze M. Brain imaging of chill reactions to pleasant and unpleasant sounds. Behav Brain Res 2020; 380:112417. [DOI: 10.1016/j.bbr.2019.112417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 11/28/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
|
75
|
Beking T, Burke SM, Geuze RH, Staphorsius AS, Bakker J, Groothuis AGG, Kreukels BPC. Testosterone effects on functional amygdala lateralization: A study in adolescent transgender boys and cisgender boys and girls. Psychoneuroendocrinology 2020; 111:104461. [PMID: 31630051 DOI: 10.1016/j.psyneuen.2019.104461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 01/05/2023]
Abstract
The influence of testosterone on the development of human brain lateralization has been subject of debate for a long time, partly because studies investigating this are necessarily mostly correlational. In the present study we used a quasi-experimental approach by assessing functional brain lateralization in trans boys (female sex assigned at birth, diagnosed with Gender Dysphoria, n = 21) before and after testosterone treatment, and compared these results to the functional lateralization of age-matched control groups of cisgender boys (n = 20) and girls (n = 21) around 16 years of age. The lateralization index of the amygdala was determined with functional magnetic resonance imaging (fMRI) during an emotional face matching task with angry and fearful faces, as the literature indicates that boys show more activation in the right amygdala than girls during the perception of emotional faces. As expected, the lateralization index in trans boys shifted towards the right amygdala after testosterone treatment, and the cumulative dose of testosterone treatment correlated significantly with amygdala lateralization after treatment. However, we did not find any significant group differences in lateralization and endogenous testosterone concentrations predicted rightward amygdala lateralization only in the cis boys, but not in cis girls or trans boys. These inconsistencies may be due to sex differences in sensitivity to testosterone or its metabolites, which would be a worthwhile course for future studies.
Collapse
Affiliation(s)
- T Beking
- University of Groningen, Department Clinical & Developmental Neuropsychology. Grote Kruisstraat 2/1, 9712 TS, Groningen, the Netherlands.
| | - S M Burke
- Leiden University, Brain & Development Research Centre, Department of Developmental and Educational Psychology. Wassenaarseweg 52, 2333 AK, Leiden, the Netherlands.
| | - R H Geuze
- University of Groningen, Department Clinical & Developmental Neuropsychology. Grote Kruisstraat 2/1, 9712 TS, Groningen, the Netherlands.
| | - A S Staphorsius
- Amsterdam University Medical Centers, Location VU, Department of Internal Medicine, Center of Expertise on Gender Dysphoria. PO Box 7057, 1007 MB, Amsterdam, the Netherlands.
| | - J Bakker
- Liège University, GIGA Neurosciences, Avenue Hippocrate 15, B36, 4000, Liège, Belgium.
| | - A G G Groothuis
- University of Groningen, Groningen Institute for Evolutionary Life Sciences, Nijenborgh 7, 9747 AG, Groningen, the Netherlands.
| | - B P C Kreukels
- Amsterdam University Medical Centers, Location VU, Department of Medical Psychology, Center of Expertise on Gender Dysphoria, PO Box 7057, 1007 MB, Amsterdam, the Netherlands.
| |
Collapse
|
76
|
Moser DA, Suardi F, Rossignol AS, Vital M, Manini A, Serpa SR, Schechter DS. Parental Reflective Functioning correlates to brain activation in response to video-stimuli of mother-child dyads: Links to maternal trauma history and PTSD. Psychiatry Res Neuroimaging 2019; 293:110985. [PMID: 31627112 DOI: 10.1016/j.pscychresns.2019.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 01/10/2023]
Abstract
Parental Reflective Functioning is a parent's capacity to infer mental states in herself and her child. Parental Reflective Functioning is linked to the quality of parent-child attachment and promotes parent-child mutual emotion regulation. We examined neural correlates of parental reflective functioning and their relationship to physical abuse. Participants were mothers with (n = 26) and without (n = 22) history of childhood physical abuse. Parental reflective functioning was assessed by coding transcripts of maternal narrative responses on interviews. All mothers also underwent magnetic resonance imaging while watching video clips of children during mother-child separation and play. Parental reflective functioning was significantly lower among mothers with histories of childhood physical abuse. When mothers without history of childhood physical abuse watched scenes of separation versus play, brain activation was positively correlated with parental reflective functioning in the ventromedial prefrontal cortex, and negatively associated with the dorsolateral prefrontal cortex and insula. These associations were not present when limiting analyses to mothers reporting abuse histories. Regions subserving emotion regulation and empathy were associated with parental reflective functioning; yet these regions were not featured in maltreated mothers. These data suggest that childhood physical abuse exposure may alter the psychobiology that is linked to emotional comprehension and regulation.
Collapse
Affiliation(s)
- Dominik Andreas Moser
- Institute of Psychology, University of Bern, Rue de Lyon 38, 1203 Bern, Switzerland.
| | - Francesca Suardi
- Service of Child and Adolescent Psychiatry (SPEA), University of Geneva Hospitals, Geneva, Switzerland
| | - Ana Sancho Rossignol
- Service of Child and Adolescent Psychiatry (SPEA), University of Geneva Hospitals, Geneva, Switzerland
| | - Marylène Vital
- Service of Child and Adolescent Psychiatry (SPEA), University of Geneva Hospitals, Geneva, Switzerland
| | - Aurélia Manini
- Service of Child and Adolescent Psychiatry (SPEA), University of Geneva Hospitals, Geneva, Switzerland
| | - Sandra Rusconi Serpa
- Service of Child and Adolescent Psychiatry (SPEA), University of Geneva Hospitals, Geneva, Switzerland
| | - Daniel Scott Schechter
- University Service of Child and Adolescent Psychiatry (SUPEA), Lausanne University Hospital (CHUV), Lausanne, Switzerland; Department of Psychiatry, University of Geneva Faculty of Medicine, Geneva, Switzerland; Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY USA
| |
Collapse
|
77
|
Zanin JP, Verpeut JL, Li Y, Shiflett MW, Wang SSH, Santhakumar V, Friedman WJ. The p75NTR Influences Cerebellar Circuit Development and Adult Behavior via Regulation of Cell Cycle Duration of Granule Cell Progenitors. J Neurosci 2019; 39:9119-9129. [PMID: 31582529 PMCID: PMC6855675 DOI: 10.1523/jneurosci.0990-19.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/21/2019] [Accepted: 09/10/2019] [Indexed: 01/24/2023] Open
Abstract
Development of brain circuitry requires precise regulation and timing of proliferation and differentiation of neural progenitor cells. The p75 neurotrophin receptor (p75NTR) is highly expressed in the proliferating granule cell precursors (GCPs) during development of the cerebellum. In a previous paper, we showed that proNT3 promoted GCP cell cycle exit via p75NTR. Here we used genetically modified rats and mice of both sexes to show that p75NTR regulates the duration of the GCP cell cycle, requiring activation of RhoA. Rats and mice lacking p75NTR have dysregulated GCP proliferation, with deleterious effects on cerebellar circuit development and behavioral consequences persisting into adulthood. In the absence of p75NTR, the GCP cell cycle is accelerated, leading to delayed cell cycle exit, prolonged GCP proliferation, increased glutamatergic input to Purkinje cells, and a deficit in delay eyeblink conditioning, a cerebellum-dependent form of learning. These results demonstrate the necessity of appropriate developmental timing of the cell cycle for establishment of proper connectivity and associated behavior.SIGNIFICANCE STATEMENT The cerebellum has been shown to be involved in numerous behaviors in addition to its classic association with motor function. Cerebellar function is disrupted in a variety of psychiatric disorders, including those on the autism spectrum. Here we show that the p75 neurotrophin receptor, which is abundantly expressed in the proliferating cerebellar granule cell progenitors, regulates the cell cycle of these progenitors. In the absence of this receptor, the cell cycle is dysregulated, leading to excessive progenitor proliferation, which alters the balance of inputs to Purkinje cells, disrupting the circuitry and leading to functional deficits that persist into adulthood.
