51
|
Panza F, Lozupone M, Solfrizzi V, Watling M, Imbimbo BP. Time to test antibacterial therapy in Alzheimer's disease. Brain 2020; 142:2905-2929. [PMID: 31532495 DOI: 10.1093/brain/awz244] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease is associated with cerebral accumulation of amyloid-β peptide and hyperphosphorylated tau. In the past 28 years, huge efforts have been made in attempting to treat the disease by reducing brain accumulation of amyloid-β in patients with Alzheimer's disease, with no success. While anti-amyloid-β therapies continue to be tested in prodromal patients with Alzheimer's disease and in subjects at risk of developing Alzheimer's disease, there is an urgent need to provide therapeutic support to patients with established Alzheimer's disease for whom current symptomatic treatment (acetylcholinesterase inhibitors and N-methyl d-aspartate antagonist) provide limited help. The possibility of an infectious aetiology for Alzheimer's disease has been repeatedly postulated over the past three decades. Infiltration of the brain by pathogens may act as a trigger or co-factor for Alzheimer's disease, with Herpes simplex virus type 1, Chlamydia pneumoniae, and Porphyromonas gingivalis being most frequently implicated. These pathogens may directly cross a weakened blood-brain barrier, reach the CNS and cause neurological damage by eliciting neuroinflammation. Alternatively, pathogens may cross a weakened intestinal barrier, reach vascular circulation and then cross blood-brain barrier or cause low grade chronic inflammation and subsequent neuroinflammation from the periphery. The gut microbiota comprises a complex community of microorganisms. Increased permeability of the gut and blood-brain barrier induced by microbiota dysbiosis may impact Alzheimer's disease pathogenesis. Inflammatory microorganisms in gut microbiota are associated with peripheral inflammation and brain amyloid-β deposition in subjects with cognitive impairment. Oral microbiota may also influence Alzheimer's disease risk through circulatory or neural access to the brain. At least two possibilities can be envisaged to explain the association of suspected pathogens and Alzheimer's disease. One is that patients with Alzheimer's disease are particularly prone to microbial infections. The other is that microbial infection is a contributing cause of Alzheimer's disease. Therapeutic trials with antivirals and/or antibacterials could resolve this dilemma. Indeed, antiviral agents are being tested in patients with Alzheimer's disease in double-blind placebo-controlled studies. Although combined antibiotic therapy was found to be effective in animal models of Alzheimer's disease, antibacterial drugs are not being widely investigated in patients with Alzheimer's disease. This is because it is not clear which bacterial populations in the gut of patients with Alzheimer's disease are overexpressed and if safe, selective antibacterials are available for them. On the other hand, a bacterial protease inhibitor targeting P. gingivalis toxins is now being tested in patients with Alzheimer's disease. Clinical studies are needed to test if countering bacterial infection may be beneficial in patients with established Alzheimer's disease.
Collapse
Affiliation(s)
- Francesco Panza
- Unit of Epidemiological Research on Aging, National Institute of Gastroenterology 'Saverio de Bellis', Research Hospital, Castellana Grotte, Bari, Italy
| | - Madia Lozupone
- Unit of Epidemiological Research on Aging, National Institute of Gastroenterology 'Saverio de Bellis', Research Hospital, Castellana Grotte, Bari, Italy
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Solfrizzi
- 'C. Frugoni' Internal and Geriatric Medicine and Memory Unit, University of Bari Aldo Moro, Bari, Italy
| | - Mark Watling
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| |
Collapse
|
52
|
Mao JH, Kim YM, Zhou YX, Hu D, Zhong C, Chang H, Brislawn CJ, Fansler S, Langley S, Wang Y, Peisl BYL, Celniker SE, Threadgill DW, Wilmes P, Orr G, Metz TO, Jansson JK, Snijders AM. Genetic and metabolic links between the murine microbiome and memory. MICROBIOME 2020; 8:53. [PMID: 32299497 PMCID: PMC7164142 DOI: 10.1186/s40168-020-00817-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/02/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Recent evidence has linked the gut microbiome to host behavior via the gut-brain axis [1-3]; however, the underlying mechanisms remain unexplored. Here, we determined the links between host genetics, the gut microbiome and memory using the genetically defined Collaborative Cross (CC) mouse cohort, complemented with microbiome and metabolomic analyses in conventional and germ-free (GF) mice. RESULTS A genome-wide association analysis (GWAS) identified 715 of 76,080 single-nucleotide polymorphisms (SNPs) that were significantly associated with short-term memory using the passive avoidance model. The identified SNPs were enriched in genes known to be involved in learning and memory functions. By 16S rRNA gene sequencing of the gut microbial community in the same CC cohort, we identified specific microorganisms that were significantly correlated with longer latencies in our retention test, including a positive correlation with Lactobacillus. Inoculation of GF mice with individual species of Lactobacillus (L. reuteri F275, L. plantarum BDGP2 or L. brevis BDGP6) resulted in significantly improved memory compared to uninoculated or E. coli DH10B inoculated controls. Untargeted metabolomics analysis revealed significantly higher levels of several metabolites, including lactate, in the stools of Lactobacillus-colonized mice, when compared to GF control mice. Moreover, we demonstrate that dietary lactate treatment alone boosted memory in conventional mice. Mechanistically, we show that both inoculation with Lactobacillus or lactate treatment significantly increased the levels of the neurotransmitter, gamma-aminobutyric acid (GABA), in the hippocampus of the mice. CONCLUSION Together, this study provides new evidence for a link between Lactobacillus and memory and our results open possible new avenues for treating memory impairment disorders using specific gut microbial inoculants and/or metabolites. Video Abstract.
