51
|
[Advances in effects of insecticidal crystal proteins released from transgenic Bt crops on soil ecology]. YI CHUAN = HEREDITAS 2011; 33:443-8. [PMID: 21586391 DOI: 10.3724/sp.j.1005.2011.00443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
With the large scale cultivation of transgenic crops expressing Bacillus thuringiensis (Bt) insecticidal crystal proteins in the world, the problem of environmental safety caused by these Bt crops has received extensive attention. These insecticidal crystal proteins can be released into the soil continuously in the growing period of Bt plants. If their accumulation of the insecticidal crystal proteins exceeds consumption by insect larvae and degradation by the environmental factors, these insecticidal crystal proteins could constitute a hazard to non-target insects and soil microbiota. There are three main ways to release insecticidal crystal proteins into soil for Bt plants: root exudates, pollen falling, and crop reside returning. The Bt insecticidal crystal proteins released into soil can be adsorbed rapidly by active soil particles and the absorption equilibrium attained within 1-3 h. The adsorption protects Bt insecticidal crystal proteins against soil microbial degradation or enzyme degradation, which leads to remarkable prolong of the persistence of insecticidal activity. The change of soil microorganism species is an important index for evaluating the effect of Bt plants on soil ecology. The research showed that these insecticidal crystal proteins released by the Bt plant root exudates or Bt organism had no toxicity to the soil earthworms, nematodes, protozoa, bacteria and fungi; however, it could reduce the mycelium length of the arbuscular mycorrhizal fungi (AMF) and restrain AMF to form invasion unit. The influencing degree of Bt protein on soil enzyme activity varied with the releasing modes or growth period of Bt crops. Bt Cry1Ab protein can be taken up from soil by parts of following crops; however, different results were obtained with different commercial kits. To better understand the soil ecological evaluation about the insecticidal crystal proteins released from transgenic Bt crops, this review provides a comprehensive overview about the release, adsorption and residue of Bt insecticidal crystal proteins in soil, as well as their effects on soil protozoa, soil microorganism, soil enzyme activity and following crops.
Collapse
|
52
|
Likitvivatanavong S, Chen J, Evans AE, Bravo A, Soberon M, Gill SS. Multiple receptors as targets of Cry toxins in mosquitoes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:2829-38. [PMID: 21210704 PMCID: PMC3686494 DOI: 10.1021/jf1036189] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Bacillus thuringiensis (Bt) produces inclusions that are composed of proteins known as crystal proteins or Cry toxins. Due to their high specificity and their safety to humans and the environment, these Cry toxins are considered to be valuable alternatives to chemical pesticides in insect control programs. It is believed that Cry toxin-induced membrane pore formation is responsible for insect toxicity. The molecular mechanism of pore formation involves recognition and subsequent binding of the toxin to membrane receptors. This binding is accompanied by toxin oligomerization and transfer of domain I helices of the toxin to the lipid-water interface. This toxin insertion creates pores that lyse the cells. Several receptors from lepidopteran, coleopteran, and dipteran insects have been well characterized. This paper provides an overview of the understanding of the interactions between Cry toxin and multiple receptors in mosquitoes, in particular Aedes aegypti and reviews the manner by which the receptors were identified and characterized, with a focus on three proteins, cadherin, alkaline phosphatase, and aminopeptidase-N.
Collapse
Affiliation(s)
| | - Jianwu Chen
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA, 92521, USA
| | - Amy E. Evans
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA, 92521, USA
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México. Apdo. postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Mario Soberon
- Instituto de Biotecnología, Universidad Nacional Autónoma de México. Apdo. postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Sarjeet S. Gill
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA, 92521, USA
- Corresponding author: . Tel: 951-827-4621/3547
| |
Collapse
|
53
|
Effects of Mutations Within Surface-Exposed Loops in the Pore-Forming Domain of the Cry9Ca Insecticidal Toxin of Bacillus thuringiensis. J Membr Biol 2010; 238:21-31. [DOI: 10.1007/s00232-010-9315-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 10/27/2010] [Indexed: 11/30/2022]
|
54
|
Midgut juice components affect pore formation by the Bacillus thuringiensis insecticidal toxin Cry9Ca. J Invertebr Pathol 2010; 104:203-8. [DOI: 10.1016/j.jip.2010.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/11/2010] [Accepted: 04/14/2010] [Indexed: 11/18/2022]
|
55
|
Brunet JF, Vachon V, Juteau M, Van Rie J, Larouche G, Vincent C, Schwartz JL, Laprade R. Pore-forming properties of the Bacillus thuringiensis toxin Cry9Ca in Manduca sexta brush border membrane vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1111-8. [DOI: 10.1016/j.bbamem.2010.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 01/21/2010] [Accepted: 02/04/2010] [Indexed: 11/16/2022]
|
56
|
Thamwiriyasati N, Sakdee S, Chuankhayan P, Katzenmeier G, Chen CJ, Angsuthanasombat C. Crystallization and preliminary X-ray crystallographic analysis of a full-length active form of the Cry4Ba toxin from Bacillus thuringiensis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:721-4. [PMID: 20516610 DOI: 10.1107/s1744309110015344] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 04/26/2010] [Indexed: 11/11/2022]
Abstract
To obtain a complete structure of the Bacillus thuringiensis Cry4Ba mosquito-larvicidal protein, a 65 kDa functional form of the Cry4Ba-R203Q mutant toxin was generated for crystallization by eliminating the tryptic cleavage site at Arg203. The 65 kDa trypsin-resistant fragment was purified and crystallized using the sitting-drop vapour-diffusion method. The crystals belonged to the rhombohedral space group R32, with unit-cell parameters a = b = 184.62, c = 187.36 A. Diffraction data were collected to at least 2.07 A resolution using synchrotron radiation and gave a data set with an overall R(merge) of 9.1% and a completeness of 99.9%. Preliminary analysis indicated that the asymmetric unit contained one molecule of the active full-length mutant, with a V(M) coefficient and solvent content of 4.33 A(3) Da(-1) and 71%, respectively.
