51
|
Vriens K, Cools TL, Harvey PJ, Craik DJ, Braem A, Vleugels J, De Coninck B, Cammue BPA, Thevissen K. The radish defensins RsAFP1 and RsAFP2 act synergistically with caspofungin against Candida albicans biofilms. Peptides 2016; 75:71-9. [PMID: 26592804 DOI: 10.1016/j.peptides.2015.11.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/09/2015] [Accepted: 11/09/2015] [Indexed: 01/28/2023]
Abstract
The radish defensin RsAFP2 was previously characterized as a peptide with potent antifungal activity against several plant pathogenic fungi and human pathogens, including Candida albicans. RsAFP2 induces apoptosis and impairs the yeast-to-hypha transition in C. albicans. As the yeast-to-hypha transition is considered important for progression to mature biofilms, we analyzed the potential antibiofilm activity of recombinant (r)RsAFP2, heterologously expressed in Pichia pastoris, against C. albicans biofilms. We found that rRsAFP2 prevents C. albicans biofilm formation with a BIC-2 (i.e., the minimal rRsAFP2 concentration that inhibits biofilm formation by 50% as compared to control treatment) of 1.65 ± 0.40 mg/mL. Moreover, biofilm-specific synergistic effects were observed between rRsAFP2 doses as low as 2.5 μg/mL to 10 μg/mL and the antimycotics caspofungin and amphotericin B, pointing to the potential of RsAFP2 as a novel antibiofilm compound. In addition, we characterized the solution structure of rRsAFP2 and compared it to that of RsAFP1, another defensin present in radish seeds. These peptides have similar amino acid sequences, except for two amino acids, but rRsAFP2 is more potent than RsAFP1 against planktonic and biofilm cultures. Interestingly, as in case of rRsAFP2, also RsAFP1 acts synergistically with caspofungin against C. albicans biofilms in a comparable low dose range as rRsAFP2. A structural comparison of both defensins via NMR analysis revealed that also rRsAFP2 adopts the typical cysteine-stabilized αβ-motif of plant defensins, however, no structural differences were found between these peptides that might result in their differential antifungal/antibiofilm potency. This further suggests that the conserved structure of RsAFP1 and rRsAFP2 bears the potential to synergize with antimycotics against C. albicans biofilms.
Collapse
Affiliation(s)
- Kim Vriens
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Tanne L Cools
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Peta J Harvey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Annabel Braem
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, 3001 Heverlee, Belgium
| | - Jozef Vleugels
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, 3001 Heverlee, Belgium
| | - Barbara De Coninck
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| |
Collapse
|
52
|
Andrade JC, Morais Braga MFB, Guedes GMM, Tintino SR, Freitas MA, Quintans LJ, Menezes IRA, Coutinho HDM. Menadione (vitamin K) enhances the antibiotic activity of drugs by cell membrane permeabilization mechanism. Saudi J Biol Sci 2015; 24:59-64. [PMID: 28053572 PMCID: PMC5198922 DOI: 10.1016/j.sjbs.2015.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 11/27/2022] Open
Abstract
Menadione, vitamin K3, belongs to the class of lipid-soluble vitamins and lipophilic substances as menadione cause disturbances in the bacterial membrane, resulting in damage to the fundamental elements for the integrity of the membrane, thus allowing increased permeability. Accordingly, the aim of this study was to evaluate in vitro the antibiotic-modifying activity of menadione in multiresistant strains of Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli, with a gradual increase in its subinhibitory concentration. In addition, menadione was compared with cholesterol and ergosterol for similarity in mechanism of drug modulatory action. Antibiotic-modifying activity and antibacterial effect were determined by the broth microdilution assay. Menadione, cholesterol and ergosterol showed modulatory activity at clinically relevant concentrations, characterizing them as modifiers of bacterial drug resistance, since they lowered the MIC of the antibiotics tested. This is the first report of the antibacterial activity of menadione and its potentiation of aminoglycosides against multiresistant bacteria.
Collapse
|
53
|
Vieira MEB, Vasconcelos IM, Machado OLT, Gomes VM, Carvalho ADO. Isolation, characterization and mechanism of action of an antimicrobial peptide from Lecythis pisonis seeds with inhibitory activity against Candida albicans. Acta Biochim Biophys Sin (Shanghai) 2015; 47:716-29. [PMID: 26245301 DOI: 10.1093/abbs/gmv071] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/30/2015] [Indexed: 01/15/2023] Open
Abstract
Antimicrobial peptides (AMPs) are produced by a range of organisms as a first line of defense against invaders or competitors. Owing to their broad antimicrobial activity, AMPs have attracted attention as a potential source of chemotherapeutic drugs. The increasing prevalence of infections caused by Candida species as opportunistic pathogens in immunocompromised patients requires new drugs. Lecythis pisonis is a Lecythydaceae tree that grows in Brazil. The AMPs produced by this tree have not been described previously. We describe the isolation of 12 fractions enriched in peptides from L. pisonis seeds. Of the 12 fractions, at 10 μg/ml, the F4 fraction had the strongest growth inhibitory effect (53.7%) in Candida albicans, in addition to a loss of viability of 94.9%. The F4 fraction was separated into seven sub-fractions by reversed-phase chromatography. The F4.7' fraction had the strongest activity at 10 μg/ml, inhibiting C. albicans growth by 38.5% and a 69.3% loss of viability. The peptide in F4.7' was sequenced and was found to be similar to plant defensins. For this reason, the peptide was named L. pisonis defensin 1 (Lp-Def1). The mechanism of action that is responsible for C. albicans inhibition by Lp-Def1 includes a slight increase of reactive oxygen species induction and a significant loss of mitochondrial function. The results described here support the future development of plant defensins, specifically Lp-Def1, as new therapeutic substances against fungi, especially C. albicans.
Collapse
Affiliation(s)
- Maria Eliza Brambila Vieira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Ilka Maria Vasconcelos
- Laboratório de Toxinas Vegetais, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Olga Lima Tavares Machado
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ 28013-602, Brazil
| |
Collapse
|
54
|
PvD1 defensin, a plant antimicrobial peptide with inhibitory activity against Leishmania amazonensis. Biosci Rep 2015; 35:BSR20150060. [PMID: 26285803 PMCID: PMC4613715 DOI: 10.1042/bsr20150060] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/31/2015] [Indexed: 12/04/2022] Open
Abstract
PvD1 was able to inhibit the proliferation of Leishmania amazonensis promastigotes; PvD1 caused cell membrane permeabilization and alterations in the cytoplasmic contents of these cells; PvD1 was internalized in these cells, what suggests a possible intracellular target. Plant defensins are small cysteine-rich peptides and exhibit antimicrobial activity against a variety of both plant and human pathogens. Despite the broad inhibitory activity that plant defensins exhibit against different micro-organisms, little is known about their activity against protozoa. In a previous study, we isolated a plant defensin named PvD1 from Phaseolus vulgaris (cv. Pérola) seeds, which was seen to be deleterious against different yeast cells and filamentous fungi. It exerted its effects by causing an increase in the endogenous production of ROS (reactive oxygen species) and NO (nitric oxide), plasma membrane permeabilization and the inhibition of medium acidification. In the present study, we investigated whether PvD1 could act against the protozoan Leishmania amazonensis. Our results show that, besides inhibiting the proliferation of L. amazonensis promastigotes, the PvD1 defensin was able to cause cytoplasmic fragmentation, formation of multiple cytoplasmic vacuoles and membrane permeabilization in the cells of this organism. Furthermore, we show, for the first time, that PvD1 defensin was located within the L. amazonensis cells, suggesting the existence of a possible intracellular target.
