51
|
A Novel Cellular Therapy to Treat Pancreatic Pain in Experimental Chronic Pancreatitis Using Human Alpha-1 Antitrypsin Overexpressing Mesenchymal Stromal Cells. Biomedicines 2021; 9:biomedicines9111695. [PMID: 34829924 PMCID: PMC8615652 DOI: 10.3390/biomedicines9111695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 01/13/2023] Open
Abstract
Chronic pancreatitis (CP) is characterized by pancreatic inflammation, fibrosis, and abdominal pain that is challenging to treat. Mesenchymal stromal cells (MSCs) overexpressing human alpha-1 antitrypsin (hAAT-MSCs) showed improved mobility and protective functions over native MSCs in nonobese diabetic mice. We investigated whether hAAT-MSCs could mitigate CP and its associated pain using trinitrobenzene sulfonic acid (TNBS)-induced CP mouse models. CP mice were given native human MSCs or hAAT-MSCs (0.5 × 106 cells/mouse, i.v., n = 6–8/group). The index of visceral pain was measured by graduated von Frey filaments. Pancreatic morphology and pancreatic mast cell count were analyzed by morphological stains. Nociceptor transient receptor potential vanilloid 1 (TRPV1) expression in dorsal root ganglia (DRG) was determined by immunohistochemistry. hAAT-MSC-treated CP mice best preserved pancreatic morphology and histology. MSC or hAAT-MSC infusion reduced abdominal pain sensitivities. hAAT-MSC therapy also suppressed TRPV1 expression in DRG and reduced pancreatic mast cell density induced by TNBS. Overall, hAAT-MSCs reduced pain and mitigated pancreatic inflammation in CP equal to MSCs with a trend toward a higher pancreatic weight and better pain relief in the hAAT-MSC group compared to the MSC group. Both MSCs and hAAT-MSCs might be used as a novel therapeutic tool for CP-related pain.
Collapse
|
52
|
Encapsulin Based Self-Assembling Iron-Containing Protein Nanoparticles for Stem Cells MRI Visualization. Int J Mol Sci 2021; 22:ijms222212275. [PMID: 34830156 PMCID: PMC8618560 DOI: 10.3390/ijms222212275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Over the past decade, cell therapy has found many applications in the treatment of different diseases. Some of the cells already used in clinical practice include stem cells and CAR-T cells. Compared with traditional drugs, living cells are much more complicated systems that must be strictly controlled to avoid undesirable migration, differentiation, or proliferation. One of the approaches used to prevent such side effects involves monitoring cell distribution in the human body by any noninvasive technique, such as magnetic resonance imaging (MRI). Long-term tracking of stem cells with artificial magnetic labels, such as magnetic nanoparticles, is quite problematic because such labels can affect the metabolic process and cell viability. Additionally, the concentration of exogenous labels will decrease during cell division, leading to a corresponding decrease in signal intensity. In the current work, we present a new type of genetically encoded label based on encapsulin from Myxococcus xanthus bacteria, stably expressed in human mesenchymal stem cells (MSCs) and coexpressed with ferroxidase as a cargo protein for nanoparticles' synthesis inside encapsulin shells. mZip14 protein was expressed for the enhancement of iron transport into the cell. Together, these three proteins led to the synthesis of iron-containing nanoparticles in mesenchymal stem cells-without affecting cell viability-and increased contrast properties of MSCs in MRI.
Collapse
|
53
|
Chen XY, Chen YY, Lin W, Chen CH, Wen YC, Hsiao TC, Chou HC, Chung KF, Chuang HC. Therapeutic Potential of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Recovering From Murine Pulmonary Emphysema Under Cigarette Smoke Exposure. Front Med (Lausanne) 2021; 8:713824. [PMID: 34646841 PMCID: PMC8502916 DOI: 10.3389/fmed.2021.713824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Abstract
Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) were shown to have potential for immunoregulation and tissue repair. The objective of this study was to investigate the effects of hUC-MSCs on emphysema in chronic obstructive pulmonary disease (COPD). The C57BL/6JNarl mice were exposed to cigarette smoke (CS) for 4 months followed by administration of hUC-MSCs at 3 × 106 (low dose), 1 × 107 (medium dose), and 3 × 107 cells/kg body weight (high dose). The hUC-MSCs caused significant decreases in emphysema severity by measuring the mean linear intercept (MLI) and destructive index (DI). A decrease in neutrophils (%) and an increase in lymphocytes (%) in bronchoalveolar lavage fluid (BALF) were observed in emphysematous mice after hUC-MSC treatment. Lung levels of interleukin (IL)-1β, C-X-C motif chemokine ligand 1 (CXCL1)/keratinocyte chemoattractant (KC), and matrix metalloproteinase (MMP)-12 significantly decreased after hUC-MSC administration. Significant reductions in tumor necrosis factor (TNF)-α, IL-1β, and IL-17A in serum occurred after hUC-MSC administration. Notably, the cell viability of lung fibroblasts improved with hUC-MSCs after being treated with CS extract (CSE). Furthermore, the hUC-MSCs-conditioned medium (hUC-MSCs-CM) restored the contractile force, and increased messenger RNA expressions of elastin and fibronectin by lung fibroblasts. In conclusion, hUC-MSCs reduced inflammatory responses and emphysema severity in CS-induced emphysematous mice.
Collapse
Affiliation(s)
- Xiao-Yue Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ying Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Willie Lin
- Meridigen Biotech Co., Ltd., Taipei, Taiwan
| | | | | | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
54
|
Yang H, Xie Y, Li T, Liu S, Zeng S, Wang B. A novel minimally invasive OFM technique with orthotopic transplantation of hUC-MSCs and in vivo monitoring of liver metabolic microenvironment in liver fibrosis treatment. Stem Cell Res Ther 2021; 12:534. [PMID: 34627378 PMCID: PMC8502355 DOI: 10.1186/s13287-021-02599-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) transplantation showed promising therapeutic results in liver fibrosis. However, efficient cell delivery method is urgently needed and the therapeutic mechanism remains unclear. This study focused on developing a minimally invasive open-flow microperfusion (OFM) technique, which combined orthotopic transplantation of human umbilical cord-derived (hUC)-MSCs to liver and in vivo monitoring of liver microenvironment in mice with CCl4-induced liver fibrosis. Methods The therapeutic potential of OFM route was evaluated by comparing OFM with intravenous (IV) injection route in terms of hUC-MSCs engraftment at the fibrosis liver, liver histopathological features, liver function and fibrotic markers expression after hUC-MSCs administration. OFM was also applied to sample liver interstitial fluid in vivo, and subsequent metabolomic analysis was performed to investigate metabolic changes in liver microenvironment. Results Compared with IV route, OFM route caused more hUC-MSCs accumulation in the liver and was more effective in improving the remodeling of liver structure and reducing collagen deposition in fibrotic liver. OFM transplantation of hUC-MSCs reduced blood ALT, AST, ALP and TBIL levels and increased ALB levels, to a greater extent than IV route. And OFM route appeared to have a more pronounced effect on ameliorating the CCl4-induced up-regulation of the fibrotic markers, such as α-SMA, collagen I and TGF-β. In vivo monitoring of liver microenvironment demonstrated the metabolic perturbations induced by pathological condition and treatment intervention. Two metabolites and eight metabolic pathways, which were most likely to be associated with the liver fibrosis progression, were regulated by hUC-MSCs administration. Conclusion The results demonstrated that the novel OFM technique would be useful for hUC-MSCs transplantation in liver fibrosis treatment and for monitoring of the liver metabolic microenvironment to explore the underlying therapeutic mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02599-w.
Collapse
Affiliation(s)
- Hui Yang
- Center for Clinic Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yuanyuan Xie
- Center for Clinic Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Tuo Li
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Shuo Liu
- Center for Clinic Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Sheng Zeng
- Center for Clinic Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Bin Wang
- Center for Clinic Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
55
|
Mesenchymal Stromal Cells: an Antimicrobial and Host-Directed Therapy for Complex Infectious Diseases. Clin Microbiol Rev 2021; 34:e0006421. [PMID: 34612662 DOI: 10.1128/cmr.00064-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is an urgent need for new antimicrobial strategies for treating complex infections and emerging pathogens. Human mesenchymal stromal cells (MSCs) are adult multipotent cells with antimicrobial properties, mediated through direct bactericidal activity and modulation of host innate and adaptive immune cells. More than 30 in vivo studies have reported on the use of human MSCs for the treatment of infectious diseases, with many more studies of animal MSCs in same-species models of infection. MSCs demonstrate potent antimicrobial effects against the major classes of human pathogens (bacteria, viruses, fungi, and parasites) across a wide range of infection models. Mechanistic studies have yielded important insight into their immunomodulatory and bactericidal activity, which can be enhanced through various forms of preconditioning. MSCs are being investigated in over 80 clinical trials for difficult-to-treat infectious diseases, including sepsis and pulmonary, intra-abdominal, cutaneous, and viral infections. Completed trials consistently report MSCs to be safe and well tolerated, with signals of efficacy against some infectious diseases. Although significant obstacles must be overcome to produce a standardized, affordable, clinical-grade cell therapy, these studies suggest that MSCs may have particular potential as an adjunct therapy in complex or resistant infections.
Collapse
|
56
|
Extracellular vesicles as novel approaches for the treatment of osteoarthritis: a narrative review on potential mechanisms. J Mol Histol 2021; 52:879-891. [PMID: 34510315 DOI: 10.1007/s10735-021-10017-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022]
Abstract
Osteoarthritis (OA) is a progressive degeneration of articular cartilage with involvement of synovial membrane, and subchondral bone. Current treatment approaches have focused on controlling the OA symptoms, pain, and inflammation. Recently, cell-based therapies, including the application of stem cells such as mesenchymal stem cells (MSCs), have been introduced for restoration of the articular cartilage. Despite promising outcomes, there are some limitations in the application of MSCs for OA treatment. It has been demonstrated that the regenerative potential of stem cells is related to the production of paracrine factors. Extracellular vehicles (EVs), the main component of cell secretome, are membrane-bounded structures that deliver biologically active agents. The delivery of molecules (e.g., nucleic acids, proteins, and lipids) leads to cell-to-cell communication and the alteration of cell functions. In this review, general characteristics of EVs, as well as their potential mechanisms in the prevention and treatment of OA were considered. Based on in vitro and in vivo studies, EVs have shown to contribute to cartilage regeneration via suppression of degenerative factors and regulation of chondrocyte function in the synthesis of extracellular matrix components. Also, they inhibit the progression of OA or protect the cartilage from degradation via their impact on inflammatory cytokines. The different signaling pathways of EVs against the pathologic features of OA were summarized in this review. According to the results obtained from several investigations, more investigations should be design to prove the safety and effectiveness of EVs in the treatment and prevention of OA progression.
Collapse
|
57
|
Preconditioned Mesenchymal Stromal Cells to Improve Allotransplantation Outcome. Cells 2021; 10:cells10092325. [PMID: 34571974 PMCID: PMC8469056 DOI: 10.3390/cells10092325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are tissue-derived progenitor cells with immunomodulatory as well as multilineage differentiation capacities, and have been widely applied as cellular therapeutics in different disease systems in both preclinical models and clinical studies. Although many studies have applied MSCs in different types of allotransplantation, the efficacy varies. It has been demonstrated that preconditioning MSCs prior to in vivo administration may enhance their efficacy. In the field of organ/tissue allotransplantation, many recent studies have shown that preconditioning of MSCs with (1) pretreatment with bioactive factors or reagents such as cytokines, or (2) specific gene transfection, could prolong allotransplant survival and improve allotransplant function. Herein, we review these preconditioning strategies and discuss potential directions for further improvement.
