51
|
Kitada M, Ogura Y, Monno I, Koya D. Supplementation with Red Wine Extract Increases Insulin Sensitivity and Peripheral Blood Mononuclear Sirt1 Expression in Nondiabetic Humans. Nutrients 2020; 12:nu12103108. [PMID: 33053742 PMCID: PMC7600896 DOI: 10.3390/nu12103108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/28/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to investigate the effects of dietary supplementation with a nonalcoholic red wine extract (RWE), including resveratrol and polyphenols, on insulin sensitivity and Sirt1 expression in nondiabetic humans. The present study was a single-arm, open-label and prospective study. Twelve subjects received supplementation with RWE, including 19.2 mg resveratrol and 136 mg polyphenols, daily for 8 weeks. After 8 weeks, metabolic parameters, including glucose/lipid metabolism and inflammatory markers, were evaluated. mRNA expression of Sirt1 was evaluated in isolated peripheral blood mononuclear cells (PBMNCs). Additionally, Sirt1 and phosphorylated AMP-activated kinase (p-AMPK) expression were evaluated in cultured human monocytes (THP-1 cells). Supplementation with RWE for 8 weeks decreased the homeostasis model assessment for insulin resistance (HOMA-IR), which indicates an increase in insulin sensitivity. Serum low-density lipoprotein-cholesterol (LDL-C), triglyceride (TG) and interleukin-6 (IL-6) were significantly decreased by RWE supplementation for 8 weeks. Additionally, Sirt1 mRNA expression in isolated PBMNCs was significantly increased after 8 weeks of RWE supplementation. Moreover, the rate of increase in Sirt1 expression was positively correlated with the rate of change in HOMA-IR. The administration of RWE increased Sirt1 and p-AMPK expression in cultured THP-1 cells. Supplementation with RWE improved metabolism, such as insulin sensitivity, lipid profile and inflammation, in humans. Additionally, RWE supplementation induced an increase in Sirt1 expression in PBMNCs, which may be associated with an improvement in insulin sensitivity.
Collapse
Affiliation(s)
- Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Daigaku, Uchinada, Ishikawa 920-0293, Japan; (Y.O.); (I.M.)
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Daigaku, Uchinada, Ishikawa 920-0293, Japan
- Correspondence: (M.K.); (D.K.); Tel.: +81-76-286-2211 (M.K. & D.K.); Fax: +81-76-286-6927 (M.K. & D.K.)
| | - Yoshio Ogura
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Daigaku, Uchinada, Ishikawa 920-0293, Japan; (Y.O.); (I.M.)
| | - Itaru Monno
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Daigaku, Uchinada, Ishikawa 920-0293, Japan; (Y.O.); (I.M.)
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Daigaku, Uchinada, Ishikawa 920-0293, Japan; (Y.O.); (I.M.)
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Daigaku, Uchinada, Ishikawa 920-0293, Japan
- Correspondence: (M.K.); (D.K.); Tel.: +81-76-286-2211 (M.K. & D.K.); Fax: +81-76-286-6927 (M.K. & D.K.)
| |
Collapse
|
52
|
Mei Y, Liu B, Su H, Zhang H, Liu F, Ke Q, Sun X, Tan W. Isosteviol sodium protects the cardiomyocyte response associated with the SIRT1/PGC-1α pathway. J Cell Mol Med 2020; 24:10866-10875. [PMID: 32757458 PMCID: PMC7521233 DOI: 10.1111/jcmm.15715] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/27/2020] [Accepted: 07/13/2020] [Indexed: 01/03/2023] Open
Abstract
Cardiomyocyte dysfunction is attributed to excess oxidative damage, but the molecular pathways involved in this process have not been completely elucidated. Evidence indicates that isosteviol sodium (STVNa) has cardioprotective effects. We therefore aimed to identify the effect of STVNa on cardiomyocytes, as well as the potential mechanisms involved in this process. We established two myocardial hypertrophy models by treating H9c2 cells with high glucose (HG) and isoprenaline (ISO). Our results showed that STVNa reduced H9c2 mitochondrial damage by attenuating oxidative damage and altering the morphology of mitochondria. The results also indicated that STVNa had a positive effect on HG- and ISO-induced damages via mitochondrial biogenesis. The protective effects of STVNa on cardiomyocytes were associated with the regulation of the SIRT1/PGC-1α signalling pathway. Importantly, the effects of STVNa involved different methods of regulation in the two models, which was confirmed by experiments using an inhibitor and activator of SIRT1. Together, the results provide the basis for using STVNa as a therapy for the prevention of cardiomyocyte dysfunctions.
Collapse
Affiliation(s)
- Ying Mei
- Institute of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangzhouChina
| | - Bo Liu
- Institute of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangzhouChina
| | - Hao Su
- Institute of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangzhouChina
| | - Hao Zhang
- Institute of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangzhouChina
| | - Fei Liu
- Institute of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangzhouChina
| | - Qingjin Ke
- Institute of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangzhouChina
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangzhouChina
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangzhouChina
| |
Collapse
|
53
|
Song JY, Shen TC, Hou YC, Chang JF, Lu CL, Liu WC, Chen PJ, Chen BH, Zheng CM, Lu KC. Influence of Resveratrol on the Cardiovascular Health Effects of Chronic Kidney Disease. Int J Mol Sci 2020; 21:E6294. [PMID: 32878067 PMCID: PMC7504483 DOI: 10.3390/ijms21176294] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) is closely related to chronic kidney disease (CKD), and patients with CKD have a high risk of CVD-related mortality. Traditional CVD risk factors cannot account for the higher cardiovascular risk of patients with CKD, and standard CVD interventions cannot reduce the mortality rates among patients with CKD. Nontraditional factors related to mineral and vitamin-D metabolic disorders provide some explanation for the increased CVD risk. Non-dialyzable toxins, indoxyl sulfate (IS) and p-cresol sulfate (PCS)-produced in the liver by colonic microorganisms-cause kidney and vascular dysfunction. Plasma trimethylamine-N-oxide (TMAO)-a gut microbe-dependent metabolite of dietary L-carnitine and choline-is elevated in CKD and related to vascular disease, resulting in poorer long-term survival. Therefore, the modulation of colonic flora can improve prospects for patients with CKD. Managing metabolic syndrome, anemia, and abnormal mineral metabolism is recommended for the prevention of CVD in patients with CKD. Considering nontraditional risk factors, the use of resveratrol (RSV), a nutraceutical, can be helpful for patients with CVD and CKD. This paper discusses the beneficial effects of RSV on biologic, pathophysiological and clinical responses, including improvements in intestinal epithelial integrity, modulation of the intestinal microbiota and reduction in hepatic synthesis of IS, PCS and TMAO in patients with CVD and CKD.
Collapse
Affiliation(s)
- Jenn-Yeu Song
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (J.-Y.S.); (T.-C.S.)
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Ta-Chung Shen
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (J.-Y.S.); (T.-C.S.)
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Yi-Chou Hou
- Division of Nephrology, Department of Medicine, Cardinal-Tien Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 234, Taiwan;
| | - Jia-Feng Chang
- Division of Nephrology, Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan;
| | - Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Wen-Chih Liu
- Division of Nephrology, Department of Medicine, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242, Taiwan;
| | - Po-Jui Chen
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan City 325, Taiwan; (P.-J.C.); (B.-H.C.)
| | - Bo-Hau Chen
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan City 325, Taiwan; (P.-J.C.); (B.-H.C.)
| | - Cai-Mei Zheng
- Taipei Medical University-Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei City 235, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| |
Collapse
|
54
|
Kazemirad H, Kazerani HR. Cardioprotective effects of resveratrol following myocardial ischemia and reperfusion. Mol Biol Rep 2020; 47:5843-5850. [PMID: 32712855 DOI: 10.1007/s11033-020-05653-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/08/2020] [Indexed: 01/24/2023]
Abstract
Resveratrol (RSV), a plant origin polyphenol, has shown beneficial cardiovascular effects. In this study, isolated hearts from male Wistar rats were studied using the Langendorff technique. Following 30 min stabilization, the hearts underwent 30 min global ischemia and 120 min reperfusion. The perfusion solution in the test group contained RSV (10 μM). Hemodynamics of the hearts, the markers of myocardial damage including creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and troponin I were studied during the study. Furthermore, the infarct size and the markers of oxidative stress including catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GPX) were assayed in the homogenates of the hearts. The release of nitrite from the hearts and the occurrence of ventricular arrhythmias were also monitored throughout the experiment. Resveratrol caused a significant improvement in the restoration of the mechanical performance of the hearts following myocardial ischemia and reperfusion (MIR). Besides, the infarct size, CK-MB, LDH, and troponin I declined in the test group. Besides, the cardiac release of nitrite increased, and the redox status of the heart was improved as indicated by the levels of CAT, SOD, GPX, and MDA. Finally, the treatment caused significant decreases in the occurrences of single and salvo arrhythmias, ventricular tachycardia, and ventricular fibrillation. The current study suggests strong cardioprotective and antiarrhythmic effects for RSV following MIR.
Collapse
Affiliation(s)
- Hamideh Kazemirad
- Department of Physiology, The School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, PO Box: 91775 1793, Iran
| | - Hamid Reza Kazerani
- Department of Physiology, The School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, PO Box: 91775 1793, Iran.
| |
Collapse
|
55
|
Cho JM, Chae J, Jeong SR, Moon MJ, Ha KC, Kim S, Lee JH. The cholesterol-lowering effect of unripe Rubus coreanus is associated with decreased oxidized LDL and apolipoprotein B levels in subjects with borderline-high cholesterol levels: a randomized controlled trial. Lipids Health Dis 2020; 19:166. [PMID: 32646501 PMCID: PMC7350759 DOI: 10.1186/s12944-020-01338-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Rubus coreanus (R. coreanus) possesses properties that may decrease cholesterol levels. METHODS The effects of unripe R. coreanus (uRC) consumption on low-density lipoprotein (LDL) and total cholesterol levels related to decreased circulating apolipoprotein (Apo) B and oxidized LDL levels were evaluated. This randomized, double-blind, placebo-controlled study included subjects with borderline-high cholesterol levels (between 200 and 239 mg/dL) who consumed one capsule daily containing 600 mg of freeze-dried uRC extract (n = 39) or the placebo (n = 38). RESULTS After 12 weeks, the uRC group showed reductions of 21.23 ± 4.36 mg/dL in total cholesterol levels (P = 0.007) and 15.61 ± 4.16 mg/dL in LDL cholesterol levels (P = 0.032). In addition, significantly greater reductions in Apo B levels were observed in the uRC group (- 3.48 ± 3.40 mg/dL), but Apo B levels were increased in the placebo group (6.21 ± 2.84 mg/dL; P = 0.032). Furthermore, a remarkably lower oxidized LDL level was detected in the uRC group (57.76 ± 2.07 U/L) than in the placebo group (66.09 ± 3.47 U/L) after 12 weeks of consumption (P = 0.044). CONCLUSIONS Because of its cholesterol-lowering effect, uRC shows great promise as a therapeutic agent for subjects with borderline-high total blood cholesterol levels. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03649620 (8/28/2018, retrospectively registered).