Collapse
Affiliation(s)
- Juan P Zanin
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | | | - Ying Li
- Department of Physiology, Pharmacology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Michael W Shiflett
- Department of Psychology, Rutgers University, Newark, New Jersey 07102, and
| | - Samuel S-H Wang
- Princeton Neuroscience Institute, Princeton, New Jersey 08544
| | - Viji Santhakumar
- Department of Physiology, Pharmacology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103
- Department of Molecular, Cell and Systems Biology, University of California at Riverside, Riverside, California 92521
| | - Wilma J Friedman
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102,
| |
Collapse
|
78
|
Wong NML, Shao R, Wu J, Tao J, Chen L, Lee TMC. Cerebellar neural markers of susceptibility to social isolation and positive affective processing. Brain Struct Funct 2019; 224:3339-3351. [PMID: 31701265 PMCID: PMC6875157 DOI: 10.1007/s00429-019-01965-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023]
Abstract
Chronic loneliness predicts mood disturbances and onset of major depressive disorder. However, little research has examined the neural correlates of individual difference in susceptibility to perceiving loneliness. In addition, the role of cerebellum, which is heavily implicated in social, cognitive and affective processes, in loneliness is unclear. We studied 99 healthy individuals divided into susceptible, concordant and robust groups depending on whether the participant’s loneliness level was greater, comparable or less than her/his objective social isolation level. The cerebellar gray matter structure, functional activity and connectivity patterns during performing an emotion stroop task were examined. We found greater posterior and medial cerebellar volume in the susceptible group than the other groups. In addition, the posterior and medial cerebellar activities when processing positive versus neutral words exhibited significant interactive effects of both loneliness and social network, and susceptibility to isolation. Loneliness and social network also had positive effects on the right posterior cerebellar functional connectivity with the visual and premotor cortices. Our findings provide novel evidence on the intricate role of the cerebellum in loneliness and susceptibility to isolation, suggesting that socio-cognitive processes of the cerebellum in the hedonic domain may be a key mechanism underlying loneliness proneness.
Collapse
Affiliation(s)
- Nichol M L Wong
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.,Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong, China.,Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Robin Shao
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.,Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong, China.,Institute of Clinical Neuropsychology, The University of Hong Kong, Hong Kong, China
| | - Jingsong Wu
- Rehabilitation Medicine College, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Tao
- Rehabilitation Medicine College, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lidian Chen
- Fujian University of Traditional Chinese Medicine, Fuzhou, China.
| | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China. .,Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong, China. .,Institute of Clinical Neuropsychology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
79
|
Matsubara T, Tashiro T, Uehara K. Deep Neural Generative Model of Functional MRI Images for Psychiatric Disorder Diagnosis. IEEE Trans Biomed Eng 2019; 66:2768-2779. [DOI: 10.1109/tbme.2019.2895663] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
80
|
Abnormal functional network centrality in drug-naïve boys with attention-deficit/hyperactivity disorder. Eur Child Adolesc Psychiatry 2019; 28:1321-1328. [PMID: 30798413 DOI: 10.1007/s00787-019-01297-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 02/18/2019] [Indexed: 02/05/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed neurodevelopmental disorder in childhood and is characterized by inattention, impulsivity, and hyperactivity. Observations of distributed functional abnormalities in ADHD suggest aberrant large-scale brain network connectivity. However, few studies have measured the voxel-wise network centrality of boys with ADHD, which captures the functional relationships of a given voxel within the entire connectivity matrix of the brain. Here, to examine the network patterns characterizing children with ADHD, we recruited 47 boys with ADHD and 21 matched control boys who underwent resting-state functional imaging scanning in a 3.0 T MRI unit. We measured voxel-wise network centrality, indexing local functional relationships across the entire brain connectome, termed degree centrality (DC). Then, we chose the brain regions with altered DC as seeds to examine the remote functional connectivity (FC) of brain regions. We found that boys with ADHD exhibited (1) decreased centrality in the left superior temporal gyrus (STG) and increased centrality in the left superior occipital lobe (SOL) and right inferior parietal lobe (IPL); (2) decreased FC between the STG and the putamen and thalamus, which belong to the cognitive cortico-striatal-thalamic-cortical (CSTC) loop, and increased FC between the STG and medial/superior frontal gyrus within the affective CSTC loop; and (3) decreased connectivity between the SOL and cuneus within the dorsal attention network. Our results demonstrated that patients with ADHD show a connectivity-based pathophysiological process in the cognitive and affective CSTC loops and attention network.
Collapse
|
81
|
Zheng Y, Chen X, Li D, Liu Y, Tan X, Liang Y, Zhang H, Qiu S, Shen D. Treatment-naïve first episode depression classification based on high-order brain functional network. J Affect Disord 2019; 256:33-41. [PMID: 31158714 PMCID: PMC6750956 DOI: 10.1016/j.jad.2019.05.067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Recent functional connectivity (FC) studies have proved the potential value of resting-state functional magnetic resonance imaging (rs-fMRI) in the study of major depressive disorder (MDD); yet, the rs-fMRI-based individualized diagnosis of MDD is still challenging. METHODS We enrolled 82 treatment-naïve first episode depression (FED) adults and 72 matched normal control (NC). A computer-aided diagnosis framework was utilized to classify the FEDs from the NCs based on the features extracted from not only traditional "low-order" FC networks (LON) based on temporal synchronization of original rs-fMRI signals, but also "high-order" FC networks (HON) that characterize more complex functional interactions via correlation of the dynamic (time-varying) FCs. We contrasted a classifier using HON feature (CHON) and compared its performance with using LON only (CLON). Finally, an integrated classification model with both features was proposed to further enhance FED classification. RESULTS The CHON had significantly improved diagnostic accuracy compared to the CLON (82.47% vs. 67.53%). Joint classification further improved the performance (83.77%). The brain regions with potential diagnostic values mainly encompass the high-order cognitive function-related networks. Importantly, we found previously less-reported potential imaging biomarkers that involve the vermis and the crus II in the cerebellum. LIMITATIONS We only used one imaging modality and did not examine data from different subtypes of depression. CONCLUSIONS Depression classification could be significantly improved by using HON features that better capture the higher-level brain functional interactions. The findings suggest the importance of higher-level cerebro-cerebellar interactions in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Yanting Zheng
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiaobo Chen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Danian Li
- Cerebropathy Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong 510405, China
| | - Yujie Liu
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xin Tan
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong 510405, China
| | - Yi Liang
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong 510405, China; Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Han Zhang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong 510405, China.