Collapse
|
58
|
Helfer BM, Ponomarev V, Patrick PS, Blower PJ, Feitel A, Fruhwirth GO, Jackman S, Pereira Mouriès L, Park MVDZ, Srinivas M, Stuckey DJ, Thu MS, van den Hoorn T, Herberts CA, Shingleton WD. Options for imaging cellular therapeutics in vivo: a multi-stakeholder perspective. Cytotherapy 2021; 23:757-773. [PMID: 33832818 PMCID: PMC9344904 DOI: 10.1016/j.jcyt.2021.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/01/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Cell-based therapies have been making great advances toward clinical reality. Despite the increase in trial activity, few therapies have successfully navigated late-phase clinical trials and received market authorization. One possible explanation for this is that additional tools and technologies to enable their development have only recently become available. To support the safety evaluation of cell therapies, the Health and Environmental Sciences Institute Cell Therapy-Tracking, Circulation and Safety Committee, a multisector collaborative committee, polled the attendees of the 2017 International Society for Cell & Gene Therapy conference in London, UK, to understand the gaps and needs that cell therapy developers have encountered regarding safety evaluations in vivo. The goal of the survey was to collect information to inform stakeholders of areas of interest that can help ensure the safe use of cellular therapeutics in the clinic. This review is a response to the cellular imaging interests of those respondents. The authors offer a brief overview of available technologies and then highlight the areas of interest from the survey by describing how imaging technologies can meet those needs. The areas of interest include imaging of cells over time, sensitivity of imaging modalities, ability to quantify cells, imaging cellular survival and differentiation and safety concerns around adding imaging agents to cellular therapy protocols. The Health and Environmental Sciences Institute Cell Therapy-Tracking, Circulation and Safety Committee believes that the ability to understand therapeutic cell fate is vital for determining and understanding cell therapy efficacy and safety and offers this review to aid in those needs. An aim of this article is to share the available imaging technologies with the cell therapy community to demonstrate how these technologies can accomplish unmet needs throughout the translational process and strengthen the understanding of cellular therapeutics.
Collapse
Affiliation(s)
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - P Stephen Patrick
- Department of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Philip J Blower
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Alexandra Feitel
- Formerly, Health and Environmental Sciences Institute, US Environmental Protection Agency, Washington, DC, USA
| | - Gilbert O Fruhwirth
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Shawna Jackman
- Charles River Laboratories, Shrewsbury, Massachusetts, USA
| | | | - Margriet V D Z Park
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Mangala Srinivas
- Department of Tumor Immunology, Radboud University Medical Center, Nijmegen, the Netherlands; Cenya Imaging BV, Amsterdam, the Netherlands
| | - Daniel J Stuckey
- Department of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Mya S Thu
- Visicell Medical Inc, La Jolla, California, USA
| | | | | | | |
Collapse
|
59
|
da Silva KN, Gobatto ALN, Costa-Ferro ZSM, Cavalcante BRR, Caria ACI, de Aragão França LS, Nonaka CKV, de Macêdo Lima F, Lopes-Pacheco M, Rocco PRM, de Freitas Souza BS. Is there a place for mesenchymal stromal cell-based therapies in the therapeutic armamentarium against COVID-19? Stem Cell Res Ther 2021; 12:425. [PMID: 34315546 PMCID: PMC8314259 DOI: 10.1186/s13287-021-02502-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023] Open
Abstract
The COVID-19 pandemic, caused by the rapid global spread of the novel coronavirus (SARS-CoV-2), has caused healthcare systems to collapse and led to hundreds of thousands of deaths. The clinical spectrum of COVID-19 is not only limited to local pneumonia but also represents multiple organ involvement, with potential for systemic complications. One year after the pandemic, pathophysiological knowledge has evolved, and many therapeutic advances have occurred, but mortality rates are still elevated in severe/critical COVID-19 cases. Mesenchymal stromal cells (MSCs) can exert immunomodulatory, antiviral, and pro-regenerative paracrine/endocrine actions and are therefore promising candidates for MSC-based therapies. In this review, we discuss the rationale for MSC-based therapies based on currently available preclinical and clinical evidence of safety, potential efficacy, and mechanisms of action. Finally, we present a critical analysis of the risks, limitations, challenges, and opportunities that place MSC-based products as a therapeutic strategy that may complement the current arsenal against COVID-19 and reduce the pandemic's unmet medical needs.
Collapse
Affiliation(s)
- Kátia Nunes da Silva
- Goncalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia, 40296-710, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil
| | | | - Zaquer Suzana Munhoz Costa-Ferro
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil
| | - Bruno Raphael Ribeiro Cavalcante
- Goncalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia, 40296-710, Brazil
| | - Alex Cleber Improta Caria
- Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Luciana Souza de Aragão França
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil
| | - Carolina Kymie Vasques Nonaka
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil
| | | | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Rieken Macêdo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Rio de Janeiro, Brazil
- COVID-19 Virus Network, Ministry of Science and Technology, and Innovation, Rio de Janeiro, Brazil
| | - Bruno Solano de Freitas Souza
- Goncalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia, 40296-710, Brazil.
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil.
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil.
| |
Collapse
|
60
|
Sanchez-Diaz M, Quiñones-Vico MI, Sanabria de la Torre R, Montero-Vílchez T, Sierra-Sánchez A, Molina-Leyva A, Arias-Santiago S. Biodistribution of Mesenchymal Stromal Cells after Administration in Animal Models and Humans: A Systematic Review. J Clin Med 2021; 10:jcm10132925. [PMID: 34210026 PMCID: PMC8268414 DOI: 10.3390/jcm10132925] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal Stromal Cells (MSCs) are of great interest in cellular therapy. Different routes of administration of MSCs have been described both in pre-clinical and clinical reports. Knowledge about the fate of the administered cells is critical for developing MSC-based therapies. The aim of this review is to describe how MSCs are distributed after injection, using different administration routes in animal models and humans. A literature search was performed in order to consider how MSCs distribute after intravenous, intraarterial, intramuscular, intraarticular and intralesional injection into both animal models and humans. Studies addressing the biodistribution of MSCs in “in vivo” animal models and humans were included. After the search, 109 articles were included in the review. Intravenous administration of MSCs is widely used; it leads to an initial accumulation of cells in the lungs with later redistribution to the liver, spleen and kidneys. Intraarterial infusion bypasses the lungs, so MSCs distribute widely throughout the rest of the body. Intramuscular, intraarticular and intradermal administration lack systemic biodistribution. Injection into various specific organs is also described. Biodistribution of MSCs in animal models and humans appears to be similar and depends on the route of administration. More studies with standardized protocols of MSC administration could be useful in order to make results homogeneous and more comparable.
Collapse
Affiliation(s)
- Manuel Sanchez-Diaz
- Dermatology Department, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (M.S.-D.); (T.M.-V.); (A.M.-L.); (S.A.-S.)
| | - Maria I. Quiñones-Vico
- Cellular Production Unit, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (R.S.d.l.T.); (A.S.-S.)
- Correspondence:
| | - Raquel Sanabria de la Torre
- Cellular Production Unit, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (R.S.d.l.T.); (A.S.-S.)
| | - Trinidad Montero-Vílchez
- Dermatology Department, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (M.S.-D.); (T.M.-V.); (A.M.-L.); (S.A.-S.)
| | - Alvaro Sierra-Sánchez
- Cellular Production Unit, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (R.S.d.l.T.); (A.S.-S.)
| | - Alejandro Molina-Leyva
- Dermatology Department, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (M.S.-D.); (T.M.-V.); (A.M.-L.); (S.A.-S.)
| | - Salvador Arias-Santiago
- Dermatology Department, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (M.S.-D.); (T.M.-V.); (A.M.-L.); (S.A.-S.)
- Cellular Production Unit, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (R.S.d.l.T.); (A.S.-S.)
- School of Medicine, University of Granada, 18014 Granada, Spain
| |
Collapse
|
61
|
Szydlak R. Biological, chemical and mechanical factors regulating migration and homing of mesenchymal stem cells. World J Stem Cells 2021; 13:619-631. [PMID: 34249231 PMCID: PMC8246245 DOI: 10.4252/wjsc.v13.i6.619] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/03/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a population of primary and non-specialized cells, which can be isolated from various tissues. Currently, MSCs are key players in cellular therapy and regenerative medicine. However, the possibility of using MSCs in the treatment of many diseases needs to be preceded, though, by in-depth analysis of their properties, especially by determining the mechanism of tissue homing as well as the mechanism, due to which cells contribute to tissue regeneration. This review is intended to present information on recent findings regarding the mechanism of recruitment and tissue homing by MSCs and discuss current hypotheses for how MSCs can reach target tissues.
Collapse
Affiliation(s)
- Renata Szydlak
- Department of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków 31-034, Poland
| |
Collapse
|
62
|
Mercer-Smith AR, Findlay IA, Bomba HN, Hingtgen SD. Intravenously Infused Stem Cells for Cancer Treatment. Stem Cell Rev Rep 2021; 17:2025-2041. [PMID: 34138421 DOI: 10.1007/s12015-021-10192-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 01/14/2023]
Abstract
Despite the recent influx of immunotherapies and small molecule drugs to treat tumors, cancer remains a leading cause of death in the United States, in large part due to the difficulties of treating metastatic cancer. Stem cells, which are inherently tumoritropic, provide a useful drug delivery vehicle to target both primary and metastatic tumors. Intravenous infusions of stem cells carrying or secreting therapeutic payloads show significant promise in the treatment of cancer. Stem cells may be engineered to secrete cytotoxic products, loaded with oncolytic viruses or nanoparticles containing small molecule drugs, or conjugated with immunotherapies. Herein we describe these preclinical and clinical studies, discuss the distribution and migration of stem cells following intravenous infusion, and examine both the limitations of and the methods to improve the migration and therapeutic efficacy of tumoritropic, therapeutic stem cells.
Collapse
Affiliation(s)
- Alison R Mercer-Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA
| | - Ingrid A Findlay
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA
| | - Hunter N Bomba
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA. .,Department of Neurosurgery, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA.
| |
Collapse
|
63
|
Shahani P, Datta I. Mesenchymal stromal cell therapy for coronavirus disease 2019: which? when? and how much? Cytotherapy 2021; 23:861-873. [PMID: 34053857 PMCID: PMC8084615 DOI: 10.1016/j.jcyt.2021.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/27/2021] [Accepted: 04/10/2021] [Indexed: 12/27/2022]
Abstract
Mesenchymal stromal cells (MSCs) are under active consideration as a treatment strategy for controlling the hyper-inflammation and slow disease progression associated with coronavirus disease 2019 (COVID-19). The possible mechanism of protection through their immunoregulatory and paracrine action has been reviewed extensively. However, the importance of process control in achieving consistent cell quality, maximum safety and efficacy—for which the three key questions are which, when and how much—remains unaddressed. Any commonality, if it exists, in ongoing clinical trials has yet to be analyzed and reviewed. In this review, the authors have therefore compiled study design data from ongoing clinical trials to address the key questions of “which” with regard to tissue source, donor profile, isolation technique, culture conditions, long-term culture and cryopreservation of MSCs; “when” with regard to defining the transplantation window by identifying and staging patients based on their pro-inflammatory profile; and “how much” with regard to the number of cells in a single administration, number of doses and route of transplantation. To homogenize MSC therapy for COVID-19 on a global scale and to make it readily available in large numbers, a shared understanding and uniform agreement with respect to these fundamental issues are essential.
