51
|
Chen CH, Chen SY, Wang V, Chen CC, Wang KC, Chen CH, Liu YC, Lu KC, Yip PK, Ma WY, Liu CC. Effects of repetitive hyperbaric oxygen treatment in patients with acute cerebral infarction: a pilot study. ScientificWorldJournal 2012; 2012:694703. [PMID: 22919348 PMCID: PMC3415162 DOI: 10.1100/2012/694703] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/21/2012] [Indexed: 11/17/2022] Open
Abstract
The role of hyperbaric oxygen therapy (HBOT) in the treatment of acute ischemic stroke is controversial. This prospective study assessed the efficacy and safety of HBOT as adjuvant treatment on 46 acute ischemic stroke in patients who did not receive thrombolytic therapy. The HBOT group (n = 16) received conventional medical treatment with 10 sessions of adjunctive HBOT within 3-5 days after stroke onset, while the control group (n = 30) received the same treatment but without HBOT. Early (around two weeks after onset) and late (one month after onset) outcomes (National Institutes of Health Stroke Scale, NIHSS scores) and efficacy (changes of NIHSS scores) of HBOT were evaluated. The baseline clinical characteristics were similar in both groups. Both early and late outcomes of the HBOT group showed significant difference (P ≤ 0.001). In the control group, there was only significant difference in early outcome (P = 0.004). For early efficacy, there was no difference when comparing changes of NIHSS scores between the two groups (P = 0.140) but there was statistically significant difference when comparing changes of NIHSS scores at one month (P ≤ 0.001). The HBOT used in this study may be effective for patients with acute ischemic stroke and is a safe and harmless adjunctive treatment.
Collapse
Affiliation(s)
- Cheng-Hsin Chen
- Department of Internal Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Lapchak PA. Identifying Vascular Targets to Treat Hemorrhagic Stroke. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
53
|
Hobohm C, Laignel F, Kacza J, Küppers-Tiedt L, Heindl M, Schneider D, Grosche J, Härtig W, Michalski D. Long-lasting neuronal loss following experimental focal cerebral ischemia is not affected by combined administration of tissue plasminogen activator and hyperbaric oxygen. Brain Res 2011; 1417:115-26. [DOI: 10.1016/j.brainres.2011.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 07/26/2011] [Accepted: 08/11/2011] [Indexed: 01/13/2023]
|
54
|
Wang GH, Zhang XG, Jiang ZL, Li X, Peng LL, Li YC, Wang Y. Neuroprotective effects of hyperbaric oxygen treatment on traumatic brain injury in the rat. J Neurotrauma 2011; 27:1733-43. [PMID: 20568957 DOI: 10.1089/neu.2009.1175] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was designed to evaluate the potential benefits of hyperbaric oxygen (HBO) in the treatment of traumatic brain injury (TBI). The right cerebral cortex of rats was injured by the impact of a 20-g object dropped from a predetermined height. The rats received HBO treatment at 3 ATA for 60 min after TBI. Neurological behavior score, brain water content, neuronal loss in the hippocampus, and cell apoptosis in brain tissue surrounding the primary injury site were examined to determine brain damage severity. Three and six hours after TBI, HBO-treated rats displayed a significant reduction in brain damage. However, by 12 h after TBI, the efficacy of HBO treatment was considerably attenuated. Furthermore, at 24, 48, and 72 h after TBI, the HBO treatment did not show any notable effects. In contrast, multiple HBO treatments (three or five times in all), even when started 48 h after TBI, remarkably reduced neurology deficit scores and the loss of neuronal numbers in the hippocampus. Although multiple treatments started at 48 h significantly improved neurological behaviors and reduced brain injury, the overall beneficial effects were substantially weaker than those seen after a single treatment at 6 h. These results suggest that: (1) HBO treatment could alleviate brain damage after TBI; (2) a single treatment with HBO has a time limitation of 12 h post-TBI; and (3) multiple HBO treatments have the possibility to extend the post-TBI delivery time window. Therefore, our results clearly suggest the validity of HBO therapy for the treatment of TBI.
Collapse
Affiliation(s)
- Guo-Hua Wang
- Department of Neuropharmacology, Institute of Nautical Medicine, Nantong University, Nantong, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
55
|
Oxygen therapy improves energy metabolism in focal cerebral ischemia. Brain Res 2011; 1415:103-8. [PMID: 21872850 DOI: 10.1016/j.brainres.2011.07.064] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 07/29/2011] [Indexed: 12/30/2022]
Abstract
Oxygen therapy (OT) with hyperbaric oxygen (HBO) or normobaric hyperoxia (NBO) improves the oxygenation of penumbral tissue in experimental ischemic stroke. However, whether this results in the improvement of energy metabolism is unclear. We investigated the effect of both OTs on tissue acidosis and on ATP production. Beginning 25 min after filament middle cerebral artery occlusion (MCAO), mice breathed either air, 100% O₂ (NBO), or 100% O₂ at 3 ata (HBO) for 60 min. Regional tissue pH was measured using the umbelliferone fluorescence. Regional ATP concentration was depicted by substrate-specific bioluminescence. Severity of ischemia did not differ among groups in laser-Doppler flowmetry. Both NBO (70.1±14.0 mm³) and, more effectively, HBO (57.2±11.9 mm³) significantly reduced volume of tissue acidosis compared to air (89.4±4.0 mm³), p<0.05). Topographically, acidosis was less pronounced in the medial striatum and in the cortical ischemic border areas. This resulted in significantly smaller volumes of ATP depletion (77.8±7.7 mm³ in air, 61.4±15.2 mm³ in NBO and 51.2±14.4 mm³ in HBO; p<0.05). In conclusion, OT significantly improves energy metabolism in the border zones of focal cerebral ischemia which are the areas protected by OT in this model.