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
82
|
Thomasson M, Saj A, Benis D, Grandjean D, Assal F, Péron J. Cerebellar contribution to vocal emotion decoding: Insights from stroke and neuroimaging. Neuropsychologia 2019; 132:107141. [PMID: 31306617 DOI: 10.1016/j.neuropsychologia.2019.107141] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 01/15/2023]
Abstract
While the role of the cerebellum in emotion recognition has been explored with facial expressions, its involvement in the auditory modality (i.e., emotional prosody) remains to be demonstrated. The present study investigated the recognition of emotional prosody in 15 patients with chronic cerebellar ischaemic stroke and 15 matched healthy controls, using a validated task, as well as clinical, motor, neuropsychological, and psychiatric assessments. We explored the cerebellar lesion-behaviour relationship using voxel-based lesion-symptom mapping. Results showed a significant difference between the stroke and healthy control groups, with patients giving erroneous ratings on the Surprise scale when they listened to fearful stimuli. Moreover, voxel-based lesion-symptom mapping revealed that these emotional misattributions correlated with lesions in right Lobules VIIb, VIIIa,b and IX. Interestingly, the posterior cerebellum has previously been found to be involved in affective processing, and Lobule VIIb in rhythm discrimination. These results point to the cerebellum's functional involvement in vocal emotion decoding.
Collapse
Affiliation(s)
- Marine Thomasson
- Clinical and Experimental Neuropsychology Laboratory, Department of Psychology and Educational Sciences, University of Geneva, Switzerland; Neuroscience of Emotion and Affective Dynamics Laboratory, Department of Psychology and Swiss Center for Affective Sciences, University of Geneva, Switzerland
| | - Arnaud Saj
- Cognitive Neurology Unit, Department of Neurology, University Hospitals of Geneva, Geneva, Switzerland; Department of Psychology, University of Montréal, Montréal, QC, Canada
| | - Damien Benis
- Clinical and Experimental Neuropsychology Laboratory, Department of Psychology and Educational Sciences, University of Geneva, Switzerland; Neuroscience of Emotion and Affective Dynamics Laboratory, Department of Psychology and Swiss Center for Affective Sciences, University of Geneva, Switzerland
| | - Didier Grandjean
- Neuroscience of Emotion and Affective Dynamics Laboratory, Department of Psychology and Swiss Center for Affective Sciences, University of Geneva, Switzerland
| | - Frédéric Assal
- Cognitive Neurology Unit, Department of Neurology, University Hospitals of Geneva, Geneva, Switzerland; Faculty of Medicine, University of Geneva, Switzerland
| | - Julie Péron
- Clinical and Experimental Neuropsychology Laboratory, Department of Psychology and Educational Sciences, University of Geneva, Switzerland; Neuroscience of Emotion and Affective Dynamics Laboratory, Department of Psychology and Swiss Center for Affective Sciences, University of Geneva, Switzerland; Cognitive Neurology Unit, Department of Neurology, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
83
|
Daly I, Williams D, Hwang F, Kirke A, Miranda ER, Nasuto SJ. Electroencephalography reflects the activity of sub-cortical brain regions during approach-withdrawal behaviour while listening to music. Sci Rep 2019; 9:9415. [PMID: 31263113 PMCID: PMC6603018 DOI: 10.1038/s41598-019-45105-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 06/03/2019] [Indexed: 11/09/2022] Open
Abstract
The ability of music to evoke activity changes in the core brain structures that underlie the experience of emotion suggests that it has the potential to be used in therapies for emotion disorders. A large volume of research has identified a network of sub-cortical brain regions underlying music-induced emotions. Additionally, separate evidence from electroencephalography (EEG) studies suggests that prefrontal asymmetry in the EEG reflects the approach-withdrawal response to music-induced emotion. However, fMRI and EEG measure quite different brain processes and we do not have a detailed understanding of the functional relationships between them in relation to music-induced emotion. We employ a joint EEG – fMRI paradigm to explore how EEG-based neural correlates of the approach-withdrawal response to music reflect activity changes in the sub-cortical emotional response network. The neural correlates examined are asymmetry in the prefrontal EEG, and the degree of disorder in that asymmetry over time, as measured by entropy. Participants’ EEG and fMRI were recorded simultaneously while the participants listened to music that had been specifically generated to target the elicitation of a wide range of affective states. While listening to this music, participants also continuously reported their felt affective states. Here we report on co-variations in the dynamics of these self-reports, the EEG, and the sub-cortical brain activity. We find that a set of sub-cortical brain regions in the emotional response network exhibits activity that significantly relates to prefrontal EEG asymmetry. Specifically, EEG in the pre-frontal cortex reflects not only cortical activity, but also changes in activity in the amygdala, posterior temporal cortex, and cerebellum. We also find that, while the magnitude of the asymmetry reflects activity in parts of the limbic and paralimbic systems, the entropy of that asymmetry reflects activity in parts of the autonomic response network such as the auditory cortex. This suggests that asymmetry magnitude reflects affective responses to music, while asymmetry entropy reflects autonomic responses to music. Thus, we demonstrate that it is possible to infer activity in the limbic and paralimbic systems from pre-frontal EEG asymmetry. These results show how EEG can be used to measure and monitor changes in the limbic and paralimbic systems. Specifically, they suggest that EEG asymmetry acts as an indicator of sub-cortical changes in activity induced by music. This shows that EEG may be used as a measure of the effectiveness of music therapy to evoke changes in activity in the sub-cortical emotion response network. This is also the first time that the activity of sub-cortical regions, normally considered “invisible” to EEG, has been shown to be characterisable directly from EEG dynamics measured during music listening.
Collapse
Affiliation(s)
- Ian Daly
- Brain-Computer Interfacing and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, CO4 3SQ, UK.
| | - Duncan Williams
- Digital Creativity Labs, Department of Computer Science, University of York, Heslington, YO10 5RG, UK
| | - Faustina Hwang
- Brain Embodiment Laboratory, Biomedical Sciences and Biomedical Engineering Division, School of Biological Sciences, University of Reading, Reading, RG6 6AY, UK
| | - Alexis Kirke
- Interdisciplinary Centre for Computer Music Research, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Eduardo R Miranda
- Interdisciplinary Centre for Computer Music Research, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Slawomir J Nasuto
- Brain Embodiment Laboratory, Biomedical Sciences and Biomedical Engineering Division, School of Biological Sciences, University of Reading, Reading, RG6 6AY, UK
| |
Collapse
|
84
|
Adams AG, Schweitzer D, Molenberghs P, Henry JD. A meta-analytic review of social cognitive function following stroke. Neurosci Biobehav Rev 2019; 102:400-416. [DOI: 10.1016/j.neubiorev.2019.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/14/2019] [Accepted: 03/14/2019] [Indexed: 01/20/2023]
|
85
|
Ren Y, Guo L, Guo CC. A connectivity-based parcellation improved functional representation of the human cerebellum. Sci Rep 2019; 9:9115. [PMID: 31235754 PMCID: PMC6591283 DOI: 10.1038/s41598-019-45670-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/06/2019] [Indexed: 11/23/2022] Open
Abstract
The cerebellum is traditionally well known for its role in motor learning and coordination. Recently, it is recognized that the function of the cerebellum is highly diverse and extends to non-motor domains, such as working memory, emotion and language. The diversity of the cerebellum can be appreciated by examining its extensive connectivity to the cerebral regions selective for both motor and cognitive functions. Importantly, the pattern of cerebro-cerebellar connectivity is specific and distinct to different cerebellar subregions. Therefore, to understand the cerebellum and the various functions it involves, it is essential to identify and differentiate its subdivisions. However, most studies are still referring the cerebellum as one brain structure or by its gross anatomical subdivisions, which does not necessarily reflect the functional mapping of the cerebellum. We here employed a data-driven method to generate a functional connectivity-based parcellation of the cerebellum. Our results demonstrated that functional connectivity-based atlas is superior to existing atlases in regards to cluster homogeneity, accuracy of functional connectivity representation and individual identification. Furthermore, our functional atlas improves statistical results of task fMRI analyses, as compared to the standard voxel-based approach and existing atlases. Our detailed functional parcellation provides a valuable tool for elucidating the functional diversity and connectivity of the cerebellum as well as its network relationships with the whole brain.