Collapse
Affiliation(s)
- Jung Min Cho
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, South Korea
| | - Jisuk Chae
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, South Korea
| | - Sa Rang Jeong
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, South Korea
| | - Min Jung Moon
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, South Korea
| | - Ki-Chan Ha
- Healthcare Claims & Management Incorporation, Jeonju, Republic of Korea
| | - Sunoh Kim
- B&Tech Co., Ltd., R&D Center, Gwangju, 61239, South Korea.
| | - Jong Ho Lee
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
56
|
Usefulness of resveratrol supplementation in decreasing cardiometabolic risk factors comparing subjects with metabolic syndrome and healthy subjects with or without obesity: meta-analysis using multinational, randomised, controlled trials. ACTA ACUST UNITED AC 2020; 5:e98-e111. [PMID: 32529112 PMCID: PMC7277462 DOI: 10.5114/amsad.2020.95884] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/18/2020] [Indexed: 12/15/2022]
Abstract
Introduction Resveratrol (RES), a natural polyphenolic compound, has been linked to some beneficial effects against cardiovascular disease (CVD). Material and methods We conducted a systematic search to conduct a meta-analysis on cardiometabolic risk factors modulated by RES targeting patients with metabolic syndrome (Met-S) and Obese/Healthy (O/H) subjects. The PICO (Patient, Intervention, Comparison, Outcome) research question was: Does RES among patients with Met-S and O/H subjects reduce the cardiometabolic risk? The first group was affected with MetS, which is defined as a clustering of abdominal obesity, dyslipidaemia, hyperglycaemia, and hypertension in a single individual. The second group was composed of 'obese/healthy' individuals, i.e. healthy subjects with or without obesity. We performed a literature search of MEDLINE/ PubMed, Scopus, and Google Scholar for randomised, controlled trials (RCT) that estimated the effects of RES on cardiometabolic risk factors. Results We found 780 articles, of which 63 original articles and reviews were identified. Data from 17 well-conducted RCT studies, comprising 651 subjects, were extracted for analysis. Overall, RES had a significant influence on Homeostatic Model Assessment-Insulin Resistance (HOMA-IR), resulting in a mean difference of -0.520665 (95% CI: -1.12791; -0.01439; p = 0.00113). In Met-S, RES significantly reduced glucose, low-density lipoprotein-cholesterol (LDL-C), and total cholesterol (T-Chol) as detected by the mean difference of -1.069 (95% CI: -2.107, -0.032; p = 0.043), -0.924 (95% CI: -1.804, -0.043; p = 0.040), and -1.246 (95% CI: -2.314, -0.178; p = 0.022), respectively. Conclusions Despite some heterogeneity in the populations, RES supplementation seems to improve cardiometabolic health, decreasing some risk factors (HOMA-IR, LDL-C, and T-Chol) associated with CVD.
Collapse
|
57
|
Abstract
This review concerns the current knowledge of melatonin and alcohol-related disorders. Chronobiological effects of ethanol are related to melatonin suppression and in relation to inflammation, stress, free radical scavenging, autophagy and cancer risk. It is postulated that both alcohol- and inflammation-induced production of reactive oxygen species (ROS) alters cell membrane properties leading to tissue dysfunction and, subsequent further ROS production. Lysosomal enzymes are often used to assess the relationships between intensified inflammation states caused by alcohol abuse and oxidative stress as well as level of tissue damage estimated by the increased release of cellular enzymes into the extracellular space. Studies have established a link between alcoholism and desynchronosis (circadian disruption). Desynchronosis results from the disorganization of the body's circadian time structure and is an aspect of the pathology of chronic alcohol intoxication. The inflammatory conditions and the activity of lysosomal enzymes in acute alcohol poisoning or chronic alcohol-dependent diseases are in most cases interrelated. Inflammation can increase the activity of lysosomal enzymes, which can be regarded as a marker of lysosomal dysfunction and abnormal cellular integrity. Studies show alcohol toxicity is modulated by the melatonin (Mel) circadian rhythm. This hormone, produced by the pineal gland, is the main regulator of 24 h (sleep-wake cycle) and seasonal biorhythms. Mel exhibits antioxidant properties and may be useful in the prevention of oxidative stress reactions known to be responsible for alcohol-related diseases. Naturally produced Mel and exogenous sources in food can act in free radical reactions and activate the endogenous defense system. Mel plays an important role in the normalization of the post-stress state by its influence on neurotransmitter systems and the synchronization of circadian rhythms. Acting simultaneously on the neuroendocrine and immune systems, Mel optimizes homeostasis and provides protection against stress. Abbreviations: ROS, reactive oxygen species; Mel, melatonin; SRV, resveratrol; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; ANT, arylalkylamine-N-acetyltransferase; EC cells, gastrointestinal enterochromaffin cells; MT1, melatonin high-affinity nanomolecular receptor site; MT2, melatonin low-affinity nanomolecular receptor site; ROR/RZR, orphan nuclear retinoid receptors; SOD, superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase; GR, glutathione reductase; GSH, reduced form of glutathione; GSSG, oxidized form of glutathione; TAC, total antioxidant capacity; ONOO∙-, peroxynitrite radical; NCAM, neural cell adhesion molecules; LPO, lipid peroxidation; α-KG, α-ketoglutarate, HIF-1α, Hypoxia-inducible factor 1-α, IL-2, interleukin-2; HPA axis, hypothalamic-pituitary-adrenal axis; Tph1, tryptophan hydroxylase 1; AA-NAT, arylalkylamine-N-acetyltransferase; AS-MT, acetylserotonin O-methyltransferase; NAG, N-acetyl-beta-D-glucosaminidase; HBA1c glycated hemoglobin; LPS, lipopolysaccharide; AAP, alanyl-aminopeptidase; β-GR, β-glucuronidase; β-GD, β-galactosidase; LAP, leucine aminopeptidase.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Zoology and Animal Physiology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk , Słupsk, Poland
| | - Halyna Tkachenko
- Department of Zoology and Animal Physiology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk , Słupsk, Poland
| |
Collapse
|
58
|
Diabetic cardiomyopathy: molecular mechanisms, detrimental effects of conventional treatment, and beneficial effects of natural therapy. Heart Fail Rev 2020; 24:279-299. [PMID: 30349977 DOI: 10.1007/s10741-018-9749-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABSTARCT Diabetic complications are among the largely exigent health problems currently. Cardiovascular complications, including diabetic cardiomyopathy (DCM), account for more than 80% of diabetic deaths. Investigators are exploring new therapeutic targets to slow or abate diabetes because of the growing occurrence and augmented risk of deaths due to its complications. Research on rodent models of type 1 and type 2 diabetes mellitus, and the use of genetic engineering techniques in mice and rats have significantly sophisticated for our understanding of the molecular mechanisms in human DCM. DCM is featured by pathophysiological mechanisms that are hyperglycemia, insulin resistance, oxidative stress, left ventricular hypertrophy, damaged left ventricular systolic and diastolic functions, myocardial fibrosis, endothelial dysfunction, myocyte cell death, autophagy, and endoplasmic reticulum stress. A number of molecular and cellular pathways, such as cardiac ubiquitin proteasome system, FoxO transcription factors, hexosamine biosynthetic pathway, polyol pathway, protein kinase C signaling, NF-κB signaling, peroxisome proliferator-activated receptor signaling, Nrf2 pathway, mitogen-activated protein kinase pathway, and micro RNAs, play a major role in DCM. Currently, there are a few drugs for the management of DCM and some of them have considerable adverse effects. So, researchers are focusing on the natural products to ameliorate it. Hence, in this review, we discuss the pathogical, molecular, and cellular mechanisms of DCM; the current diagnostic methods and treatments; adverse effects of conventional treatment; and beneficial effects of natural product-based therapeutics, which may pave the way to new treatment strategies. Graphical Abstract.
Collapse
|
59
|
Yamagata K. Polyphenols Regulate Endothelial Functions and Reduce the Risk of Cardiovascular Disease. Curr Pharm Des 2020; 25:2443-2458. [PMID: 31333108 DOI: 10.2174/1381612825666190722100504] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/20/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Previous studies have shown that intake of polyphenols through the consumption of vegetables and fruits reduces the risk of Cardiovascular Disease (CVD) by potentially influencing endothelial cell function. OBJECTIVE In this review, the effects and molecular mechanisms of plant polyphenols, particularly resveratrol, epigallocatechin gallate (EGCG), and quercetin, on endothelial functions, and their putative protective effects against CVD are described. METHODS Epidemiologic studies examined the effect of the CVD risk of vegetables and the fruit. Furthermore, studies within vitro models investigated the underlying molecular mechanisms of the action of the flavonoid class of polyphenols. These findings help elucidate the effect of polyphenols on endothelial function and CVD risk reduction. RESULTS Epidemiologic and in vitro studies have demonstrated that the consumption of vegetables and fruits decreases the incidence of CVDs. Furthermore, it has also been indicated that dietary polyphenols are inversely related to the risk of CVD. Resveratrol, EGCG, and quercetin prevent oxidative stress by regulating the expression of oxidase and the antioxidant enzyme genes, contributing to the prevention of stroke, hypertension, heart failure, and ischemic heart disease. CONCLUSION High intake of dietary polyphenols may help prevent CVD. Polyphenols inhibit endothelial dysfunction and induce vascular endothelium-dependent vascular relaxation viz. redox regulation and nitric oxide production. The polyphenol-induced healthy endothelial cell function may be related to CVD prevention.