Collapse
Affiliation(s)
- Pradnya Shahani
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Indrani Datta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India.
| |
Collapse
|
64
|
Zhuang WZ, Lin YH, Su LJ, Wu MS, Jeng HY, Chang HC, Huang YH, Ling TY. Mesenchymal stem/stromal cell-based therapy: mechanism, systemic safety and biodistribution for precision clinical applications. J Biomed Sci 2021; 28:28. [PMID: 33849537 PMCID: PMC8043779 DOI: 10.1186/s12929-021-00725-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are a promising resource for cell-based therapy because of their high immunomodulation ability, tropism towards inflamed and injured tissues, and their easy access and isolation. Currently, there are more than 1200 registered MSC clinical trials globally. However, a lack of standardized methods to characterize cell safety, efficacy, and biodistribution dramatically hinders the progress of MSC utility in clinical practice. In this review, we summarize the current state of MSC-based cell therapy, focusing on the systemic safety and biodistribution of MSCs. MSC-associated risks of tumor initiation and promotion and the underlying mechanisms of these risks are discussed. In addition, MSC biodistribution methodology and the pharmacokinetics and pharmacodynamics of cell therapies are addressed. Better understanding of the systemic safety and biodistribution of MSCs will facilitate future clinical applications of precision medicine using stem cells.
Collapse
Affiliation(s)
- Wei-Zhan Zhuang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Yi-Heng Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, 10041, Taiwan.,Department of Obstetrics and Gynecology, National Taiwan University Hospital Yunlin Branch, Yunlin, 64041, Taiwan
| | - Long-Jyun Su
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
| | - Meng-Shiue Wu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Han-Yin Jeng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan.,Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan. .,Comprehensive Cancer Center of Taipei Medical University, Taipei, 11031, Taiwan. .,The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan. .,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
65
|
Bojanic C, To K, Hatoum A, Shea J, Seah KTM, Khan W, Malata CM. Mesenchymal stem cell therapy in hypertrophic and keloid scars. Cell Tissue Res 2021; 383:915-930. [PMID: 33386995 PMCID: PMC7960584 DOI: 10.1007/s00441-020-03361-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022]
Abstract
Scars are the normal outcome of wound repair and involve a co-ordinated inflammatory and fibrotic process. When a scar does not resolve, uncontrolled chronic inflammation can persist and elicits excessive scarring that leads to a range of abnormal phenotypes such as hypertrophic and keloid scars. These pathologies result in significant impairment of quality of life over a long period of time. Existing treatment options are generally unsatisfactory, and there is mounting interest in innovative cell-based therapies. Despite the interest in mesenchymal stem cells (MSCs), there is yet to be a human clinical trial that investigates the potential of MSCs in treating abnormal scarring. A synthesis of existing evidence of animal studies may therefore provide insight into the barriers to human application. The aim of this PRISMA systematic review was to evaluate the effectiveness of MSC transplantation in the treatment of hypertrophic and keloid scars in in vivo models. A total of 11 case-control studies were identified that treated a total of 156 subjects with MSCs or MSC-conditioned media. Ten studies assessed hypertrophic scars, and one looked at keloid scars. All studies evaluated scars in terms of macroscopic and histological appearances and most incorporated immunohistochemistry. The included studies all found improvements in the above outcomes with MSC or MSC-conditioned media without complications. The studies reviewed support a role for MSC therapy in treating scars that needs further exploration. The transferability of these findings to humans is limited by factors such as the reliability and validity of the disease model, the need to identify the optimal MSC cell source, and the outcome measures employed.
Collapse
Affiliation(s)
- Christine Bojanic
- Plastic & Reconstructive Surgery Department, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kendrick To
- Division of Trauma and Orthopaedics, Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Adam Hatoum
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Jessie Shea
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - K T Matthew Seah
- Division of Trauma and Orthopaedics, Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Wasim Khan
- Division of Trauma and Orthopaedics, Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | - Charles M Malata
- Plastic & Reconstructive Surgery Department, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Cambridge Breast Unit, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- School of Medicine, Anglia Ruskin University, Cambridge & Chelmsford, UK
| |
Collapse
|
66
|
Liang J, Cui R, Wang J, Shen J, Chen Y, Cao M, Ke K. Intracarotid Transplantation of Skin-Derived Precursor Schwann Cells Promotes Functional Recovery After Acute Ischemic Stroke in Rats. Front Neurol 2021; 12:613547. [PMID: 33633668 PMCID: PMC7902026 DOI: 10.3389/fneur.2021.613547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose: Skin-derived Precursor Schwann cells (SKP-SCs) have been reported to provide neuroprotection for the injured and dysmyelinated nervous system. However, little is known about SKP-SCs on acute ischemic stroke (AIS). We aimed to explore the efficacy and the potential mechanism of action of SKP-SCs on AIS in a rat ischemic stroke model. Methods: Adult male Sprague–Dawley rats were subjected to a middle cerebral artery occlusion (MCAO) for 1.5 h on Day 0 and subsequently received an intracarotid injection of 2 × 106 green fluorescent protein (GFP) -labeled SKP-SCs or phosphate buffered saline (PBS) during reperfusion. Neurological function was assessed by behavioral tests on Days 1, 4, 7, 14, and 28. In a satellite cohort, rat brains were harvested and infarct volume was measured with 2,3,5-triphenyltetrazolium chloride (TTC) staining on Days 1 and 7, and migration and survival of SKP-SCs in the brain were traced by monitoring green fluorescence at 6 and12 h on Day 0, and on Days 1, 4, 7, 14, and 28. Histopathology and immunofluorescence staining were used to analyze the morphology, survival and apoptosis of neurons. Additionally, in an in vitro SKP-SC co-culture model using fetal rat primary cortical neurons underwent oxygen glucose deprivation/reoxygenation (OGD/R), Western blot was used to detect the expression of apoptosis indicators including activated caspase-3, Bax, and Bcl-2. TUNEL staining was used to count apoptotic cells. Results: Intracarotid transplantation of SKP-SCs effectively migrated to the periinfarct area and survived for at least 4 weeks. Transplanted SKP-SCs inhibited neuronal apoptosis, reduced infarct volume, and improved neurological recovery in the MCAO rats. Moreover, in vitro data showed that SKP-SCs treatment inhibited OGD/R-induced neuronal apoptosis and promoted survival of the cultured primary cortical neurons. Conclusions: Intracarotid transplantation of SKP-SCs promoted functional recovery in the rat AIS model and possesses the potential to be further developed as a novel therapy to treat ischemic stroke in humans.
Collapse
Affiliation(s)
- Jingjing Liang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Ronghui Cui
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Nantong University, Nantong, China
| | - Jinglei Wang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiabing Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Ying Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Maosheng Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Kaifu Ke
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
67
|
COVID-19 vaccine is here: practical considerations for clinical imaging applications. Clin Imaging 2021; 76:38-41. [PMID: 33548891 PMCID: PMC7842197 DOI: 10.1016/j.clinimag.2021.01.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/07/2021] [Accepted: 01/17/2021] [Indexed: 01/21/2023]
Abstract
Imaging tools are potentially able to provide valuable data regarding the development of an efficient vaccine against viral diseases. Tracking immune cells in vivo by imaging modalities can help us understand the intrinsic behaviors of immune cells in response to vaccine components. Imaging patterns at the vaccination site and draining lymph nodes might provide useful information about the vaccine potency. Besides, serial lung CT imaging has been purposed to evaluate vaccine efficiency regarding its protection against typical lung lesions of viral pneumonias. On the other hand, vaccination causes various confusing radiologic patterns that pose diagnostic challenges for clinicians and pitfalls for reading radiologists. This manuscript reviews potential applications of imaging modalities in the process of vaccine development and also goes over some of the imaging findings/pitfalls following vaccination.
Collapse
|
68
|
Mesenchymal stromal cells for systemic sclerosis treatment. Autoimmun Rev 2021; 20:102755. [PMID: 33476823 DOI: 10.1016/j.autrev.2021.102755] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Systemic sclerosis (SSc) is a rare chronic autoimmune disease characterized by vasculopathy, dysregulation of innate and adaptive immune responses, and progressive fibrosis. SSc remains an orphan disease, with high morbity and mortality in SSc patients. The mesenchymal stromal cells (MSC) demonstrate in vitro and in vivo pro-angiogenic, immuno-suppressive, and anti-fibrotic properties and appear as a promising stem cell therapy type, that may target the key pathological features of SSc disease. This review aims to summarize acquired knowledge in the field of :1) MSC definition and in vitro and in vivo functional properties, which vary according to the donor type (allogeneic or autologous), the tissue sources (bone marrow, adipose tissue or umbilical cord) or inflammatory micro-environment in the recipient; 2) preclinical studies in various SSc animal models , which showed reduction in skin and lung fibrosis after MSC infusion; 3) first clinical trials in human, with safety and early efficacy results reported in SSc patients or currently tested in several ongoing clinical trials.
Collapse
|
69
|
Oh MS, Lee SG, Lee GH, Kim CY, Kim EY, Song JH, Yu BY, Chung HM. In vivo tracking of 14C thymidine labeled mesenchymal stem cells using ultra-sensitive accelerator mass spectrometry. Sci Rep 2021; 11:1360. [PMID: 33446731 PMCID: PMC7809063 DOI: 10.1038/s41598-020-80416-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022] Open
Abstract
Despite the tremendous advancements made in cell tracking, in vivo imaging and volumetric analysis, it remains difficult to accurately quantify the number of infused cells following stem cell therapy, especially at the single cell level, mainly due to the sensitivity of cells. In this study, we demonstrate the utility of both liquid scintillator counter (LSC) and accelerator mass spectrometry (AMS) in investigating the distribution and quantification of radioisotope labeled adipocyte derived mesenchymal stem cells (AD-MSCs) at the single cell level after intravenous (IV) transplantation. We first show the incorporation of 14C-thymidine (5 nCi/ml, 24.2 ng/ml) into AD-MSCs without affecting key biological characteristics. These cells were then utilized to track and quantify the distribution of AD-MSCs delivered through the tail vein by AMS, revealing the number of AD-MSCs existing within different organs per mg and per organ at different time points. Notably, the results show that this highly sensitive approach can quantify one cell per mg which effectively means that AD-MSCs can be detected in various tissues at the single cell level. While the significance of these cells is yet to be elucidated, we show that it is possible to accurately depict the pattern of distribution and quantify AD-MSCs in living tissue. This approach can serve to incrementally build profiles of biodistribution for stem cells such as MSCs which is essential for both research and therapeutic purposes.
Collapse
Affiliation(s)
- Min-Seok Oh
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, 05029, Republic of Korea
| | - Seul-Gi Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, 05029, Republic of Korea
| | - Gwan-Ho Lee
- Advanced Analysis Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - C-Yoon Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, 05029, Republic of Korea
| | - Eun-Young Kim
- Mirae Cell Bio Co. Ltd, Seoul, 04795, Republic of Korea
| | - Jong Han Song
- Advanced Analysis Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Byung-Yong Yu
- Advanced Analysis Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Hyung Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, 05029, Republic of Korea. .,Mirae Cell Bio Co. Ltd, Seoul, 04795, Republic of Korea.
| |
Collapse
|
70
|
Cell therapy for advanced liver diseases: Repair or rebuild. J Hepatol 2021; 74:185-199. [PMID: 32976865 DOI: 10.1016/j.jhep.2020.09.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/18/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
Advanced liver disease presents a significant worldwide health and economic burden and accounts for 3.5% of global mortality. When liver disease progresses to organ failure the only effective treatment is liver transplantation, which necessitates lifelong immunosuppression and carries associated risks. Furthermore, the shortage of suitable donor organs means patients may die waiting for a suitable transplant organ. Cell therapies have made their way from animal studies to a small number of early clinical trials. Herein, we review the current state of cell therapies for liver disease and the mechanisms underpinning their actions (to repair liver tissue or rebuild functional parenchyma). We also discuss cellular therapies that are on the clinical horizon and challenges that must be overcome before routine clinical use is a possibility.