Collapse
Affiliation(s)
- Yudan Ren
- School of Automation, Northwestern Polytechnical University, Xi'an, China.,QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Information Science and Technology, Northwest University, Xi'an, China
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | | |
Collapse
|
86
|
Abstract
PURPOSE OF REVIEW Familial predisposition to bipolar disorder is associated with increased risk of affective morbidity in the first-degree relatives of patients. Nevertheless, a substantial proportion of relatives remain free of psychopathology throughout their lifetime. A series of studies reviewed here were designed to test whether resilience in these high-risk individuals is associated with adaptive brain plasticity. RECENT FINDINGS The findings presented here derive from structural and functional magnetic resonance imaging data obtained from patients, their resilient first-degree relatives, and healthy individuals. Patients and relatives showed similar abnormalities in activation and connectivity while performing tasks of interference control and facial affect recognition and in the resting-state connectivity of sensory and motor regions. Resilient relatives manifested unique neuroimaging features that differentiated them from patients and healthy individuals. Specifically, they had larger cerebellar vermis volume, enhanced prefrontal connectivity during task performance, and enhanced functional integration of the default mode network in task-free conditions. Resilience to bipolar disorder is not the reverse of risk but is associated with adaptive brain changes indicative of increased neural reserve. This line of research may open new avenues in preventing and treating bipolar disorder.
Collapse
Affiliation(s)
- Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
87
|
Hilber P, Cendelin J, Le Gall A, Machado ML, Tuma J, Besnard S. Cooperation of the vestibular and cerebellar networks in anxiety disorders and depression. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:310-321. [PMID: 30292730 DOI: 10.1016/j.pnpbp.2018.10.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/25/2018] [Accepted: 10/04/2018] [Indexed: 12/28/2022]
Abstract
The discipline of affective neuroscience is concerned with the neural bases of emotion and mood. The past decades have witnessed an explosion of research in affective neuroscience, increasing our knowledge of the brain areas involved in fear and anxiety. Besides the brain areas that are classically associated with emotional reactivity, accumulating evidence indicates that both the vestibular and cerebellar systems are involved not only in motor coordination but also influence both cognition and emotional regulation in humans and animal models. The cerebellar and the vestibular systems show the reciprocal connection with a myriad of anxiety and fear brain areas. Perception anticipation and action are also major centers of interest in cognitive neurosciences. The cerebellum is crucial for the development of an internal model of action and the vestibular system is relevant for perception, gravity-related balance, navigation and motor decision-making. Furthermore, there are close relationships between these two systems. With regard to the cooperation between the vestibular and cerebellar systems for the elaboration and the coordination of emotional cognitive and visceral responses, we propose that altering the function of one of the systems could provoke internal model disturbances and, as a result, anxiety disorders followed potentially with depressive states.
Collapse
Affiliation(s)
- Pascal Hilber
- Centre de Recherche sur les Fonctionnements et Dysfonctionnements Psychologigues, CRFDP EA 7475, Rouen Normandie University, Bat Blondel, Place E. Blondel 76821, Mont Saint Aignan cedex, France.
| | - Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Plzen, Czech Republic; Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Plzen, Czech Republic
| | - Anne Le Gall
- UMR UCBN/INSERM U 1075 COMETE, Pole des Formations et de Recherche en Sante, Normandie University, 2 Rue Rochambelles, 14032 Caen, cedex 5, France
| | - Marie-Laure Machado
- UMR UCBN/INSERM U 1075 COMETE, Pole des Formations et de Recherche en Sante, Normandie University, 2 Rue Rochambelles, 14032 Caen, cedex 5, France
| | - Jan Tuma
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Plzen, Czech Republic; Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Plzen, Czech Republic
| | - Stephane Besnard
- UMR UCBN/INSERM U 1075 COMETE, Pole des Formations et de Recherche en Sante, Normandie University, 2 Rue Rochambelles, 14032 Caen, cedex 5, France
| |
Collapse
|
88
|
Cheng C, Dong D, Jiang Y, Ming Q, Zhong X, Sun X, Xiong G, Gao Y, Yao S. State-Related Alterations of Spontaneous Neural Activity in Current and Remitted Depression Revealed by Resting-State fMRI. Front Psychol 2019; 10:245. [PMID: 30804860 PMCID: PMC6378291 DOI: 10.3389/fpsyg.2019.00245] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/24/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose: Although efforts have been made to identify neurobiological characteristic of major depressive disorder (MDD) in recent years, trait- and state-related biological characteristics of MDD still remains unclear. Using functional magnetic resonance imaging (fMRI), the aim of this study was to explore whether altered spontaneous neural activities in MDD are trait- or state- related. Materials and Methods: Resting-state fMRI data were analyzed for 72 current MDD (cMDD) patients (first-episode, medication-naïve), 49 remitted MDD (rMDD) patients, and 78 age- and sex- matched healthy control (HC) subjects. The values of amplitude of low-frequency fluctuation (ALFF) were compared between groups. Results: Compared with the cMDD group, the rMDD group had increased ALFF values in the left middle occipital gyrus, left middle temporal gyrus and right cerebellum anterior lobe. Besides, compared with the HC group, the cMDD group had decreased ALFF values in the left middle occipital gyrus. Further analysis explored that the mean ALFF values in the left middle occipital gyrus, left middle temporal gyrus and right cerebellum anterior lobe were correlated positively with BDI scores in rMDD patients. Conclusion: Abnormal activity in the left middle occipital gyrus, left middle temporal gyrus and right cerebellum anterior lobe may be state-specific in current (first-episode, medication-naïve) and remitted (medication-naïve) depression patients. Furthermore, the state-related compensatory effect was found in these brain areas.