Collapse
Affiliation(s)
- Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Young-Mo Kim
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Yan-Xia Zhou
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Marine College, Shandong University, Weihai, 264209 China
| | - Dehong Hu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Chenhan Zhong
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Colin J. Brislawn
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Sarah Fansler
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Sasha Langley
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Yunshan Wang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033 Shandong China
| | - B. Y. Loulou Peisl
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Susan E. Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - David W. Threadgill
- Department of Veterinary Pathobiology, A&M University, College Station, Texas, USA
- Department of Molecular and Cellular Medicine Texas, A&M University, College Station, Texas, USA
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Galya Orr
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Thomas O. Metz
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Janet K. Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Antoine M. Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
53
|
Gao H, Jiang Q, Ji H, Ning J, Li C, Zheng H. Type 1 diabetes induces cognitive dysfunction in rats associated with alterations of the gut microbiome and metabolomes in serum and hippocampus. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165541. [DOI: 10.1016/j.bbadis.2019.165541] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022]
|
54
|
Rezaeiasl Z, Salami M, Sepehri G. The Effects of Probiotic Lactobacillus and Bifidobacterium Strains on Memory and Learning Behavior, Long-Term Potentiation (LTP), and Some Biochemical Parameters in β-Amyloid-Induced Rat's Model of Alzheimer's Disease. Prev Nutr Food Sci 2019; 24:265-273. [PMID: 31608251 PMCID: PMC6779093 DOI: 10.3746/pnf.2019.24.3.265] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/02/2019] [Indexed: 12/26/2022] Open
Abstract
This study assessed the effects of probiotic supplementation on spatial learning and memory, long-term potentiation (LTP), paired-pulse facilitation (PPF) ratios, nitric oxide (NO) concentrations, and lipid profiles in a rat model of amyloid beta (Aβ)(1–42)-induced Alzheimer’s disease (AD). Forty rats were randomly divided into 4 groups. The sham (control and prevention) group received intracerebroventricular (ICV) injections of artificial cerebrospinal fluid, the Alzheimer group received ICV injection of Aβ(1–42), and the probiotic+Alzheimer group received 500 mg probiotics daily (15×109 colony-forming unit) by gavage for 4 weeks before and 2 weeks after injection of Aβ(1–42). The Morris water maze test was performed for evaluation of spatial learning and memory. LTP and PPF ratios were measured to evaluate longterm synaptic plasticity and pre-synaptic mechanisms, respectively. The results showed that probiotic supplementation significantly improved learning, but not memory impairment, and increased PPF ratios compared to those in the Alzheimer group. Both Aβ(1–42) injection and probiotic supplementation alone did not significantly effect plasma level of NO. Probiotic supplementation of rats in the probiotic (6 weeks)+Alzheimer group decreased serum levels of total cholesterol, triglyceride, and very low-density lipoprotein-cholesterol significantly compared to the Alzheimer group. The results of this study suggest that probiotic supplementation may positively impact learning capacity and LTP in rats with AD, most likely via the release of neurotransmitters via presynaptic mechanisms or via a protective effect on serum lipid profiles.