Collapse
|
71
|
Rajendran RL, Jogalekar MP, Gangadaran P, Ahn BC. Noninvasive in vivo cell tracking using molecular imaging: A useful tool for developing mesenchymal stem cell-based cancer treatment. World J Stem Cells 2020; 12:1492-1510. [PMID: 33505597 PMCID: PMC7789123 DOI: 10.4252/wjsc.v12.i12.1492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Mounting evidence has emphasized the potential of cell therapies in treating various diseases by restoring damaged tissues or replacing defective cells in the body. Cell therapies have become a strong therapeutic modality by applying noninvasive in vivo molecular imaging for examining complex cellular processes, understanding pathophysiological mechanisms of diseases, and evaluating the kinetics/dynamics of cell therapies. In particular, mesenchymal stem cells (MSCs) have shown promise in recent years as drug carriers for cancer treatment. They can also be labeled with different probes and tracked in vivo to assess the in vivo effect of administered cells, and to optimize therapy. The exact role of MSCs in oncologic diseases is not clear as MSCs have been shown to be involved in tumor progression and inhibition, and the exact interactions between MSCs and specific cancer microenvironments are not clear. In this review, a multitude of labeling approaches, imaging modalities, and the merits/demerits of each strategy are outlined. In addition, specific examples of the use of MSCs and in vivo imaging in cancer therapy are provided. Finally, present limitations and future outlooks in terms of the translation of different imaging approaches in clinics are discussed.
Collapse
Affiliation(s)
| | | | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Byeong-Cheol Ahn
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea
| |
Collapse
|
72
|
Preclinical Characterization and In Vivo Imaging of 111In-Labeled Mesenchymal Stem Cell-Derived Extracellular Vesicles. Mol Imaging Biol 2020; 23:361-371. [PMID: 33216285 DOI: 10.1007/s11307-020-01562-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Mesenchymal stem cell-derived EVs (MSC-EVs) are demonstrated to have similar therapeutic effect as their cells of origin and represent an attractive cell-free stem cell therapy. With the potential to be the future medical regimen, the information of fate and behavior of MSC-EVs in the living subject should be urgently gathered. This study aimed to track MSC-EVs by 111In-labeling and μSPECT/CT imaging. PROCEDURES Wharton's jelly-MSC-EVs (WJ-MSC-EVs) were isolated using Exo-Prep kit followed by characterization of expressing markers and size. After labeled by 111In-oxine, 111In-EVs were injected into C57BL/6 mice followed by μSPECT/CT imaging. Organs were then taken out for ex vivo biodistribution analysis. RESULTS The radiochemical purity of 111In-EVs was > 90 % and remained stable up to 24 h. The image results showed that with injection of 111In-EVs, the signal mainly accumulated in the liver, spleen, and kidney, compared to that in lung and kidney after 111In-oxine injection. The ex vivo biodistribution showed the similar pattern to that of imaging. Chelation of free 111In with EDTA was found necessary to reduce the nonspecific accumulation of signal. CONCLUSION This study demonstrated the feasibility of radiolabeling WJ-MSC-EVs with 111In-oxine for in vivo imaging and quantitative analysis in a mouse model. This simple and quick labeling method preserves the characteristics of WJ-MSC-EVs. The results in this study provide a thorough and objective basis for future clinical study.
Collapse
|
73
|
Zhu B, You S, Rong Y, Yu Q, Lv S, Song F, Liu H, Wang H, Zhao J, Li D, Liu W, Xin S. A novel stem cell therapy for hepatitis B virus-related acute-on-chronic liver failure. ACTA ACUST UNITED AC 2020; 53:e9728. [PMID: 33053116 PMCID: PMC7552894 DOI: 10.1590/1414-431x20209728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
The aim of this study was to propose a stem cell therapy for hepatitis B virus (HBV)-related acute-on-chronic liver failure (ACLF) based on plasma exchange (PE) for peripheral blood stem cell (PBSC) collection and examine its safety and efficacy. Sixty patients (n=20 in each group) were randomized to PE (PE alone), granulocyte colony-stimulating factor (G-CSF) (PE after G-CSF treatment), and PBSC transplantation (PBSCT) (G-CSF, PE, PBSC collection and hepatic artery injection) groups. Patients were followed-up for 24 weeks. Liver function and adverse events were recorded. Survival analysis was performed. PBSCT improved blood ammonia levels at 1 week (P<0.05). The level of total bilirubin, international normalized ratio, and creatinine showed significant differences in the 4th week of treatment (P<0.05). The survival rates of the PE, G-CSF, and PBSCT groups were 50, 65, and 85% at 90 days (P=0.034). There was a significant difference in 90-day survival between the PE and PBSCT groups (P=0.021). The preliminary results suggested that PBSCT was safe, with a possibility of improved 90-day survival in patients with HBV-ACLF.
Collapse
Affiliation(s)
- Bing Zhu
- Medical School of Chinese PLA, Beijing, China.,Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shaoli You
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yihui Rong
- Department of Infection and Liver Diseases, Peking University International Hospital, Beijing, China
| | - Qiang Yu
- Department of Interventional Therapy, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Sa Lv
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fangjiao Song
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongling Liu
- Liver Transplantation Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huaming Wang
- Department of Interventional Therapy, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jun Zhao
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dongze Li
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wanshu Liu
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shaojie Xin
- Medical School of Chinese PLA, Beijing, China.,Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
74
|
Pietrosi G, Fernández-Iglesias A, Pampalone M, Ortega-Ribera M, Lozano JJ, García-Calderó H, Abad-Jordà L, Conaldi PG, Parolini O, Vizzini G, Luca A, Bosch J, Gracia-Sancho J. Human amniotic stem cells improve hepatic microvascular dysfunction and portal hypertension in cirrhotic rats. Liver Int 2020; 40:2500-2514. [PMID: 32996708 DOI: 10.1111/liv.14610] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Portal hypertension is the main consequence of cirrhosis, responsible for the complications defining clinical decompensation. The only cure for decompensated cirrhosis is liver transplantation, but it is a limited resource and opens the possibility of regenerative therapy. We investigated the potential of primary human amniotic membrane-derived mesenchymal stromal (hAMSCs) and epithelial (hAECs) stem cells for the treatment of portal hypertension and decompensated cirrhosis. METHODS In vitro: Primary liver sinusoidal endothelial cells (LSECs) and hepatic stellate cells (HSCs) from cirrhotic rats (chronic CCl4 inhalation) were co-cultured with hAMSCs, hAECs or vehicle for 24 hours, and their RNA profile was analysed. In vivo: CCl4-cirrhotic rats received 4x106 hAMSCs, 4x106 hAECs, or vehicle (NaCl 0.9%) (intraperitoneal). At 2-weeks we analysed: a) portal pressure (PP) and hepatic microvascular function; b) LSECs and HSCs phenotype; c) hepatic fibrosis and inflammation. RESULTS In vitro experiments revealed sinusoidal cell phenotype amelioration when co-cultured with stem cells. Cirrhotic rats receiving stem cells, particularly hAMSCs, had significantly lower PP than vehicle-treated animals, together with improved liver microcirculatory function. This hemodynamic amelioration was associated with improvement in LSECs capillarization and HSCs de-activation, though hepatic collagen was not reduced. Rats that received amnion derived stem cells had markedly reduced hepatic inflammation and oxidative stress. Finally, liver function tests significantly improved in rats receiving hAMSCs. CONCLUSIONS This preclinical study shows that infusion of human amniotic stem cells effectively decreases PP by ameliorating liver microcirculation, suggesting that it may represent a new treatment option for advanced cirrhosis with portal hypertension.
Collapse
Affiliation(s)
- Giada Pietrosi
- Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione, IRCCS-ISMETT, Palermo, Italy
| | - Anabel Fernández-Iglesias
- Liver Vascular Biology Research Group, Hepatic Hemodynamic Lab. IDIBAPS-Hospital Clínic, CIBEREHD, Barcelona, Spain
| | | | - Martí Ortega-Ribera
- Liver Vascular Biology Research Group, Hepatic Hemodynamic Lab. IDIBAPS-Hospital Clínic, CIBEREHD, Barcelona, Spain
| | - Juan J Lozano
- Liver Vascular Biology Research Group, Hepatic Hemodynamic Lab. IDIBAPS-Hospital Clínic, CIBEREHD, Barcelona, Spain
| | - Héctor García-Calderó
- Liver Vascular Biology Research Group, Hepatic Hemodynamic Lab. IDIBAPS-Hospital Clínic, CIBEREHD, Barcelona, Spain
| | - Laia Abad-Jordà
- Liver Vascular Biology Research Group, Hepatic Hemodynamic Lab. IDIBAPS-Hospital Clínic, CIBEREHD, Barcelona, Spain
| | - Pier G Conaldi
- Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione, IRCCS-ISMETT, Palermo, Italy
| | - Ornella Parolini
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Largo A. Gemelli, Rome, Italy.,Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Vizzini
- Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione, IRCCS-ISMETT, Palermo, Italy
| | - Angelo Luca
- Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione, IRCCS-ISMETT, Palermo, Italy
| | - Jaime Bosch
- Liver Vascular Biology Research Group, Hepatic Hemodynamic Lab. IDIBAPS-Hospital Clínic, CIBEREHD, Barcelona, Spain.,Hepatology, Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Hepatic Hemodynamic Lab. IDIBAPS-Hospital Clínic, CIBEREHD, Barcelona, Spain.,Hepatology, Department for Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
75
|
Wang J, Xia J, Huang R, Hu Y, Fan J, Shu Q, Xu J. Mesenchymal stem cell-derived extracellular vesicles alter disease outcomes via endorsement of macrophage polarization. Stem Cell Res Ther 2020; 11:424. [PMID: 32993783 PMCID: PMC7522905 DOI: 10.1186/s13287-020-01937-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are adult stromal cells that reside in virtually all postnatal tissues. Due to their regenerative and immunomodulatory capacities, MSCs have attracted growing attention during the past two decades. MSC-derived extracellular vesicles (MSC-EVs) are able to duplicate the effects of their parental cells by transferring functional proteins and genetic materials to recipient cells without cell-to-cell contact. MSC-EVs also target macrophages, which play an essential role in innate immunity, adaptive immunity, and homeostasis. Recent studies have demonstrated that MSC-EVs reduce M1 polarization and/or promote M2 polarization in a variety of settings. In this review, we discuss the mechanisms of macrophage polarization and roles of MSC-EV-induced macrophage polarization in the outcomes of cardiovascular, pulmonary, digestive, renal, and central nervous system diseases. In conclusion, MSC-EVs may become a viable alternative to MSCs for the treatment of diseases in which inflammation and immunity play a critical role.
Collapse
Affiliation(s)
- Jiangmei Wang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310051 Zhejiang China
| | - Jie Xia
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310051 Zhejiang China
| | - Ruoqiong Huang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310051 Zhejiang China
| | - Yaoqin Hu
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310051 Zhejiang China
| | - Jiajie Fan
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310051 Zhejiang China
| | - Qiang Shu
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310051 Zhejiang China
| | - Jianguo Xu
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310051 Zhejiang China
| |
Collapse
|
76
|
Zaw Thin M, Allan H, Bofinger R, Kostelec TD, Guillaume S, Connell JJ, Patrick PS, Hailes HC, Tabor AB, Lythgoe MF, Stuckey DJ, Kalber TL. Multi-modal imaging probe for assessing the efficiency of stem cell delivery to orthotopic breast tumours. NANOSCALE 2020; 12:16570-16585. [PMID: 32749427 PMCID: PMC7586303 DOI: 10.1039/d0nr03237a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/09/2020] [Indexed: 05/05/2023]
Abstract
Stem cells have been utilised as anti-cancer agents due to their ability to home to and integrate within tumours. Methods to augment stem cell homing to tumours are being investigated with the goal of enhancing treatment efficacy. However, it is currently not possible to evaluate both cell localisation and cell viability after engraftment, hindering optimisation of therapy. In this study, luciferase-expressing human adipocyte-derived stem cells (ADSCs) were incubated with Indium-111 radiolabelled iron oxide nanoparticles to produce cells with tri-modal imaging capabilities. ADSCs were administered intravenously (IV) or intracardially (IC) to mice bearing orthotopic breast tumours. Cell fate was monitored using bioluminescence imaging (BLI) as a measure of cell viability, magnetic resonance imaging (MRI) for cell localisation and single photon emission computer tomography (SPECT) for cell quantification. Serial monitoring with multi-modal imaging showed the presence of viable ADSCs within tumours as early as 1-hour post IC injection and the percentage of ADSCs within tumours to be 2-fold higher after IC than IV. Finally, histological analysis was used to validate engraftment of ADSC within tumour tissue. These findings demonstrate that multi-modal imaging can be used to evaluate the efficiency of stem cell delivery to tumours and that IC cell administration is more effective for tumour targeting.