Collapse
|
55
|
Vriens K, Cools TL, Harvey PJ, Craik DJ, Spincemaille P, Cassiman D, Braem A, Vleugels J, Nibbering PH, Drijfhout JW, De Coninck B, Cammue BPA, Thevissen K. Synergistic Activity of the Plant Defensin HsAFP1 and Caspofungin against Candida albicans Biofilms and Planktonic Cultures. PLoS One 2015; 10:e0132701. [PMID: 26248029 PMCID: PMC4527839 DOI: 10.1371/journal.pone.0132701] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/17/2015] [Indexed: 12/11/2022] Open
Abstract
Plant defensins are small, cysteine-rich peptides with antifungal activity against a broad range of yeast and fungi. In this study we investigated the antibiofilm activity of a plant defensin from coral bells (Heuchera sanguinea), i.e. HsAFP1. To this end, HsAFP1 was heterologously produced using Pichia pastoris as a host. The recombinant peptide rHsAFP1 showed a similar antifungal activity against the plant pathogen Fusarium culmorum as native HsAFP1 purified from seeds. NMR analysis revealed that rHsAFP1 consists of an α-helix and a triple-stranded antiparallel β-sheet stabilised by four intramolecular disulfide bonds. We found that rHsAFP1 can inhibit growth of the human pathogen Candida albicans as well as prevent C. albicans biofilm formation with a BIC50 (i.e. the minimum rHsAFP1 concentration required to inhibit biofilm formation by 50% as compared to control treatment) of 11.00 ± 1.70 μM. As such, this is the first report of a plant defensin exhibiting inhibitory activity against fungal biofilms. We further analysed the potential of rHsAFP1 to increase the activity of the conventional antimycotics caspofungin and amphotericin B towards C. albicans. Synergistic effects were observed between rHsAFP1 and these compounds against both planktonic C. albicans cells and biofilms. Most notably, concentrations of rHsAFP1 as low as 0.53 μM resulted in a synergistic activity with caspofungin against pre-grown C. albicans biofilms. rHsAFP1 was found non-toxic towards human HepG2 cells up to 40 μM, thereby supporting the lack of a general cytotoxic activity as previously reported for HsAFP1. A structure-function study with 24-mer synthetic peptides spanning the entire HsAFP1 sequence revealed the importance of the γ-core and its adjacent regions for HsAFP1 antibiofilm activity. These findings point towards broad applications of rHsAFP1 and its derivatives in the field of antifungal and antibiofilm drug development.
Collapse
Affiliation(s)
- Kim Vriens
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Tanne L. Cools
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Peta J. Harvey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Pieter Spincemaille
- Department of Hepatology, University Hospitals Leuven, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - David Cassiman
- Department of Hepatology, University Hospitals Leuven, Leuven, Belgium
- Metabolic Center, University Hospitals Leuven, Leuven, Belgium
| | - Annabel Braem
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
| | - Jozef Vleugels
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Wouter Drijfhout
- Department of Immunohematology and Bloodtransfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Barbara De Coninck
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Bruno P. A. Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- * E-mail:
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
56
|
Neukermans J, Inzé A, Mathys J, De Coninck B, van de Cotte B, Cammue BPA, Van Breusegem F. ARACINs, Brassicaceae-specific peptides exhibiting antifungal activities against necrotrophic pathogens in Arabidopsis. PLANT PHYSIOLOGY 2015; 167:1017-29. [PMID: 25593351 PMCID: PMC4348783 DOI: 10.1104/pp.114.255505] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plants have developed a variety of mechanisms to cope with abiotic and biotic stresses. In a previous subcellular localization study of hydrogen peroxide-responsive proteins, two peptides with an unknown function (designated ARACIN1 and ARACIN2) have been identified. These peptides are structurally very similar but are transcriptionally differentially regulated during abiotic stresses during Botrytis cinerea infection or after benzothiadiazole and methyl jasmonate treatments. In Arabidopsis (Arabidopsis thaliana), these paralogous genes are positioned in tandem within a cluster of pathogen defense-related genes. Both ARACINs are small, cationic, and hydrophobic peptides, known characteristics for antimicrobial peptides. Their genes are expressed in peripheral cell layers prone to pathogen entry and are lineage specific to the Brassicaceae family. In vitro bioassays demonstrated that both ARACIN peptides have a direct antifungal effect against the agronomically and economically important necrotrophic fungi B. cinerea, Alternaria brassicicola, Fusarium graminearum, and Sclerotinia sclerotiorum and yeast (Saccharomyces cerevisiae). In addition, transgenic Arabidopsis plants that ectopically express ARACIN1 are protected better against infections with both B. cinerea and A. brassicicola. Therefore, we can conclude that both ARACINs act as antimicrobial peptides.
Collapse
Affiliation(s)
- Jenny Neukermans
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (J.N., A.I., B.D.C., B.v.d.C., B.P.A.C., F.V.B.); Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.N., A.I., B.v.d.C., F.V.B.); andCentre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium (J.N., J.M., B.D.C, B.P.A.C.)
| | - Annelies Inzé
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (J.N., A.I., B.D.C., B.v.d.C., B.P.A.C., F.V.B.); Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.N., A.I., B.v.d.C., F.V.B.); andCentre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium (J.N., J.M., B.D.C, B.P.A.C.)
| | - Janick Mathys
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (J.N., A.I., B.D.C., B.v.d.C., B.P.A.C., F.V.B.); Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.N., A.I., B.v.d.C., F.V.B.); andCentre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium (J.N., J.M., B.D.C, B.P.A.C.)
| | - Barbara De Coninck
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (J.N., A.I., B.D.C., B.v.d.C., B.P.A.C., F.V.B.); Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.N., A.I., B.v.d.C., F.V.B.); andCentre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium (J.N., J.M., B.D.C, B.P.A.C.)
| | - Brigitte van de Cotte
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (J.N., A.I., B.D.C., B.v.d.C., B.P.A.C., F.V.B.); Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.N., A.I., B.v.d.C., F.V.B.); andCentre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium (J.N., J.M., B.D.C, B.P.A.C.)
| | - Bruno P A Cammue
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (J.N., A.I., B.D.C., B.v.d.C., B.P.A.C., F.V.B.); Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.N., A.I., B.v.d.C., F.V.B.); andCentre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium (J.N., J.M., B.D.C, B.P.A.C.)
| | - Frank Van Breusegem
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (J.N., A.I., B.D.C., B.v.d.C., B.P.A.C., F.V.B.); Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.N., A.I., B.v.d.C., F.V.B.); andCentre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium (J.N., J.M., B.D.C, B.P.A.C.)
| |
Collapse
|
57
|
Mishra MK, Singh G, Tiwari S, Singh R, Kumari N, Misra P. Characterization of Arabidopsis sterol glycosyltransferase TTG15/UGT80B1 role during freeze and heat stress. PLANT SIGNALING & BEHAVIOR 2015; 10:e1075682. [PMID: 26382564 PMCID: PMC4854349 DOI: 10.1080/15592324.2015.1075682] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sterol glycosyltransferases regulate the properties of sterols by catalyzing the transfer of carbohydrate molecules to the sterol moiety for the synthesis of steryl glycosides and acyl steryl glycosides. We have analyzed the functional role of TTG15/UGT80B1 gene of Arabidopsis thaliana in freeze/thaw and heat shock stress using T-DNA insertional sgt knockout mutants. Quantitative study of spatial as well as temporal gene expression showed tissue-specific and dynamic expression patterns throughout the growth stages. Comparative responses of Col-0, TTG15/UGT80B1 knockout mutant and p35S:TTG15/UGT80B1 restored lines were analyzed under heat and freeze stress conditions. Heat tolerance was determined by survival of plants at 42°C for 3 h, MDA analysis and chlorophyll fluorescence image (CFI) analysis. Freezing tolerance was determined by survival of the plants at -1°C temperature in non-acclimatized (NA) and cold acclimatized (CA) conditions and also by CFI analysis, which revealed that, p35S:TTG15/UGT80B1 restored plants were more adapted to freeze stress than TTG15/UGT80B1 knockout mutant under CA condition. HPLC analysis of the plants showed reduced sterol glycoside in mutant seedlings as compared to other genotypes. Following CA condition, both β-sitosterol and sitosterol glycoside quantity was more in Col-0 and p35S:TTG15/UGT80B1 restored lines, whereas it was significantly less in TTG15/UGT80B1 knockout mutants. From these results, it may be concluded that due to low content of free sterols and sterol glycosides, the physiology of mutant plants was more affected during both, the chilling and heat stress.