Collapse
Affiliation(s)
- Niramon Thamwiriyasati
- Laboratory of Molecular Biophysics and Structural Biochemistry, Bacterial Protein Toxin Research Unit, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand
| | | | | | | | | | | |
Collapse
|
57
|
Arenas I, Bravo A, Soberón M, Gómez I. Role of alkaline phosphatase from Manduca sexta in the mechanism of action of Bacillus thuringiensis Cry1Ab toxin. J Biol Chem 2010; 285:12497-503. [PMID: 20177063 PMCID: PMC2857145 DOI: 10.1074/jbc.m109.085266] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Revised: 01/14/2010] [Indexed: 02/03/2023] Open
Abstract
Cry toxins produced by Bacillus thuringiensis have been recognized as pore-forming toxins whose primary action is to lyse midgut epithelial cells in their target insect. In the case of the Cry1A toxins, a prepore oligomeric intermediate is formed after interaction with cadherin receptor. The Cry1A oligomer then interacts with glycosylphosphatidylinositol-anchored receptors. Two Manduca sexta glycosylphosphatidylinositol-anchored proteins, aminopeptidase (APN) and alkaline phosphatase (ALP), have been shown to bind Cry1Ab, although their role in toxicity remains to be determined. Detection of Cry1Ab binding proteins by ligand blot assay revealed that ALP is preferentially expressed earlier during insect development, because it was found in the first larval instars, whereas APN is induced later after the third larval instar. The binding of Cry1Ab oligomer to pure preparations of APN and ALP showed that this toxin structure interacts with both receptors with high affinity (apparent K(d) = 0.6 nM), whereas the monomer showed weaker binding (apparent K(d) = 101.6 and 267.3 nM for APN and ALP, respectively). Several Cry1Ab nontoxic mutants located in the exposed loop 2 of domain II or in beta-16 of domain III were affected in binding to APN and ALP, depending on their oligomeric state. In particular monomers of the nontoxic domain III, the L511A mutant did not bind ALP but retained APN binding, suggesting that initial interaction with ALP is critical for toxicity. Our data suggest that APN and ALP fulfill two roles. First APN and ALP are initial receptors promoting the localization of toxin monomers in the midgut microvilli before interaction with cadherin. Then APN and ALP function as secondary receptors mediating oligomer insertion into the membrane. However, the expression pattern of these receptors and the phenotype of L511A mutant suggest that ALP may have a predominant role in toxin action because Cry toxins are highly effective against the neonate larvae that is the target for pest control programs.
Collapse
Affiliation(s)
- Iván Arenas
- From the Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62250, México
| | - Alejandra Bravo
- From the Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62250, México
| | - Mario Soberón
- From the Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62250, México
| | - Isabel Gómez
- From the Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62250, México
| |
Collapse
|
58
|
Chen LZ, Liang GM, Zhang J, Wu KM, Guo YY, Rector BG. Proteomic analysis of novel Cry1Ac binding proteins in Helicoverpa armigera (Hübner). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 73:61-73. [PMID: 19847794 DOI: 10.1002/arch.20340] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Aminopeptidase N (APN) and cadherin-like proteins have been previously identified as Cry1Ac-binding proteins in Helicoverpa armigera (Hübner). In this study, a proteomic approach was used to identify novel Cry1Ac-binding proteins in H. armigera. Brush border membrane vesicles (BBMV) of H. armigera were extracted and separated by two-dimensional gel electrophoresis (2-DE). Cry1Ac-binding proteins were detected using antisera against Cry1Ac. Peptide mass fingerprinting (PMF) was used to identify Cry1Ac-binding proteins. In total, four proteins were identified as candidate Cry1Ac-binding proteins in H. armigera: vacuolar ATP synthase (V-ATPase) subunit B, actin, heat shock cognate protein (HSCP), and a novel protein.