Collapse
Affiliation(s)
- Chang Cheng
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Preschool Education Department, Changsha Normal University, Changsha, China
| | - Daifeng Dong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yali Jiang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qingsen Ming
- Department of Psychiatry, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Xue Zhong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoqiang Sun
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ge Xiong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yidian Gao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuqiao Yao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
89
|
Terpou BA, Densmore M, Thome J, Frewen P, McKinnon MC, Lanius RA. The Innate Alarm System and Subliminal Threat Presentation in Posttraumatic Stress Disorder: Neuroimaging of the Midbrain and Cerebellum. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2019; 3:2470547018821496. [PMID: 32440590 PMCID: PMC7219880 DOI: 10.1177/2470547018821496] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/28/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND The innate alarm system, a network of interconnected midbrain, other brainstem, and thalamic structures, serves to rapidly detect stimuli in the environment prior to the onset of conscious awareness. This system is sensitive to threatening stimuli and has evolved to process these stimuli subliminally for hastened responding. Despite the conscious unawareness, the presentation of subliminal threat stimuli generates increased activation of limbic structures, including the amygdala and insula, as well as emotionally evaluative structures, including the cerebellum and orbitofrontal cortex. Posttraumatic stress disorder (PTSD) is associated with an increased startle response and decreased extinction learning to conditioned threat. The role of the innate alarm system in the clinical presentation of PTSD, however, remains poorly understood. METHODS Here, we compare midbrain, brainstem, and cerebellar activation in persons with PTSD (n = 26) and matched controls (n = 20) during subliminal threat presentation. Subjects were presented with masked trauma-related and neutral stimuli below conscious threshold. Contrasts of subliminal brain activation for the presentation of neutral stimuli were subtracted from trauma-related brain activation. Group differences in activation, as well as correlations between clinical scores and PTSD activation, were examined. Imaging data were preprocessed utilizing the spatially unbiased infratentorial template toolbox within SPM12. RESULTS Analyses revealed increased midbrain activation in PTSD as compared to controls in the superior colliculus, periaqueductal gray, and midbrain reticular formation during subliminal threat as compared to neutral stimulus presentation. Controls showed increased activation in the right cerebellar lobule V during subliminal threat presentation as compared to PTSD. Finally, a negative correlation emerged between PTSD patient scores on the Multiscale Dissociation Inventory for the Depersonalization/Derealization subscale and activation in the right lobule V of the cerebellum during the presentation of subliminal threat as compared to neutral stimuli. CONCLUSION We interpret these findings as evidence of innate alarm system overactivation in PTSD and of the prominent role of the cerebellum in the undermodulation of emotion observed in PTSD.
Collapse
Affiliation(s)
- Braeden A. Terpou
- Department of Neuroscience, Western
University, London, Ontario, Canada
| | - Maria Densmore
- Department of Psychiatry, Western
University, London, Ontario, Canada
- Imaging Division,
Lawson
Health Research Institute, London, Ontario,
Canada
| | - Janine Thome
- Department of Psychiatry, Western
University, London, Ontario, Canada
- Department of Theoretical Neuroscience,
Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg
University, Heidelberg, Germany
| | - Paul Frewen
- Department of Neuroscience, Western
University, London, Ontario, Canada
- Department of Psychology, Western
University, London, Ontario, Canada
| | - Margaret C. McKinnon
- Mood Disorders Program, St. Joseph’s
Healthcare, Hamilton, Ontario, Canada
- Department of Psychiatry and Behavioural
Neurosciences, McMaster University, Hamilton, Ontario, Canada
- Homewood Research Institute, Guelph,
Ontario, Canada
| | - Ruth A. Lanius
- Department of Neuroscience, Western
University, London, Ontario, Canada
- Department of Psychiatry, Western
University, London, Ontario, Canada
| |
Collapse
|
90
|
Hehr A, Marusak HA, Huntley ED, Rabinak CA. Effects of Duration and Midpoint of Sleep on Corticolimbic Circuitry in Youth. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2019; 3:2470547019856332. [PMID: 31511841 PMCID: PMC6739076 DOI: 10.1177/2470547019856332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Adequate sleep is essential for cognitive and emotion-related functioning, and 9 to 12 hr of sleep is recommended for children ages 6 to 12 years and 8 to 10 hr for children ages 13 to 18 years. However, national survey data indicate that older youth sleep for fewer hours and fall asleep later than younger youth. This shift in sleep duration and timing corresponds with a sharp increase in onset of emotion-related problems (e.g., anxiety, depression) during adolescence. Given that both sleep duration and timing have been linked to emotion-related outcomes, the present study tests the effects of sleep duration and timing, and their interaction, on resting-state functional connectivity (RS-FC) of corticolimbic emotion-related neural circuitry in children and adolescents. METHODS A total of 63 children and adolescents (6-17 years, 34 females) completed a weekend overnight sleep journal and a 10-min resting-state functional magnetic resonance imaging scan the next day (Sunday). Whole-brain RS-FC of the amygdala was computed, and the effects of sleep duration, timing (i.e., midpoint of sleep), and their interaction were explored using regression analyses. RESULTS Overall, we found that older youth tended to sleep later and for fewer hours than younger youth. Controlling for age, shorter sleep duration was associated with lower RS-FC between the amygdala and regions implicated in emotion regulation, including ventral anterior cingulate cortex, precentral gyrus, and superior temporal gyrus. Interestingly, midpoint of sleep was associated with altered connectivity in a distinct set of brain regions involved in interoception and sensory processing, including insula, supramarginal gyrus, and postcentral gyrus. Our data also indicate widespread interactive effects of sleep duration and midpoint on brain regions implicated in emotion regulation, sensory processing, and motor control. CONCLUSION These results suggest that both sleep duration and midpoint of sleep are associated with next-day RS-FC within corticolimbic emotion-related neural circuitry in children and adolescents. The observed interactive effects of sleep duration and timing on RS-FC may reflect how homeostatic and circadian process interact in the brain and explain the complex patterns observed with respect to emotional health when considering sleep duration and timing. Sleep-related changes in corticolimbic circuitry may contribute to the onset of emotion-related problems during adolescence.
Collapse
Affiliation(s)
- Aneesh Hehr
- Department of Pharmacy Practice,
Wayne
State University College of Pharmacy and
Health Sciences, Detroit, MI, USA
| | - Hilary A. Marusak
- Department of Pharmacy Practice,
Wayne
State University College of Pharmacy and
Health Sciences, Detroit, MI, USA
| | - Edward D. Huntley
- Survey Research Center, Institute for
Social Research,
University
of Michigan, Ann Arbor, MI, USA
| | - Christine A. Rabinak
- Department of Pharmacy Practice,
Wayne
State University College of Pharmacy and
Health Sciences, Detroit, MI, USA
| |
Collapse
|
91
|
Barsuglia JP, Polanco M, Palmer R, Malcolm BJ, Kelmendi B, Calvey T. A case report SPECT study and theoretical rationale for the sequential administration of ibogaine and 5-MeO-DMT in the treatment of alcohol use disorder. PROGRESS IN BRAIN RESEARCH 2018; 242:121-158. [PMID: 30471678 DOI: 10.1016/bs.pbr.2018.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ibogaine is a plant-derived alkaloid and dissociative psychedelic that demonstrates anti-addictive properties with several substances of abuse, including alcohol. 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a naturally occurring psychedelic known to occasion potent mystical-type experiences and also demonstrates anti-addictive properties. The potential therapeutic effects of both compounds in treating alcohol use disorder require further investigation and there are no published human neuroimaging findings of either treatment to date. We present the case of a 31-year-old male military veteran with moderate alcohol use disorder who sought treatment at an inpatient clinic in Mexico that utilized a sequential protocol with ibogaine hydrochloride (1550mg, 17.9mg/kg) on day 1, followed by vaporized 5-MeO-DMT (bufotoxin source 50mg, estimated 5-MeO-DMT content, 5-7mg) on day 3. The patient received SPECT neuroimaging that included a resting-state protocol before, and 3 days after completion of the program. During the patient's ibogaine treatment, he experienced dream-like visions that included content pertaining to his alcohol use and resolution of past developmental traumas. He described his treatment with 5-MeO-DMT as a peak transformational and spiritual breakthrough. On post-treatment SPECT neuroimaging, increases in brain perfusion were noted in bilateral caudate nuclei, left putamen, right insula, as well as temporal, occipital, and cerebellar regions compared to the patient's baseline scan. The patient reported improvement in mood, cessation of alcohol use, and reduced cravings at 5 days post-treatment, effects which were sustained at 1 month, with a partial return to mild alcohol use at 2 months. In this case, serial administration of ibogaine and 5-MeO-DMT resulted in increased perfusion in multiple brain regions broadly associated with alcohol use disorders and known pharmacology of both compounds, which coincided with a short-term therapeutic outcome. We present theoretical considerations regarding the potential of both psychedelic medicines in treating alcohol use disorders in the context of these isolated findings, and areas for future investigation.