Collapse
Affiliation(s)
- Zahra Rezaeiasl
- Department of Physiology, School of Medicine, Kerman University of Medical Sciences, Kerman 76198-13159, Iran
| | - Mahmoud Salami
- Physiology Research Center, Kashan University of Medical Sciences, Kashan 87137-81147, Iran
| | - Gholamreza Sepehri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 76198-13159, Iran
| |
Collapse
|
55
|
Ma Y, Liu T, Fu J, Fu S, Hu C, Sun B, Fan X, Zhu J. Lactobacillus acidophilus Exerts Neuroprotective Effects in Mice with Traumatic Brain Injury. J Nutr 2019; 149:1543-1552. [PMID: 31174208 DOI: 10.1093/jn/nxz105] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/11/2019] [Accepted: 04/26/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) causes dysbiosis and intestinal barrier disruption, which further exacerbate brain damage via an inflammatory pathway. Gut microbiota remodeling by Lactobacillus acidophilus (LA) is a potential intervention. OBJECTIVE The aim of this study was to investigate the neuroprotective effects of LA in TBI and elucidated underlying mechanisms. METHODS C57BL/6 male mice (aged 8-9 wk) were subjected to weight-drop impact and gavaged with saline (TBI + vehicle) or LA (1 × 1010 CFU) (TBI + LA) on the day of injury and each day after for 1, 3, or 7 d. The sham + vehicle mice underwent craniotomy without brain injury and were gavaged with saline. Sensorimotor functions were determined pre-TBI and 1, 3, and 7 d postinjury. Indexes of neuroinflammation, peripheral inflammation, and intestinal barrier function were measured on days 3 and 7. Microbiota composition was measured 3 d postinjury. The data were mainly analyzed by 2-factor ANOVA. RESULTS Compared with sham + vehicle mice, the TBI + vehicle mice exhibited impairments in the neurological severity score (+692%, day 3; +600%, day 7) and rotarod test (-58%, day 3; -45%, day 7) (P < 0.05), which were rescued by LA. The numbers of microglia (total and activated) and astrocytes and concentrations of TNF-α and IL1-β in the perilesional cortex were elevated in the TBI + vehicle mice on day 3 or 7 compared with sham + vehicle mice (P < 0.05) and were normalized by LA. Compared with sham + vehicle mice, the TBI + vehicle mice exhibited increased serum concentrations of endotoxin and TNF-α, and intestinal barrier permeability (D-lactate) on days 3 and 7 (P < 0.05), and these changes were alleviated by LA. Three days postinjury, the microbiota composition was disrupted in the TBI + vehicle mice compared with sham + vehicle mice (P < 0.05), which was restored by LA. CONCLUSION Our results demonstrate that LA exerts neuroprotective effects that may be associated with gut microbiota remodeling in TBI mice.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Basic Nursing, School of Nursing, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tianyao Liu
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jingjing Fu
- Department of Basic Nursing, School of Nursing, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shaoli Fu
- Department of Basic Nursing, School of Nursing, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chen Hu
- Department of Basic Nursing, School of Nursing, Third Military Medical University (Army Medical University), Chongqing, China
| | - Bo Sun
- Department of Basic Nursing, School of Nursing, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jingci Zhu
- Department of Basic Nursing, School of Nursing, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
56
|
Probiotic supplementation attenuates hippocampus injury and spatial learning and memory impairments in a cerebral hypoperfusion mouse model. Mol Biol Rep 2019; 46:4985-4995. [DOI: 10.1007/s11033-019-04949-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/27/2019] [Indexed: 12/18/2022]
|
57
|
Hagerty SL, Ellingson JM, Helmuth TB, Bidwell LC, Hutchison KE, Bryan AD. An Overview and Proposed Research Framework for Studying Co-Occurring Mental- and Physical-Health Dysfunction. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2019; 14:633-645. [PMID: 31173535 PMCID: PMC6778441 DOI: 10.1177/1745691619827010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mental- and physical-health conditions co-occur at a rate much higher than chance. Of patients who have a mental-health condition, more than half also have a physical disease, and these cases are associated with increased human suffering and societal cost. Comorbidity research to date has focused on co-occurring mental- and physical-health disorders separately, and relatively little research has examined the co-occurrence of mental- and physical-health dysfunction. In addition, even less is known about why mental- and physical-health dysfunction co-occurs or how to treat these cases. Thus, the aims of this article are to highlight the need for research at the intersection of physical- and mental-health dysfunction and to provide guidance on how to research cases of comorbidity. Toward these ends, we begin by presenting a selective overview of the possible role of biological processes in the co-occurrence of physical- and mental-health dysfunction using specific illustrative examples. Specifically, we outline how biological processes within the immune system and gastrointestinal system could underlie depression, irritable bowel syndrome, and their co-occurrence. We then advance and discuss a proposed research framework, including methodological and analytic guidance, that researchers could use when studying the phenomenon of co-occurring physical- and mental-health dysfunction.