Collapse
Affiliation(s)
- Manoj K Mishra
- CSIR - National Botanical Research Institute; Lucknow, India
| | - Gaurav Singh
- CSIR - National Botanical Research Institute; Lucknow, India
| | - Shalini Tiwari
- CSIR - National Botanical Research Institute; Lucknow, India
| | - Ruchi Singh
- CSIR - National Botanical Research Institute; Lucknow, India
| | - Nishi Kumari
- Department of Botany; Banaras Hindu University; Varanasi, India
| | - Pratibha Misra
- CSIR - National Botanical Research Institute; Lucknow, India
- Correspondence to: Pratibha Misra; ;
| |
Collapse
|
58
|
Andrade JC, Morais-Braga MFB, Guedes GMM, Tintino SR, Freitas MA, Menezes IRA, Coutinho HDM. Enhancement of the antibiotic activity of aminoglycosides by alpha-tocopherol and other cholesterol derivates. Biomed Pharmacother 2014; 68:1065-9. [PMID: 25458794 DOI: 10.1016/j.biopha.2014.10.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/16/2014] [Indexed: 10/24/2022] Open
Abstract
Alpha-tocopherol, one of the most abundant isoforms of vitamin E, is a biologically active liposoluble vitamin and potent antioxidant. It occurs naturally in foods of plant and animal origin. Because of its lipophilic character, it can cause perturbations in the bacterial cell membrane, resulting in damage to components essential for the integrity of the membrane, thereby allowing an increase in permeability. This is the first report of the modulatory effect of alpha-tocopherol in multiresistant bacteria. We evaluated alpha-tocopherol against multiresistant strains of Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli, and determined if there was any similarity with the mechanism of modulatory action of cholesterol and ergosterol. When combined with aminoglycosides in a microdilution broth assay, alpha-tocopherol possibly acted through a lipophilic action on the cell envelope, modulating more effectively P. aeruginosa and E. coli, when compared with S. aureus.
Collapse
Affiliation(s)
- Jacqueline C Andrade
- Departamento de Química Biológica, Universidade Regional do Cariri - URCA, Crato-CE, Rua Cel. Antonio Luis 1161, Pimenta, 63105-000, Brazil
| | - Maria Flaviana B Morais-Braga
- Departamento de Química Biológica, Universidade Regional do Cariri - URCA, Crato-CE, Rua Cel. Antonio Luis 1161, Pimenta, 63105-000, Brazil
| | - Glaucia M M Guedes
- Departamento de Química Biológica, Universidade Regional do Cariri - URCA, Crato-CE, Rua Cel. Antonio Luis 1161, Pimenta, 63105-000, Brazil
| | - Saulo R Tintino
- Departamento de Química Biológica, Universidade Regional do Cariri - URCA, Crato-CE, Rua Cel. Antonio Luis 1161, Pimenta, 63105-000, Brazil
| | - Maria A Freitas
- Departamento de Química Biológica, Universidade Regional do Cariri - URCA, Crato-CE, Rua Cel. Antonio Luis 1161, Pimenta, 63105-000, Brazil
| | - Irwin R A Menezes
- Departamento de Química Biológica, Universidade Regional do Cariri - URCA, Crato-CE, Rua Cel. Antonio Luis 1161, Pimenta, 63105-000, Brazil
| | - Henrique D M Coutinho
- Departamento de Química Biológica, Universidade Regional do Cariri - URCA, Crato-CE, Rua Cel. Antonio Luis 1161, Pimenta, 63105-000, Brazil.
| |
Collapse
|
59
|
Vriens K, Cammue BPA, Thevissen K. Antifungal plant defensins: mechanisms of action and production. Molecules 2014; 19:12280-303. [PMID: 25153857 PMCID: PMC6271847 DOI: 10.3390/molecules190812280] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 07/29/2014] [Accepted: 08/04/2014] [Indexed: 12/18/2022] Open
Abstract
Plant defensins are small, cysteine-rich peptides that possess biological activity towards a broad range of organisms. Their activity is primarily directed against fungi, but bactericidal and insecticidal actions have also been reported. The mode of action of various antifungal plant defensins has been studied extensively during the last decades and several of their fungal targets have been identified to date. This review summarizes the mechanism of action of well-characterized antifungal plant defensins, including RsAFP2, MsDef1, MtDef4, NaD1 and Psd1, and points out the variety by which antifungal plant defensins affect microbial cell viability. Furthermore, this review summarizes production routes for plant defensins, either via heterologous expression or chemical synthesis. As plant defensins are generally considered non-toxic for plant and mammalian cells, they are regarded as attractive candidates for further development into novel antimicrobial agents.
Collapse
Affiliation(s)
- Kim Vriens
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, Heverlee 3001, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, Heverlee 3001, Belgium.
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, Heverlee 3001, Belgium
| |
Collapse
|
60
|
Tian GT, Zhu MJ, Wu YY, Liu Q, Wang HX, Ng TB. Purification and characterization of a protein with antifungal, antiproliferative, and HIV-1 reverse transcriptase inhibitory activities from small brown-eyed cowpea seeds. Biotechnol Appl Biochem 2014; 60:393-8. [PMID: 24033593 DOI: 10.1002/bab.1102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/21/2013] [Indexed: 11/10/2022]
Abstract
A 36-kDa protein, with an N-terminal sequence highly homologous to polygalacturonase (PG) inhibiting proteins, was isolated from small brown-eyed cowpea seeds. The protein was unadsorbed on diethylaminoethyl cellulose but adsorbed on both Affi-gel blue gel and SP-sepharose. It inhibited mycelial growth in the fungus Mycosphaerella arachidicola with an half-maximal (50%) inhibitory concentration (IC50 ) of 3.3 µM. It reduced [methyl-(3) H] thymidine incorporation into MBL2 lymphoma and L1210 leukemia cells with an IC50 of 7.4 and 5.4 µM, respectively. It inhibited human immunodeficiency virus type 1 (HIV-1) reverse transcriptase with an IC50 of 12.9 µM. However, it did not inhibit PG. The potent antifungal and antitumor activities of the protein suggest that it can be developed into an antifungal agent for combating M. arachidicola invasion in crops and an agent for cancer therapy in humans.
Collapse
Affiliation(s)
- Guo-Ting Tian
- Institute of Biotechnology and Germplasmic Resource, Yunnan Academy of Agricultural Science, Kunming, People's Republic of China
| | | | | | | | | | | |
Collapse
|
61
|
Marmiroli N, Maestri E. Plant peptides in defense and signaling. Peptides 2014; 56:30-44. [PMID: 24681437 DOI: 10.1016/j.peptides.2014.03.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/16/2014] [Accepted: 03/17/2014] [Indexed: 12/17/2022]
Abstract
This review focuses on plant peptides involved in defense against pathogen infection and those involved in the regulation of growth and development. Defense peptides, defensins, cyclotides and anti-microbial peptides are compared and contrasted. Signaling peptides are classified according to their major sites of activity. Finally, a network approach to creating an interactomic peptide map is described.
Collapse
Affiliation(s)
- Nelson Marmiroli
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11A, 43124 Parma, Italy.
| | - Elena Maestri
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11A, 43124 Parma, Italy
| |
Collapse
|
62
|
Novel Neogala-Series Glycosphingolipids with a Terminal Glucose Residue from the Fungus Mariannaea elegans. Biosci Biotechnol Biochem 2014; 77:754-9. [DOI: 10.1271/bbb.120879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
63
|
Seo HH, Park S, Park S, Oh BJ, Back K, Han O, Kim JI, Kim YS. Overexpression of a defensin enhances resistance to a fruit-specific anthracnose fungus in pepper. PLoS One 2014; 9:e97936. [PMID: 24848280 PMCID: PMC4029827 DOI: 10.1371/journal.pone.0097936] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 04/27/2014] [Indexed: 01/10/2023] Open
Abstract
Functional characterization of a defensin, J1-1, was conducted to evaluate its biotechnological potentiality in transgenic pepper plants against the causal agent of anthracnose disease, Colletotrichum gloeosporioides. To determine antifungal activity, J1-1 recombinant protein was generated and tested for the activity against C. gloeosporioides, resulting in 50% inhibition of fungal growth at a protein concentration of 0.1 mg·mL−1. To develop transgenic pepper plants resistant to anthracnose disease, J1-1 cDNA under the control of 35S promoter was introduced into pepper via Agrobacterium-mediated genetic transformation method. Southern and Northern blot analyses confirmed that a single copy of the transgene in selected transgenic plants was normally expressed and also stably transmitted to subsequent generations. The insertion of T-DNA was further analyzed in three independent homozygous lines using inverse PCR, and confirmed the integration of transgene in non-coding region of genomic DNA. Immunoblot results showed that the level of J1-1 proteins, which was not normally accumulated in unripe fruits, accumulated high in transgenic plants but appeared to differ among transgenic lines. Moreover, the expression of jasmonic acid-biosynthetic genes and pathogenesis-related genes were up-regulated in the transgenic lines, which is co-related with the resistance of J1-1 transgenic plants to anthracnose disease. Consequently, the constitutive expression of J1-1 in transgenic pepper plants provided strong resistance to the anthracnose fungus that was associated with highly reduced lesion formation and fungal colonization. These results implied the significance of the antifungal protein, J1-1, as a useful agronomic trait to control fungal disease.