Collapse
Affiliation(s)
- Kazuo Yamagata
- Laboratory of Molecular Health Science of Food, Department of Food Science & Technology, Nihon University (NUBS), 1866 Kameino, Fujisawa, Kanagawa, 252-8510, Japan
| |
Collapse
|
60
|
Shaito A, Posadino AM, Younes N, Hasan H, Halabi S, Alhababi D, Al-Mohannadi A, Abdel-Rahman WM, Eid AH, Nasrallah GK, Pintus G. Potential Adverse Effects of Resveratrol: A Literature Review. Int J Mol Sci 2020; 21:E2084. [PMID: 32197410 PMCID: PMC7139620 DOI: 10.3390/ijms21062084] [Citation(s) in RCA: 346] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023] Open
Abstract
Due to its health benefits, resveratrol (RE) is one of the most researched natural polyphenols. Resveratrol's health benefits were first highlighted in the early 1990s in the French paradox study, which opened extensive research activity into this compound. Ever since, several pharmacological activities including antioxidant, anti-aging, anti-inflammatory, anti-cancerous, anti-diabetic, cardioprotective, and neuroprotective properties, were attributed to RE. However, results from the available human clinical trials were controversial concerning the protective effects of RE against diseases and their sequelae. The reason for these conflicting findings is varied but differences in the characteristics of the enrolled patients, RE doses used, and duration of RE supplementation were proposed, at least in part, as possible causes. In particular, the optimal RE dosage capable of maximizing its health benefits without raising toxicity issues remains an area of extensive research. In this context, while there is a consistent body of literature on the protective effects of RE against diseases, there are relatively few reports investigating its possible toxicity. Indeed, toxicity and adverse effects were reported following consumption of RE; therefore, extensive future studies on the long-term effects, as well as the in vivo adverse effects, of RE supplementation in humans are needed. Furthermore, data on the interactions of RE when combined with other therapies are still lacking, as well as results related to its absorption and bioavailability in the human body. In this review, we collect and summarize the available literature about RE toxicity and side effects. In this process, we analyze in vitro and in vivo studies that have addressed this stilbenoid. These studies suggest that RE still has an unexplored side. Finally, we discuss the new delivery methods that are being employed to overcome the low bioavailability of RE.
Collapse
Affiliation(s)
- Abdullah Shaito
- Department of Biological and Chemical Sciences, Lebanese International University, 1105 Beirut, Lebanon;
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Nadin Younes
- Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; (N.Y.); (D.A.); (A.A.-M.)
| | - Hiba Hasan
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35392 Giessen, Germany;
| | - Sarah Halabi
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, 1105 Beirut, Lebanon;
| | - Dalal Alhababi
- Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; (N.Y.); (D.A.); (A.A.-M.)
| | - Anjud Al-Mohannadi
- Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; (N.Y.); (D.A.); (A.A.-M.)
| | - Wael M Abdel-Rahman
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O Box: 27272, United Arab Emirates;
| | - Ali H. Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon
| | - Gheyath K. Nasrallah
- Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; (N.Y.); (D.A.); (A.A.-M.)
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O Box: 27272, United Arab Emirates;
| |
Collapse
|
61
|
Banez MJ, Geluz MI, Chandra A, Hamdan T, Biswas OS, Bryan NS, Von Schwarz ER. A systemic review on the antioxidant and anti-inflammatory effects of resveratrol, curcumin, and dietary nitric oxide supplementation on human cardiovascular health. Nutr Res 2020; 78:11-26. [PMID: 32428778 DOI: 10.1016/j.nutres.2020.03.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 02/24/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
The potential benefits of supplemental nutrients and dietary interventions against cardiovascular morbidity and mortality have been extensively investigated throughout the years. Numerous supplements claim cardioprotection and reduction of cardiovascular risk factors, but the roles of many supplements have not been determined. In the vast number of supplements on the market asserting cardioprotective effects, only 3 have been thoroughly evaluated and consistently reported as effective by our clinic patients. They have used supplements such as fish oil, multivitamins, and calcium, but many had not known of the benefits of resveratrol, curcumin, and nitric oxide as supplements for improving cardiovascular health. The cardioprotective effects of these dietary supplements in both animal models and humans have been explored with proposed mechanisms of action mostly attributed to antioxidant and anti-inflammatory properties. Resveratrol is one of the most studied polyphenols with established cardiovascular benefits. Preclinical studies have demonstrated these effects exerted via improved inflammatory markers, atherogenic profile, glucose metabolism, and endothelial function and are further supported by clinical trials. Curcumin has a well-established anti-inflammatory role by regulating numerous transcription factors and cytokines linked to inflammation. Inflammation is an underlying pathology in cardiovascular diseases, rendering curcumin a potential therapeutic compound. Similarly, nitric oxide supplementation has demonstrated cardiovascular benefits by normalizing blood pressure; enhancing blood flow; and reducing inflammation, immune dysfunction, and oxidative stress. A comprehensive review was performed evaluating the cardioprotective effects of these 3 dietary supplements with hope to provide updated information, promote further awareness of these supplements, and inspire future studies on their effects on cardiovascular health.
Collapse
Affiliation(s)
- Melissa J Banez
- Southern California Hospital Heart Institute, 3831 Hughes Ave, Suite 105, Culver City, CA 90232.
| | - Matthew I Geluz
- Southern California Hospital Heart Institute, 3831 Hughes Ave, Suite 105, Culver City, CA 90232.
| | - Anjali Chandra
- Southern California Hospital Heart Institute, 3831 Hughes Ave, Suite 105, Culver City, CA 90232.
| | - Tesnim Hamdan
- Southern California Hospital Heart Institute, 3831 Hughes Ave, Suite 105, Culver City, CA 90232.
| | - Olivia S Biswas
- Southern California Hospital Heart Institute, 3831 Hughes Ave, Suite 105, Culver City, CA 90232.
| | - Nathan S Bryan
- Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030.
| | - Ernst R Von Schwarz
- Southern California Hospital Heart Institute, 3831 Hughes Ave, Suite 105, Culver City, CA 90232.
| |
Collapse
|
62
|
Wu CW, Nakamoto Y, Hisatome T, Yoshida S, Miyazaki H. Resveratrol and its dimers ε-viniferin and δ-viniferin in red wine protect vascular endothelial cells by a similar mechanism with different potency and efficacy. Kaohsiung J Med Sci 2020; 36:535-542. [PMID: 32118360 DOI: 10.1002/kjm2.12199] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/15/2020] [Indexed: 12/17/2022] Open
Abstract
Red wine compounds have been reported to reduce the rate of atherosclerosis by inducing nitric oxide (NO) production and antioxidant enzyme expression in vascular endothelial cells (VECs). The present study compared the effects of the three red wine compounds resveratrol and its dimers, ε-viniferin and δ-viniferin, on VECs function for the first time. Both 5 μM ε-viniferin and δ-viniferin, but not 5 μM resveratrol, significantly stimulated wound repair of VECs. Increased levels of wound repair induced by 10 and 20 μM ε-viniferin were significantly higher than those stimulated by 10 and 20 μM resveratrol, respectively. These stimulatory effects of the three compounds were suppressed by the NO synthase inhibitor L-NAME. When VECs were exposed to each compound, endothelial NO synthase was activated and the expression of sirtuin 1 (SIRT1) and HO-1 was induced. Addition of the SIRT1 and HO-1 inhibitors EX527 and ZnPPiX, respectively, suppressed wound repair stimulated by the three compounds, demonstrating that SIRT1 and HO-1 are involved in these wound repair processes. Furthermore, each compound induced the suppression of H2 O2 -dependent reduction of cell viability as well as the expression of the antioxidant enzyme catalase. These data suggest that not only resveratrol, but also its dimers, ε-viniferin and δ-viniferin, may be effective in preventing atherosclerosis by a similar molecular mechanism with different potency and efficacy.
Collapse
Affiliation(s)
- Che Wei Wu
- Graduate School of Life and Environment Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yoshihiro Nakamoto
- Graduate School of Life and Environment Sciences, University of Tsukuba, Ibaraki, Japan
| | - Takumaru Hisatome
- Graduate School of Life and Environment Sciences, University of Tsukuba, Ibaraki, Japan
| | - Shigeki Yoshida
- Faculty of Life and Environment Sciences, University of Tsukuba, Ibaraki, Japan
| | - Hitoshi Miyazaki
- Faculty of Life and Environment Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
63
|
Akhondzadeh F, Astani A, Najjari R, Samadi M, Rezvani ME, Zare F, Ranjbar AM, Safari F. Resveratrol suppresses interleukin-6 expression through activation of sirtuin 1 in hypertrophied H9c2 cardiomyoblasts. J Cell Physiol 2020; 235:6969-6977. [PMID: 32026477 DOI: 10.1002/jcp.29592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/13/2020] [Indexed: 01/07/2023]
Abstract
Inflammatory cytokine, interleukin-6 (IL-6), plays an important role in the pathogenesis of cardiac hypertrophy. Recent studies have documented that resveratrol exhibits cardioprotective effects. The present study attempts to explore whether resveratrol suppreses IL-6 in hypertrophied H9c2 cardiomyoblasts through histone deacetylase, sirtuin 1 (SIRT1). To induce hypertrophy, the cells were incubated with angiotensin II (Ang II). Treatment groups were treated with different doses (1, 10, 25, 50, 75, and 100 μM) of resveratrol (R). Cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell size was determined using crystal violet staining. Gene expression was assessed by real-time polymerase chain reaction technique. Enzyme-linked immunosorbent assay was used to measure IL-6 concentration. The results showed that cell area and ANP messenger RNA (mRNA) levels decreased significantly in R25+Ang, R50+Ang, and R100+Ang groups, as compared with Ang group. Therefore, 10, 20, 30, 40, and 50 μM of resveratrol were used to to evaluate its anti-inflammatory effects. The results revealed that Ang II upregulated IL-6 at both mRNA and protein levels (p < .001 vs. normal) and resveratrol (50 μM) decreased IL-6 mRNA (p < .01) and protein (p < .05) significantly in comparison to Ang group. However, in groups in which the cells were pretreated with SIRT1 inhibitor, EX-527, the response of resveratrol was partially reversed. Transcription levels of IL-6 receptor components (gp130 and gp80) did not change significantly among the experimental groups. The current data suggests that resveratrol protects H9c2 cells against Ang II-induced hypertrophy by suppression of IL-6 through SIRT1 activation.
Collapse
Affiliation(s)
- Fariba Akhondzadeh
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Akram Astani
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Razieh Najjari
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Morteza Samadi
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ebrahim Rezvani
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Zare
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Mohammad Ranjbar
- Department of Pharmacognosy, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Safari
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
64
|
Insights into sympathetic nervous system and GPCR interplay in fetal programming of hypertension: a bridge for new pharmacological strategies. Drug Discov Today 2020; 25:739-747. [PMID: 32032706 DOI: 10.1016/j.drudis.2020.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/07/2020] [Accepted: 01/29/2020] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases (CVDs) are the most common cause of death from noncommunicable diseases worldwide. In addition to the classical CVD risk factors related to lifestyle and/or genetic background, exposure to an adverse intrauterine environment compromises fetal development leading to low birth weight and increasing offspring susceptibility to develop CVDs later in life, particularly hypertension - a process known as fetal programming of hypertension (FPH). In FPH animal models, permanent alterations have been detected in gene expression, in the structure and function of heart and blood vessels, compromising cardiovascular physiology and favoring hypertension development. This review focuses on the role of the sympathetic nervous system and its interplay with G-protein-coupled receptors, emphasizing strategies that envisage the prevention and/or treatment of FPH through interventions in early life.