Collapse
|
56
|
Fan X, Kavelaars A, Heijnen CJ, Groenendaal F, van Bel F. Pharmacological neuroprotection after perinatal hypoxic-ischemic brain injury. Curr Neuropharmacol 2011; 8:324-34. [PMID: 21629441 PMCID: PMC3080590 DOI: 10.2174/157015910793358150] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/31/2010] [Accepted: 04/08/2010] [Indexed: 11/22/2022] Open
Abstract
Perinatal hypoxia-ischemia (HI) is an important cause of neonatal brain injury. Recent progress in the search for neuroprotective compounds has provided us with several promising drugs to reduce perinatal HI-induced brain injury. In the early stage (first 6 hours after birth) therapies are concentrated on prevention of the production of reactive oxygen species or free radicals (xanthine-oxidase-, nitric oxide synthase-, and prostaglandin inhibition), anti-inflammatory effects (erythropoietin, melatonin, Xenon) and anti-apoptotic interventions (nuclear factor kappa B- and c-jun N-terminal kinase inhibition); in a later stage stimulation of neurotrophic properties in the neonatal brain (erythropoietin, growth factors) can be targeted to promote neuronal and oligodendrocyte regeneration. Combination of pharmacological means of treatment with moderate hypothermia, which is accepted now as a meaningful therapy, is probably the next step in clinical treatment to fight post-asphyxial brain damage. Further studies should be directed at a more rational use of therapies by determining the optimal time and dose to inhibit the different potentially destructive molecular pathways or to enhance endogenous repair while at the same time avoiding adverse effects of the drugs used.
Collapse
Affiliation(s)
- Xiyong Fan
- Department of Neonatology, University Medical Center, Utrecht, the Netherlands
| | | | | | | | | |
Collapse
|
57
|
Affiliation(s)
- John H Zhang
- Editor-in-Chief, Medical Gas Research, Loma Linda University School of Medicine, Loma Linda, California, USA.
| |
Collapse
|
58
|
Michalski D, Härtig W, Schneider D, Hobohm C. Use of normobaric and hyperbaric oxygen in acute focal cerebral ischemia - a preclinical and clinical review. Acta Neurol Scand 2011; 123:85-97. [PMID: 20456243 DOI: 10.1111/j.1600-0404.2010.01363.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High socioeconomic burden is attributed to acute ischemic stroke, but treatment strategies are still limited. Normobaric (NBO) and hyperbaric oxygen therapy (HBO) were frequently investigated in preclinical studies following acute focal cerebral ischemia with predominantly beneficial effects in different outcome measurements. Best results were achieved in transient cerebral ischemia, starting HBO early after artery occlusion, and by using relatively high pressures. On molecular level, oxygen application leads to blood-brain barrier stabilization, reduction of excitotoxic metabolites, and inhibition of inflammatory processes. Therefore, NBO and HBO appear excessively hopeful in salvaging impaired brain cells during ischemic stroke. However, harmful effects have been noted contributing to damaging properties, for example, vasoconstriction and free oxygen radicals. In the clinical setting, NBO provided positive results in a single clinical trial, but HBO failed to show efficacy in three randomized trials. To date, the translation of numerous evidentiary experimental results into clinical implementation remains open. Recently, oxygen became interesting as an additional therapy to neuroprotective or recanalization drugs to combine positive effects. Further preclinical research is needed exploring interactions between NBO, HBO, and key factors with multiphasic roles in acute damaging and delayed inflammatory processes after cerebral ischemia, for example, matrix-metalloproteinases and hypoxia-inducible factor-1α.
Collapse
Affiliation(s)
- D Michalski
- Department of Neurology, University of Leipzig, Germany.
| | | | | | | |
Collapse
|
59
|
Manabe H, Wang Y, Yoshimura R, Cai Y, Fitzgerald M, Clarke R, Lee KS. Metabolic reflow as a therapy for ischemic brain injury. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 110:87-91. [PMID: 21125451 DOI: 10.1007/978-3-7091-0356-2_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ischemic neuronal damage is a common feature of occlusive strokes, hemorrhagic strokes, and traumatic brain injury. In addition, ischemia can be an anticipated or unanticipated complication of a variety of surgical procedures. Most therapeutic strategies for managing ischemic injury seek to re-establish blood flow, suppress neural metabolism, and/or limit specific cellular injury cascades. An alternative therapeutic approach is to enhance the delivery of metabolic substrates to ischemic tissue. This strategy is typified by efforts to increase tissue oxygenation by elevating the levels of circulating oxygen. Our studies are examining a complementary approach in which the delivery of metabolic substrates is enhanced by facilitating the diffusion of oxygen and glucose from the vasculature into neural tissue during ischemia. This is achieved by increasing the diffusivity of small molecules in aqueous solutions, such as plasma and interstitial fluid. The carotenoid compound, trans-sodium crocetinate (TSC) is capable of increasing oxygen and glucose diffusivity, and our studies demonstrate that TSC increases cerebral tissue oxygenation in the penumbra of a focal ischemic event. In addition, TSC treatment reduces the volume of cerebral infarction in rodent models of both permanent and temporary focal ischemia. This strategy of "metabolic reflow" thus blunts the metabolic challenge in partially-perfused tissue and reduces ischemic neural injury.