Collapse
Affiliation(s)
- Hyo-Hyoun Seo
- Medicinal Nanomaterial Institute, BIO-FD&C Co. Ltd., Incheon, Korea
| | - Sangkyu Park
- Department of Biotechnology, Chonnam National University, Gwangju, Korea
| | - Soomin Park
- Experiment Research Institute, National Agricultural Products Quality Management Service, Seoul, Korea
| | - Byung-Jun Oh
- Biological Control Center, Jeonnam Bioindustry Foundation, JeollaNamdo, Korea
| | - Kyoungwhan Back
- Department of Biotechnology, Chonnam National University, Gwangju, Korea
| | - Oksoo Han
- Department of Biotechnology, Chonnam National University, Gwangju, Korea
| | - Jeong-Il Kim
- Department of Biotechnology, Chonnam National University, Gwangju, Korea; Kumho Life Science Laboratory, Chonnam National University, Gwangju, Korea
| | - Young Soon Kim
- Department of Biotechnology, Chonnam National University, Gwangju, Korea; Kumho Life Science Laboratory, Chonnam National University, Gwangju, Korea
| |
Collapse
|
64
|
Functional expression and activity of the recombinant antifungal defensin PvD1r from Phaseolus vulgaris L. (common bean) seeds. BMC BIOCHEMISTRY 2014; 15:7. [PMID: 24690228 PMCID: PMC3996258 DOI: 10.1186/1471-2091-15-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/28/2014] [Indexed: 12/18/2022]
Abstract
Background Defensins are basic, cysteine-rich antimicrobial peptides that are important components of plant defense against pathogens. Previously, we isolated a defensin, PvD1, from Phaseolus vulgaris L. (common bean) seeds. Results The aim of this study was to overexpress PvD1 in a prokaryotic system, verify the biologic function of recombinant PvD1 (PvD1r) by comparing the antimicrobial activity of PvD1r to that of the natural defensin, PvD1, and use a mutant Candida albicans strain that lacks the gene for sphingolipid biosynthesis to unravel the target site of the PvD1r in C. albicans cells. The cDNA encoding PvD1, which was previously obtained, was cloned into the pET-32 EK/LIC vector, and the resulting construct was used to transform bacterial cells (Rosetta Gami 2 (DE3) pLysS) leading to recombinant protein expression. After expression had been induced, PvD1r was purified, cleaved with enterokinase and repurified by chromatographic steps. N-terminal amino acid sequencing showed that the overall process of the recombinant production of PvD1r, including cleavage with the enterokinase, was successful. Additionally, modeling revealed that PvD1r had a structure that was similar to the defensin isolated from plants. Purified PvD1 and PvD1r possessed inhibitory activity against the growth of the wild-type pathogenic yeast strain C. albicans. Both defensins, however, did not present inhibitory activity against the mutant strain of C. albicans. Antifungal assays with the wild-type C. albicans strains showed morphological changes upon observation by light microscopy following growth assays. PvD1r was coupled to FITC, and the subsequent treatment of wild type C. albicans with DAPI revealed that the labeled peptide was intracellularly localized. In the mutant strain, no intracellular labeling was detected. Conclusion Our results indicate that PvD1r retains full biological activity after recombinant production, enterokinase cleavage and purification. Additionally, our results from the antimicrobial assay, the microscopic analysis and the PvD1r-FITC labeling assays corroborate each other and lead us to suggest that the target of PvD1 in C. albicans cells is the sphingolipid glucosylceramide.
Collapse
|
65
|
Silva PM, Gonçalves S, Santos NC. Defensins: antifungal lessons from eukaryotes. Front Microbiol 2014; 5:97. [PMID: 24688483 PMCID: PMC3960590 DOI: 10.3389/fmicb.2014.00097] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/21/2014] [Indexed: 01/07/2023] Open
Abstract
Over the last years, antimicrobial peptides (AMPs) have been the focus of intense research toward the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantae, and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components) are presented. Additionally, recent works on antifungal defensins structure, activity, and cytotoxicity are also reviewed.
Collapse
Affiliation(s)
- Patrícia M Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| |
Collapse
|
66
|
Chan YS, Ng TB. Northeast red beans produce a thermostable and pH-stable defensin-like peptide with potent antifungal activity. Cell Biochem Biophys 2014; 66:637-48. [PMID: 23292358 DOI: 10.1007/s12013-012-9508-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A 5.4-kDa antifungal peptide was purified from Phaseolus vulgaris L. cv. "northeast red bean" using a protocol that entailed affinity chromatography, ion exchange chromatography, and gel filtration. The molecular mass was determined by matrix-assisted laser desorption ionization time-of-flight. The N-terminal amino acid sequence of the peptide was highly homologous to defensins and defensin-like peptides from several plant species. The peptide impeded the growth of a number of pathogenic fungi, including Mycosphaerella arachidicola Khokhr. (IC50 = 1.7 μM), Setosphaeria turcica Luttr., Fusarium oxysporum Schltdl., and Valsa mali Miyabe & G. Yamada. Antifungal activity of the peptide was fully preserved at temperatures up to 100 °C and pH values from 0 to 12. Congo red deposition at the hyphal tip of M. arachidicola was detected after exposure to the peptide, signifying that the peptide had suppressed hyphal growth. The antifungal peptide did not manifest antiproliferative activity toward human breast cancer MCF7 cells and hepatoma HepG2 cells, in contradiction to the bulk of previously reported plant defensins. The data suggest distinct structural requirements for antifungal and antiproliferative activities.
Collapse
Affiliation(s)
- Yau Sang Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | |
Collapse
|
67
|
Structural and functional studies of a phosphatidic acid-binding antifungal plant defensin MtDef4: identification of an RGFRRR motif governing fungal cell entry. PLoS One 2013; 8:e82485. [PMID: 24324798 PMCID: PMC3853197 DOI: 10.1371/journal.pone.0082485] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 10/25/2013] [Indexed: 01/27/2023] Open
Abstract
MtDef4 is a 47-amino acid cysteine-rich evolutionary conserved defensin from a model legume Medicago truncatula. It is an apoplast-localized plant defense protein that inhibits the growth of the ascomycetous fungal pathogen Fusarium graminearum in vitro at micromolar concentrations. Little is known about the mechanisms by which MtDef4 mediates its antifungal activity. In this study, we show that MtDef4 rapidly permeabilizes fungal plasma membrane and is internalized by the fungal cells where it accumulates in the cytoplasm. Furthermore, analysis of the structure of MtDef4 reveals the presence of a positively charged γ-core motif composed of β2 and β3 strands connected by a positively charged RGFRRR loop. Replacement of the RGFRRR sequence with AAAARR or RGFRAA abolishes the ability of MtDef4 to enter fungal cells, suggesting that the RGFRRR loop is a translocation signal required for the internalization of the protein. MtDef4 binds to phosphatidic acid (PA), a precursor for the biosynthesis of membrane phospholipids and a signaling lipid known to recruit cytosolic proteins to membranes. Amino acid substitutions in the RGFRRR sequence which abolish the ability of MtDef4 to enter fungal cells also impair its ability to bind PA. These findings suggest that MtDef4 is a novel antifungal plant defensin capable of entering into fungal cells and affecting intracellular targets and that these processes are mediated by the highly conserved cationic RGFRRR loop via its interaction with PA.
Collapse
|
68
|
Karri V, Bharadwaja KP. Tandem combination of Trigonella foenum-graecum defensin (Tfgd2) and Raphanus sativus antifungal protein (RsAFP2) generates a more potent antifungal protein. Funct Integr Genomics 2013; 13:435-43. [PMID: 24022215 DOI: 10.1007/s10142-013-0334-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 07/28/2013] [Accepted: 08/21/2013] [Indexed: 01/14/2023]
Abstract
Plant defensins are small (45 to 54 amino acids) positively charged antimicrobial peptides produced by the plant species, which can inhibit the growth of a broad range of fungi at micro-molar concentrations. These basic peptides share a common characteristic three-dimensional folding pattern with one α-helix and three β-sheets that are stabilized by eight disulfide-linked cysteine residues. Instead of using two single-gene constructs, it is beneficial when two effective genes are made into a single fusion gene with one promoter and terminator. In this approach, we have linked two plant defensins namely Trigonella foenum-graecum defensin 2 (Tfgd2) and Raphanus sativus antifungal protein 2 (RsAFP2) genes by a linker peptide sequence (occurring in the seeds of Impatiens balsamina) and made into a single-fusion gene construct. We used pET-32a+ vector system to express Tfgd2-RsAFP2 fusion gene with hexahistidine tag in Escherichia coli BL21 (DE3) pLysS cells. Induction of these cells with 1 mM IPTG achieved expression of the fusion protein. The solubilized His6-tagged recombinant fusion protein was purified by immobilized-metal (Ni2+) affinity column chromatography. The final yield of the fusion protein was 500 ng/μL. This method produced biologically active recombinant His6-tagged fusion protein, which exhibited potent antifungal action towards the plant pathogenic fungi (Botrytis cinerea, Fusarium moniliforme, Fusarium oxysporum, Phaeoisariopsis personata and Rhizoctonia solani along with an oomycete pathogen Phytophthora parasitica var nicotianae) at lower concentrations under in vitro conditions. This strategy of combining activity of two defensin genes into a single-fusion gene will definitely be a promising utility for biotechnological applications.