Collapse
Affiliation(s)
- Joseph P Barsuglia
- Crossroads Treatment Center, Tijuana, Mexico; Mission Within, Oakland, CA, United States; New School Research, LLC, North Hollywood, CA, United States; Terra Incognita Project, NGO, Ben Lomond, CA, United States.
| | - Martin Polanco
- Crossroads Treatment Center, Tijuana, Mexico; Mission Within, Oakland, CA, United States
| | - Robert Palmer
- Yale School of Medicine, New Haven, CT, United States
| | - Benjamin J Malcolm
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Benjamin Kelmendi
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Tanya Calvey
- Faculty of Health Sciences, University of the Witwatersrand Medical School, Johannesburg, South Africa
| |
Collapse
|
92
|
Apps R, Hawkes R, Aoki S, Bengtsson F, Brown AM, Chen G, Ebner TJ, Isope P, Jörntell H, Lackey EP, Lawrenson C, Lumb B, Schonewille M, Sillitoe RV, Spaeth L, Sugihara I, Valera A, Voogd J, Wylie DR, Ruigrok TJH. Cerebellar Modules and Their Role as Operational Cerebellar Processing Units: A Consensus paper [corrected]. CEREBELLUM (LONDON, ENGLAND) 2018; 17:654-682. [PMID: 29876802 PMCID: PMC6132822 DOI: 10.1007/s12311-018-0952-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The compartmentalization of the cerebellum into modules is often used to discuss its function. What, exactly, can be considered a module, how do they operate, can they be subdivided and do they act individually or in concert are only some of the key questions discussed in this consensus paper. Experts studying cerebellar compartmentalization give their insights on the structure and function of cerebellar modules, with the aim of providing an up-to-date review of the extensive literature on this subject. Starting with an historical perspective indicating that the basis of the modular organization is formed by matching olivocorticonuclear connectivity, this is followed by consideration of anatomical and chemical modular boundaries, revealing a relation between anatomical, chemical, and physiological borders. In addition, the question is asked what the smallest operational unit of the cerebellum might be. Furthermore, it has become clear that chemical diversity of Purkinje cells also results in diversity of information processing between cerebellar modules. An additional important consideration is the relation between modular compartmentalization and the organization of the mossy fiber system, resulting in the concept of modular plasticity. Finally, examination of cerebellar output patterns suggesting cooperation between modules and recent work on modular aspects of emotional behavior are discussed. Despite the general consensus that the cerebellum has a modular organization, many questions remain. The authors hope that this joint review will inspire future cerebellar research so that we are better able to understand how this brain structure makes its vital contribution to behavior in its most general form.
Collapse
Affiliation(s)
- Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Richard Hawkes
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sho Aoki
- Neurobiology Research Unit, Okinawa Institute of Science and Technology, Onna, Japan
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Fredrik Bengtsson
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Amanda M. Brown
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
| | - Gang Chen
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
| | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Henrik Jörntell
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Elizabeth P. Lackey
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
| | - Charlotte Lawrenson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Bridget Lumb
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Martijn Schonewille
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Roy V. Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX USA
| | - Ludovic Spaeth
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Antoine Valera
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jan Voogd
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Douglas R. Wylie
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB Canada
| | - Tom J. H. Ruigrok
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
93
|
Rabellino D, Densmore M, Théberge J, McKinnon MC, Lanius RA. The cerebellum after trauma: Resting-state functional connectivity of the cerebellum in posttraumatic stress disorder and its dissociative subtype. Hum Brain Mapp 2018; 39:3354-3374. [PMID: 29667267 PMCID: PMC6866303 DOI: 10.1002/hbm.24081] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/28/2018] [Accepted: 04/04/2018] [Indexed: 12/25/2022] Open
Abstract
The cerebellum plays a key role not only in motor function but also in affect and cognition. Although several psychopathological disorders have been associated with overall cerebellar dysfunction, it remains unclear whether different regions of the cerebellum contribute uniquely to psychopathology. Accordingly, we compared seed-based resting-state functional connectivity of the anterior cerebellum (lobule IV-V), of the posterior cerebellum (Crus I), and of the anterior vermis across posttraumatic stress disorder (PTSD; n = 65), its dissociative subtype (PTSD + DS; n = 37), and non-trauma-exposed healthy controls (HC; n = 47). Here, we observed decreased functional connectivity of the anterior cerebellum and anterior vermis with brain regions involved in somatosensory processing, multisensory integration, and bodily self-consciousness (temporo-parietal junction, postcentral gyrus, and superior parietal lobule) in PTSD + DS as compared to PTSD and HC. Moreover, the PTSD + DS group showed increased functional connectivity of the posterior cerebellum with cortical areas related to emotion regulation (ventromedial prefrontal and orbito-frontal cortex, subgenual anterior cingulum) as compared to PTSD. By contrast, PTSD showed increased functional connectivity of the anterior cerebellum with cortical areas associated with visual processing (fusiform gyrus), interoceptive awareness (posterior insula), memory retrieval, and contextual processing (hippocampus) as compared to HC. Finally, we observed decreased functional connectivity between the posterior cerebellum and prefrontal regions involved in emotion regulation, in PTSD as compared to HC. These findings not only highlight the crucial role of each cerebellar region examined in the psychopathology of PTSD but also reveal unique alterations in functional connectivity distinguishing the dissociative subtype of PTSD versus PTSD.
Collapse
Affiliation(s)
- Daniela Rabellino
- Department of PsychiatryUniversity of Western OntarioLondonOntarioCanada
- Imaging DivisionLawson Health Research InstituteLondonOntarioCanada
| | - Maria Densmore
- Department of PsychiatryUniversity of Western OntarioLondonOntarioCanada
- Imaging DivisionLawson Health Research InstituteLondonOntarioCanada
| | - Jean Théberge
- Department of PsychiatryUniversity of Western OntarioLondonOntarioCanada
- Imaging DivisionLawson Health Research InstituteLondonOntarioCanada
- Department of Medical BiophysicsUniversity of Western OntarioLondonOntarioCanada
| | - Margaret C. McKinnon
- Mood Disorders Program, St. Joseph's HealthcareHamiltonOntarioCanada
- Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonOntarioCanada
- Homewood Research InstituteGuelphOntarioCanada
| | - Ruth A. Lanius
- Department of PsychiatryUniversity of Western OntarioLondonOntarioCanada
- Imaging DivisionLawson Health Research InstituteLondonOntarioCanada
| |
Collapse
|
94
|
Stice E, Yokum S. Effects of gymnemic acids lozenge on reward region response to receipt and anticipated receipt of high-sugar food. Physiol Behav 2018; 194:568-576. [PMID: 30031752 DOI: 10.1016/j.physbeh.2018.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
Abstract
A gymnemic acids lozenge that blocks sweet taste receptors reduced the decision to consume candy in humans even before the candy was tasted after the gymnemic acids dose, suggesting that blocking sweet taste receptors reduces valuation of sweet foods. The present study used functional magnetic resonance imaging (fMRI) to test whether the gymnemic acids lozenge reduces reward region response to both intake and anticipated intake of high-sugar food, as well as ad lib candy intake relative to a placebo lozenge. Here we show for the first time that a gymnemic acids lozenge versus placebo lozenge significantly reduced activation in the striatum and orbitofrontal cortex in response to anticipated tastes of high-sugar milkshake, and significantly reduced dorsolateral prefrontal cortex response to tastes of milkshake. We also replicated evidence that a gymnemic acids lozenge versus placebo lozenge significantly reduced ad lib candy intake. Results also provide novel evidence that an initial taste of a high-sugar food increases reward region (i.e., caudate) response to anticipated intake of more of the high-sugar food. Results suggest that blocking sweet taste receptors not only reduces reward region response to intake of high-sugar foods, but also reduces anticipated reward from high-sugar foods, potentially via a feedback loop regarding the availability of sweet taste receptors to convey perceptual input regarding sweet tastes. Collectively, results imply that the gymnemic acids lozenge might prove useful in decreasing high-sugar food intake.