Collapse
Affiliation(s)
- May Zaw Thin
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, UK.
| | - Helen Allan
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| | - Robin Bofinger
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| | - Tomas D Kostelec
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| | - Simon Guillaume
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| | - John J Connell
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, UK.
| | - P Stephen Patrick
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, UK.
| | - Helen C Hailes
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| | - Alethea B Tabor
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| | - Mark F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, UK.
| | - Daniel J Stuckey
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, UK.
| | - Tammy L Kalber
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, UK.
| |
Collapse
|
77
|
Qi C, Jin Y, Chen Y, Li W, Li Y, Liang K, Li Y, Zhang Y, Du Y. TGase-mediated cell membrane modification and targeted cell delivery to inflammatory endothelium. Biomaterials 2020; 269:120276. [PMID: 32797997 DOI: 10.1016/j.biomaterials.2020.120276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/19/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
Targeted cell delivery to lesion sites via minimally invasive approach remains an unmet need in regenerative medicine to endow controlled cell distribution and minimized side-effects. Current cell modification approaches to improve cell delivery tend to have adverse effects on cellular phenotype and functionality. Here, we rationally developed a facile and mild cell modification and targeted delivery strategy leveraging endogenous tissue transglutaminase (TGase) expressed on the surface of MSCs (Mesenchymal Stem Cells) and inflammatory endothelial cells (ECs). Cell modification by functional peptides was accomplished simply via TGase catalyzed cross-linking with naturally-expressed MSCs membrane proteins (e.g. Annexin II), without detectable disturbance of cellular viability and functionality. The modified functional peptides could facilitate adhesion of MSCs to inflammatory ECs (with up-regulated TGase expression compared with normal ECs) in vitro, as demonstrated by a one-fold increase of the MSC-EC adhesion force measured by atomic force microscopy (AFM) and by targeted delivery of modified MSC to inflammatory ECs in a flow chamber assay. When transplanted in vivo, modified MSCs demonstrated a dramatic increase in targeted efficiency to inflammatory endothelium compared with non-modified MSCs in both mice ear inflammation and acute/chronic liver injury models. The cell membrane modification strategy and targeted cell delivery mechanism described here can be readily extended for empowering cell engineering and cell therapy with multifaceted functionalities to combat refractory diseases.
Collapse
Affiliation(s)
- Chunxiao Qi
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuhong Jin
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuyang Chen
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wenjing Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yaqian Li
- Central Laboratories, Department of Scientific Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Kai Liang
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Yan Li
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Yonghui Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
78
|
Zheng JH, Zhang JK, Kong DS, Song YB, Zhao SD, Qi WB, Li YN, Zhang ML, Huang XH. Quantification of the CM-Dil-labeled human umbilical cord mesenchymal stem cells migrated to the dual injured uterus in SD rat. Stem Cell Res Ther 2020; 11:280. [PMID: 32660551 PMCID: PMC7359016 DOI: 10.1186/s13287-020-01806-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 05/29/2020] [Accepted: 07/01/2020] [Indexed: 12/23/2022] Open
Abstract
Background Human umbilical cord mesenchymal stem cell (hUC-MSC) therapy is considered as a promising approach in the treatment of intrauterine adhesions (IUAs). Considerable researches have already detected hUC-MSCs by diverse methods. This paper aims at exploring the quantitative distribution of CM-Dil-labeled hUC-MSCs in different regions of the uterus tissue of the dual injury-induced IUAs in rats and the underlying mechanism of restoration of fertility after implantation of hUC-MSCs in the IUA model. Methods In this study, we investigated the quantification of the CM-Dil-labeled hUC-MSCs migrated to the dual injured uterus in Sprague Dawley rats. Additionally, we investigated the differentiation of CM-Dil-labeled hUC-MSCs. The differentiation potential of epithelial cells, vascular endothelial cells, and estrogen receptor (ER) cells were assessed by an immunofluorescence method using CK7, CD31, and ERα. The therapeutic impact of hUC-MSCs in the IUA model was assessed by hematoxylin and eosin, Masson, immunohistochemistry staining, and reproductive function test. Finally, the expression of TGF-β1/Smad3 pathway in uterine tissues was determined by qRT-PCR and Western blotting. Results The CM-Dil-labeled cells in the stroma region were significantly higher than those in the superficial myometrium (SM) (71.67 ± 7.98 vs. 60.92 ± 3.96, p = 0.005), in the seroma (71.67 ± 7.98 vs. 23.67 ± 8.08, p = 0.000) and in the epithelium (71.67 ± 7.98 vs. 4.17 ± 1.19, p = 0.000). From the 2nd week of treatment, hUC-MSCs began to differentiate into epithelial cells, vascular endothelial cells, and ER cells. The therapeutic group treated with hUC-MSCs exhibited a significant decrease in fibrosis (TGF-β1/Smad3) as well as a significant increase in vascularization (CD31) compared with the untreated rats. Conclusion Our findings suggested that the distribution of the migrated hUC-MSCs in different regions of the uterine tissue was unequal. Most cells were in the stroma and less were in the epithelium of endometrium and gland. Injected hUC-MSCs had a capacity to differentiate into epithelial cells, vascular endothelial cells, and ER cells; increase blood supply; inhibit fibration; and then restore the fertility of the IUA model.
Collapse
Affiliation(s)
- Jia-Hua Zheng
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jing-Kun Zhang
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - De-Sheng Kong
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan-Biao Song
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shuang-Dan Zhao
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wen-Bo Qi
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ya-Nan Li
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ming-le Zhang
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiang-Hua Huang
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
79
|
Vives J, Casademont-Roca A, Martorell L, Nogués N. Beyond chimerism analysis: methods for tracking a new generation of cell-based medicines. Bone Marrow Transplant 2020; 55:1229-1239. [PMID: 32024991 DOI: 10.1038/s41409-020-0822-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023]
Abstract
The analysis of chimerism is crucial to determine the status of patients receiving hematopoietic stem cell transplantation. The variety of relevant techniques available today range from those that analyse nucleic acids (i.e. polymerase chain reaction based, next generation sequencing) and cellular phenotype (i.e. flow cytometry) to sophisticated imaging (particularly multimodal imaging using labelling agents). However, current developments of advanced therapies bring chimerism studies into a new dimension in which methods for detection of donor cells in the patient need to adapt to a wider range of cell- and gene-based medicines, routes of administration, target organs and pathologies. Herein we describe and analyze the toolkit of suitable labelling and detection methodologies with actual examples along with a discussion on challenges ahead and potential solutions. Remarkably, existing methods commonly used in chimerism analysis are suitable for use with new cell- and gene-based medicines. Indeed, new developments may facilitate the evolution and combination of such methodologies to the use of non-invasive and highly informative approaches.
Collapse
Affiliation(s)
- Joaquim Vives
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005, Barcelona, Spain.
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035, Barcelona, Spain.
- Departament de Medicina, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035, Barcelona, Spain.
| | - Aina Casademont-Roca
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005, Barcelona, Spain
| | - Lluís Martorell
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005, Barcelona, Spain
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035, Barcelona, Spain
| | - Núria Nogués
- Departament de Medicina, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035, Barcelona, Spain
- Laboratori d'Immunohematologia, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005, Barcelona, Spain
| |
Collapse
|
80
|
Lim JY, Ryu DB, Kim TW, Lee SE, Park G, Yoon HK, Min CK. CCL1 blockade alleviates human mesenchymal stem cell (hMSC)-induced pulmonary fibrosis in a murine sclerodermatous graft-versus-host disease (Scl-GVHD) model. Stem Cell Res Ther 2020; 11:254. [PMID: 32586381 PMCID: PMC7318460 DOI: 10.1186/s13287-020-01768-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/07/2020] [Accepted: 06/11/2020] [Indexed: 02/08/2023] Open
Abstract
Background Human chronic graft-versus-host disease (CGVHD) shares clinical characteristics with a murine sclerodermatous GVHD (Scl-GVHD, B10.D2 → BALB/c) model that is characterized by skin and lung fibrosis. In this study, bone marrow- or adipose tissue-derived human mesenchymal stem cells (hMSCs) were injected into the Scl-GVHD mice to address their therapeutic effect on CGVHD. Methods Lethally irradiated BALB/c mice were transplanted with B10.D2 T cell-depleted bone marrow with or without spleen cells to generate Scl-GVHD. hMSCs were intravenously treated on days 3, 5, and 7 post-transplantation, and the control antibody or CCL1 blocking antibody was subcutaneously injected according to the same schedule as the hMSCs. Fourteen days after transplantation, the recipient mice were sacrificed, and their skin and lungs were analyzed. Results After the early injection of hMSCs after transplantation, the clinical and pathological severity of Scl-GVHD in the skin was significantly attenuated, whereas the pathological score was exacerbated in the lungs. hMSCs had migrated into the lungs, but not into the skin. CD11b monocyte/macrophages and CD4 T cells were markedly decreased in skin tissues, whereas there was an early recruitment of CD11b cells, and subsequently increased infiltration of CD4 T cells, in the lungs. Importantly, hMSCs persistently upregulated the expression of CCL1 in the lungs, but not in the skin. Concurrent treatment of hMSCs with a CCL1-blocking antibody alleviated the severity of the lung histopathology score and fibrosis with the preservation of the cutaneous protective effect against CGVHD. Infiltration of CD3 T cells and CD68 macrophages and upregulation of chemokines were also decreased in lung tissues, along with the recruitment of eosinophils and tissue IgE expression. In the skin, chemokine expression was further reduced after CCL1 blockade. Conclusions These data demonstrate that despite a protective effect against Scl-GVHD in the skin, administration of hMSCs exacerbated lung fibrosis associated with eosinophilia and airway inflammation through persistent CCL1 upregulation. CCL1 blockade offers a potential treatment of pulmonary complications induced after treatment with hMSCs.