Collapse
|
65
|
Li Z, Chen QQ, Lam CWK, Guo JR, Zhang WJ, Wang CY, Wong VKW, Yao MC, Zhang W. Investigation into perturbed nucleoside metabolism and cell cycle for elucidating the cytotoxicity effect of resveratrol on human lung adenocarcinoma epithelial cells. Chin J Nat Med 2020; 17:608-615. [PMID: 31472898 DOI: 10.1016/s1875-5364(19)30063-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 01/15/2023]
Abstract
In an effort to understand the molecular events contributing to the cytotoxicity activity of resveratrol (RSV), we investigated its effects on human lung adenocarcinoma epithelial cell line A549 at different concentrations. Cellular nucleoside metabolic profiling was determined by an established liquid chromatography-mass spectrometry method in A549 cells. RSV resulted in significant decreases and imbalances of deoxyribonucleoside triphosphates (dNTPs) pools suppressing subsequent DNA synthesis. Meanwhile, RSV at high concentration caused significant cell cycle arrest at S phase, in which cells required the highest dNTPs supply than other phases for DNA replication. The inhibition of DNA synthesis thus blocked subsequent progression through S phase in A549 cells, which may partly contribute to the cytotoxicity effect of RSV. However, hydroxyurea (HU), an inhibitor of RNR activity, caused similar dNTPs perturbation but no S phase arrest, finally no cytotoxicity effect. Therefore, we believed that the dual effect of high concentration RSV, including S phase arrest and DNA synthesis inhibition, was required for its cytotoxicity effect on A549 cells. In summary, our results provided important clues to the molecular basis for the anticancer effect of RSV on epithelial cells.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory of Quality Research in Chinese Medicines and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Qian-Qian Chen
- State Key Laboratory of Quality Research in Chinese Medicines and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Christopher Wai Kei Lam
- Faculty of Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Jian-Ru Guo
- State Key Laboratory of Quality Research in Chinese Medicines and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Wei-Jia Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Cai-Yun Wang
- State Key Laboratory of Quality Research in Chinese Medicines and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicines and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Mei-Cun Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
66
|
Chiu HF, Venkatakrishnan K, Wang CK. Nutraceuticals and functional foods in the prevention of hypertension induced by excessive intake of dietary salt. DIETARY SUGAR, SALT AND FAT IN HUMAN HEALTH 2020:423-450. [DOI: 10.1016/b978-0-12-816918-6.00020-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
67
|
Man AWC, Li H, Xia N. Resveratrol and the Interaction between Gut Microbiota and Arterial Remodelling. Nutrients 2020; 12:nu12010119. [PMID: 31906281 PMCID: PMC7019510 DOI: 10.3390/nu12010119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 12/15/2022] Open
Abstract
Arterial remodelling refers to the alteration in the structure of blood vessel that contributes to the progression of hypertension and other cardiovascular complications. Arterial remodelling is orchestrated by the crosstalk between the endothelium and vascular smooth muscle cells (VSMC). Vascular inflammation participates in arterial remodelling. Resveratrol is a natural polyphenol that possesses anti-oxidant and anti-inflammatory properties and has beneficial effects in both the endothelium and VSMC. Resveratrol has been studied for the protective effects in arterial remodelling and gut microbiota, respectively. Gut microbiota plays a critical role in the immune system and inflammatory processes. Gut microbiota may also regulate vascular remodelling in cardiovascular complications via affecting endothelium function and VSMC proliferation. Currently, there is new evidence showing that gut microbiota regulate the proliferation of VSMC and the formation of neointimal hyperplasia in response to injury. The change in population of the gut microbiota, as well as their metabolites (e.g., short-chain fatty acids) could critically contribute to VSMC proliferation, cell cycle progression, and migration. Recent studies have provided strong evidence that correlate the effects of resveratrol in arterial remodelling and gut microbiota. This review aims to summarize recent findings on the resveratrol effects on cardiovascular complications focusing on arterial remodelling and discuss the possible interactions of resveratrol and the gut microbiota that modulate arterial remodelling.
Collapse
Affiliation(s)
- Andy W C Man
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| |
Collapse
|
68
|
Liberale L, Bonaventura A, Montecucco F, Dallegri F, Carbone F. Impact of Red Wine Consumption on Cardiovascular Health. Curr Med Chem 2019; 26:3542-3566. [PMID: 28521683 DOI: 10.2174/0929867324666170518100606] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/05/2017] [Accepted: 03/05/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND The devastating effects of heavy alcohol drinking have been long time recognized. In the last decades, potential benefits of modest red wine drinking were suggested. In European countries in which red wide intake is not negligible (such as France), the association between cholesterol and cardiovascular (CV) risk was less evident, suggesting the action of some protective molecules in red wine or other foods and drinks. METHODS This narrative review is based on the material searched for and obtained via PubMed up to May 2016. The search terms we used were: "red wine, cardiovascular, alcohol" in combination with "polyphenols, heart failure, infarction". RESULTS Epidemiological and mechanistic evidence of a J-shaped relationship between red wine intake and CV risk further supported the "French paradox". Specific components of red wine both in vitro and in animal models were discovered. Polyphenols and especially resveratrol largely contribute to CV prevention mainly through antioxidant properties. They exert beneficial effects on endothelial dysfunction and hypertension, dyslipidemia, metabolic diseases, thus reducing the risk of adverse CV events such as myocardial infarction ischemic stroke and heart failure. Of interest, recent studies pointed out the role of ethanol itself as a potential cardioprotective agent, but a clear epidemiological evidence is still missing. The aim of this narrative review is to update current knowledge on the intracellular mechanism underlying the cardioprotective effects of polyphenols and ethanol. Furthermore, we summarized the results of epidemiological studies, emphasizing their methodological criticisms and the need for randomized clinical trials able to clarify the potential role of red wine consumption in reducing CV risk. CONCLUSION Caution in avowing underestimation of the global burden of alcohol-related diseases was particularly used.
Collapse
Affiliation(s)
- Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.,IRCCS AOU San Martino - IST, Genova, 10 Largo Benzi, 16132 Genoa, Italy.,Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.,IRCCS AOU San Martino - IST, Genova, 10 Largo Benzi, 16132 Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| |
Collapse
|
69
|
The role of nutraceuticals in prevention and treatment of hypertension: An updated review of the literature. Food Res Int 2019; 128:108749. [PMID: 31955788 DOI: 10.1016/j.foodres.2019.108749] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 02/08/2023]
Abstract
Hypertension (HTN) is a worldwide epidemic in both developed and developing countries. It is one of the leading causes of major health problems such as cardiovascular disease, stroke, and heart attack. In recent years, several studies have reported associations between specific dietary ingredients and improving HTN. Nutraceuticals are natural food components with pharmacological properties. Reports suggest that functional foods and nutraceutical ingredients might support patients to obtain the desired therapeutic blood pressure (BP) goals and reduce cardiovascular risks by modulating various risk factors such as oxidative stress, renin-angiotensin system hyperactivity, inflammation, hyperlipidemia, and vascular resistance. We review the recent clinical experiments that have evaluated the biological and pharmacological activities of several types of nutraceuticals, including sour tea, cocoa, common spices, vitamin C, vitamin E, lycopene, flavonoids, coenzyme Q10, milk's tripeptides, calcium, magnesium, polyunsaturated fatty acids, and prebiotics in preventing and treating HTN. This review summarizes recent knowledge about the impact of common nutraceuticals for the regulation of BP.
Collapse
|
70
|
Man AWC, Xia N, Daiber A, Li H. The roles of gut microbiota and circadian rhythm in the cardiovascular protective effects of polyphenols. Br J Pharmacol 2019; 177:1278-1293. [PMID: 31465555 PMCID: PMC7056468 DOI: 10.1111/bph.14850] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
Polyphenols are secondary metabolites of plants that have been widely studied for their health benefits as antioxidants. In the last decade, several clinical trials and epidemiological studies have shown that long‐term consumption of polyphenol‐rich diet protects against chronic diseases such as cancers and cardiovascular diseases. Current cardiovascular studies have also suggested an important role of gut microbiota and circadian rhythm in the pathogenesis metabolic and cardiovascular diseases. It is known that polyphenols can modulate the composition of core gut microbiota and interact with circadian clocks. In this article, we summarize recent findings, review the molecular mechanisms and the potential of polyphenols as dietary supplements for regulating gut microbiota and circadian rhythms, and discuss future research directions. Linked Articles This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc
Collapse
Affiliation(s)
- Andy W C Man
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Andreas Daiber
- Center of Cardiology 1, Molecular Cardiology, Johannes Gutenberg University Medical Center, Mainz, Germany.,Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
71
|
Marx W, Kelly JT, Marshall S, Cutajar J, Annois B, Pipingas A, Tierney A, Itsiopoulos C. Effect of resveratrol supplementation on cognitive performance and mood in adults: a systematic literature review and meta-analysis of randomized controlled trials. Nutr Rev 2019; 76:432-443. [PMID: 29596658 DOI: 10.1093/nutrit/nuy010] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Context The aim of this systematic review was to evaluate clinical trial data regarding the effect of resveratrol supplementation on cognitive performance and mood in populations that are healthy and in the clinical setting. Data Sources Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a systematic literature review of randomized controlled trials was conducted. Data Extraction A meta-analysis was also conducted to determine treatment effect on the following cognitive domains and mental processes: processing speed, number facility, memory, and mood. Risk of bias was assessed using the Cochrane Collaboration Risk of Bias tool. Quality of the body of evidence was assessed by evidence for each outcome related to cognitive function for which data was assessed using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE). Results Ten studies were included. Three studies found resveratrol supplementation significantly improved some measures of cognitive performance, 2 reported mixed findings, and 5 found no effect. When data were pooled, resveratrol supplementation had a significant effect on delayed recognition (standardized mean difference [SMD], 0.39; 95% confidence interval [CI], 0.08-0.70; I2 = 0%; P = 0.01; n = 3 studies; n = 166 participants) and negative mood (SMD, -0.18; 95%CI, -0.31 to -0.05; I2 = 0%; P = 0.006; n = 3 studies; n = 163 participants). Included studies generally had low risk of bias and were of moderate or high quality. Conclusions The results of this review indicate that resveratrol supplementation might improve select measures of cognitive performance; however, the current literature is inconsistent and limited.