Collapse
Affiliation(s)
- Eric Stice
- Oregon Research Institute, 1776 Millrace Drive, Eugene, OR 97403, United States.
| | - Sonja Yokum
- Oregon Research Institute, 1776 Millrace Drive, Eugene, OR 97403, United States
| |
Collapse
|
95
|
Xiao T, Zhang S, Lee LE, Chao HH, van Dyck C, Li CSR. Exploring Age-Related Changes in Resting State Functional Connectivity of the Amygdala: From Young to Middle Adulthood. Front Aging Neurosci 2018; 10:209. [PMID: 30061823 PMCID: PMC6055042 DOI: 10.3389/fnagi.2018.00209] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/22/2018] [Indexed: 11/13/2022] Open
Abstract
Functional connectivities of the amygdala support emotional and cognitive processing. Life-span development of resting-state functional connectivities (rsFC) of the amygdala may underlie age-related differences in emotion regulatory mechanisms. To date, age-related changes in amygdala rsFC have been reported through adolescence but not as thoroughly for adulthood. This study investigated age-related differences in amygdala rsFC in 132 young and middle-aged adults (19–55 years). Data processing followed published routines. Overall, amygdala showed positive rsFC with the temporal, sensorimotor and ventromedial prefrontal cortex (vmPFC), insula and lentiform nucleus, and negative rsFC with visual, frontoparietal, and posterior cingulate cortex and caudate head. Amygdala rsFC with the cerebellum was positively correlated with age, and rsFCs with the dorsal medial prefrontal cortex (dmPFC) and somatomotor cortex were negatively correlated with age, at voxel p < 0.001 in combination with cluster p < 0.05 FWE. These age-dependent changes in connectivity appeared to manifest to a greater extent in men than in women, although the sex difference was only evident for the cerebellum in a slope test of age regressions (p = 0.0053). Previous studies showed amygdala interaction with the anterior cingulate cortex (ACC) and vmPFC during emotion regulation. In region of interest analysis, amygdala rsFC with the ACC and vmPFC did not show age-related changes. These findings suggest that intrinsic connectivity of the amygdala evolved from young to middle adulthood in selective brain regions, and may inform future studies of age-related emotion regulation and maladaptive development of the amygdala circuits as an etiological marker of emotional disorders.
Collapse
Affiliation(s)
- Ting Xiao
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Lue-En Lee
- Department of Psychiatry, National Taiwan University, Taipei, Taiwan
| | - Herta H Chao
- Department of Medicine, Yale University School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| | - Christopher van Dyck
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States.,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, United States
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States.,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, United States.,Beijing Huilongguan Hospital, Peking University, Beijing, China
| |
Collapse
|
96
|
Bai L, Niu X, Liu Z, Chen Z, Wang X, Sun C, Wang Z, Wang S, Cao J, Gan S, Fan G, Huang W, Xu H, Chen S, Tian J, Lao L, Zhang M. The role of insula-cerebellum connection underlying aversive regulation with acupuncture. Mol Pain 2018; 14:1744806918783457. [PMID: 29921161 PMCID: PMC6077882 DOI: 10.1177/1744806918783457] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acupuncture at pericardium 6 (PC6) shows a consistently positive efficacy in
nausea response suggested by consensus expert guidelines. Nausea encompasses
aversive symptom as well as strong emotional components. Disgust is a subjective
emotion of uneasy commonly accompanying with a physiological response that is
accompanied by strong visceral sensations (e.g., nausea). Understanding the
brain circuitry by which acupuncture influences the disgust emotion may further
elucidate the modulation effect of acupuncture on aversive experience. In the
present study, a well-established aversive conditioning model on healthy
subjects was combined with acupuncture intervention at PC6, as well as different
acupoints (both local PC7 and distant GB37) as separate controls, to investigate
the brain network involved aversive regulation with acupuncture; 48 healthy
subjects were enrolled and randomized into four parallel groups: group 1
received disgust-induced (DI) stimuli only; groups 2, 3, and 4 received
acupuncture at three single acupoints separately prior to the DI. Disgust
sensations were rated at baseline and following disgust stimuli. Acupuncture PC6
can induce significant attenuations in disgust sensations than that of no
intervention and acupuncture at other acupoints. Neuroimaging further showed
that increased causal interaction strength between the cerebellum (nodulus) and
insula can predict greater attenuations in aversive experiences. We also found
evidence for radical reorganizations of local stronger casual interaction
patterns to disgust-induced brain responses targeted by acupuncture at different
acupoints. This study provided the brain substrate for acupuncture on aversion
modulation. The coupling between the cerebellum (nodulus) and insula supported
interoception system and vestibular control which provided the specific neural
basis.
Collapse
Affiliation(s)
- Lijun Bai
- 1 The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xuan Niu
- 1 The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,2 Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhenyu Liu
- 3 Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Zhen Chen
- 1 The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaocui Wang
- 1 The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Chuanzhu Sun
- 1 The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhuonan Wang
- 2 Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shan Wang
- 1 The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jieli Cao
- 1 The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Shuoqiu Gan
- 1 The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Geng Fan
- 1 The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Wenming Huang
- 1 The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Hui Xu
- 1 The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Shangjie Chen
- 4 Bao'an Hospital, Southern Medical University, Shenzhen, China
| | - Jie Tian
- 3 Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Lixing Lao
- 5 Center for Integrative Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Ming Zhang
- 2 Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
97
|
Guell X, Gabrieli JDE, Schmahmann JD. Triple representation of language, working memory, social and emotion processing in the cerebellum: convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort. Neuroimage 2018. [PMID: 29408539 DOI: 10.1016/j.neuroimage] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Delineation of functional topography is critical to the evolving understanding of the cerebellum's role in a wide range of nervous system functions. We used data from the Human Connectome Project (n = 787) to analyze cerebellar fMRI task activation (motor, working memory, language, social and emotion processing) and resting-state functional connectivity calculated from cerebral cortical seeds corresponding to the peak Cohen's d of each task contrast. The combination of exceptional statistical power, activation from both motor and multiple non-motor tasks in the same participants, and convergent resting-state networks in the same participants revealed novel aspects of the functional topography of the human cerebellum. Consistent with prior studies there were two distinct representations of motor activation. Newly revealed were three distinct representations each for working memory, language, social, and emotional task processing that were largely separate for these four cognitive and affective domains. In most cases, the task-based activations and the corresponding resting-network correlations were congruent in identifying the two motor representations and the three non-motor representations that were unique to working memory, language, social cognition, and emotion. The definitive localization and characterization of distinct triple representations for cognition and emotion task processing in the cerebellum opens up new basic science questions as to why there are triple representations (what different functions are enabled by the different representations?) and new clinical questions (what are the differing consequences of lesions to the different representations?).