Collapse
Affiliation(s)
- Ji-Young Lim
- Hematology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpodae-ro, Seocho-gu, Seoul, 06591, South Korea
| | - Da-Bin Ryu
- Hematology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpodae-ro, Seocho-gu, Seoul, 06591, South Korea
| | - Tae Woo Kim
- Hematology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpodae-ro, Seocho-gu, Seoul, 06591, South Korea
| | - Sung-Eun Lee
- Hematology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpodae-ro, Seocho-gu, Seoul, 06591, South Korea
| | - Gyeongsin Park
- Department of Pathology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Hyoung Kyu Yoon
- Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Chang-Ki Min
- Hematology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpodae-ro, Seocho-gu, Seoul, 06591, South Korea.
| |
Collapse
|
81
|
Patrick PS, Kolluri KK, Zaw Thin M, Edwards A, Sage EK, Sanderson T, Weil BD, Dickson JC, Lythgoe MF, Lowdell M, Janes SM, Kalber TL. Lung delivery of MSCs expressing anti-cancer protein TRAIL visualised with 89Zr-oxine PET-CT. Stem Cell Res Ther 2020; 11:256. [PMID: 32586403 PMCID: PMC7318529 DOI: 10.1186/s13287-020-01770-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/01/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND MSCTRAIL is a cell-based therapy consisting of human allogeneic umbilical cord-derived MSCs genetically modified to express the anti-cancer protein TRAIL. Though cell-based therapies are typically designed with a target tissue in mind, delivery is rarely assessed due to a lack of translatable non-invasive imaging approaches. In this preclinical study, we demonstrate 89Zr-oxine labelling and PET-CT imaging as a potential clinical solution for non-invasively tracking MSCTRAIL biodistribution. Future implementation of this technique should improve our understanding of MSCTRAIL during its evaluation as a therapy for metastatic lung adenocarcinoma. METHODS MSCTRAIL were radiolabelled with 89Zr-oxine and assayed for viability, phenotype, and therapeutic efficacy post-labelling. PET-CT imaging of 89Zr-oxine-labelled MSCTRAIL was performed in a mouse model of lung cancer following intravenous injection, and biodistribution was confirmed ex vivo. RESULTS MSCTRAIL retained the therapeutic efficacy and MSC phenotype in vitro at labelling amounts up to and above those required for clinical imaging. The effect of 89Zr-oxine labelling on cell proliferation rate was amount- and time-dependent. PET-CT imaging showed delivery of MSCTRAIL to the lungs in a mouse model of lung cancer up to 1 week post-injection, validated by in vivo bioluminescence imaging, autoradiography, and fluorescence imaging on tissue sections. CONCLUSIONS 89Zr-oxine labelling and PET-CT imaging present a potential method of evaluating the biodistribution of new cell therapies in patients, including MSCTRAIL. This offers to improve understanding of cell therapies, including mechanism of action, migration dynamics, and inter-patient variability.
Collapse
Affiliation(s)
- P Stephen Patrick
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK.
| | - Krishna K Kolluri
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - May Zaw Thin
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Adam Edwards
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Elizabeth K Sage
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Tom Sanderson
- Institute of Nuclear Medicine, University College London, London, UK
| | - Benjamin D Weil
- Centre for Cell, Gene & Tissue Therapeutics, Royal Free Hospital, London, UK
| | - John C Dickson
- Institute of Nuclear Medicine, University College London, London, UK
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Mark Lowdell
- Centre for Cell, Gene & Tissue Therapeutics, Royal Free Hospital, London, UK
- Department of Haematology, Cancer Institute, University College London, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Tammy L Kalber
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK.
| |
Collapse
|
82
|
Ng NN, Thakor AS. Locoregional delivery of stem cell-based therapies. Sci Transl Med 2020; 12:eaba4564. [PMID: 32522806 DOI: 10.1126/scitranslmed.aba4564] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/24/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Interventional regenerative medicine (IRM) uses image-guided, minimally invasive procedures for the targeted delivery of stem cell-based therapies to regenerate, replace, or repair damaged organs. Although many cellular therapies have shown promise in the preclinical setting, clinical results have been suboptimal. Most intravenously delivered cells become trapped in the lungs and reticuloendothelial system, resulting in little therapy reaching target tissues. IRM aims to increase the efficacy of cell-based therapies by locoregional stem cell delivery via endovascular, endoluminal, or direct injection into tissues. This review highlights routes of delivery, disease states, and mechanisms of action involved in the targeted delivery of stem cells.
Collapse
Affiliation(s)
- Nathan Norton Ng
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Avnesh Sinh Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94304, USA.
| |
Collapse
|
83
|
Ashmore-Harris C, Iafrate M, Saleem A, Fruhwirth GO. Non-invasive Reporter Gene Imaging of Cell Therapies, including T Cells and Stem Cells. Mol Ther 2020; 28:1392-1416. [PMID: 32243834 PMCID: PMC7264441 DOI: 10.1016/j.ymthe.2020.03.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/15/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Cell therapies represent a rapidly emerging class of new therapeutics. They are intended and developed for the treatment of some of the most prevalent human diseases, including cancer, diabetes, and for regenerative medicine. Currently, they are largely developed without precise assessment of their in vivo distribution, efficacy, or survival either clinically or preclinically. However, it would be highly beneficial for both preclinical cell therapy development and subsequent clinical use to assess these parameters in situ to enable enhancements in efficacy, applicability, and safety. Molecular imaging can be exploited to track cells non-invasively on the whole-body level and can enable monitoring for prolonged periods in a manner compatible with rapidly expanding cell types. In this review, we explain how in vivo imaging can aid the development and clinical translation of cell-based therapeutics. We describe the underlying principles governing non-invasive in vivo long-term cell tracking in the preclinical and clinical settings, including available imaging technologies, reporter genes, and imaging agents as well as pitfalls related to experimental design. Our emphasis is on adoptively transferred T cell and stem cell therapies.
Collapse
Affiliation(s)
- Candice Ashmore-Harris
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, King's College London, London SE1 9RT, UK
| | - Madeleine Iafrate
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Adeel Saleem
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK; Department of Haematological Medicine, King's College Hospital, London SE5 9RS, UK
| | - Gilbert O Fruhwirth
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.
| |
Collapse
|
84
|
Saleh M, Taher M, Sohrabpour AA, Vaezi AA, Nasiri Toosi M, Kavianpour M, Ghazvinian Z, Abdolahi S, Verdi J. Perspective of placenta derived mesenchymal stem cells in acute liver failure. Cell Biosci 2020; 10:71. [PMID: 32483484 PMCID: PMC7245988 DOI: 10.1186/s13578-020-00433-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/16/2020] [Indexed: 02/07/2023] Open
Abstract
Acute Liver failure (ALF) is a life-threatening disease and is determined by coagulopathy (with INR ≥ 1.5) and hepatic encephalopathy as a result of severe liver injury in patients without preexisting liver disease. Since there are problems with liver transplantation including lack of donors, use of immunosuppressive drugs, and high costs of this process, new therapeutic approaches alongside current treatments are needed. The placenta is a tissue that is normally discarded after childbirth. On the other hand, human placenta is a rich source of mesenchymal stem cells (MSCs), which is easily available, without moral problems, and its derived cells are less affected by age and environmental factors. Therefore, placenta-derived mesenchymal stem cells (PD-MSCs) can be considered as an allogeneic source for liver disease. Considering the studies on MSCs and their effects on various diseases, it can be stated that MSCs are among the most important agents to be used for novel future therapies of liver diseases. In this paper, we will investigate the effects of mesenchymal stem cells through migration and immigration to the site of injury, cell-to-cell contact, immunomodulatory effects, and secretory factors in ALF.
Collapse
Affiliation(s)
- Mahshid Saleh
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taher
- 2Gastroenterology and Hepatology, Tehran University of Medical Sciences, Imam Hospital Complex, Tehran, Iran
| | - Amir Ali Sohrabpour
- 3Gastroenterology and Hepatology, School of Medicine Shariati Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Amir Abbas Vaezi
- 4Department of Internal Medicine, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohsen Nasiri Toosi
- 5Internal Medicine, School of Medicine Liver Transplantation Research Center Imam, Khomeini Hospital Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Kavianpour
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Ghazvinian
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrokh Abdolahi
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
85
|
Cyclosporine A promotes the therapeutic effect of mesenchymal stem cells on transplantation reaction. Clin Sci (Lond) 2020; 133:2143-2157. [PMID: 31654074 DOI: 10.1042/cs20190294] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022]
Abstract
The successful application of mesenchymal stem cells (MSCs) remains a major challenge in stem cell therapy. Currently, several in vitro studies have indicated potentially beneficial interactions of MSCs with immunosuppressive drugs. These interactions can be even more complex in vivo, and it is in this setting that we investigate the effect of MSCs in combination with Cyclosporine A (CsA) on transplantation reaction and allogeneic cell survival. Using an in vivo mouse model, we found that CsA significantly promoted the survival of MSCs in various organs and tissues of the recipients. In addition, compared to treatment with CsA or MSCs alone, the survival of transplanted allogeneic cells was significantly improved after the combined application of MSCs with CsA. We further observed that the combinatory treatment suppressed immune response to the alloantigen challenge and modulated the immune balance by harnessing proinflammatory CD4+T-bet+ and CD4+RORγt+ cell subsets. These changes were accompanied by a significant decrease in IL-17 production along with an elevated level of IL-10. Co-cultivation of purified naive CD4+ cells with peritoneal macrophages isolated from mice treated with MSCs and CsA revealed that MSC-educated macrophages play an important role in the immunomodulatory effect observed on distinct T-cell subpopulations. Taken together, our findings suggest that CsA promotes MSC survival in vivo and that the therapeutic efficacy of the combination of MSCs with CsA is superior to each monotherapy. This combinatory treatment thus represents a promising approach to reducing immunosuppressant dosage while maintaining or even improving the outcome of therapy.
Collapse
|
86
|
Parfejevs V, Sagini K, Buss A, Sobolevska K, Llorente A, Riekstina U, Abols A. Adult Stem Cell-Derived Extracellular Vesicles in Cancer Treatment: Opportunities and Challenges. Cells 2020; 9:cells9051171. [PMID: 32397238 PMCID: PMC7290929 DOI: 10.3390/cells9051171] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022] Open
Abstract
Adult stem cells (SCs) participate in tissue repair and homeostasis regulation. The relative ease of SC handling and their therapeutic effect has made of these cell popular candidates for cellular therapy. However, several problems interfere with their clinical application in cancer treatment, like safety issues, unpredictable pro-tumour effects, and tissue entrapment. Therefore cell-free therapies that exhibit SC properties are being investigated. It is now well known that adult SCs exhibit their therapeutic effect via paracrine mechanisms. In addition to secretory proteins, SCs also release extracellular vesicles (EV) that deliver their contents to the target cells. Cancer treatment is one of the most promising applications of SC-EVs. Moreover, SC-EVs could be modified to improve targeted drug delivery. The aim of the review is to summarise current knowledge of adult SC-EV application in cancer treatment and to emphasise future opportunities and challenges in cancer treatment.
Collapse
Affiliation(s)
- Vadims Parfejevs
- Faculty of Medicine, University of Latvia, House of Science, Jelgavas Str 3, LV-1004 Riga, Latvia; (V.P.); (U.R.)
| | - Krizia Sagini
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway; (K.S.); (A.L.)
| | - Arturs Buss
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067 Riga, Latvia; (A.B.); (K.S.)
| | - Kristine Sobolevska
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067 Riga, Latvia; (A.B.); (K.S.)
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway; (K.S.); (A.L.)
| | - Una Riekstina
- Faculty of Medicine, University of Latvia, House of Science, Jelgavas Str 3, LV-1004 Riga, Latvia; (V.P.); (U.R.)
| | - Arturs Abols
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067 Riga, Latvia; (A.B.); (K.S.)
- Correspondence:
| |
Collapse
|
87
|
Safarova Y, Umbayev B, Hortelano G, Askarova S. Mesenchymal stem cells modifications for enhanced bone targeting and bone regeneration. Regen Med 2020; 15:1579-1594. [PMID: 32297546 DOI: 10.2217/rme-2019-0081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In pathological bone conditions (e.g., osteoporotic fractures or critical size bone defects), increasing the pool of osteoblast progenitor cells is a promising therapeutic approach to facilitate bone healing. Since mesenchymal stem cells (MSCs) give rise to the osteogenic lineage, a number of clinical trials investigated the potential of MSCs transplantation for bone regeneration. However, the engraftment of transplanted cells is often hindered by insufficient oxygen and nutrients supply and the tendency of MSCs to home to different sites of the body. In this review, we discuss various approaches of MSCs transplantation for bone regeneration including scaffold and hydrogel constructs, genetic modifications and surface engineering of the cell membrane aimed to improve homing and increase cell viability, proliferation and differentiation.