Collapse
Affiliation(s)
- Hiroaki Manabe
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Lekic T, Manaenko A, Rolland W, Ostrowski RP, Virbel K, Tang J, Zhang JH. Beneficial effect of hyperbaric oxygenation after neonatal germinal matrix hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 111:253-7. [PMID: 21725764 DOI: 10.1007/978-3-7091-0693-8_42] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Germinal matrix hemorrhage (GMH) is a potentially devastating neurological disease of very low birth weight premature infants. This leads to post-hemorrhagic hydrocephalus, cerebral palsy, and mental retardation. Hyperbaric oxygen (HBO) treatment is a broad neuroprotectant after brain injury. This study investigated the therapeutic effect of HBO after neonatal GMH. METHODS Neonatal rats underwent stereotaxic infusion of clostridial collagenase into the right germinal matrix (anterior caudate) brain region. Cognitive function was assessed at 3 weeks, and then sensorimotor, cerebral, cardiac, and splenic growths were measured 1 week thereafter. RESULTS Hyperbaric oxygen (HBO) treatment markedly improved upon the mental retardation and cerebral palsy outcome measurements in rats at the juvenile developmental stage. The administration of HBO early after neonatal GMH also normalized brain atrophy, splenomegaly, and cardiac hypertrophy 1 month after injury. CONCLUSION This study supports the role of hyperbaric oxygen (HBO) treatment in the early period after neonatal GMH. HBO is an effective strategy to help protect the infant's brain from the post-hemorrhagic consequences of brain atrophy, mental retardation, and cerebral palsy. Further studies are necessary to determine the mechanistic basis of these neuroprotective effects.
Collapse
Affiliation(s)
- Tim Lekic
- Department of Physiology, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Manabe H, Okonkwo DO, Gainer JL, Clarke RH, Lee KS. Protection against focal ischemic injury to the brain by trans-sodium crocetinate. Laboratory investigation. J Neurosurg 2010; 113:802-9. [PMID: 19961314 DOI: 10.3171/2009.10.jns09562] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECT Ischemic injury is a potential complication in a variety of surgical procedures and is a particular impediment to the success of surgeries involving highly vulnerable neural tissue. One approach to limiting this form of injury is to enhance metabolic supply to the affected tissue. Trans-sodium crocetinate (TSC) is a carotenoid compound that has been shown to increase tissue oxygenation by facilitating the diffusivity of small molecules, such as oxygen and glucose. The present study examined the ability of TSC to modify oxygenation in ischemic neural tissue and tested the potential neuroprotective effects of TSC in permanent and temporary models of focal cerebral ischemia. METHODS Adult male rats (330–370 g) were subjected to either permanent or temporary focal ischemia by simultaneous occlusion of both common carotid arteries and the left middle cerebral artery (3-vessel occlusion [3-VO]). Using the permanent ischemia paradigm, TSC was administered intravenously beginning 10 minutes after the onset of ischemia at 1 of 8 dosages, ranging from 0.023 to 4.580 mg/kg. Cerebral infarct volume was measured 24 hours after the onset of ischemia. The effect of TSC on infarct volume was also tested after temporary (2-hour) ischemia using a dosage of 0.092 mg/kg. In other animals undergoing temporary ischemia, tissue oxygenation was monitored in the ischemic penumbra using a Licox probe. RESULTS Administration of TSC reduced infarct volume in a dose-dependent manner in the permanent ischemia model, achieving statistical significance at dosages ranging from 0.046 to 0.229 mg/kg. The most effective dosage of TSC in the permanent ischemia experiment (0.092 mg/kg) was further tested using a temporary (2-hour) ischemia paradigm. Infarct volume was reduced significantly by TSC in this ischemia-reperfusion model as well. Recordings of oxygen levels in the ischemic penumbra of the temporary ischemia model showed that TSC increased tissue oxygenation during vascular occlusion, but reduced the oxygen overshoot (hyperoxygenation) that occurs upon reperfusion. CONCLUSIONS The novel carotenoid compound TSC exerts a neuroprotective influence against permanent and temporary ischemic injury when administered soon after the onset of ischemia. The protective mechanism of TSC remains to be confirmed; however, the permissive effect of TSC on the diffusivity of small molecules is a plausible mechanism based on the observed increase in tissue oxygenation in the ischemic penumbra. This represents a form of protection based on “metabolic reflow” that can occur under conditions of partial vascular perfusion. It is particularly noteworthy that TSC could conceivably limit the progression of a wide variety of cellular injury mechanisms by blunting the ischemic challenge to the brain.