Collapse
|
69
|
Gonçalves S, Abade J, Teixeira A, Santos NC. Lipid composition is a determinant for human defensin HNP1 selectivity. Biopolymers 2013. [PMID: 23193595 DOI: 10.1002/bip.22088] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human neutrophilpeptide 1 (HNP1) is a human defensin with antimicrobial activity against different bacteria (both Gram-positive and negative), fungi, and viruses. HNP1 is stored in the cytoplasmic azurophilic granules of neutrophils. To elucidate the mode of action of this antimicrobial peptide, studies based on its lipid selectivity were carried out. Large unilamellar vesicles with different lipid compositions were used as biomembranes model systems (mammal, fungal, and bacterial models). Changes on the intrinsic fluorescence of HNP1 upon membrane binding/insertion show that HNP1 has quite distinct preferences for mammalian and fungal membrane model systems. HNP1 showed low interaction with glucosylceramide rich membranes, but high sterol selectivity: it has a higher partition for ergosterol-containing membranes (as fungal membranes) and lower interaction with cholesterol-containing membranes (as in mammalian cells). These results reveal that lipid selectivity is a determinant step for HNP1 action. Fluorescence quenching data obtained using acrylamide indicate that HNP1 interacts with membranes without a full insertion in the lipid bilayer. Generalized polarization of laurdan indicates a change in membrane fluidity in the presence of HNP1 for POPC membranes but not for ergosterol-enriched membranes.
Collapse
Affiliation(s)
- Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| | | | | | | |
Collapse
|
70
|
Hegedüs N, Marx F. Antifungal proteins: More than antimicrobials? FUNGAL BIOL REV 2013; 26:132-145. [PMID: 23412850 PMCID: PMC3569713 DOI: 10.1016/j.fbr.2012.07.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 07/30/2012] [Accepted: 07/31/2012] [Indexed: 01/01/2023]
Abstract
Antimicrobial proteins (AMPs) are widely distributed in nature. In higher eukaryotes, AMPs provide the host with an important defence mechanism against invading pathogens. AMPs of lower eukaryotes and prokaryotes may support successful competition for nutrients with other microorganisms of the same ecological niche. AMPs show a vast variety in structure, function, antimicrobial spectrum and mechanism of action. Most interestingly, there is growing evidence that AMPs also fulfil important biological functions other than antimicrobial activity. The present review focuses on the mechanistic function of small, cationic, cysteine-rich AMPs of mammals, insects, plants and fungi with antifungal activity and specifically aims at summarizing current knowledge concerning additional biological properties which opens novel aspects for their future use in medicine, agriculture and biotechnology.
Collapse
Affiliation(s)
| | - Florentine Marx
- Corresponding author. Tel.: +43 512 9003 70207; fax: +43 512 9003 73100.
| |
Collapse
|
71
|
Okorochenkov SA, Zheltukhina GA, Nebol'sin VE. [Antimicrobial peptides: mode of action and perspectives of practical application]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2012; 58:131-43. [PMID: 22724354 DOI: 10.18097/pbmc20125802131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review is devoted to antimicrobial peptides (AMP's) that demonstrate activity against bacteria, viruses and fungi. It considers structure and mechanism of AMP interaction with lipid membrane and intracellular targets of pathogens. Special attention is paid to modem state and perspectives of AMP practical application and also to approaches that increase efficacy and reduce toxicity of AMP by chemical modification of their structure.
Collapse
|
72
|
A non-cyclic baboon θ-defensin derivative exhibiting antimicrobial activity against the phytopathogen Verticillium dahliae. Appl Microbiol Biotechnol 2012; 97:2043-52. [PMID: 22903319 DOI: 10.1007/s00253-012-4309-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 07/13/2012] [Accepted: 07/14/2012] [Indexed: 01/19/2023]
Abstract
θ-Defensins are the only natural cyclic proteins found in primates. They have strong antimicrobial activity related to their trisulfide ladders and macrocyclic conformation. A non-cyclic baboon θ-defensin (BTD) was synthesized by substituting valine with phenylalanine at position 17, at the C-terminal end of the BTD; this was termed "BTD-S." The antimicrobial activities of this synthetic peptide were investigated against Escherichia coli and two cotton phytopathogens: Verticillium dahliae and Fusarium oxysporum. The minimum inhibitory concentration (MIC) of BTD-S for E. coli was 10 μg/mL and for V. dahliae was 5 μg/mL, significantly lower than that for F. oxysporum (40.0 μg/mL). A time course analysis of fungal cultures indicated that the growth of V. dahliae was completely inhibited after 96 h of BTD-S treatment. Furthermore, hemolysis assays revealed that BTD-S was not toxic to mammalian cells as it could not induce lysis of sheep red blood cells even at ten times the MIC (50 μg/mL). Scanning electron microscopy and double-stained (calcofluor white and propidium iodide binding) fluorescence microscopy showed that exposure of spores of V. dahliae to BTD-S either disabled normal germination or disintegrated the spores. The size of cells exposed to BTD-S was significantly reduced compared with controls, and their number increased in a dose-dependent curve when measured by flow cytometry. These findings suggest that BTD-S has great potential to inhibit the growth of V. dahliae and can be utilized as an effective remedy to control economic losses caused by Verticillium wilt in the development of wilt-resistant cotton.
Collapse
|
73
|
|
74
|
Gorjanović S. A Review: Biological and Technological Functions of Barley Seed Pathogenesis-Related Proteins (PRs). JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2009.tb00389.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
75
|
Gonçalves S, Teixeira A, Abade J, de Medeiros LN, Kurtenbach E, Santos NC. Evaluation of the membrane lipid selectivity of the pea defensin Psd1. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1818:1420-6. [PMID: 22373959 DOI: 10.1016/j.bbamem.2012.02.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/04/2012] [Accepted: 02/10/2012] [Indexed: 11/30/2022]
Abstract
Psd1, a 46 amino acid residues defensin isolated from the pea Pisum sativum seeds, exhibits anti-fungal activity by a poorly understood mechanism of action. In this work, the interaction of Psd1 with biomembrane model systems of different lipid compositions was assessed by fluorescence spectroscopy. Partition studies showed a marked lipid selectivity of this antimicrobial peptide (AMP) toward lipid membranes containing ergosterol (the main sterol in fungal membranes) or specific glycosphingolipid components, with partition coefficients (K(p)) reaching uncommonly high values of 10(6). By the opposite, Psd1 does not partition to cholesterol-enriched lipid bilayers, such as mammalian cell membranes. The Psd1 mutants His36Lys and Gly12Glu present a membrane affinity loss relative to the wild type. Fluorescence quenching data obtained using acrylamide and membrane probes further clarify the mechanism of action of this peptide at the molecular level, pointing out the potential therapeutic use of Psd1 as a natural antimycotic agent.
Collapse
Affiliation(s)
- Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
76
|
Sagaram US, Kaur J, Shah D. Antifungal Plant Defensins: Structure-Activity Relationships, Modes of Action, and Biotech Applications. ACS SYMPOSIUM SERIES 2012. [DOI: 10.1021/bk-2012-1095.ch015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Jagdeep Kaur
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, U.S.A
| | - Dilip Shah
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, U.S.A
| |
Collapse
|
77
|
Wong JH, Ng TB, Legowska A, Rolka K, Hui M, Cho CH. Antifungal action of human cathelicidin fragment (LL13-37) on Candida albicans. Peptides 2011; 32:1996-2002. [PMID: 21889964 DOI: 10.1016/j.peptides.2011.08.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/19/2011] [Accepted: 08/20/2011] [Indexed: 11/18/2022]
Abstract
Human cathelicidin LL37 and its fragments LL13-37 and LL17-32 exhibited similar potencies in inhibiting growth of the yeast Candida albicans. After treatment with 0.5 μM and 5 μM LL13-37, the hyphae changed from a uniformly thick to an increasingly slender appearance, with budding becoming less normal in appearance and cell death could be detected. Only the yeast form and no hyphal form could be observed following exposure to 50 μM LL13-37. LL13-37 at a concentration of 5 μM was able to permeabilize the membrane of yeast form as well as hyphal form of C. albicans since the nuclear stain SYTOX Green was localized in both forms. Mycelia treated with LL13-37 stained with SYTOX Green, but did not stain with MitoTracker deep red, indicating that the mitochondria were adversely affected by LL13-37. Bimane-labeled LL13-37 was able to enter some of the hyphae, but not all hyphae were affected, suggesting that LL37 impaired membrane permeability characteristics in some of the hyphae. Reactive oxygen species was detectable in the yeast form of C. albicans cells after treatment with LL13-37 but not in the untreated cells. The results suggest that the increased membrane permeability caused by LL13-37 might not be the sole cause of cell death. It might lead to the uptake of the peptide, which might have some intracellular targets.