Collapse
Affiliation(s)
- Yuliya Safarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan.,School of Engineering & Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Bauyrzhan Umbayev
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Gonzalo Hortelano
- School of Sciences & Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Sholpan Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
88
|
Furuta T, Furuya K, Zheng YW, Oda T. Novel alternative transplantation therapy for orthotopic liver transplantation in liver failure: A systematic review. World J Transplant 2020; 10:64-78. [PMID: 32257850 PMCID: PMC7109592 DOI: 10.5500/wjt.v10.i3.64] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/10/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Orthotopic liver transplantation (OLT) is the only treatment for end-stage liver failure; however, graft shortage impedes its applicability. Therefore, studies investigating alternative therapies are plenty. Nevertheless, no study has comprehensively analyzed these therapies from different perspectives.
AIM To summarize the current status of alternative transplantation therapies for OLT and to support future research.
METHODS A systematic literature search was performed using PubMed, Cochrane Library and EMBASE for articles published between January 2010 and 2018, using the following MeSH terms: [(liver transplantation) AND cell] OR [(liver transplantation) AND differentiation] OR [(liver transplantation) AND organoid] OR [(liver transplantation) AND xenotransplantation]. Various types of studies describing therapies to replace OLT were retrieved for full-text evaluation. Among them, we selected articles including in vivo transplantation.
RESULTS A total of 89 studies were selected. There are three principle forms of treatment for liver failure: Xeno-organ transplantation, scaffold-based transplantation, and cell transplantation. Xeno-organ transplantation was covered in 14 articles, scaffold-based transplantation was discussed in 22 articles, and cell transplantation was discussed in 53 articles. Various types of alternative therapies were discussed: Organ liver, 25 articles; adult hepatocytes, 31 articles; fetal hepatocytes, three articles; mesenchymal stem cells (MSCs), 25 articles; embryonic stem cells, one article; and induced pluripotent stem cells, three articles and other sources. Clinical applications were discussed in 12 studies: Cell transplantation using hepatocytes in four studies, five studies using umbilical cord-derived MSCs, three studies using bone marrow-derived MSCs, and two studies using hematopoietic stem cells.
CONCLUSION The clinical applications are present only for cell transplantation. Scaffold-based transplantation is a comprehensive treatment combining organ and cell transplantations, which warrants future research to find relevant clinical applications.
Collapse
Affiliation(s)
- Tomoaki Furuta
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| | - Kinji Furuya
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
- Institute of Regenerative Medicine and Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
- Department of Regenerative Medicine, School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
- Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| |
Collapse
|
89
|
Kim GH, Subash M, Yoon JS, Jo D, Han J, Hong JM, Kim SS, Suh-Kim H. Neurogenin-1 Overexpression Increases the Therapeutic Effects of Mesenchymal Stem Cells through Enhanced Engraftment in an Ischemic Rat Brain. Int J Stem Cells 2020; 13:127-141. [PMID: 31887850 PMCID: PMC7119213 DOI: 10.15283/ijsc19111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022] Open
Abstract
Background and Objectives Stem cell therapy is a promising strategy for treating neurological diseases but its effectiveness is influenced by the route of administration and the characteristics of the stem cells. We determined whether neural induction of mesenchymal stem cells (MSCs) was beneficial when the cells were delivered intra-arterially through the carotid artery. Methods and Results MSCs were neurally induced using a retroviral vector expressing the neurogenic transcription factor neurogenin-1 (Ngn1). The LacZ gene encoding bacterial β-galactosidase was used as a control. Ischemic stroke was induced by transluminal occlusion of the middle cerebral artery and 3 days later the MSCs were delivered intra-arterially through the internal carotid artery. Magnetic resonance imaging analysis indicated that compared to MSCs expressing LacZ (MSCs/LacZ), MSCs expressing Ngn1 (MSCs/Ngn1) exhibited increased recruitment to the ischemic region and populated this area for a longer duration. Immunohistochemical analysis indicated that compared to MSCs/LacZ, MSCs/Ngn1 more effectively alleviated neurological dysfunction by blocking secondary damage associated with neuronal cell death and brain inflammation. Microarray and real-time PCR analysis indicated that MSCs/Ngn1 exhibited increased expression of chemotactic cytokine receptors, adherence to endothelial cells, and migration ability. Conclusions Neural induction with Ngn1 increases the homing ability of MSCs, enhancing their engraftment efficiency in the ischemic rat brain. Intra-arterial delivery of neurally induced MSCs/Ngn1 3 days after ischemic injury blocks neuronal cell death and inflammation, and improves functional recovery. Thus, intra-arterial administration of stem cells with neural properties may be a novel therapy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Gyu-Hee Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, Ajou Graduate School, Suwon, Korea
| | - Marasini Subash
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, Ajou Graduate School, Suwon, Korea
| | - Jeong Seon Yoon
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea
| | - Darong Jo
- Department of Biomedical Sciences, Ajou Graduate School, Suwon, Korea.,Research Center CelleBrain Ltd., Jeonju, Korea
| | - Jihun Han
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, Ajou Graduate School, Suwon, Korea
| | - Ji Man Hong
- Department of Biomedical Sciences, Ajou Graduate School, Suwon, Korea.,Department of Neurology, Ajou University School of Medicine, Suwon, Korea
| | - Sung-Soo Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea
| | - Haeyoung Suh-Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, Ajou Graduate School, Suwon, Korea.,Research Center CelleBrain Ltd., Jeonju, Korea
| |
Collapse
|
90
|
Gomez-Salazar M, Gonzalez-Galofre ZN, Casamitjana J, Crisan M, James AW, Péault B. Five Decades Later, Are Mesenchymal Stem Cells Still Relevant? Front Bioeng Biotechnol 2020; 8:148. [PMID: 32185170 PMCID: PMC7058632 DOI: 10.3389/fbioe.2020.00148] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells are culture-derived mesodermal progenitors isolatable from all vascularized tissues. In spite of multiple fundamental, pre-clinical and clinical studies, the native identity and role in tissue repair of MSCs have long remained elusive, with MSC selection in vitro from total cell suspensions essentially unchanged as a mere primary culture for half a century. Recent investigations have helped understand the tissue origin of these progenitor cells, and uncover alternative effects of MSCs on tissue healing via growth factor secretion and interaction with the immune system. In this review, we describe current trends in MSC biology and discuss how these may improve the use of these therapeutic cells in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mario Gomez-Salazar
- MRC Centre for Regenerative Medicine and Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom
| | - Zaniah N Gonzalez-Galofre
- MRC Centre for Regenerative Medicine and Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom
| | - Joan Casamitjana
- MRC Centre for Regenerative Medicine and Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom
| | - Mihaela Crisan
- MRC Centre for Regenerative Medicine and Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom
| | - Aaron W James
- Orthopaedic Hospital Research Center and Broad Stem Cell Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Bruno Péault
- MRC Centre for Regenerative Medicine and Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom.,Orthopaedic Hospital Research Center and Broad Stem Cell Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
91
|
Hadryś A, Sochanik A, McFadden G, Jazowiecka-Rakus J. Mesenchymal stem cells as carriers for systemic delivery of oncolytic viruses. Eur J Pharmacol 2020; 874:172991. [PMID: 32044323 DOI: 10.1016/j.ejphar.2020.172991] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022]
Abstract
Progress in genetic engineering led to the emergence of some viruses as potent anticancer therapeutics. These oncolytic viruses combine self-amplification with dual antitumor action: oncolytic (destruction of cancer cells) and immunostimulatory (eliciting acquired antitumor response against cancer epitopes). As any other viruses, they trigger antiviral response upon systemic administration. Mesenchymal stem cells are immature cells capable of self-renewing and differentiating into many cell types that belong to three germinal layers. Due to their inherent tumor tropism mesenchymal stem cells loaded with oncolytic virus can improve delivery of the therapeutic cargo to cancer sites. Shielding of oncolytic viral construct from antiviral host immune response makes these cells prospective delivery vehicles to even hard-to-reach metastatic neoplastic foci. Use of mesenchymal stem cells has been criticized by some investigators as limiting proliferative abilities of primary cells and increasing the risk of malignant transformation, as well as attenuating therapeutic responses. However, majority of preclinical studies indicate safety and efficacy of mesenchymal stem cells used as carriers of oncolytic viruses. In view of contradictory postulates, the debate continues. The review discusses mesenchymal stem cells as carriers for delivery of genetically engineered oncolytic constructs and focuses on systemic approach to oncoviral treatment of some deadly neoplasms.
Collapse
Affiliation(s)
- Agata Hadryś
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland; Institute of Chemistry, University of Silesia, Poland.
| | - Aleksander Sochanik
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland.
| | - Grant McFadden
- Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| | | |
Collapse
|
92
|
López-Beas J, Guadix JA, Clares B, Soriano-Ruiz JL, Zugaza JL, Gálvez-Martín P. An overview of international regulatory frameworks for mesenchymal stromal cell-based medicinal products: From laboratory to patient. Med Res Rev 2020; 40:1315-1334. [PMID: 32017179 DOI: 10.1002/med.21659] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
Abstract
Human mesenchymal stromal cells (hMSCs) are emerging as one of the most important cell types in advanced therapies and regenerative medicine due to their great therapeutic potential. The development of hMSC-based products focuses on the use of hMSCs as biological active substances, and they are considered medicinal products by the primary health agencies worldwide. Due to their regulatory status, the development of hMSC-based products is regulated by specific criteria that range from the design phase, nonclinical studies, clinical studies, to the final registration and approval. Patients should only be administered hMSC-based products within the framework of a clinical trial or after the product has obtained marketing authorization; in both cases, authorization by health authorities is usually required. Considering the above, this paper describes the current general regulatory requirements for hMSC-based products, by jurisdiction, to be implemented throughout their entire development process. These measures may provide support for researchers from both public and private entities and academia to optimize the development of these products and their subsequent marketing, thereby improving access to them by patients.
Collapse
Affiliation(s)
- Javier López-Beas
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Juan A Guadix
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina (IBIMA), Campus de Teatinos s/n, University of Málaga, Málaga, Spain.,BIONAND, Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía, Universidad de Málaga), Málaga, Spain
| | - Beatriz Clares
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Jose L Soriano-Ruiz
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - José L Zugaza
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Patricia Gálvez-Martín
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain.,R&D Human Health, Bioibérica S.A.U., Barcelona, Spain
| |
Collapse
|
93
|
McClain Caldwell I, Hogden C, Nemeth K, Boyajian M, Krepuska M, Szombath G, MacDonald S, Abshari M, Moss J, Vitale-Cross L, Fontana JR, Mezey E. Bone Marrow-Derived Mesenchymal Stromal Cells (MSCs) Modulate the Inflammatory Character of Alveolar Macrophages from Sarcoidosis Patients. J Clin Med 2020; 9:jcm9010278. [PMID: 31963936 PMCID: PMC7019909 DOI: 10.3390/jcm9010278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/02/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Sarcoidosis is a devastating inflammatory disease affecting many organs, especially the lungs and lymph nodes. Bone marrow-derived mesenchymal stromal cells (MSCs) can “reprogram” various types of macrophages towards an anti-inflammatory phenotype. We wanted to determine whether alveolar macrophages from sarcoidosis subjects behave similarly by mounting an anti-inflammatory response when co-cultured with MSCs. Fifteen sarcoidosis and eight control subjects underwent bronchoscopy and bronchoalveolar lavage (BAL). Unselected BAL cells (70–94% macrophages) were isolated and cultured with and without MSCs from healthy adults. Following stimulation of the cultured cells with lipopolysaccharide, the medium was removed to measure interleukin 10 and tumor necrosis factor alpha (IL-10 and TNF-α). In two additional sarcoidosis subjects, flow cytometry was used to study intracellular cytokines and surface markers associated with alveolar macrophages to confirm the results. Unselected BAL cells from sarcoidosis subjects co-cultured with MSCs showed a reduction in TNF-α (pro-inflammatory M1) and an increase in IL-10 (anti-inflammatory M2) in 9 of 11 samples studied. Control subject samples showed few, if any, differences in cytokine production. Unselected BAL cells from two additional patients analyzed by flow cytometry confirmed a switch towards an anti-inflammatory state (i.e., M1 to M2) after co-culture with MSCs. These results suggest that, similarly to other macrophages, alveolar macrophages also respond to MSC contacts by changing towards an anti-inflammatory phenotype. Based on our results, we hypothesize that mesenchymal stromal cells applied to the airways might alleviate lung inflammation and decrease steroid need in patients with sarcoidosis.