Collapse
Affiliation(s)
- Hiroaki Manabe
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | | | |
Collapse
|
62
|
Oxygen therapy reduces secondary hemorrhage after thrombolysis in thromboembolic cerebral ischemia. J Cereb Blood Flow Metab 2010; 30:1651-60. [PMID: 20424638 PMCID: PMC2949252 DOI: 10.1038/jcbfm.2010.50] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hyperbaric oxygen (HBO) and normobaric hyperoxia (NBO) protect the brain parenchyma and the cerebral microcirculation against ischemia. We studied their effect on secondary hemorrhage after thrombolysis in two thromboembolic middle cerebral artery occlusion (MCAO) (tMCAO) models. Beginning 60 minutes after tMCAO with either thrombin-induced thromboemboli (TT) or calcium-induced thromboemboli (CT), spontaneously hypertensive rats (n=96) breathed either air, 100% O(2) (NBO), or 100% O(2) at 3 bar (HBO) for 1 hour. Immediately thereafter, recombinant tissue plasminogen activator (rt-PA, 9 mg/kg) was injected. Although significant reperfusion was observed after thrombolysis in TT-tMCAO, vascular occlusion persisted in CT-tMCAO. In TT-tMCAO, NBO and HBO significantly reduced diffusion-weighted imaging-magnetic resonance imaging (MRI) lesion volume and postischemic blood-brain barrier (BBB) permeability on postcontrast T1-weighted images. NBO and, significantly more potently, HBO reduced macroscopic hemorrhage on T2* MRI and on corresponding postmortem cryosections. Oxygen therapy lowered hemoglobin content and attenuated activation of matrix metalloproteinases in the ischemic hemisphere. In contrast, NBO and HBO failed to reduce infarct size in CT but both decreased BBB damage and microscopic hemorrhagic transformation. Only HBO reduced hemoglobin extravasation in the ischemic hemisphere. In conclusion, NBO and HBO decrease infarct size after thromboembolic ischemia only if recanalization is successful. As NBO and HBO also reduce postthrombolytic intracerebral hemorrhage, combining the two with thrombolysis seems promising.
Collapse
|
63
|
Youngster I, Abu-Kishk I, Kozer E, Braunstein R, Bar-Haim A, Berkovitch M. Hyperbaric Oxygen Treatment Reduces Mortality in Acute Iron Intoxication in Rats. Basic Clin Pharmacol Toxicol 2010; 107:737-41. [DOI: 10.1111/j.1742-7843.2010.00569.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
64
|
Kakehata J, Yamaguchi T, Togashi H, Sakuma I, Otani H, Morimoto Y, Yoshioka M. Therapeutic Potentials of an Artificial Oxygen-Carrier, Liposome-Encapsulated Hemoglobin, for Ischemia/Reperfusion-Induced Cerebral Dysfunction in Rats. J Pharmacol Sci 2010; 114:189-97. [DOI: 10.1254/jphs.10115fp] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
65
|
Long-term functional and neurological outcome after simultaneous treatment with tissue-plasminogen activator and hyperbaric oxygen in early phase of embolic stroke in rats. Brain Res 2009; 1303:161-8. [DOI: 10.1016/j.brainres.2009.09.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 09/05/2009] [Accepted: 09/11/2009] [Indexed: 11/22/2022]
|
66
|
Matsukawa N, Yasuhara T, Hara K, Xu L, Maki M, Yu G, Kaneko Y, Ojika K, Hess DC, Borlongan CV. Therapeutic targets and limits of minocycline neuroprotection in experimental ischemic stroke. BMC Neurosci 2009; 10:126. [PMID: 19807907 PMCID: PMC2762982 DOI: 10.1186/1471-2202-10-126] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 10/06/2009] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Minocycline, a second-generation tetracycline with anti-inflammatory and anti-apoptotic properties, has been shown to promote therapeutic benefits in experimental stroke. However, equally compelling evidence demonstrates that the drug exerts variable and even detrimental effects in many neurological disease models. Assessment of the mechanism underlying minocycline neuroprotection should clarify the drug's clinical value in acute stroke setting. RESULTS Here, we demonstrate that minocycline attenuates both in vitro (oxygen glucose deprivation) and in vivo (middle cerebral artery occlusion) experimentally induced ischemic deficits by direct inhibition of apoptotic-like neuronal cell death involving the anti-apoptotic Bcl-2/cytochrome c pathway. Such anti-apoptotic effect of minocycline is seen in neurons, but not apparent in astrocytes. Our data further indicate that the neuroprotection is dose-dependent, in that only low dose minocycline inhibits neuronal cell death cascades at the acute stroke phase, whereas the high dose exacerbates the ischemic injury. CONCLUSION The present study advises our community to proceed with caution to use the minimally invasive intravenous delivery of low dose minocycline in order to afford neuroprotection that is safe for stroke.
Collapse
Affiliation(s)
- Noriyuki Matsukawa
- Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Takao Yasuhara
- Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Koichi Hara
- Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Lin Xu
- Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Mina Maki
- Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Guolong Yu
- Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Yuji Kaneko
- Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Kosei Ojika
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Cesar V Borlongan
- Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA
- Research and Affiliations Service Line, Augusta VAMC, Augusta, GA 30912, USA
| |
Collapse
|
67
|
Cihan YB, Uzun G, Yildiz Ş, Dönmez H. Hyperbaric oxygen therapy for radiation-induced brain necrosis in a patient with primary central nervous system lymphoma. J Surg Oncol 2009; 100:732-5. [DOI: 10.1002/jso.21387] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
68
|
Hyperbaric oxygen in neurosurgery. Acta Neurochir (Wien) 2009; 151:415-8. [PMID: 19277461 DOI: 10.1007/s00701-009-0228-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 02/16/2009] [Indexed: 10/21/2022]
Abstract
BACKGROUND The therapeutic use of pure oxygen, even under hyperbaric conditions, has been well established for about 50 years, whereas the discovery of oxygen occurred 250 years earlier. Many neurosurgical patients suffer from brain tissue damage, due to reduced blood flow, obstructive vessel disease, or as a result of traumatic brain injury. METHODS AND RESULTS The application of pure oxygen in these patients is the only method of increasing the O(2) concentration in tissue with impaired blood supply and can minimize secondary impairment of brain tissue. DISCUSSION In this brief historical overview we focus on the development and evidence of hyperbaric oxygenation in this specific field of insufficient oxygen supply to the central neural tissue. CONCLUSION With the use of modern biological methods and new study designs, HBO has a place in evidence-based treatment of patients with neural tissue damage.