Collapse
Affiliation(s)
- Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
| | | | | | | | | | | |
Collapse
|
78
|
WANG SHAOYUN, SHAO BIAO, RAO PINGFAN, DENG ZEYUAN, XIE MINGYONG. LIMLIN, A NOVEL LEGUMINOUS PEROXIDASE WITH ANTIFUNGAL ACTIVITY FROM PHASEOLUS LIMENSIS. J Food Biochem 2011. [DOI: 10.1111/j.1745-4514.2010.00445.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
79
|
Okorochenkov SA, Zheltukhina GA, Nebol’sin VE. Antimicrobial peptides: the mode of action and perspectives of practical application. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2011. [DOI: 10.1134/s1990750811020120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
80
|
Sagaram US, Pandurangi R, Kaur J, Smith TJ, Shah DM. Structure-activity determinants in antifungal plant defensins MsDef1 and MtDef4 with different modes of action against Fusarium graminearum. PLoS One 2011; 6:e18550. [PMID: 21533249 PMCID: PMC3076432 DOI: 10.1371/journal.pone.0018550] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 03/03/2011] [Indexed: 02/05/2023] Open
Abstract
Plant defensins are small cysteine-rich antimicrobial proteins. Their three-dimensional structures are similar in that they consist of an α-helix and three anti-parallel β-strands stabilized by four disulfide bonds. Plant defensins MsDef1 and MtDef4 are potent inhibitors of the growth of several filamentous fungi including Fusarium graminearum. However, they differ markedly in their antifungal properties as well as modes of antifungal action. MsDef1 induces prolific hyperbranching of fungal hyphae, whereas MtDef4 does not. Both defensins contain a highly conserved γ-core motif (GXCX3–9C), a hallmark signature present in the disulfide-stabilized antimicrobial peptides, composed of β2 and β3 strands and the interposed loop. The γ-core motifs of these two defensins differ significantly in their primary amino acid sequences and in their net charge. In this study, we have found that the major determinants of the antifungal activity and morphogenicity of these defensins reside in their γ-core motifs. The MsDef1-γ4 variant in which the γ-core motif of MsDef1 was replaced by that of MtDef4 was almost as potent as MtDef4 and also failed to induce hyperbranching of fungal hyphae. Importantly, the γ-core motif of MtDef4 alone was capable of inhibiting fungal growth, but that of MsDef1 was not. The analysis of synthetic γ-core variants of MtDef4 indicated that the cationic and hydrophobic amino acids were important for antifungal activity. Both MsDef1 and MtDef4 induced plasma membrane permeabilization; however, kinetic studies revealed that MtDef4 was more efficient in permeabilizing fungal plasma membrane than MsDef1. Furthermore, the in vitro antifungal activity of MsDef1, MsDef1-γ4, MtDef4 and peptides derived from the γ-core motif of each defensin was not solely dependent on their ability to permeabilize the fungal plasma membrane. The data reported here indicate that the γ-core motif defines the unique antifungal properties of each defensin and may facilitate de novo design of more potent antifungal peptides.
Collapse
Affiliation(s)
- Uma Shankar Sagaram
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | | | - Jagdeep Kaur
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - Thomas J. Smith
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - Dilip M. Shah
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
81
|
Hegedüs N, Sigl C, Zadra I, Pócsi I, Marx F. The paf gene product modulates asexual development in Penicillium chrysogenum. J Basic Microbiol 2011; 51:253-62. [PMID: 21298690 PMCID: PMC3103751 DOI: 10.1002/jobm.201000321] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Accepted: 11/11/2010] [Indexed: 01/31/2023]
Abstract
Penicillium chrysogenum secretes a low molecular weight, cationic and cysteine-rich protein (PAF). It has growth inhibitory activity against the model organism Aspergillus nidulans and numerous zoo- and phytopathogenic fungi but shows only minimal conditional antifungal activity against the producing organism itself. In this study we provide evidence for an additional function of PAF which is distinct from the antifungal activity against putative ecologically concurrent microorganisms. Our data indicate that PAF enhances conidiation in P. chrysogenum by modulating the expression of brlA, the central regulatory gene for mitospore development. A paf deletion strain showed a significant impairment of mitospore formation which sustains our hypothesis that PAF plays an important role in balancing asexual differentiation in P. chrysogenum.
Collapse
Affiliation(s)
- Nikoletta Hegedüs
- Biocenter, Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
82
|
Rogozhin EA, Oshchepkova YI, Odintsova TI, Khadeeva NV, Veshkurova ON, Egorov TA, Grishin EV, Salikhov SI. Novel antifungal defensins from Nigella sativa L. seeds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:131-7. [PMID: 21144761 DOI: 10.1016/j.plaphy.2010.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 05/18/2010] [Accepted: 10/23/2010] [Indexed: 05/22/2023]
Abstract
From seeds of Nigella sativa L. (Ranunculaceae), an endemic plant of Uzbekistan, two novel defensins named Ns-D1 and Ns-D2, were isolated and sequenced. The peptides differ by a single amino acid residue and show high sequence similarity to Raphanus sativus L. defensins Rs-AFP1 and Rs-AFP2. The Ns-D1 and Ns-D2 defensins display strong although divergent antifungal activity towards a number of phytopathogenic fungi. High antifungal activity of N. sativa defensins makes them promising candidates for engineering pathogen-resistant plants.
Collapse
Affiliation(s)
- Eugene A Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russian Federation.
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Wu X, Sun J, Zhang G, Wang H, Ng TB. An antifungal defensin from Phaseolus vulgaris cv. 'Cloud Bean'. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:104-109. [PMID: 20729048 PMCID: PMC7126286 DOI: 10.1016/j.phymed.2010.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 04/27/2010] [Accepted: 06/08/2010] [Indexed: 05/29/2023]
Abstract
An antifungal peptide with a defensin-like sequence and exhibiting a molecular mass of 7.3kDa was purified from dried seeds of Phaseolus vulgaris 'Cloud Bean'. The isolation procedure entailed anion exchange chromatography on DEAE-cellulose, affinity chromatography an Affi-gel blue gel, cation exchange chromatography on SP-Sepharose, and gel filtration by fast protein liquid chromatography on Superdex 75. Although the antifungal peptide was unadsorbed on DEAE-cellulose, it was adsorbed on both Affi-gel blue gel and SP-Sepharose. The antifungal peptide exerted antifungal activity against Mycosphaerella arachidicola with an IC(50) value of 1.8 μM. It was also active against Fusarium oxysporum with an IC(50) value of 2.2 μM. It had no inhibitory effect on HIV-1 reverse transcriptase when tested up to 100 μM. Proliferation of L1210 mouse leukemia cells and MBL2 lymphoma cells was inhibited by the antifungal peptide with an IC(50) of 10 μM and 40 μM, respectively.