Collapse
Affiliation(s)
- Wolfgang Marx
- School of Allied Health, La Trobe University, Melbourne, Australia
| | - Jaimon T Kelly
- Faculty of Health Sciences and Medicine, Bond University, Robina, Australia
| | - Skye Marshall
- Faculty of Health Sciences and Medicine, Bond University, Robina, Australia
| | - Jennifer Cutajar
- School of Allied Health, La Trobe University, Melbourne, Australia
| | - Brigitte Annois
- School of Allied Health, La Trobe University, Melbourne, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia
| | - Audrey Tierney
- School of Allied Health, La Trobe University, Melbourne, Australia
| | | |
Collapse
|
72
|
Ravishankar D, Albadawi DAI, Chaggar V, Patra PH, Williams HF, Salamah M, Vaiyapuri R, Dash PR, Patel K, Watson KA, Vaiyapuri S. Isorhapontigenin, a resveratrol analogue selectively inhibits ADP-stimulated platelet activation. Eur J Pharmacol 2019; 862:172627. [PMID: 31461638 DOI: 10.1016/j.ejphar.2019.172627] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/17/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022]
Abstract
Isorhapontigenin is a polyphenolic compound found in Chinese herbs and grapes. It is a methoxylated analogue of a stilbenoid, resveratrol, which is well-known for its various beneficial effects including anti-platelet activity. Isorhapontigenin possesses greater oral bioavailability than resveratrol and has also been identified to possess anti-cancer and anti-inflammatory properties. However, its effects on platelet function have not been reported previously. In this study, we report the effects of isorhapontigenin on the modulation of platelet function. Isorhapontigenin was found to selectively inhibit ADP-induced platelet aggregation with an IC50 of 1.85 μM although it displayed marginal inhibition on platelet aggregation induced by other platelet agonists at 100 μM. However, resveratrol exhibited weaker inhibition on ADP-induced platelet aggregation (IC50 > 100 μM) but inhibited collagen induced platelet aggregation at 50 μM and 100 μM. Isorhapontigenin also inhibited integrin αIIbβ3 mediated inside-out and outside-in signalling and dense granule secretion in ADP-induced platelet activation but interestingly, no effect was observed on α-granule secretion. Isorhapontigenin did not exert any cytotoxicity on platelets at the concentrations of up to 100 μM. Furthermore, it did not affect haemostasis in mice at the IC50 concentration (1.85 μM). In addition, the mechanistic studies demonstrated that isorhapontigenin increased cAMP levels and VASP phosphorylation at Ser157 and decreased Akt phosphorylation. This suggests that isorhapontigenin may interfere with cAMP and PI3K signalling pathways that are associated with the P2Y12 receptor. Molecular docking studies emphasised that isorhapontigenin has greater binding affinity to P2Y12 receptor than resveratrol. Our results demonstrate that isorhapontigenin has selective inhibitory effects on ADP-stimulated platelet activation possibly via P2Y12 receptor.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Philip R Dash
- School of Biological Sciences, University of Reading, Reading, UK
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, UK
| | | | | |
Collapse
|
73
|
Resveratrol Mitigates High-Fat Diet-Induced Vascular Dysfunction by Activating the Akt/eNOS/NO and Sirt1/ER Pathway. J Cardiovasc Pharmacol 2019; 72:231-241. [PMID: 30399060 DOI: 10.1097/fjc.0000000000000621] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We investigated whether resveratrol (RSV) can attenuate obesity and diabetes progression and improve diabetes-induced vascular dysfunction, and we attempted to delineate its underlying mechanisms. Male C57Bl/6 mice were administered a high-fat diet (HFD) for 17 weeks. Mice developed type 2 diabetes with increased body weight, hyperglycemia, hyperinsulinemia, and hyperlipidemia. Oral gavage with RSV significantly reversed the symptoms induced by the HFD. Insulin sensitivity likewise improved after the RSV intervention in these mice. Phenylephrine-induced cremaster arteriolar constriction was impaired, whereas RSV treatment significantly mitigated the vessel responsiveness to phenylephrine. The obese diabetic mice exhibited increased leukocyte rolling, adhesion, and transmigration in the postcapillary venules of the cremaster muscle. By contrast, RSV treatment significantly attenuated HFD-induced extravasation. RSV significantly recovered phosphorylated Akt and eNOS expression in the thoracic aorta. In addition, activated adenosine monophosphate-activated protein kinase in the thoracic aorta was involved in the improvement of epithelial function after RSV intervention. RSV considerably upregulated the plasma NO level in HFD mice. Moreover, RSV-enhanced human umbilical vein endothelial cells healing through Sirt1/ER pathway may be involved in the prevention of leukocyte extravasation. Collectively, RSV attenuates diabetes-induced vascular dysfunction by activating Akt/eNOS/NO and Sirt1/ER pathway. Our mechanistic study provides a potential RSV-based therapeutic strategy against cardiovascular disease.
Collapse
|
74
|
Alonso-Andrés P, Martín M, Albasanz JL. Modulation of Adenosine Receptors and Antioxidative Effect of Beer Extracts in in Vitro Models. Nutrients 2019; 11:nu11061258. [PMID: 31163630 PMCID: PMC6628356 DOI: 10.3390/nu11061258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 12/14/2022] Open
Abstract
The fight against neurodegenerative diseases is promoting the searching of nutrients, preferably of wide consumption, with proven effects on health. Beer is widely consumed and has potential benefits on health. In this work, three different extracts from dark beer (DB), non-alcoholic beer (NAB), and lager beer (LB) were assayed at 30 min and 24 h in rat C6 glioma and human SH-SY5Y neuroblastoma cells in order to study their possible protective effects. Cell viability and adenosine A1, A2A, A2B, and A3 receptor gene expression and protein levels were measured in control cells and in cells challenged with hydrogen peroxide as an oxidant stressor. Among the three extracts analyzed, DB showed a greater protective effect against H2O2-induced oxidative stress and cell death. Moreover, a higher A1 receptor level was also induced by this extract. Interestingly, A1 receptor level was also increased by NAB and LB extracts, but to a lower extent, and the protective effect of these extracts against H2O2 was lower. This possible correlation between protection and A1 receptor level was observed at 24 h in both C6 and SH-SY5Y cells. In summary, different beer extracts modulate, to a different degree, adenosine receptors expression and protect both glioma and neuroblastoma cells from oxidative stress.
Collapse
Affiliation(s)
- Patricia Alonso-Andrés
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain.
| | - Mairena Martín
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain.
| | - José Luis Albasanz
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain.
| |
Collapse
|
75
|
Averilla JN, Oh J, Wu Z, Liu KH, Jang CH, Kim HJ, Kim JS, Kim JS. Improved extraction of resveratrol and antioxidants from grape peel using heat and enzymatic treatments. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4043-4053. [PMID: 30737796 DOI: 10.1002/jsfa.9632] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/17/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Resveratrol, an extensively recognized phytochemical that belongs to the stilbene family, is abundant in grape peel which is discarded as a by-product during grape juice processing. RESULTS In this study, we established that pre-heating grape peel above 75 °C significantly improved the extractability of resveratrol and its glucoside piceid. In particular, thermal heating of grape peel at 95 °C for 10 min, followed by treatment with a mixture of exo-1,3-β-glucanase and pectinases at 50 °C for 60 min, dramatically increased the conversion of piceid into resveratrol and the overall extractability of this phytochemical by 50%. Furthermore, thermal pre-treatment promoted a substantial increase in the total phenol, flavonoid, and anthocyanin concentrations in the grape peel extract. Ultimately, resveratrol-enriched grape peel extract significantly augmented the antioxidant response in vitro, possibly by attenuating the accumulation of intracellular reactive oxygen species via the Nrf2 signaling pathway. CONCLUSION The method developed in this study for preparing grape peel extract introduces a potential low-cost green processing for the industrial fortification of food products with resveratrol and other health-beneficial antioxidants. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Janice N Averilla
- School of Food Science and Biotechnology (BK21 plus), Kyungpook National University, Daegu, Republic of Korea
| | - Jisun Oh
- School of Food Science and Biotechnology (BK21 plus), Kyungpook National University, Daegu, Republic of Korea
| | - Zhexue Wu
- College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Kwang-Hyeon Liu
- College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Chan Ho Jang
- School of Food Science and Biotechnology (BK21 plus), Kyungpook National University, Daegu, Republic of Korea
| | - Hyo Jung Kim
- National Development Institute of Korean Medicine, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Jae-Sik Kim
- Dr. Kim's Health Food Corp., Yeongcheon, Republic of Korea
| | - Jong-Sang Kim
- School of Food Science and Biotechnology (BK21 plus), Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
76
|
Arrúa AA, Mendes JM, Arrúa P, Ferreira FP, Caballero G, Cazal C, Kohli MM, Peralta I, Ulke G, Fernández Ríos D. Occurrence of Deoxynivalenol and Ochratoxin A in Beers and Wines Commercialized in Paraguay. Toxins (Basel) 2019; 11:E308. [PMID: 31151159 PMCID: PMC6628627 DOI: 10.3390/toxins11060308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 01/13/2023] Open
Abstract
Alcoholic beverages can be contaminated with mycotoxins. Ochratoxin A (OTA) is the most frequently detected mycotoxinin wine and is produced by several species of Aspergillus. This mycotoxin is nephrotoxic and carcinogenic. In beer, the most commonly identified mycotoxin is deoxynivalenol (DON). Ingestion of food contaminated with DON has been associated with adverse gastrointestinal effects. Despite the harmful effects of mycotoxins on health, there are no regulations regarding their limits in alcoholic beverages in Paraguay. Here we determine the presence of OTA and DON in wine and beer, respectively. Four commercial brands of wine and twenty-nine brands of craft and industrial beerwere tested by the Agra quant ELISA method. One brand of wine was positive for OTA and seven brands of beer (one of them craft) were positive for DON. The values found for both toxins are below the recommended maximum intake proposed by international standards. Giving the high consumption of these products in the country, regulations and monitoring systems mustbe established to check the maximum levels of mycotoxins allowed in alcoholic beverages.
Collapse
Affiliation(s)
- Andrea Alejandra Arrúa
- Dirección General de Investigación Científica y Tecnológica, Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo 1039, Paraguay.