Collapse
|
69
|
Abstract
Oxygen is frequently administered to patients with suspected stroke. However, the role of oxygen therapy in ischemic stroke remains controversial in light of the failure of three clinical trials of hyperbaric oxygen therapy to show efficacy, and the fear of exacerbating oxygen free radical injury. The previous trials had several shortcomings, perhaps because they were designed on basis of anecdotal case reports and little preclinical data. Most animal studies concerning oxygen therapy in stroke have been conducted over the last 6 years. Emerging data suggests that hyperbaric and even normobaric oxygen therapy can be effective if used appropriately, and raises the tantalizing possibility that hyperoxia can be used to extend the narrow therapeutic time window for stroke thrombolysis. This article reviews the history, rationale, mechanisms of action and adverse effects of hyperoxia, the key results of previous hyperoxia studies, and the potential role of oxygen therapy in contemporary stroke treatment.
Collapse
Affiliation(s)
- Aneesh B Singhal
- Massachusetts General Hospital, Stroke Research Center, 175 Cambridge Street, Suite 300, Boston, MA 02114, USA.
| |
Collapse
|
70
|
Zhang Q, Chang Q, Cox RA, Gong X, Gould LJ. Hyperbaric Oxygen Attenuates Apoptosis and Decreases Inflammation in an Ischemic Wound Model. J Invest Dermatol 2008; 128:2102-12. [DOI: 10.1038/jid.2008.53] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
71
|
Wang XL, Zhao YS, Yang YJ, Xie M, Yu XH. Therapeutic window of hyperbaric oxygen therapy for hypoxic-ischemic brain damage in newborn rats. Brain Res 2008; 1222:87-94. [PMID: 18582850 DOI: 10.1016/j.brainres.2008.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 04/24/2008] [Accepted: 05/05/2008] [Indexed: 01/08/2023]
Abstract
Previous studies showed that hyperbaric oxygen (HBO) promoted cell proliferation in hypoxic-ischemic (HI) neonate rats. Neural stem cells (NSC) existed in the brain lifelong and can be activated. This study was undertaken to assess whether HBO treatment promoted the proliferation of NSC and repaired the brain damage regardless of when it is started, thus to explore the therapeutic window of HBO treatment. Seven-day-old Sprague-Dawley rats underwent left carotid ligation followed by 2 h of hypoxic stress (8% O(2) at 37 degrees C). Hyperbaric oxygen therapy was administered 3, 6, 12, 24, and 72 h after HI. 5-bromo-2'-deoxyurindine and 5-bromo-2'-deoxyuridine/nestin were detected by immunofluorescence and nestin was examined by western blot analysis 10 days after HI. T-maze forced alternation, the foot-fault test, and the radial arm maze were conducted at P 22 days (14 days after HI), P 30 days, and P 34 days. Thereafter, cerebral morphology was examined by Nissl-staining 28 days after HI. There were remarkable increases in the proliferation of neural stem cells in the HBO-treated group, 3, 6, 12, and 24 h after HI, as compared with the HIBD group. The HBO-treated group, 3, 6, and 12 h after HI, performed better in the behavioral test and had less neural loss in the hippocampal CA1 region as compared with the HIBD group. The therapeutic window for effective HBO treatment could be delayed up to 12 h after HIBD, while the effect decreased 24 h after HI.
Collapse
Affiliation(s)
- Xiao-Li Wang
- Division of Neonatology, Department of Pediatrics, Xiang Ya Hospital, Central South University, 87 Xiang Ya Road, Changsha, PR China
| | | | | | | | | |
Collapse
|
72
|
Müller A, Tal R, Donohue JF, Akin-Olugbade Y, Kobylarz K, Paduch D, Cutter SC, Mehrara BJ, Scardino PT, Mulhall JP. The Effect of Hyperbaric Oxygen Therapy on Erectile Function Recovery in a Rat Cavernous Nerve Injury Model. J Sex Med 2008; 5:562-70. [DOI: 10.1111/j.1743-6109.2007.00727.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
73
|
Sun L, Marti HH, Veltkamp R. Hyperbaric oxygen reduces tissue hypoxia and hypoxia-inducible factor-1 alpha expression in focal cerebral ischemia. Stroke 2008; 39:1000-6. [PMID: 18239183 DOI: 10.1161/strokeaha.107.490599] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND PURPOSE The usefulness of hyperbaric oxygen (HBO) and normobaric hyperoxia in acute ischemic stroke is being reexplored because both improve outcome in experimental cerebral ischemia. However, even the basic mechanisms underlying oxygen therapy are poorly understood. We investigated the effect of both oxygen therapies on tissue hypoxia and on the transcription factor hypoxia-inducible factor-1 alpha. METHODS Mice were subjected to filament-induced middle cerebral artery occlusion for 2 hours. Twenty-five minutes after filament introduction, mice breathed normobaric air, normobaric 100% O(2) (normobaric hyperoxia), or 100% O(2) at 3 ata (HBO) for 95 minutes. Hypoxic regions were mapped on tissue sections after preischemic infusion of the in vivo hypoxia marker EF-5. Hypoxia-inducible factor-1 alpha protein was measured after 2-hour middle cerebral artery occlusion using immunofluorescence and immunoblotting. Vascular endothelial growth factor expression was analyzed using in situ mRNA hybridization. RESULTS Severity of ischemia did not differ among groups. HBO (35.2+/-10.4 mm(2)) significantly reduced the area of EF-5-stained hypoxic regions in focal cerebral ischemia compared with normobaric hyperoxia (46.4+/-11.2 mm(2)) and air (49.1+/-8 mm(2), P<0.05, analysis of variance). Topographically, EF-5 fluorescence was decreased in medial striatum and in cortical ischemic border areas. Immunohistochemistry and immunoblotting revealed lower hypoxia-inducible factor-1 alpha protein in the ischemic hemisphere of HBO-treated mice. Moreover, mRNA in situ hybridization showed lower expression of vascular endothelial growth factor in HBO and normobaric hyperoxia groups. CONCLUSIONS Measurement of extrinsic and intrinsic markers of hypoxia revealed that HBO improves penumbral oxygenation in focal ischemia. Modification of the transcription factor hypoxia-inducible factor-1 alpha and its downstream targets may be involved in effects of HBO.