Collapse
Affiliation(s)
- Sarah L. Hagerty
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | | | - Timothy B. Helmuth
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | | | - Kent E. Hutchison
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Angela D. Bryan
- Department of Psychology and Neuroscience, University of Colorado Boulder
| |
Collapse
|
58
|
Johnstone AM, Donaldson AIC, Scott KP, Myint PK. The Ageing Gut–Brain study: Exploring the role of the gut microbiota in dementia. NUTR BULL 2019. [DOI: 10.1111/nbu.12378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - A. I. C. Donaldson
- Ageing Clinical and Experimental Research Team Institute of Applied Health Sciences University of Aberdeen Aberdeen UK
| | - K. P. Scott
- The Rowett Institute University of Aberdeen Aberdeen UK
| | - P. K. Myint
- Ageing Clinical and Experimental Research Team Institute of Applied Health Sciences University of Aberdeen Aberdeen UK
| |
Collapse
|
59
|
Michael DR, Davies TS, Loxley KE, Allen MD, Good MA, Hughes TR, Plummer SF. In vitro neuroprotective activities of two distinct probiotic consortia. Benef Microbes 2019; 10:437-447. [PMID: 30827148 DOI: 10.3920/bm2018.0105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurodegeneration has been linked to changes in the gut microbiota and this study compares the neuroprotective capability of two bacterial consortia, known as Lab4 and Lab4b, using the established SH-SY5Y neuronal cell model. Firstly, varying total antioxidant capacities (TAC) were identified in the intact cells from each consortia and their secreted metabolites, referred to as conditioned media (CM). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Crystal Violet (CV) assays of cell viability revealed that Lab4 CM and Lab4b CM could induce similar levels of proliferation in SH-SY5Y cells and, despite divergent TAC, possessed a comparable ability to protect undifferentiated and retinoic acid-differentiated cells from the cytotoxic actions of rotenone and undifferentiated cells from the cytotoxic actions of 1-methyl-4-phenylpyridinium iodide (MPP+). Lab4 CM and Lab4b CM also had the ability to attenuate rotenone-induced apoptosis and necrosis with Lab4b inducing the greater effect. Both consortia showed an analogous ability to attenuate intracellular reactive oxygen species accumulation in SH-SY5Y cells although the differential upregulation of genes encoding glutathione reductase and superoxide dismutase by Lab4 CM and Lab4b CM, respectively, implicates the involvement of consortia-specific antioxidative mechanisms of action. This study implicates Lab4 and Lab4b as potential neuroprotective agents and justifies their inclusion in further in vivo studies.
Collapse
Affiliation(s)
- D R Michael
- 1 Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot, SA12 7BZ, United Kingdom
| | - T S Davies
- 1 Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot, SA12 7BZ, United Kingdom
| | - K E Loxley
- 1 Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot, SA12 7BZ, United Kingdom
| | - M D Allen
- 1 Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot, SA12 7BZ, United Kingdom
| | - M A Good
- 2 School of Psychology, Tower Building, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - T R Hughes
- 3 Systems Immunity Research Institute, Henry Welcome Building, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - S F Plummer
- 1 Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot, SA12 7BZ, United Kingdom
| |
Collapse
|
60
|
Smith LK, Wissel EF. Microbes and the Mind: How Bacteria Shape Affect, Neurological Processes, Cognition, Social Relationships, Development, and Pathology. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2019; 14:397-418. [DOI: 10.1177/1745691618809379] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent data suggest that the human body is not so exclusively human after all. Specifically, humans share their bodies with approximately 10 trillion microorganisms, collectively known as the microbiome. Chief among these microbes are bacteria, and there is a growing consensus that they are critical to virtually all facets of normative functioning. This article reviews the ways in which bacteria shape affect, neurological processes, cognition, social relationships, development, and psychological pathology. To date, the vast majority of research on interactions between microbes and humans has been conducted by scientists outside the field of psychology, despite the fact that psychological scientists are experts in many of the topics being explored. This review aims to orient psychological scientists to the most relevant research and perspectives regarding the microbiome so that we might contribute to the now widespread, interdisciplinary effort to understand the relationship between microbes and the mind.