- Facultad de Ciencias Exactas y Naturales, Departamento de Biotecnología, Universidad Nacional de Asunción, San Lorenzo 1039, Paraguay.
| | - Juliana Moura Mendes
- Dirección General de Investigación Científica y Tecnológica, Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo 1039, Paraguay.
| | - Pablo Arrúa
- Dirección General de Investigación Científica y Tecnológica, Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo 1039, Paraguay.
| | - Francisco Paulo Ferreira
- Dirección General de Investigación Científica y Tecnológica, Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo 1039, Paraguay.
- Facultad de Ciencias Exactas y Naturales, Departamento de Biotecnología, Universidad Nacional de Asunción, San Lorenzo 1039, Paraguay.
| | - Gabriela Caballero
- Dirección General de Investigación Científica y Tecnológica, Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo 1039, Paraguay.
| | - Cinthia Cazal
- Dirección General de Investigación Científica y Tecnológica, Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo 1039, Paraguay.
- Facultad de Ciencias Exactas y Naturales, Departamento de Biotecnología, Universidad Nacional de Asunción, San Lorenzo 1039, Paraguay.
| | - Man Mohan Kohli
- CámaraParaguaya de Exportadores y Comercializadores de Cereales y Oleaginosas, Asunción 1548, Paraguay.
| | - Inocencia Peralta
- Dirección General de Investigación Científica y Tecnológica, Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo 1039, Paraguay.
| | - Gabriela Ulke
- Facultad de Ciencias Exactas y Naturales, Departamento de Biotecnología, Universidad Nacional de Asunción, San Lorenzo 1039, Paraguay.
| | - Danilo Fernández Ríos
- Facultad de Ciencias Exactas y Naturales, Departamento de Biotecnología, Universidad Nacional de Asunción, San Lorenzo 1039, Paraguay.
| |
Collapse
|
77
|
Flavin Oxidase-Induced ROS Generation Modulates PKC Biphasic Effect of Resveratrol on Endothelial Cell Survival. Biomolecules 2019; 9:biom9060209. [PMID: 31151226 PMCID: PMC6628153 DOI: 10.3390/biom9060209] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/22/2019] [Accepted: 05/25/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Dietary intake of natural antioxidants is thought to impart protection against oxidative-associated cardiovascular diseases. Despite many in vivo studies and clinical trials, this issue has not been conclusively resolved. Resveratrol (RES) is one of the most extensively studied dietary polyphenolic antioxidants. Paradoxically, we have previously demonstrated that high RES concentrations exert a pro-oxidant effect eventually elevating ROS levels leading to cell death. Here, we further elucidate the molecular determinants underpinning RES-induced oxidative cell death. Methods: Using human umbilical vein endothelial cells (HUVECs), the effect of increasing concentrations of RES on DNA synthesis and apoptosis was studied. In addition, mRNA and protein levels of cell survival or apoptosis genes, as well as protein kinase C (PKC) activity were determined. Results: While high concentrations of RES reduce PKC activity, inhibit DNA synthesis and induce apoptosis, low RES concentrations elicit an opposite effect. This biphasic concentration-dependent effect (BCDE) of RES on PKC activity is mirrored at the molecular level. Indeed, high RES concentrations upregulate the proapoptotic Bax, while downregulating the antiapoptotic Bcl-2, at both mRNA and protein levels. Similarly, high RES concentrations downregulate the cell cycle progression genes, c-myc, ornithine decarboxylase (ODC) and cyclin D1 protein levels, while low RES concentrations display an increasing trend. The BCDE of RES on PKC activity is abrogated by the ROS scavenger Tempol, indicating that this enzyme acts downstream of the RES-elicited ROS signaling. The RES-induced BCDE on HUVEC cell cycle machinery was also blunted by the flavin inhibitor diphenyleneiodonium (DPI), implicating flavin oxidase-generated ROS as the mechanistic link in the cellular response to different RES concentrations. Finally, PKC inhibition abrogates the BCDE elicited by RES on both cell cycle progression and pro-apoptotic gene expression in HUVECs, mechanistically implicating PKC in the cellular response to different RES concentrations. Conclusions: Our results provide new molecular insight into the impact of RES on endothelial function/dysfunction, further confirming that obtaining an optimal benefit of RES is concentration-dependent. Importantly, the BCDE of RES could explain why other studies failed to establish the cardio-protective effects mediated by natural antioxidants, thus providing a guide for future investigation looking at cardio-protection by natural antioxidants.
Collapse
|
78
|
Resveratrol and Vascular Function. Int J Mol Sci 2019; 20:ijms20092155. [PMID: 31052341 PMCID: PMC6539341 DOI: 10.3390/ijms20092155] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
Resveratrol increases the production of nitric oxide (NO) in endothelial cells by upregulating the expression of endothelial NO synthase (eNOS), stimulating eNOS enzymatic activity, and preventing eNOS uncoupling. At the same time, resveratrol inhibits the synthesis of endothelin-1 and reduces oxidative stress in both endothelial cells and smooth muscle cells. Pathological stimuli-induced smooth muscle cell proliferation, vascular remodeling, and arterial stiffness can be ameliorated by resveratrol as well. In addition, resveratrol also modulates immune cell function, inhibition of immune cell infiltration into the vascular wall, and improves the function of perivascular adipose tissue. All these mechanisms contribute to the protective effects of resveratrol on vascular function and blood pressure in vivo. Sirtuin 1, AMP-activated protein kinase, and estrogen receptors represent the major molecules mediating the vascular effects of resveratrol.
Collapse
|
79
|
Xue Y, Zhang Z, Hou J, Cao Z, Zhang L, Lou F, Xu P. Resveratrol and arctigenin production from polydatin and arctiin respectively by a thermostable β-glucosidase from Thermotoga maritima. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2018.1541996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yemin Xue
- Department of Food Science and Nutrition, GinLing College, Nanjing Normal University, Nanjing, PR China
| | - Zonghui Zhang
- Department of Food Science and Nutrition, GinLing College, Nanjing Normal University, Nanjing, PR China
| | - Jingjing Hou
- Department of Food Science and Nutrition, GinLing College, Nanjing Normal University, Nanjing, PR China
| | - Zhigang Cao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Lingxian Zhang
- Department of Food Science and Nutrition, GinLing College, Nanjing Normal University, Nanjing, PR China
| | - Fen Lou
- Department of Food Science and Nutrition, GinLing College, Nanjing Normal University, Nanjing, PR China
| | - Puxu Xu
- Department of Food Science and Nutrition, GinLing College, Nanjing Normal University, Nanjing, PR China
| |
Collapse
|
80
|
Cheng Y, Liu DZ, Zhang CX, Cui H, Liu M, Zhang BL, Mei QB, Lu ZF, Zhou SY. Mitochondria-targeted antioxidant delivery for precise treatment of myocardial ischemia–reperfusion injury through a multistage continuous targeted strategy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 16:236-249. [DOI: 10.1016/j.nano.2018.12.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/29/2018] [Accepted: 12/28/2018] [Indexed: 02/06/2023]
|
81
|
Cicero AFG, Grassi D, Tocci G, Galletti F, Borghi C, Ferri C. Nutrients and Nutraceuticals for the Management of High Normal Blood Pressure: An Evidence-Based Consensus Document. High Blood Press Cardiovasc Prev 2019; 26:9-25. [DOI: 10.1007/s40292-018-0296-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022] Open
|
82
|
Abstract
The effects of diosgenin are discussed with respect to endothelial dysfunction, lipid profile, macrophage foam cell formation, VSMC viability, thrombosis and inflammation during the formation of atherosclerosis.
Collapse
Affiliation(s)
- Fang-Chun Wu
- College of Food and Bioengineering
- South China University of Technology
- Guangzhou
- China
| | - Jian-Guo Jiang
- College of Food and Bioengineering
- South China University of Technology
- Guangzhou
- China
| |
Collapse
|
83
|
Gojkovic-Bukarica L, Markovic-Lipkovski J, Heinle H, Cirovic S, Rajkovic J, Djokic V, Zivanovic V, Bukarica A, Novakovic R. The red wine polyphenol resveratrol induced relaxation of the isolated renal artery of diabetic rats: The role of potassium channels. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
84
|
Louis XL, Raj P, Chan L, Zieroth S, Netticadan T, Wigle JT. Are the cardioprotective effects of the phytoestrogen resveratrol sex-dependent? 1. Can J Physiol Pharmacol 2018; 97:503-514. [PMID: 30576226 DOI: 10.1139/cjpp-2018-0544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cardiovascular disease (CVD) is the number one cause of death in both men and women. Younger women have a lower risk for CVD, but their risk increases considerably after menopause when estrogen levels decrease. The cardiovascular protective properties of estrogen are mediated through decreasing vascular inflammation and progression of atherosclerosis, decreasing endothelial cell damage by preventing apoptosis and anti-hypertrophic mechanisms. Estrogen also regulates glucose and lipid levels, which are 2 important risk factors for CVD. Resveratrol (RES), a cardioprotective polyphenolic compound, is classified as a phytoestrogen due its capacity to bind to and modulate estrogen receptor signalling. Due to its estrogen-like property, we speculate that the cardioprotective effects of RES treatment could be sex-dependent. Based on earlier reports and more recent data from our lab presented here, we found that RES treatment may have more favourable cardiovascular outcomes in females than in males. This review will discuss estrogen- and phytoestrogen-mediated cardioprotection, with a specific focus on sex-dependent effects reported in preclinical and clinical studies.
Collapse
Affiliation(s)
- Xavier Lieben Louis
- a Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,b Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R2E 3N4, Canada
| | - Pema Raj
- c Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R2E 0J9, Canada.,d Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen, Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Laura Chan
- a Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,b Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R2E 3N4, Canada
| | - Shelley Zieroth
- c Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R2E 0J9, Canada.,e Section of Cardiology, Department of Medicine, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
| | - Thomas Netticadan
- d Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen, Research Centre, Winnipeg, MB R2H 2A6, Canada.,f Agriculture and Agri-Food Canada, Winnipeg, MB R3C 3G7, Canada
| | - Jeffrey T Wigle
- a Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,b Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R2E 3N4, Canada
| |
Collapse
|
85
|
Koushki M, Amiri‐Dashatan N, Ahmadi N, Abbaszadeh H, Rezaei‐Tavirani M. Resveratrol: A miraculous natural compound for diseases treatment. Food Sci Nutr 2018; 6:2473-2490. [PMID: 30510749 PMCID: PMC6261232 DOI: 10.1002/fsn3.855] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
Resveratrol (3, 5, 4'-trihydroxystilbene) is a nonflavonoid polyphenol that naturally occurs as phytoalexin. It is produced by plant sources such as grapes, apples, blueberries, plums, and peanut. This compound has critical roles in human health and is well known for its diverse biological activities such as antioxidant and anti-inflammatory properties. Nowadays, due to rising incidence of different diseases such as cancer and diabetes, efforts to find novel and effective disease-protective agents have led to the identification of plant-derived compounds such as resveratrol. Furthermore, several in vitro and in vivo studies have revealed the effectiveness of resveratrol in various diseases such as diabetes mellitus, cardiovascular disease, metabolic syndrome, obesity, inflammatory, neurodegenerative, and age-related diseases. This review presents an overview of currently available studies on preventive properties and essential molecular mechanisms involved in various diseases.