Collapse
Affiliation(s)
- Li Sun
- Department of Neurology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
74
|
Eschenfelder CC, Krug R, Yusofi AF, Meyne JK, Herdegen T, Koch A, Zhao Y, Carl UM, Deuschl G. Neuroprotection by oxygen in acute transient focal cerebral ischemia is dose dependent and shows superiority of hyperbaric oxygenation. Cerebrovasc Dis 2008; 25:193-201. [PMID: 18212507 DOI: 10.1159/000113856] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 09/21/2007] [Indexed: 11/19/2022] Open
Abstract
The neuroprotective effect of oxygen after acute stroke in rats has been shown previously. However, the question of optimal dosing still remains unanswered. Thus, we investigated the use of oxygen at different concentrations by either normobaric oxygenation (NBO) or hyperbaric oxygenation (HBO) at different pressures in a model of transient ischemia/reperfusion in rats. Animals underwent 90 min of middle cerebral artery occlusion (MCAO) followed by 90 min of reperfusion before oxygen treatment. Oxygen was applied either by NBO (100% O(2); 1.0 absolute atmosphere, ATA) or HBO (100% O(2); 1.5, 2.0, 2.5 or 3.0 ATA) for 1 h. Primary endpoints were infarct volume and clinical outcome measured 24 h and 7 days following the MCAO. A statistically significant and long-lasting reduction in infarct volume was seen in the HBO 2.5 ATA and 3.0 ATA groups over a period of 7 days. The reduced infarct volume was accompanied with a statistically significant improvement in clinical outcome in the high-dose oxygen-treated groups. The presented data indicate that oxygen is a highly neuroprotective molecule in transient focal cerebral ischemia in rats, when applied early and at high doses. The effect is dose dependent and shows a superiority of HBO over NBO, when the primary endpoints infarct volume reduction and clinical outcome are analyzed. These data are important for the development of new acute stroke treatment studies in humans.
Collapse
Affiliation(s)
- C C Eschenfelder
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Qin Z, Xi G, Keep RF, Silbergleit R, He Y, Hua Y. Hyperbaric oxygen for experimental intracerebral hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2008; 105:113-117. [PMID: 19066094 DOI: 10.1007/978-3-211-09469-3_23] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Acute brain edema formation contributes to brain injury after intracerebral hemorrhage (ICH). It has been reported that hyperbaric oxygen (HBO) is neuroprotective in cerebral ischemia, subarachnoid hemorrhage, and brain trauma. In this study, we investigated the effects of HBO on brain edema following ICH in rats. Male Sprague-Dawley rats received intracerebral infusion of autologous whole blood, thrombin, or ferrous iron. HBO (100% O2, 3.0 ATA for 1 h) was initiated 1 h after intracerebral injection. Control rats were exposed to air at room pressure. Brains were sampled at 24 or 72 h for water content, ion measurement, and Western blot analysis. We found that 1 session of HBO reduced perihematomal brain edema (p < 0.05) 24 h after ICH. HBO also reduced heat shock protein-32 (HSP-32) levels (p < 0.05) in ipsilateral basal ganglia 24h after ICH. However, HBO failed to attenuate thrombin-induced brain edema and exaggerated ferrous iron-induced brain edema (p < 0.05). Three sessions of HBO also failed to reduce brain edema 72h after ICH. In summary, HBO reduced early perihematomal brain edema and HSP-32 levels in brain. HBO-related brain protection does not occur through reduction in thrombin toxicity because HBO failed to attenuate thrombin-induced brain edema. Our results also indicate that HBO treatment after hematoma lysis for ICH may be harmful, since HBO amplifies iron-induced brain edema.
Collapse
Affiliation(s)
- Z Qin
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | | | |
Collapse
|
76
|
Hyperbaric medicine in emergencies. VOJNOSANIT PREGL 2008; 65:645-7. [DOI: 10.2298/vsp0808645r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
<zakljucak> Imajuci u vidu mali broj kontraindikacija, primena HBOT od velike je koristi u zbrinjavanju urgentnih stanja, narocito u kombinaciji sa hirurskim i medikamentnim procedurama. .