Collapse
Affiliation(s)
- Leigh K. Smith
- Department of Psychology, University of California, Davis
| | | |
Collapse
|
61
|
Xu K, Guo Y, Li Z, Wang Z. Aging Biomarkers and Novel Targets for Anti-Aging Interventions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1178:39-56. [PMID: 31493221 DOI: 10.1007/978-3-030-25650-0_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aging population worldwide is expanding at an increasing rate. By 2050, approximately a quarter of the world population will consist of the elderly. To slow down the aging process, exploration of aging biomarkers and the search for novel antiaging targets have attracted much interest. Nonetheless, because aging research is costly and time-consuming and the aging process is complicated, aging research is considered one of the most difficult biological fields. Here, providing a broader definition of aging biomarkers, we review cutting-edge research on aging biomarkers at the molecular, cellular, and organismal levels, thus shedding light on the relations between aging and telomeres, longevity proteins, a senescence-associated secretory phenotype, the gut microbiota and metabolic patterns. Furthermore, we evaluate the suitability of these aging biomarkers for the development of novel antiaging targets on the basis of the most recent research on this topic. We also discuss the possible implications and some controversies regarding these biomarkers for therapeutic interventions in aging and age-related disease processes. We have attempted to cover all of the latest research on aging biomarkers in our review but there are countless studies on aging biomarkers, and the topic of aging interventions will continue to deepen even further. We hope that our review can serve as a reference for better characterization of aging and as inspiration for the screening of antiaging drugs as well as give some clues to further research into aging biomarkers and antiaging targets.
Collapse
Affiliation(s)
- Kang Xu
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Yannan Guo
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Zhongchi Li
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Zhao Wang
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, People's Republic of China.
| |
Collapse
|
62
|
Papalini S, Michels F, Kohn N, Wegman J, van Hemert S, Roelofs K, Arias-Vasquez A, Aarts E. Stress matters: Randomized controlled trial on the effect of probiotics on neurocognition. Neurobiol Stress 2018; 10:100141. [PMID: 30937347 PMCID: PMC6430409 DOI: 10.1016/j.ynstr.2018.100141] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/06/2018] [Accepted: 12/05/2018] [Indexed: 12/22/2022] Open
Abstract
Probiotics are microorganisms that provide health benefits when consumed. In animals, probiotics reverse gut microbiome-related alterations in depression-like symptoms, in cognition, and in hormonal stress response. However, in humans, a causal understanding of the gut-brain link in emotion and cognition is lacking. Additionally, whether the effects of probiotics on neurocognition are visible only in presence of stress, remains unclear. We investigated the effects of a multispecies probiotic (Ecologic®Barrier) on specific neurocognitive measures of emotion reactivity, emotion regulation, and cognitive control using fMRI. Critically, we also tested whether probiotics can buffer against the detrimental effects of acute stress on working memory. In a double blind, randomized, placebo-controlled, between-subjects intervention study, 58 healthy participants were tested once before and once after a 28-day intervention. Without stress induction, probiotics did not affect brain, behavioral, or related self-report measures. However, relative to placebo, the probiotics group did show a significant stress-related increase in working memory performance after supplementation. This change was associated with intervention-related neural changes in frontal cortex during cognitive control exclusively in the probiotics group. Overall, our results show neurocognitive effects of a multispecies probiotic in healthy women only under challenging situations, buffering against the detrimental effects of stress on cognition. We ran a randomized placebo-controlled fMRI study with a multispecies probiotic. Probiotics did not affect neurocognitive measures of emotion and cognitive control. Probiotics did affect stress-related working memory and neural correlates. Probiotics in healthy individuals can support cognition under stress.
Collapse
Affiliation(s)
- S. Papalini
- Radboud University, Donders Institute for Brain Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands
| | - F. Michels
- Radboud University, Donders Institute for Brain Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands
| | - N. Kohn
- Radboud University, Donders Institute for Brain Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands
| | - J. Wegman
- Radboud University, Donders Institute for Brain Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands
| | | | - K. Roelofs
- Radboud University, Donders Institute for Brain Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands
| | - A. Arias-Vasquez
- Radboud University Medical Center, Departments of Psychiatry, Human Genetics & Cognitive Neuroscience, Nijmegen, the Netherlands
| | - E. Aarts
- Radboud University, Donders Institute for Brain Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands
- Corresponding author. Kapittelweg 29, 6525 EN, Nijmegen, the Netherlands.