Collapse
Affiliation(s)
- Mehdi Koushki
- Department of BiochemistryFaculty of MedicineTehran University of Medical SciencesTehranIran
| | - Nasrin Amiri‐Dashatan
- Student Research CommitteeProteomics Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Nayebali Ahmadi
- Proteomics Research CenterFaculty of Paramedical SciencesShahid Beheshti University of Medical SciencesTehranIran
| | | | - Mostafa Rezaei‐Tavirani
- Proteomics Research CenterFaculty of Paramedical SciencesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
86
|
Jiewei T, Lei W, Xiufeng L, Heming Z, Xiaoguang L, Haiyan F, Yongqiang T. Microbial transformation of resveratrol by endophyte Streptomyces sp. A12 isolated from Polygonum cuspidatum. Nat Prod Res 2018; 32:2343-2346. [PMID: 29156986 DOI: 10.1080/14786419.2017.1405411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Resveratrol (1) undergoes microbial transformation when fermented with Streptomyces sp. A12 to yield 3, 5, 4'-trimethoxy-trans-stilbene (2). The structure of the compound 2 was elucidated using the modern spectroscopic techniques. This is the first report of the microbial transformation of resveratrol to compound 2 using the endophyte isolated from Polygonum cuspidatum.
Collapse
Affiliation(s)
- Tian Jiewei
- a Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education and College of Light Industry, Textile & Food Engineering , Sichuan University , Chengdu , China
| | - Wang Lei
- a Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education and College of Light Industry, Textile & Food Engineering , Sichuan University , Chengdu , China
| | - Long Xiufeng
- a Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education and College of Light Industry, Textile & Food Engineering , Sichuan University , Chengdu , China
| | - Zhang Heming
- a Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education and College of Light Industry, Textile & Food Engineering , Sichuan University , Chengdu , China
| | - Li Xiaoguang
- a Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education and College of Light Industry, Textile & Food Engineering , Sichuan University , Chengdu , China
| | - Fu Haiyan
- b College of Chemistry , Sichuan University , Chengdu , China
| | - Tian Yongqiang
- a Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education and College of Light Industry, Textile & Food Engineering , Sichuan University , Chengdu , China
| |
Collapse
|
87
|
Al-Hussaini H, Kilarkaje N. Effects of trans-resveratrol on type 1 diabetes-induced inhibition of retinoic acid metabolism pathway in retinal pigment epithelium of Dark Agouti rats. Eur J Pharmacol 2018; 834:142-151. [DOI: 10.1016/j.ejphar.2018.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 01/03/2023]
|
88
|
Resveratrol Counteracts Insulin Resistance-Potential Role of the Circulation. Nutrients 2018; 10:nu10091160. [PMID: 30149556 PMCID: PMC6165300 DOI: 10.3390/nu10091160] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 01/26/2023] Open
Abstract
Pre-clinical data and human trials indicate that resveratrol supplementation may help to counteract diabetes. Several mechanisms of action have been proposed to explain its metabolic benefits, including activation of sirtuins and estrogen receptors (ER) to promote glucose transporter type-4 (GLUT4) translocation and increase glucose uptake. Resveratrol can also enhance vasodilator function, yet the possibility that this action might help to alleviate insulin resistance in type-2 diabetes mellitus has received little attention. In this brief review we propose that, by restoring impaired endothelium-dependent vasodilatation in insulin resistant individuals resveratrol increases blood perfusion of skeletal muscle, thereby facilitating glucose delivery and utilization with resultant improvement of insulin sensitivity. Thus, circulatory improvements by vasoactive nutrients such as resveratrol may play a role in preventing or alleviating insulin resistance.
Collapse
|
89
|
McDonagh ST, Wylie LJ, Morgan PT, Vanhatalo A, Jones AM. A randomised controlled trial exploring the effects of different beverages consumed alongside a nitrate-rich meal on systemic blood pressure. Nutr Health 2018; 24:183-192. [PMID: 30099933 DOI: 10.1177/0260106018790428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Ingestion of nitrate (NO3-)-containing vegetables, alcohol and polyphenols, separately, can reduce blood pressure (BP). However, the pharmacokinetic response to the combined ingestion of NO3- and polyphenol-rich or low polyphenol alcoholic beverages is unknown. AIM: The aim of this study was to investigate how the consumption of low and high polyphenolic alcoholic beverages combined with a NO3--rich meal can influence NO3- metabolism and systemic BP. METHODS: In a randomised, crossover trial, 12 normotensive males (age 25 ± 5 years) ingested an acute dose of NO3- (∼6.05 mmol) in the form of a green leafy salad, in combination with either a polyphenol-rich red wine (NIT-RW), a low polyphenol alcoholic beverage (vodka; NIT-A) or water (NIT-CON). Participants also consumed a low NO3- salad and water as a control (CON; ∼0.69 mmol NO3-). BP and plasma, salivary and urinary [NO3-] and nitrite ([NO2-]) were determined before and up to 5 h post ingestion. RESULTS: Each NO3--rich condition elevated nitric oxide (NO) biomarkers when compared with CON ( P < 0.05). The peak rise in plasma [NO2-] occurred 1 h after NIT-RW (292 ± 210 nM) and 2 h after NIT-A (318 ± 186 nM) and NIT-CON (367 ± 179 nM). Systolic BP was reduced 2 h post consumption of NIT-RW (-4 mmHg), NIT-A (-3 mmHg) and NIT-CON (-2 mmHg) compared with CON ( P < 0.05). Diastolic BP and mean arterial pressure were also lower in NIT-RW and NIT-A compared with NIT-CON ( P < 0.05). CONCLUSIONS: A NO3--rich meal, consumed with or without an alcoholic beverage, increases plasma [NO2-] and lowers systemic BP for 2-3 h post ingestion.
Collapse
Affiliation(s)
| | - Lee J Wylie
- Sport and Health Sciences, University of Exeter, UK
| | | | | | | |
Collapse
|
90
|
Abstract
Several interventions, such as ischemic preconditioning, remote pre/perconditioning, or postconditioning, are known to decrease lethal myocardial ischemia-reperfusion injury. While several signal transduction pathways become activated by such maneuvers, they all have a common end point, namely, the mitochondria. These organelles represent an essential target of the cardioprotective strategies, and the preservation of mitochondrial function is central for the reduction of ischemia-reperfusion injury. In the present review, we address the role of mitochondria in the different conditioning strategies; in particular, we focus on alterations of mitochondrial function in terms of energy production, formation of reactive oxygen species, opening of the mitochondrial permeability transition pore, and mitochondrial dynamics induced by ischemia-reperfusion.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus-Liebig Universität , Giessen , Germany
| | - Günter Lochnit
- Institute of Biochemistry, Justus-Liebig Universität , Giessen , Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig Universität , Giessen , Germany
| |
Collapse
|
91
|
Safaeinejad Z, Kazeminasab F, Kiani-Esfahani A, Ghaedi K, Nasr-Esfahani MH. Multi-effects of Resveratrol on stem cell characteristics: Effective dose, time, cell culture conditions and cell type-specific responses of stem cells to Resveratrol. Eur J Med Chem 2018; 155:651-657. [DOI: 10.1016/j.ejmech.2018.06.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 01/17/2023]
|
92
|
Tain YL, Hsu CN. AMP-Activated Protein Kinase as a Reprogramming Strategy for Hypertension and Kidney Disease of Developmental Origin. Int J Mol Sci 2018; 19:ijms19061744. [PMID: 29895790 PMCID: PMC6032132 DOI: 10.3390/ijms19061744] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 06/10/2018] [Accepted: 06/10/2018] [Indexed: 12/18/2022] Open
Abstract
Suboptimal early-life conditions affect the developing kidney, resulting in long-term programming effects, namely renal programming. Adverse renal programming increases the risk for developing hypertension and kidney disease in adulthood. Conversely, reprogramming is a strategy aimed at reversing the programming processes in early life. AMP-activated protein kinase (AMPK) plays a key role in normal renal physiology and the pathogenesis of hypertension and kidney disease. This review discusses the regulation of AMPK in the kidney and provides hypothetical mechanisms linking AMPK to renal programming. This will be followed by studies targeting AMPK activators like metformin, resveratrol, thiazolidinediones, and polyphenols as reprogramming strategies to prevent hypertension and kidney disease. Further studies that broaden our understanding of AMPK isoform- and tissue-specific effects on renal programming are needed to ultimately develop reprogramming strategies. Despite the fact that animal models have provided interesting results with regard to reprogramming strategies targeting AMPK signaling to protect against hypertension and kidney disease with developmental origins, these results await further clinical translation.
Collapse
Affiliation(s)
- You-Lin Tain
- Departments of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| |
Collapse
|
93
|
Wei S, Cheng D, Yu H, Wang X, Song S, Wang C. Millet-enriched diets attenuate high salt-induced hypertension and myocardial damage in male rats. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.03.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
94
|
Abstract
OBJECTIVE Pain is a common complaint among postmenopausal women. It has been postulated that vascular dysfunction caused by estrogen decline at menopause plays a key role in the initiation and progression of degradative joint disease, namely age-related osteoarthritis. We evaluated whether supplementation with resveratrol, a phytoestrogen, could improve aspects of well-being such as chronic pain that is commonly experienced by postmenopausal women. METHODS A 14-week randomized, double-blind, placebo-controlled intervention with trans-resveratrol (75 mg, twice daily) was conducted in 80 healthy postmenopausal women. Aspects of well-being, including pain, menopausal symptoms, sleep quality, depressive symptoms, mood states, and quality of life were assessed by Short form-36 at baseline and at the end of treatment. Rating scales were averaged to provide a composite score representing overall well-being. Cerebral vasodilator responsiveness to hypercapnia was also assessed as a surrogate marker for cerebrovascular function. RESULTS Compared with placebo treatment, there was a significant reduction in pain and an improvement in total well-being after resveratrol supplementation. Both benefits, including measures of quality of life, correlated with improvements in cerebrovascular function. CONCLUSIONS Our preliminary findings indicate potential for resveratrol treatment to reduce chronic pain in age-related osteoarthritis. Resveratrol consumption may also boost perceptions of well-being in postmenopausal women. Further investigation to elucidate underlying mechanisms is warranted.