Collapse
|
77
|
Hou H, Grinberg O, Williams B, Grinberg S, Yu H, Alvarenga DL, Wallach H, Buckey J, Swartz HM. The effect of oxygen therapy on brain damage and cerebral pO(2) in transient focal cerebral ischemia in the rat. Physiol Meas 2007; 28:963-76. [PMID: 17664686 DOI: 10.1088/0967-3334/28/8/017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We examined the effect of hyperbaric oxygen (HBO) and normobaric oxygen (NBO) on neurologic damage and brain oxygenation before and after focal cerebral ischemia in rats. A middle cerebral artery occlusion (MCAO)/reperfusion rat model was used. The rats were sacrificed 22 h after reperfusion, and the infarct volume was evaluated. In study A, HBO (2.0 ATA), NBO (100% oxygen) and normobaric air (NBA) were each administered for 60 min in five different rat groups. The sizes of the infarcts after HBO and NBO applied during ischemia were 8.8 +/- 2.8% and 22.8 +/- 3.7% respectively of the ipsilateral non-occluded hemisphere. The infarct size after HBO applied during ischemia was statistically smaller than for NBO and NBA exposure (p < 0.01). In study B, cerebral pO(2) was measured before and after MCAO and HBO exposure (2.0 ATA for 60 min) in six rats using electron paramagnetic resonance (EPR) oximetry. The pO(2) in the ischemic hemisphere fell markedly following ischemia, while the pO(2) in the contralateral hemisphere remained within the normal range. Measurements of the pO(2) performed minutes after HBO exposure did not show an increase in the ischemic or normal hemispheres. The mean relative infarct size was consistent with the changes observed in study A. These data confirm the neuroprotective effects of HBO in cerebral ischemia and indicate that in vivo EPR oximetry can be an effective method to monitor the cerebral oxygenation after oxygen therapy for ischemic stroke. The ability to measure the pO(2) in several sites provides important information that should help to optimize the design of hyperoxic therapies for stroke.
Collapse
Affiliation(s)
- Huagang Hou
- Department of Radiology, Dartmouth Medical School, Hanover, NH, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Abstract
Hyperbaric oxygen (HBO) therapy is defined by the Undersea and Hyperbaric Medical Society (UHMS) as a treatment in which a patient intermittingly breathes 100% oxygen under a pressure that is greater than the pressure at sea level [a pressure greater than 1 atmosphere absolute (ATA)]. HBO has been shown to be a potent means to increase the oxygen content of blood and has been advocated for the treatment of various ailments, including air embolism, carbon monoxide poisoning, wound healing and ischemic stroke. However, definitive established mechanisms of action are still lacking. This has led to uncertainty among clinicians, who have understandingly become hesitant in regard to using HBO therapy, even in situations where it could prove beneficial. Therefore, this review will summarize the literature regarding the effects of HBO on brain oxygenation, cerebral blood flow and intracranial pressure in both the healthy and injured brains, as well as discuss how changes in these three factors can impart protection.
Collapse
Affiliation(s)
- John W Calvert
- Department of Physiology, Division of Neurosurgery, Loma Linda University Medical Center, Loma Linda, CA, USA.
| | | | | |
Collapse
|
79
|
Qin Z, Karabiyikoglu M, Hua Y, Silbergleit R, He Y, Keep RF, Xi G. Hyperbaric oxygen-induced attenuation of hemorrhagic transformation after experimental focal transient cerebral ischemia. Stroke 2007; 38:1362-7. [PMID: 17322079 DOI: 10.1161/01.str.0000259660.62865.eb] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE An increased risk of hemorrhagic transformation is a major factor limiting the use of tissue plasminogen activator for stroke. Increased hemorrhagic transformation is also found in animals undergoing transient focal cerebral ischemia with hyperglycemia; this study examined whether hyperbaric oxygen (HBO) could reduce such hemorrhagic transformation in a rat model. METHODS Rats received an injection of 50% glucose (6 mL/kg intraperitoneally) and had a middle cerebral artery occlusion 10 minutes later. Rats were treated with HBO (3 ATA for 1 hour) 30 minutes after middle cerebral artery occlusion. Control rats received normobaric room air. Rats underwent reperfusion 2 hours after middle cerebral artery occlusion. Blood-brain barrier permeability (Evans blue), hemorrhagic transformation (hemoglobin content), brain edema, infarct volume, and mortality were measured. RESULTS HBO treatment reduced Evans blue leakage in the ipsilateral hemisphere (28.4+/-3.5 versus 71.8+/-13.1 microg/g in control group, P<0.01) 2 hours after reperfusion and hemorrhagic transformation (0.13+/-0.13 versus 0.31+/-0.28 mg hemoglobin in the control group, P<0.05) 22 hours later. Mortality was less in the HBO group (4% versus 27% in controls, P<0.05). Mean infarct volume and swelling in the caudate were also less in HBO-treated rats (P<0.05), but HBO failed to reduce brain water content in the ipsilateral hemisphere (P>0.05). CONCLUSIONS Early intraischemic HBO treatment reduces the blood-brain barrier disruption, hemorrhagic transformation, and mortality after focal cerebral ischemia suggesting that HBO could be used to reduce hemorrhagic conversion in patients with stroke.