| |
Collapse
|
63
|
Athari Nik Azm S, Djazayeri A, Safa M, Azami K, Ahmadvand B, Sabbaghziarani F, Sharifzadeh M, Vafa M. Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in β-amyloid (1–42) injected rats. Appl Physiol Nutr Metab 2018; 43:718-726. [DOI: 10.1139/apnm-2017-0648] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The gastrointestinal microbiota affects brain function, including memory and learning. In this study we investigated the effects of probiotics on memory and oxidative stress biomarkers in an experimental model of Alzheimer’s disease. Sixty rats were randomly divided into 5 groups: control; control-probiotics, which received probiotics for 8 weeks; sham operation, which received an intrahippocampal injection of phosphate-buffered saline; Alzheimer, which received an intrahippocampal injection of β-amyloid (Aβ1–42); and Alzheimer-probiotics, which in addition to being injected with Aβ1–42, received 2 g (1 × 1010 CFU/g) of probiotics (Lactobacillus acidophilus, L. fermentum, Bifidobacterium lactis, and B. longum) for 8 weeks. Memory and learning were measured using the Morris water maze, and oxidative stress biomarkers in the hippocampus were measured using ELISA kits. Morris water maze results indicated that compared with the Alzheimer group, the Alzheimer-probiotics group had significantly improved spatial memory, including shorter escape latency and travelled distance and greater time spent in the target quadrant. There was also improvement in oxidative stress biomarkers such as increased malondialdehyde levels and superoxide dismutase activity following the β-amyloid injection. Overall, it seems that probiotics play a role in improving memory deficit and inhibiting the pathological mechanisms of Alzheimer’s disease by modifying microbiota.
Collapse
Affiliation(s)
- Somayeh Athari Nik Azm
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolghassem Djazayeri
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Safa
- Cellular and Molecular Research Centre and Hematology Department, School of Allied Medical Science, Iran University of Medical Sciences, Tehran, Iran
| | - Kian Azami
- Pharmaceutical Science Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Ahmadvand
- Faculty of Veterinary Medicine, Islamic Azad University, Garmsar Branch, Garmsar, Iran
| | - Fatemeh Sabbaghziarani
- Department of Anatomy, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
64
|
Gronier B, Savignac HM, Di Miceli M, Idriss SM, Tzortzis G, Anthony D, Burnet PWJ. Increased cortical neuronal responses to NMDA and improved attentional set-shifting performance in rats following prebiotic (B-GOS ®) ingestion. Eur Neuropsychopharmacol 2018; 28:211-224. [PMID: 29174530 PMCID: PMC5857269 DOI: 10.1016/j.euroneuro.2017.11.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/13/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022]
Abstract
We have previously shown that prebiotics (dietary fibres that augment the growth of indigenous beneficial gut bacteria) such as Bimuno™ galacto-oligosaccharides (B-GOS®), increased N-methyl-D-aspartate (NMDA) receptor levels in the rat brain. The current investigation examined the functional correlates of these changes in B-GOS®-fed rats by measuring cortical neuronal responses to NMDA using in vivo NMDA micro-iontophoresis electrophysiology, and performance in the attentional set-shifting task. Adult male rats were supplemented with B-GOS® in the drinking water 3 weeks prior to in vivo iontophoresis or behavioural testing. Cortical neuronal responses to NMDA iontophoresis, were greater (+30%) in B-GOS® administered rats compared to non-supplemented controls. The intake of B-GOS® also partially hindered the reduction of NMDA responses by the glycine site antagonist, HA-966. In the attentional set-shifting task, B-GOS® -fed rats shifted from an intra-dimensional to an extra-dimensional set in fewer trials than controls, thereby indicating greater cognitive flexibility. An initial exploration into the mechanisms revealed that rats ingesting B-GOS® had increased levels of plasma acetate, and cortical GluN2B subunits and Acetyl Co-A Carboxylase mRNA. These changes were also observed in rats fed daily for 3 weeks with glyceryl triacetate, though unlike B-GOS®, cortical histone deacetylase (HDAC1, HDAC2) mRNAs were also increased which suggested an additional epigenetic action of direct acetate supplementation. Our data demonstrate that a pro-cognitive effect of B-GOS® intake in rats is associated with an increase in cortical NMDA receptor function, but the role of circulating acetate derived from gut bacterial fermentation of this prebiotic requires further investigation.
Collapse
Affiliation(s)
- Benjamin Gronier
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | | | - Mathieu Di Miceli
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Sherif M Idriss
- Center of Brain, Behavior and Metabolism (CBBM), University of Lubeck, 23562 Lubeck, Germany
| | | | - Daniel Anthony
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Philip W J Burnet
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK.
| |
Collapse
|