Collapse
Affiliation(s)
- Xiangli Wu
- State Key Laboratory for Agrobiotechnology, Department of Microbiology, China Agricultural University, Beijing 100193, China
| | - Jian Sun
- State Key Laboratory for Agrobiotechnology, Department of Microbiology, China Agricultural University, Beijing 100193, China
| | - Guoqing Zhang
- State Key Laboratory for Agrobiotechnology, Department of Microbiology, China Agricultural University, Beijing 100193, China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology, Department of Microbiology, China Agricultural University, Beijing 100193, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
84
|
Antifungal Activity of PvD1 Defensin Involves Plasma Membrane Permeabilization, Inhibition of Medium Acidification, and Induction of ROS in Fungi Cells. Curr Microbiol 2010; 62:1209-17. [DOI: 10.1007/s00284-010-9847-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 12/02/2010] [Indexed: 11/26/2022]
|
85
|
Slavokhotova AA, Odintsova TI, Rogozhin EA, Musolyamov AK, Andreev YA, Grishin EV, Egorov TA. Isolation, molecular cloning and antimicrobial activity of novel defensins from common chickweed (Stellaria media L.) seeds. Biochimie 2010; 93:450-6. [PMID: 21056078 DOI: 10.1016/j.biochi.2010.10.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 10/28/2010] [Indexed: 11/29/2022]
Abstract
Two novel highly homologous defensins, Sm-AMP-D1 and Sm-AMP-D2, were isolated from seeds of common chickweed Stellaria media L. (family Cariophyllaceae). They show sequence homology to defensins of the Brassicaceae plants and display strong inhibitory activity against phytopathogenic fungi and oomycetes in the micromolar range (IC(50)≤1μM). The cDNA sequences coding for Sm-AMP-D1 and Sm-AMP-D2 were obtained. They code for highly homologous precursor proteins, consisting of a signal peptide of 32 amino acid residues and the mature peptide domain of 50 amino acid residues. The Sm-AMP-D1 and Sm-AMP-D2 precursors differ by two amino acids: one in the signal peptide region, and the other, in the mature peptide domain. Two Sm-D1-encoding genes were identified in S. media genome by PCR amplification from the genomic DNA using Sm-D1-specific primers. They contain a single 599-bp intron in the signal peptide domain and differ from each other by nucleotide substitutions in the intron and 3'-untranslated regions, while the coding sequences are well conserved. One of the genes matched perfectly the sm-D1 cDNA sequence. The sm-D genes show promise for engineering pathogen resistance in crops and expand our knowledge on weed genomics.
Collapse
Affiliation(s)
- Anna A Slavokhotova
- Laboratory of Plant Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, ul. Gubkina 3, Moscow, GSP-1, Russian Federation.
| | | | | | | | | | | | | |
Collapse
|
86
|
Recombinant expression, affinity purification and functional characterization of Scots pine defensin 1. Appl Microbiol Biotechnol 2010; 89:1093-101. [PMID: 20957359 DOI: 10.1007/s00253-010-2935-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/29/2010] [Accepted: 09/30/2010] [Indexed: 10/18/2022]
Abstract
Plants produce a variety of molecules to defend themselves from fungal pathogens. Defensins belong to the family of antimicrobial peptides that play a central role in innate immunity in all species of plants. We have previously reported the purification of antimicrobial peptides from Scots pine seedlings and the identification of some of them, including defensin, by mass spectrometry. In this study, we extend our original study on molecular cloning of Pinus sylvestris defensin 1 (PsDef1) by presenting the expression and affinity purification of recombinant defensin 1 (rPsDef1). The full-length coding sequence of PsDef1 has an open reading frame capable to encode a protein of 83 amino residues, including a signal peptide of 33 aa, followed by a characteristic defensin domain of 50 amino acids representing its active form. The calculated molecular weight of the mature form of PsDef1 is 5,601.6 Da. We have employed pET system to express mature form of PsDef1 fussed to GST. As GST-PsDef1 fusion protein was not biologically active, we removed GST moiety from the mature defensin 1 peptide by proteolytic cleavage with Factor Xa. The resulting rPsDef1 protein exhibited strong antifungal activity against a panel of pathogenic fungi which is comparable to that of endogenous Scots pine defensin 1. In addition, rPsDef1 was used to produce specific polyclonal antibodies. Using generated antibodies, we found that the level of PsDef1 is significantly increased in Scots pine seedlings during germination and in their response to pathogenic infection with Heterobasidion annosum.
Collapse
|
87
|
Gleeson O, O'Gara F, Morrissey JP. The Pseudomonas fluorescens secondary metabolite 2,4 diacetylphloroglucinol impairs mitochondrial function in Saccharomyces cerevisiae. Antonie van Leeuwenhoek 2009; 97:261-73. [PMID: 20091224 DOI: 10.1007/s10482-009-9407-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 12/10/2009] [Indexed: 11/25/2022]
Abstract
Pseudomonas fluorescens strains are known to produce a wide range of secondary metabolites including phenazines, siderophores, pyoluteorin, and 2,4 diacetylphloroglucinol (DAPG). DAPG is of particular interest because of its antifungal properties and because its production is associated with inhibition of phytopathogenic fungi in natural disease-suppressive soils. This trait has been exploited to develop strains of P. fluorescens that have potential application as biocontrol agents. Although the biochemistry, genetics and regulation of DAPG production have been well-studied, relatively little is known about how DAPG inhibits fungal growth and how fungi respond to DAPG. Employing a yeast model and a combination of phenotypic assays, molecular genetics and molecular physiological probes, we established that inhibition of fungal growth is caused by impairment of mitochondrial function. The effect of DAPG on yeast is largely fungistatic but DAPG also induces the formation of petite cells. Expression of the multidrug export proteins Pdr5p and Snq2p is increased by DAPG-treatment but this appears to be a secondary effect of mitochondrial damage as no role in enhancing DAPG-tolerance was identified for either Pdr5p or Snq2p.
Collapse
Affiliation(s)
- Olive Gleeson
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
88
|
Tani Y, Funatsu T, Ashida H, Ito M, Itonori S, Sugita M, Yamamoto K. Novel neogala-series glycosphingolipids with terminal mannose and glucose residues from Hirsutella rhossiliensis, an aureobasidin A-resistant ascomycete fungus. Glycobiology 2009; 20:433-41. [DOI: 10.1093/glycob/cwp190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
89
|
Fontaine T, Lamarre C, Simenel C, Lambou K, Coddeville B, Delepierre M, Latgé JP. Characterization of glucuronic acid containing glycolipid in Aspergillus fumigatus mycelium. Carbohydr Res 2009; 344:1960-7. [DOI: 10.1016/j.carres.2009.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/24/2009] [Accepted: 07/29/2009] [Indexed: 12/31/2022]
|
90
|
Zhang ZT, Zhu SY. Drosomycin, an essential component of antifungal defence in Drosophila. INSECT MOLECULAR BIOLOGY 2009; 18:549-556. [PMID: 19754735 DOI: 10.1111/j.1365-2583.2009.00907.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Drosomycin is an inducible antifungal peptide of 44 residues initially isolated from bacteria-challenged Drosophila melanogaster. The systemic expression of drosomycin is regulated by the Toll pathway present in fat body, whereas inducible local expression in the respiratory tract is controlled by the Immune Deficiency (IMD) pathway. Drosomycin belongs to the cysteine-stabilized alpha-helical and beta-sheet (CSalphabeta) superfamily and is composed of an alpha-helix and a three-stranded beta-sheet stabilized by four disulphide bridges. Drosomycin exhibits a narrow antimicrobial spectrum and is only active against some filamentous fungi. However, recent work using recombinant drosomycin expressed in Escherichia coli revealed its antiparasitic and anti-yeast activities. Two evolutionary epitopes (alpha- and gamma-patch) and the m-loop have been proposed as putative functional regions of drosomycin for interaction with fungi and parasites, respectively. Similarity in sequence, structure and biological activity suggests that drosomycin and some defensin molecules from plants and fungi could originate from a common ancestor.
Collapse
Affiliation(s)
- Z-T Zhang
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
91
|
Skouri-Gargouri H, Ben Ali M, Gargouri A. Molecular cloning, structural analysis and modelling of the AcAFP antifungal peptide from Aspergillus clavatus. Peptides 2009; 30:1798-804. [PMID: 19591888 DOI: 10.1016/j.peptides.2009.06.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 06/25/2009] [Accepted: 06/26/2009] [Indexed: 11/17/2022]
Abstract
An abundantly secreted thermostable peptide (designed AcAFP) with a molecular mass of 5777 Da was isolated and purified in a previous work from a local strain of A. clavatus (VR1). Based on the N-terminal amino acid (aa) sequence of the AcAFP peptide, an oligonucleotide probe was derived and allowed the amplification of the encoding cDNA by RT-PCR. This cDNA fragment encodes a pre-pro-protein of 94 aa which appears to be processed to a mature product of 51 aa cys-rich protein. The deduced aa sequence of the pre-pro-sequence reveals high similarity with ascomycetes antifungal peptide. Comparison of the nucleotide sequence of the genomic fragment and the cDNA clone revealed the presence of an open reading frame of 282 bp interrupted by two small introns of 89 and 56 bp with conserved splice site. The three-dimensional (3D) structure modeling of AcAFP exhibits a compact structure consisting of five anti-parallel beta barrel stabilized by four internal disulfide bridges. The folding pattern revealed also a cationic site and spatially adjacent hydrophobic stretch. The antifungal mechanism was investigated by transmission and confocal microscopy. AcAFP cause cell wall altering in a dose-dependent manner against the phytopathogenic fungus Fusarium oxysporum.