Collapse
Affiliation(s)
- Zhiyong Qin
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Cerebral Ischemia: Molecular Mechanisms and Protective Therapies. Neurobiol Dis 2007. [DOI: 10.1016/b978-012088592-3/50028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
81
|
Veltkamp R, Sun L, Herrmann O, Wolferts G, Hagmann S, Siebing DA, Marti HH, Veltkamp C, Schwaninger M. Oxygen therapy in permanent brain ischemia: potential and limitations. Brain Res 2006; 1107:185-91. [PMID: 16828721 DOI: 10.1016/j.brainres.2006.05.108] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 05/26/2006] [Accepted: 05/26/2006] [Indexed: 01/16/2023]
Abstract
BACKGROUND Both normobaric (NBO) and hyperbaric (HBO) oxygen therapy are protective in transient cerebral ischemia. In contrast, in permanent ischemia models, which reflect the majority of clinical strokes, the effectiveness of NBO is unknown, and the effectiveness of HBO is controversial. The goals of the present study were to compare both oxygen therapies in 2 models of permanent ischemia, to study the effect of time window, and to evaluate the combination of both oxygen therapies. METHODS Distal or proximal permanent occlusion of middle cerebral artery (MCAO) was induced by coagulation or filament, respectively. Mice received air, NBO, a single or repeated HBO (3 ata) treatments. Infarct sizes were quantified at 7 days (coagulation) and 24 h (filament), respectively. RESULTS Following MCA coagulation, infarct volume was 12.9+/-1.6 mm3 in mice breathing air. When started 45 min or 120 min after MCAO, NBO (10.8+/-2.2) and significantly more potently HBO (7.8+/-0.9) reduced infarct size. Repeated HBO treatments had no additional effect (8.3+/-2.3). HBO also significantly decreased TUNEL cell staining at 24 h. Combination of 60 min NBO plus 60 min HBO resulted in smaller cortical infarcts (8.7+/-1.5) than 120 min NBO alone (11.1+/-3.2). In contrast, infarct volumes in filament-induced permanent MCAO did not differ among rodents receiving air (50+/-24 mm3), NBO (48+/-16), or HBO (46+/-21). After filament-induced transient MCAO, however, HBO reduced infarct volume significantly. CONCLUSIONS NBO and more effectively HBO protect the brain against permanent cortical ischemia. In extensive focal ischemia, however, oxygen therapy is only effective in case of early recanalization.
Collapse
Affiliation(s)
- Roland Veltkamp
- Department of Neurology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Veltkamp R, Bieber K, Wagner S, Beynon C, Siebing DA, Veltkamp C, Schwaninger M, Marti HH. Hyperbaric oxygen reduces basal lamina degradation after transient focal cerebral ischemia in rats. Brain Res 2006; 1076:231-7. [PMID: 16480689 DOI: 10.1016/j.brainres.2006.01.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 01/02/2006] [Accepted: 01/06/2006] [Indexed: 01/23/2023]
Abstract
Hyperbaric oxygen (HBO) has been shown to preserve the integrity of the blood-brain barrier after cerebral ischemia. However, the underlying molecular mechanisms are currently unknown. We examined the effect of HBO on postischemic expression of the basal laminar component laminin-5 and on plasma matrix metalloproteinase-9 (MMP) levels. Wistar rats underwent occlusion of the middle cerebral artery (MCAO) for 2 h. With a delay of 45 min after filament introduction, animals breathed either 100% O2 at 1.0 atmosphere absolute (ata; NBO) or at 3.0 ata (HBO) for 1 h in an HBO chamber. Laminin-5 expression was quantified on immunohistochemical sections after 24 h of reperfusion. Plasma MMP-9 levels were measured using gelatin zymography before MCAO as well as 0, 6 and 24 h after reperfusion. Immunohistochemistry 24 h after ischemia revealed a decrease of vascular laminin-5 staining in the ischemic striatum to 43 +/- 26% of the contralateral hemisphere in the NBO group which was significantly attenuated to 73 +/- 31% in the HBO group. Densitometric analysis of zymography bands yielded significantly larger plasma MMP-9 levels in the NBO group compared to the HBO group 24 h after ischemia. In conclusion, HBO therapy attenuates ischemic degradation of cerebral microvascular laminin-5 and blocks postischemic plasma MMP-9 upregulation.
Collapse
Affiliation(s)
- Roland Veltkamp
- Department of Neurology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Topcuoglu MA, Saka E, Onal MZ. Hyperoxia potentiated sonothrombolysis as a method of acute ischemic stroke therapy. Med Hypotheses 2006; 66:59-65. [PMID: 16144745 DOI: 10.1016/j.mehy.2005.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 07/05/2005] [Indexed: 11/21/2022]
Abstract
The main goal in the treatment of acute ischemic stroke is prompt arterial recanalization. Thrombolysis with recombinant tissue plasminogen activator (rtPA) is efficient in humans, but shows significant problems including slow and incomplete recanalization and frequent bleeding complications. Limited therapeutic window (the first three hours after onset) is the major limitation resulting in reach too few patients. Therefore, adjunctive therapies extending the reperfusion time window, increasing efficacy and reducing side effects of rtPA are needed. Ultrasound augmentation of rtPA-mediated thrombolysis is suggested to overcome some of these problems, but low-frequency ultrasound (less than 1 MHz) is not safe and high frequency ultrasound (2 MHz) is not much effective. We suggest that normobaric hyperoxia (NBO) may increase the efficacy of ultrasound and rtPA combination in addition to its own efficacy in acute ischemic stroke. Briefly, NBO increases arterial partial oxygen pressure (pO(2)) significantly up to 6-fold. Increase of pO(2) results in an increase of dissolved oxygen in the blood according to Henry's law. Enhanced dissolved oxygen increases gas nuclei formation around and inside of the clot, and decreases the Blake threshold. Under ultrasound field, these small gas nuclei form nano bubbles which fuel inertial cavitation as substrates, and therefore increase the clot fragmentation and lysis. This hypothesis has not been tested so far. The combination of rtPA, therapeutic ultrasound and NBO may be more efficacious than rtPA alone or its combination with ultrasound as acute stroke treatment modality, because each has different and probably additive mechanism of action.
Collapse
Affiliation(s)
- Mehmet Akif Topcuoglu
- Akdeniz University, Faculty of Medicine, Department of Neurology and Neurosonology Laboratory, 07054 Antalya, Turkey.
| | | | | |
Collapse
|