Collapse
Affiliation(s)
- Xavier Guell
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge MA 02139, USA; Cognitive Neuroscience Research Unit (URNC), Department of Psychiatric and Forensic Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain; Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston MA 02114, USA.
| | - John D E Gabrieli
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge MA 02139, USA.
| | - Jeremy D Schmahmann
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston MA 02114, USA; Ataxia Unit, Cognitive Behavioral Neurology Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston MA 02114, USA.
| |
Collapse
|
98
|
Guell X, Gabrieli JDE, Schmahmann JD. Triple representation of language, working memory, social and emotion processing in the cerebellum: convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort. Neuroimage 2018; 172:437-449. [PMID: 29408539 PMCID: PMC5910233 DOI: 10.1016/j.neuroimage.2018.01.082] [Citation(s) in RCA: 299] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/12/2018] [Accepted: 01/30/2018] [Indexed: 01/14/2023] Open
Abstract
Delineation of functional topography is critical to the evolving understanding of the cerebellum's role in a wide range of nervous system functions. We used data from the Human Connectome Project (n = 787) to analyze cerebellar fMRI task activation (motor, working memory, language, social and emotion processing) and resting-state functional connectivity calculated from cerebral cortical seeds corresponding to the peak Cohen's d of each task contrast. The combination of exceptional statistical power, activation from both motor and multiple non-motor tasks in the same participants, and convergent resting-state networks in the same participants revealed novel aspects of the functional topography of the human cerebellum. Consistent with prior studies there were two distinct representations of motor activation. Newly revealed were three distinct representations each for working memory, language, social, and emotional task processing that were largely separate for these four cognitive and affective domains. In most cases, the task-based activations and the corresponding resting-network correlations were congruent in identifying the two motor representations and the three non-motor representations that were unique to working memory, language, social cognition, and emotion. The definitive localization and characterization of distinct triple representations for cognition and emotion task processing in the cerebellum opens up new basic science questions as to why there are triple representations (what different functions are enabled by the different representations?) and new clinical questions (what are the differing consequences of lesions to the different representations?).
Collapse
Affiliation(s)
- Xavier Guell
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge MA 02139, USA; Cognitive Neuroscience Research Unit (URNC), Department of Psychiatric and Forensic Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain; Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston MA 02114, USA.
| | - John D E Gabrieli
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge MA 02139, USA.
| | - Jeremy D Schmahmann
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston MA 02114, USA; Ataxia Unit, Cognitive Behavioral Neurology Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston MA 02114, USA.
| |
Collapse
|
99
|
The Affective and Neural Correlates of Heroin versus Cocaine Use in Addiction Are Influenced by Environmental Setting But in Opposite Directions. J Neurosci 2018; 38:5182-5195. [PMID: 29760180 DOI: 10.1523/jneurosci.0019-18.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/18/2018] [Accepted: 04/25/2018] [Indexed: 01/13/2023] Open
Abstract
Previous studies have shown that individuals with heroin and cocaine addiction prefer to use these drugs in distinct settings: mostly at home in the case of heroin and mostly outside the home in the case of cocaine. Here we investigated whether the context would modulate the affective and neural responses to these drugs in a similar way. First, we used a novel emotional task to assess the affective state produced by heroin or cocaine in different settings, based on the recollections of male and female drug users. Then we used fMRI to monitor neural activity during drug imagery (re-creating the setting of drug use) in male drug users. Consistent with our working hypothesis, the majority of participants reported a shift in the affective valence of heroin from mostly pleasant at home to mostly unpleasant outside the home (p < 0.0001). The opposite shift was observed for cocaine; that is, most participants who found cocaine pleasant outside the home found it unpleasant when taken at home (p < 0.0014). Furthermore, we found a double dissociation, as a function of drug and setting imagery, in BOLD signal changes in the left PFC and caudate, and bilaterally in the cerebellum (all p values <0.01), suggesting that the fronto-striatal-cerebellar network is implicated in the contextualization of drug-induced affect. In summary, we report that the same setting can influence in opposite directions the affective and neural response to psychostimulants versus opiates in humans, adding to growing evidence of distinct substrates for the rewarding effects of these two drug classes.SIGNIFICANCE STATEMENT The rewarding effects of addictive drugs are often thought to depend on shared substrates. Yet, environmental influences can unmask striking differences between psychostimulants and opiates. Here we used emotional tasks and fMRI to explore the influence of setting on the response to heroin versus cocaine in individuals with addiction. Simply moving from one setting to another significantly decreased heroin pleasure but increased cocaine pleasure, and vice versa. Similar double dissociation was observed in the activity of the fronto-striatal-cerebellar network. These findings suggest that the effects of opiates and psychostimulants depend on dissociable psychological and neural substrates and that therapeutic approaches to addiction should take into account the peculiarities of different drug classes and the settings of drug use.
Collapse
|
100
|
Auday ES, Taber-Thomas BC, Pérez-Edgar KE. Neural correlates of attention bias to masked facial threat cues: Examining children at-risk for social anxiety disorder. NEUROIMAGE-CLINICAL 2018; 19:202-212. [PMID: 30023170 PMCID: PMC6050468 DOI: 10.1016/j.nicl.2018.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/04/2018] [Accepted: 04/01/2018] [Indexed: 01/04/2023]
Abstract
Background Behavioral inhibition (BI) is an early-appearing temperament trait and a robust predictor of social anxiety disorder (SAD). Both BI and anxiety may have distinct patterns of emotion processing marked by heightened neural responses to threat cues. BI and anxious children display similar frontolimbic patterns when completing an emotion-face attention bias task with supraliminal presentation. Anxious children also show a distinct neural response to the same task with subliminal face presentations, probing stimulus-driven attention networks. We do not have parallel data available for BI children, limiting our understanding of underlying affective mechanisms potentially linking early BI to the later emergence of anxiety. Method We examined the neural response to subliminal threat presentation during an emotion-face masked dot-probe task in children oversampled for BI (N = 67; 30 BI, 9–12 yrs). Results Non-BI children displayed greater activation versus BI children in several regions in response to threat faces versus neutral faces, including striatum, prefrontal and temporal lobes. When comparing congruent and incongruent trials, which require attention disengagement, BI children showed greater activation than non-BI children in the cerebellum, which is implicated in rapidly coordinating information processing, aversive conditioning, and learning the precise timing of anticipatory responses. Conclusions Non-BI children may more readily engage rapid coordinated frontolimbic circuitry to salient stimuli, whereas BI children may preferentially engage subcortical circuitry, in response to limbic “alarms” triggered by subliminal threat cues. These data help reveal the extent to which temperamental risk shares similar neurocircuitry previously documented in anxious adolescents and young adults in response to masked threat. All children displayed amygdala activation in response to brief threat cues. Non-BI children displayed activation in striatum, PFC and temporal lobes. BI children showed greater activation in the cerebellum.
Collapse
Affiliation(s)
- Eran S Auday
- The Pennsylvania State University, United States.
| | | | | |
Collapse
|