Collapse
|
95
|
Lv J, Sharma A, Zhang T, Wu Y, Ding X. Pharmacological Review on Asiatic Acid and Its Derivatives: A Potential Compound. SLAS Technol 2018; 23:111-127. [PMID: 29361877 DOI: 10.1177/2472630317751840] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural triterpenes represent a group of pharmacologically active and structurally diverse organic compounds. The focus on these phytochemicals has been enormous in the past few years, worldwide. Asiatic acid (AA), a naturally occurring pentacyclic triterpenoid, is found mainly in the traditional medicinal herb Centella asiatica. Triterpenoid saponins, which are the primary constituents of C. asiatica, are commonly believed to be responsible for their extensive therapeutic actions. Published research work has described the molecular mechanisms underlying the various biological activities of AA and its derivatives, which vary for each chronic disease. However, a compilation of the various pharmacological properties of AA has not yet been done. Herein, we describe in detail the pharmacological properties of AA and its derivatives that inhibit multiple pathways of intracellular signaling molecules and transcription factors that are involved in the various stages of chronic diseases. Furthermore, the pharmacological activities of AA were compared with two natural compounds: curcumin and resveratrol. This review summarizes the research on AA and its derivatives and helps to provide future directions in the area of drug development.
Collapse
Affiliation(s)
- Junwei Lv
- 1 School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Alok Sharma
- 1 School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Zhang
- 1 School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yuchen Wu
- 1 School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xianting Ding
- 1 School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
96
|
Fogacci F, Tocci G, Presta V, Fratter A, Borghi C, Cicero AFG. Effect of resveratrol on blood pressure: A systematic review and meta-analysis of randomized, controlled, clinical trials. Crit Rev Food Sci Nutr 2018; 59:1605-1618. [PMID: 29359958 DOI: 10.1080/10408398.2017.1422480] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Introduction: Results of previous clinical trials evaluating the effect of resveratrol supplementation on blood pressure (BP) are controversial. Purpose: We aimed to assess the impact of resveratrol on BP through systematic review of literature and meta-analysis of available randomized, controlled clinical trials (RCTs). Methods: Literature search included SCOPUS, PubMed-Medline, ISI Web of Science and Google Scholar databases up to 17th October 2017 to identify RCTs investigating the impact of resveratrol on BP. Two review authors independently extracted data on study characteristics, methods and outcomes. Overall, the impact of resveratrol on BP was reported in 17 trials. Results: Administration of resveratrol did not significantly affect neither systolic BP [weighted mean difference (WMD): -2.5 95% CI:(-5.5, 0.6) mmHg; p=0.116; I2=62.1%], nor diastolic BP [WMD: -0.5 95% CI:(-2.2, 1.3) mmHg; p=0.613; I2=50.8], nor mean BP [MAP; WMD: -1.3 95% CI:(-2.8, 0.1) mmHg; p=0.070; I2=39.5%] nor pulse pressure [PP; WMD: -0.9 95% CI:(-3.1, 1.4) mmHg; p=0.449; I2=19.2%]. However, significant WMDs were detected in subsets of studies categorized according to high resveratrol daily dosage (≥300 mg/day) and presence of diabetes. Meta-regression analysis revealed a positive association between systolic BP-lowering resveratrol activity (slope: 1.99; 95% CI: 0.05, 3.93; two-tailed p= 0.04) and Body Mass Index (BMI) at baseline, while no association was detected neither between baseline BMI and MAP-lowering resveratrol activity (slope: 1.35; 95% CI: -0.22, 2.91; two-tailed p= 0.09) nor between baseline BMI and PP-lowering resveratrol activity (slope: 1.03; 95% CI: -1.33, 3.39; two-tailed p= 0.39). Resveratrol was fairly well-tolerated and no serious adverse events occurred among most of the eligible trials. Conclusion: The favourable effect of resveratrol emerging from the current meta-analysis suggests the possible use of this nutraceutical as active compound in order to promote cardiovascular health, mostly when used in high daily dose (≥300 mg/day) and in diabetic patients.
Collapse
Affiliation(s)
- Federica Fogacci
- a Medical and Surgical Sciences Dept. , University of Bologna , Italy
| | - Giuliano Tocci
- b Division of Cardiology, Department of Clinical and Molecular Medicine , Faculty of Medicine and Psychology, University of Rome Sapienza, Sant'Andrea Hospital, Rome, and IRCCS Neuromed , Pozzilli ( IS ), Italy
| | - Vivianne Presta
- b Division of Cardiology, Department of Clinical and Molecular Medicine , Faculty of Medicine and Psychology, University of Rome Sapienza, Sant'Andrea Hospital, Rome, and IRCCS Neuromed , Pozzilli ( IS ), Italy
| | | | - Claudio Borghi
- a Medical and Surgical Sciences Dept. , University of Bologna , Italy
| | - Arrigo F G Cicero
- a Medical and Surgical Sciences Dept. , University of Bologna , Italy
| |
Collapse
|
97
|
Tain YL, Chan SHH, Chan JYH. Biochemical basis for pharmacological intervention as a reprogramming strategy against hypertension and kidney disease of developmental origin. Biochem Pharmacol 2018; 153:82-90. [PMID: 29309755 DOI: 10.1016/j.bcp.2018.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/04/2018] [Indexed: 02/08/2023]
Abstract
The concept of "developmental origins of health and disease" (DOHaD) stipulates that both hypertension and kidney disease may take origin from early-life insults. The DOHaD concept also offers reprogramming strategies aiming at shifting therapeutic interventions from adulthood to early life, even before clinical symptoms are evident. Based on those two concepts, this review will present the evidence for the existence of, and the programming mechanisms in, kidney developmental programming that may lead to hypertension and kidney disease. This will be followed by potential pharmacological interventions that may serve as a reprogramming strategy to counter the rising epidemic of hypertension and kidney disease. We point out that before patients could benefit from this strategy, the most pressing issue is for the growing body of evidence from animal studies in support of pharmacological intervention as a reprogramming strategy to long-term protect against hypertension and kidney disease of developmental origins to be validated clinically and the critical window, drug dose, dosing regimen, and therapeutic duration identified.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| | - Samuel H H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| |
Collapse
|
98
|
Kisioglu B, Nergiz-Unal R. The powerful story against cardiovascular diseases: Dietary factors. FOOD REVIEWS INTERNATIONAL 2017. [DOI: 10.1080/87559129.2017.1410172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Betul Kisioglu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Reyhan Nergiz-Unal
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
99
|
Ge L, Li C, Wang Z, Zhang Y, Chen L. Suppression of Oxidative Stress and Apoptosis in Electrically Stimulated Neonatal Rat Cardiomyocytes by Resveratrol and Underlying Mechanisms. J Cardiovasc Pharmacol 2017; 70:396-404. [PMID: 28857948 DOI: 10.1097/fjc.0000000000000534] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE We explored the effects of resveratrol on oxidative stress in cardiomyocytes subjected to rapid electrical stimulation (RES) and also investigated the underlying mechanisms. METHODS Cultured ventricular myocytes of neonatal rat were subjected to RES at 4.0 Hz, with or without resveratrol, an NADPH oxidase inhibitor apocyanin (APO) or a Ca/calmodulin-dependent protein kinase II (CaMKII) inhibitor autocamtide-2-inhibitory peptide (AIP). Cell counts, to optimize resveratrol concentration, and angiotensin II content were evaluated. Reactive oxygen species (ROS), intracellular Ca in cardiomyocytes, and cardiomyocyte apoptosis were also assessed. Levels of methionine sulfoxide reductase A (MsrA), Nox, oxidative CaMKII (OX-CaMKII), and cleaved caspase-3 in cardiomyocytes were examined. RESULTS Resveratrol treatment, as compared with APO and AIP, significantly decreased ROS levels, improved Ca amplitudes, and intracellular Ca transient decay rates, and inhibited cardiomyocyte apoptosis. Resveratrol also increased MsrA protein levels. In cardiomyocytes subjected to RES, after pretreatment with resveratrol or APO, protein levels of Nox4, Nox2, OX-CaMKII, and cleaved caspase-3 were decreased. In comparison, with AIP pretreatment, only Nox2, OX-CaMKII, and cleaved caspase-3 were decreased. However, in the presence of dimethyl sulfoxide, a competitive inhibitor of MsrA function, a decrease in cleaved caspase-3 did not occur. CONCLUSIONS Resveratrol decreased ROS, partially through the inhibition of NADPH oxidase activity and upregulation of MsrA expression.
Collapse
Affiliation(s)
- Liqi Ge
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chengzong Li
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhirong Wang
- Department of Cardiology, Institute of Cardiovascular Research, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yao Zhang
- Department of Cardiology, Institute of Cardiovascular Research, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lei Chen
- Department of Cardiology, Institute of Cardiovascular Research, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
100
|
Resveratrol Cardioprotection Against Myocardial Ischemia/Reperfusion Injury Involves Upregulation of Adiponectin Levels and Multimerization in Type 2 Diabetic Mice. J Cardiovasc Pharmacol 2017; 68:304-312. [PMID: 27332935 DOI: 10.1097/fjc.0000000000000417] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Downregulation of adiponectin (APN) multimerization is significantly correlated with the aggravation of myocardial ischemia/reperfusion (MI/R) injury in type 2 diabetes mellitus (T2DM). Resveratrol (RSV) upregulates APN multimerization in adipocytes, but whether RSV improves endogenous APN multimerization and thus attenuates MI/R injury in T2DM mice has never been investigated. T2DM mice were treated with 10 mg/kg RSV daily for 3 weeks, followed by 30 minutes of myocardial ischemia and 3 hours or 24 hours of reperfusion. RSV administration alleviated MI/R injury in diabetic mice, as evidenced by reduced infarct size, cardiomyocyte apoptosis, and caspase-3 activity, and improved cardiac function. Moreover, RSV reversed the downregulated APN levels and multimerization both in plasma and adipose tissue, accompanied by increased disulfide bond A oxidoreductase-like protein (DsbA-L) expression in T2DM mice. Conversely, serving as a key downstream molecule of APN in ameliorating MI/R injury, inhibition of AMP-activated protein kinase (AMPK) significantly attenuated the cardioprotective effects of RSV. In conclusion, long-term administration of RSV upregulates adiponectin levels and multimerization in T2DM mice, consequently attenuating MI/R injury partially through APN-AMPK signaling.
Collapse
|