Collapse
Affiliation(s)
- Ian McClain Caldwell
- Adult Stem Cell Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (I.M.C.); (C.H.); (M.B.); (M.K.); (L.V.-C.); (E.M.)
| | - Christopher Hogden
- Adult Stem Cell Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (I.M.C.); (C.H.); (M.B.); (M.K.); (L.V.-C.); (E.M.)
| | - Krisztian Nemeth
- Adult Stem Cell Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (I.M.C.); (C.H.); (M.B.); (M.K.); (L.V.-C.); (E.M.)
- Stem Cell Laboratory, Department of Dermatology, Venerology and Dermato-oncology, Semmelweis University, Budapest 1085, Hungary;
- Correspondence:
| | - Michael Boyajian
- Adult Stem Cell Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (I.M.C.); (C.H.); (M.B.); (M.K.); (L.V.-C.); (E.M.)
| | - Miklos Krepuska
- Adult Stem Cell Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (I.M.C.); (C.H.); (M.B.); (M.K.); (L.V.-C.); (E.M.)
| | - Gergely Szombath
- Stem Cell Laboratory, Department of Dermatology, Venerology and Dermato-oncology, Semmelweis University, Budapest 1085, Hungary;
| | - Sandra MacDonald
- National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA; (S.M.); (J.M.); (J.R.F.)
| | - Mehrnoosh Abshari
- Combined Technical Research Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Joel Moss
- National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA; (S.M.); (J.M.); (J.R.F.)
| | - Lynn Vitale-Cross
- Adult Stem Cell Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (I.M.C.); (C.H.); (M.B.); (M.K.); (L.V.-C.); (E.M.)
| | - Joseph R Fontana
- National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA; (S.M.); (J.M.); (J.R.F.)
| | - Eva Mezey
- Adult Stem Cell Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (I.M.C.); (C.H.); (M.B.); (M.K.); (L.V.-C.); (E.M.)
| |
Collapse
|
94
|
Nitkin CR, Rajasingh J, Pisano C, Besner GE, Thébaud B, Sampath V. Stem cell therapy for preventing neonatal diseases in the 21st century: Current understanding and challenges. Pediatr Res 2020; 87:265-276. [PMID: 31086355 PMCID: PMC6854309 DOI: 10.1038/s41390-019-0425-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023]
Abstract
Diseases of the preterm newborn such as bronchopulmonary dysplasia, necrotizing enterocolitis, cerebral palsy, and hypoxic-ischemic encephalopathy continue to be major causes of infant mortality and long-term morbidity. Effective therapies for the prevention or treatment for these conditions are still lacking as recent clinical trials have shown modest or no benefit. Stem cell therapy is rapidly emerging as a novel therapeutic tool for several neonatal diseases with encouraging pre-clinical results that hold promise for clinical translation. However, there are a number of unanswered questions and facets to the development of stem cell therapy as a clinical intervention. There is much work to be done to fully elucidate the mechanisms by which stem cell therapy is effective (e.g., anti-inflammatory versus pro-angiogenic), identifying important paracrine mediators, and determining the timing and type of therapy (e.g., cellular versus secretomes), as well as patient characteristics that are ideal. Importantly, the interaction between stem cell therapy and current, standard-of-care interventions is nearly completely unknown. In this review, we will focus predominantly on the use of mesenchymal stromal cells for neonatal diseases, highlighting the promises and challenges in clinical translation towards preventing neonatal diseases in the 21st century.
Collapse
Affiliation(s)
- Christopher R Nitkin
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Johnson Rajasingh
- Department of Cardiovascular Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, MO, USA
| | - Courtney Pisano
- Department of Pediatric Surgery, Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Gail E Besner
- Department of Pediatric Surgery, Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Bernard Thébaud
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
| | - Venkatesh Sampath
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA.
| |
Collapse
|
95
|
Abstract
Regenerative medicine with the use of stem cells has appeared as a potential therapeutic alternative for many disease states. Despite initial enthusiasm, there has been relatively slow transition to clinical trials. In large part, numerous questions remain regarding the viability, biology and efficacy of transplanted stem cells in the living subject. The critical issues highlighted the importance of developing tools to assess these questions. Advances in molecular biology and imaging have allowed the successful non-invasive monitoring of transplanted stem cells in the living subject. Over the years these methodologies have been updated to assess not only the viability but also the biology of transplanted stem cells. In this review, different imaging strategies to study the viability and biology of transplanted stem cells are presented. Use of these strategies will be critical as the different regenerative therapies are being tested for clinical use.
Collapse
Affiliation(s)
- Fakhar Abbas
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joseph C. Wu
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
- Department of Medicine (Cardiology), Stanford University, Stanford, CA, USA
| | - Sanjiv Sam Gambhir
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
- Department of Bio-Engineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
96
|
Use of Mesenchymal Stem/Stromal Cells for Pediatric Orthopedic Applications. Tech Orthop 2019. [DOI: 10.1097/bto.0000000000000351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
97
|
Ekblad-Nordberg Å, Walther-Jallow L, Westgren M, Götherström C. Prenatal stem cell therapy for inherited diseases: Past, present, and future treatment strategies. Stem Cells Transl Med 2019; 9:148-157. [PMID: 31647195 PMCID: PMC6988764 DOI: 10.1002/sctm.19-0107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/29/2019] [Indexed: 02/06/2023] Open
Abstract
Imagine the profits in quality of life that can be made by treating inherited diseases early in life, maybe even before birth! Immense cost savings can also be made by treating diseases promptly. Hence, prenatal stem cell therapy holds great promise for developing new and early‐stage treatment strategies for several diseases. Successful prenatal stem cell therapy would represent a major step forward in the management of patients with hematological, metabolic, or immunological disorders. However, treatment before birth has several limitations, including ethical issues. In this review, we summarize the past, the present, and the future of prenatal stem cell therapy, which includes an overview of different stem cell types, preclinical studies, and clinical attempts treating various diseases. We also discuss the current challenges and future strategies for prenatal stem cell therapy and also new approaches, which may lead to advancement in the management of patients with severe incurable diseases.
Collapse
Affiliation(s)
- Åsa Ekblad-Nordberg
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, Sweden
| | - Lilian Walther-Jallow
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Westgren
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Götherström
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
98
|
Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N. Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci 2019; 76:3323-3348. [PMID: 31055643 PMCID: PMC11105258 DOI: 10.1007/s00018-019-03125-1] [Citation(s) in RCA: 324] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are isolated from multiple biological tissues-adult bone marrow and adipose tissues and neonatal tissues such as umbilical cord and placenta. In vitro, MSCs show biological features of extensive proliferation ability and multipotency. Moreover, MSCs have trophic, homing/migration and immunosuppression functions that have been demonstrated both in vitro and in vivo. A number of clinical trials are using MSCs for therapeutic interventions in severe degenerative and/or inflammatory diseases, including Crohn's disease and graft-versus-host disease, alone or in combination with other drugs. MSCs are promising for therapeutic applications given the ease in obtaining them, their genetic stability, their poor immunogenicity and their curative properties for tissue repair and immunomodulation. The success of MSC therapy in degenerative and/or inflammatory diseases might depend on the robustness of the biological functions of MSCs, which should be linked to their therapeutic potency. Here, we outline the fundamental and advanced concepts of MSC biological features and underline the biological functions of MSCs in their basic and translational aspects in therapy for degenerative and/or inflammatory diseases.
Collapse
Affiliation(s)
- Abderrahim Naji
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan.
| | - Masamitsu Eitoku
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Benoit Favier
- CEA, DRF-IBFJ, IDMIT, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, Paris-Sud University, Fontenay-aux-Roses, France
| | - Frédéric Deschaseaux
- STROMALab, Etablissement Français du Sang Occitanie, UMR 5273 CNRS, INSERM U1031, Université de Toulouse, Toulouse, France
| | - Nathalie Rouas-Freiss
- CEA, DRF-Francois Jacob Institute, Research Division in Hematology and Immunology (SRHI), Saint-Louis Hospital, IRSL, UMRS 976, Paris, France
| | - Narufumi Suganuma
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
99
|
Khan RS, Newsome PN. A Comparison of Phenotypic and Functional Properties of Mesenchymal Stromal Cells and Multipotent Adult Progenitor Cells. Front Immunol 2019; 10:1952. [PMID: 31555259 PMCID: PMC6724467 DOI: 10.3389/fimmu.2019.01952] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022] Open
Abstract
Both Multipotent Adult Progenitor Cells and Mesenchymal Stromal Cells are bone-marrow derived, non-haematopoietic adherent cells, that are well-known for having immunomodulatory and pro-angiogenic properties, whilst being relatively non-immunogenic. However, they are phenotypically and functionally distinct cell types, which has implications for their efficacy in different settings. In this review we compare the phenotypic and functional properties of these two cell types, to help in determining which would be the superior cell type for different applications.
Collapse
Affiliation(s)
- Reenam S Khan
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Philip N Newsome
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
100
|
Wang C, Adams SR, Xu H, Zhu W, Ahrens ET. β‑Diketonate-Iron(III) Complex: A Versatile Fluorine-19 MRI Signal Enhancement Agent. ACS APPLIED BIO MATERIALS 2019; 2:3836-3842. [PMID: 33981964 DOI: 10.1021/acsabm.9b00455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorine-19 magnetic resonance imaging (MRI) has gained considerable momentum as a promising imaging modality for in vivo tracking of cellular therapies and as a diagnostic for inflammatory disease. To further the utility of this technique, we increase imaging probe sensitivity by merging paramagnetic metal chelates with aqueous perfluorocarbon (PFC) nanoemulsions. We prepared a highly fluorinated ferric tris(β-diketonate) chelate (MW = 1265.2 g/mol) at gram scale. This iron chelate is soluble in multiple PFC oils used for MRI and readily reduces the 19F longitudinal relaxation time (T 1) to <100 ms with modest line broadening and displays superior properties for 19F MRI applications. The sensitivity enhancement by Fe(III) laden PFC nanoemulsion was confirmed in MRI phantom studies, where reduced T 1 speeds data acquisition thereby increasing the 19F image sensitivity per time via signal averaging. Additionally, 19F relaxivity of nanoemulsions incorporating other metal ions, including Gd, Er, Ho, Dy, Mn, Cr, and Ni, were evaluated. High-moment lanthanide ions, such as Gd(III), display severe line broadening, but other ions [e.g., Ho(III)] induce pseudocontact chemical shifts (up to 0.5 ppm) of 19F in nanoemulsion, which makes them potentially useful for multichromatic 19F imaging. Formulated nanoemulsions have a shelf life >200 days. Free β-diketonate or its iron complex in formed PFC nanoemulsion did not induce cytotoxicity in intracellularly labeled macrophages. Overall, ferric tris(β-diketonate) chelate provides a scalable approach for boosting sensitivity of PFC-based 19F MRI probes. More generally, it can functionalize PFC oil, whose chemical modification remains challenging.
Collapse
Affiliation(s)
- Chao Wang
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| | - Stephen R Adams
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States
| | - Hongyan Xu
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| | - Wenlian Zhu
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| | - Eric T Ahrens
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|