Collapse
Affiliation(s)
- Houda Skouri-Gargouri
- Laboratoire de Génétique Moléculaire des Eucaryotes, Centre de Biotechnologie de Sfax, Route Sidi Mansour, BP K 3038-Sfax, Tunisia
| | | | | |
Collapse
|
92
|
Odintsova TI, Vassilevski AA, Slavokhotova AA, Musolyamov AK, Finkina EI, Khadeeva NV, Rogozhin EA, Korostyleva TV, Pukhalsky VA, Grishin EV, Egorov TA. A novel antifungal hevein-type peptide from Triticum kiharae seeds with a unique 10-cysteine motif. FEBS J 2009; 276:4266-75. [PMID: 19583772 DOI: 10.1111/j.1742-4658.2009.07135.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two forms of a novel antimicrobial peptide (AMP), named WAMP-1a and WAMP-1b, that differ by a single C-terminal amino acid residue and belong to a new structural type of plant AMP were purified from seeds of Triticum kiharae Dorof. et Migusch. Although WAMP-1a and WAMP-1b share similarity with hevein-type peptides, they possess 10 cysteine residues arranged in a unique cysteine motif which is distinct from those described previously for plant AMPs, but is characteristic of the chitin-binding domains of cereal class I chitinases. An unusual substitution of a serine for a glycine residue in the chitin-binding domain was detected for the first time in hevein-like polypeptides. Recombinant WAMP-1a was successfully produced in Escherichia coli. This is the first case of high-yield production of a cysteine-rich plant AMP from a synthetic gene. Assays of recombinant WAMP-1a activity showed that the peptide possessed high broad-spectrum inhibitory activity against diverse chitin-containing and chitin-free pathogens, with IC(50) values in the micromolar range. The discovery of a new type of AMP active against structurally dissimilar microorganisms implies divergent modes of action and discloses the complexity of plant-microbe interactions.
Collapse
Affiliation(s)
- Tatyana I Odintsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Antibacterial activity of recombinant hCAP18/LL37 protein secreted from Pichia pastoris. J Microbiol 2009; 47:358-62. [DOI: 10.1007/s12275-009-0131-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 05/20/2009] [Indexed: 10/20/2022]
|
94
|
Ajesh K, Sreejith K. Peptide antibiotics: an alternative and effective antimicrobial strategy to circumvent fungal infections. Peptides 2009; 30:999-1006. [PMID: 19428779 DOI: 10.1016/j.peptides.2009.01.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 01/26/2009] [Accepted: 01/26/2009] [Indexed: 10/21/2022]
Abstract
Mycosis, caused by both filamentous fungi and pathogenic yeasts is a major concern nowadays especially in the immunocompromised patient population. The emergence of pathogenic fungi resistant to current therapies in the last few decades has intensified the search for new antifungals like cationic peptides, which are the key components of innate defense mechanism. The review provides an inventory of different peptides from a diverse array of organisms from bacteria to mammals with proven antifungal activity, their therapeutic options and also about those which are in various stages of preclinical development. Literature, on the total and semi-synthetic variants of the parent peptides that exhibit an improved antifungal activity is also reviewed.
Collapse
Affiliation(s)
- K Ajesh
- Department of Biotechnology and Microbiology, Kannur University, Kerala, India
| | | |
Collapse
|
95
|
Carvalho ADO, Gomes VM. Plant defensins--prospects for the biological functions and biotechnological properties. Peptides 2009; 30:1007-20. [PMID: 19428780 DOI: 10.1016/j.peptides.2009.01.018] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 01/22/2009] [Accepted: 01/26/2009] [Indexed: 01/07/2023]
Abstract
Plant defensins are a prominent family of cationic peptides in the plant kingdom. They are structurally and functionally related to defensins that have been previously characterized in mammals and insects. They present molecular masses between 5 and 7kDa and possess a pattern of eight conserved Cys residues. The three-dimensional structure of plant defensins is small and globular. It has three anti-parallel beta-sheets and one alpha-helix that is stabilized by a structural motif composed of disulfide bridges. This motif is found in other peptides with biological activity and is called the Cys stabilized alphabeta motif (CSalphabeta). Based on the growing knowledge on defensin structure, gene expression and regulation, and also their in vitro biological activity, it has become clear that plant defensins are complex and sophisticated peptides whose function extends beyond their role in defense of plants against microbial infection. This review discusses recent data and will present comprehensive information regarding the study of defensins.
Collapse
Affiliation(s)
- André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense-Darcy Ribeiro, Campos dos Goytacazes-RJ, Brazil.
| | | |
Collapse
|
96
|
Marquès L, Oomen RJFJ, Aumelas A, Le Jean M, Berthomieu P. Production of an Arabidopsis halleri foliar defensin in Escherichia coli. J Appl Microbiol 2009; 106:1640-8. [PMID: 19226399 DOI: 10.1111/j.1365-2672.2008.04131.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Production of the recombinant Arabidopsis halleri defensin AhPDF1.1 in a native-like form. METHODS AND RESULTS Mature AhPDF1.1 cDNA was cloned into pET-28-a(+) and expressed in Escherichia coli Rosetta. After a denaturing extraction, purification by metal affinity chromatography and CNBr cleavage of the His-tag, a protein without extra amino acids at the N-terminus was obtained. An oxidative folding step was then required to renature the protein that was then purified to homogeneity by a C18 HPLC separation. Mass spectroscopy and circular dichroism analyses showed that the recombinant AhPDF1.1 has the expected molecular mass and 3D-structure features of a folded defensin with four-disulfide bridges. The recombinant protein is active against the filamentous fungus Fusarium oxysporum with a minimal inhibitory concentration of 0.6 micromol l(-1). CONCLUSION The proposed purification protocol produces a native-like defensin suitable for tests of new biological roles. SIGNIFICANCE AND IMPACT OF THE STUDY Plant defensins are essentially known as anti-fungal proteins; however, some unexpected actions on plant cells have recently been discovered. AhPDF1.1, for example, has been shown to confer zinc tolerance. Efficient production of native-like defensins is required to explore the different targets and roles of plant defensins.
Collapse
Affiliation(s)
- L Marquès
- Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, UMR Université Montpellier 2, CNRS, INRA, Montpellier SupAgro, 2 place Viala, Montpellier Cedex 01, France.
| | | | | | | | | |
Collapse
|
97
|
Zainal Z, Marouf E, Ismail I, Fei C. Expression of the Capsicuum annum (Chili) Defensin Gene in Transgenic Tomatoes Confers Enhanced Resistance to Fungal Pathogens. ACTA ACUST UNITED AC 2009. [DOI: 10.3923/ajpp.2009.70.79] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
98
|
Luke GA, Escuin H, Felipe PD, Ryan MD. 2A to the Fore – Research, Technology and Applications. Biotechnol Genet Eng Rev 2009; 26:223-60. [DOI: 10.5661/bger-26-223] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
99
|
|
100
|
Pelegrini PB, Lay FT, Murad AM, Anderson MA, Franco OL. Novel insights on the mechanism of action of alpha-amylase inhibitors from the plant defensin family. Proteins 2008; 73:719-29. [PMID: 18498107 DOI: 10.1002/prot.22086] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant defensins are small cysteine-rich proteins commonly synthesized in plants, encoded by large multigene families. Most plant defensins that have been characterized to date show potent antifungal and/or bactericidal activities. This report describes VuD1, an unusual defensin that is able to inhibit insect-pest alpha-amylases. VuD1 was cloned from cowpea (Vigna unguiculata) seeds and expressed in a heterologous system. Inhibitory enzyme assays showed that VuD1 efficiently inhibits alpha-amylases from the weevils Acanthoscelides obtectus and Zabrotes subfasciatus, caused low inhibition toward mammalian enzymes and was unable to inhibit the alpha-amylases from Callosobruchus maculatus and Aspergillus fumigatus. To shed some light over the mechanism of action of VuD1, molecular modeling analyses were performed, revealing that the N-terminus of the molecule is responsible for binding with the active site of weevil enzymes. Moreover, models of VuD1 and mammalian enzymes were also generated to elucidate the specificity mechanisms. The data presented herein suggests that this defensin has potential application in the development of transgenic plants for insect pest control.
Collapse
Affiliation(s)
- Patrícia B Pelegrini
- Centro de Analises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genomicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil
| | | | | | | | | |
Collapse
|