Collapse
Affiliation(s)
- Li-Zhen Chen
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | | | | | | | | | | |
Collapse
|
59
|
López-Pazos SA, Rojas Arias AC, Ospina SA, Cerón J. Activity of Bacillus thuringiensisâhybrid protein against a lepidopteran and a coleopteran pest. FEMS Microbiol Lett 2010; 302:93-8. [DOI: 10.1111/j.1574-6968.2009.01821.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
60
|
Kitada S, Abe Y, Maeda T, Shimada H. Parasporin-2 requires GPI-anchored proteins for the efficient cytocidal action to human hepatoma cells. Toxicology 2009; 264:80-8. [DOI: 10.1016/j.tox.2009.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Accepted: 07/21/2009] [Indexed: 10/20/2022]
|
61
|
Scientific Opinion on application (EFSA-GMO-NL-2007-38) for the placing on the market of insect resistant and/or herbicide tolerant genetically modified maize MON89034 × NK603 for food and feed uses, import and processing under Regulation (EC) No 1829/200. EFSA J 2009. [DOI: 10.2903/j.efsa.2009.1320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
62
|
Liu C, Wu K, Wu Y, Gao Y, Ning C, Oppert B. Reduction of Bacillus thuringiensis Cry1Ac toxicity against Helicoverpa armigera by a soluble toxin-binding cadherin fragment. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:686-693. [PMID: 19446559 DOI: 10.1016/j.jinsphys.2009.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 05/02/2009] [Accepted: 05/04/2009] [Indexed: 05/27/2023]
Abstract
A cadherin-like protein has been identified as a putative receptor for Bacillus thuringiensis (Bt) Cry1Ac toxin in Helicoverpa armigera and plays a key role in Bt insecticidal action. In this study, we produced a fragment from this H. armigera Cry1Ac toxin-binding cadherin that included the predicted toxin-binding region. Binding of Cry1Ac toxin to this cadherin fragment facilitated the formation of a 250-kDa toxin oligomer. The cadherin fragment was evaluated for its effect on Cry1Ac toxin-binding and toxicity by ligand blotting, binding assays, and bioassays. The results of ligand blotting and binding assays revealed that the binding of Cry1Ac to H. armigera midgut epithelial cells was reduced under denaturing or native conditions in vitro. Bioassay results indicated that toxicities from Cry1Ac protoxin or activated toxin were reduced in vivo by the H. armigera cadherin fragment. The addition of the cadherin fragment had no effect on Cry2Ab toxicity.
Collapse
Affiliation(s)
- Chenxi Liu
- State Key Laboratory of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
63
|
Fabrick J, Oppert C, Lorenzen MD, Morris K, Oppert B, Jurat-Fuentes JL. A novel Tenebrio molitor cadherin is a functional receptor for Bacillus thuringiensis Cry3Aa toxin. J Biol Chem 2009; 284:18401-10. [PMID: 19416969 DOI: 10.1074/jbc.m109.001651] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cry toxins produced by the bacterium Bacillus thuringiensis are effective biological insecticides. Cadherin-like proteins have been reported as functional Cry1A toxin receptors in Lepidoptera. Here we present data that demonstrate that a coleopteran cadherin is a functional Cry3Aa toxin receptor. The Cry3Aa receptor cadherin was cloned from Tenebrio molitor larval midgut mRNA, and the predicted protein, TmCad1, has domain structure and a putative toxin binding region similar to those in lepidopteran cadherin B. thuringiensis receptors. A peptide containing the putative toxin binding region from TmCad1 bound specifically to Cry3Aa and promoted the formation of Cry3Aa toxin oligomers, proposed to be mediators of toxicity in lepidopterans. Injection of TmCad1-specific double-stranded RNA into T. molitor larvae resulted in knockdown of the TmCad1 transcript and conferred resistance to Cry3Aa toxicity. These data demonstrate the functional role of TmCad1 as a Cry3Aa receptor in T. molitor and reveal similarities between the mode of action of Cry toxins in Lepidoptera and Coleoptera.
Collapse
Affiliation(s)
- Jeff Fabrick
- United States Department of Agriculture Agricultural Research Service United States Arid-Land Agricultural Research Center, Maricopa, Arizona 85238, USA
| | | | | | | | | | | |
Collapse
|
64
|
Sarkar A, Hess D, Mondal HA, Banerjee S, Sharma HC, Das S. Homodimeric Alkaline Phosphatase Located at Helicoverpa armigera Midgut, a Putative Receptor of Cry1Ac Contains α-GalNAc in Terminal Glycan Structure as Interactive Epitope. J Proteome Res 2009; 8:1838-48. [DOI: 10.1021/pr8006528] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anindya Sarkar
- Plant Molecular and Cellular Genetics, Bose Institute, P-1/12, C.I.T. Scheme, VII-M, Kolkata 700054, India, The Protein Analysis Facility, Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, CH-4058 Basel, Switzerland, and GT Crop Improvement, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh 502 324, India
| | - Daniel Hess
- Plant Molecular and Cellular Genetics, Bose Institute, P-1/12, C.I.T. Scheme, VII-M, Kolkata 700054, India, The Protein Analysis Facility, Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, CH-4058 Basel, Switzerland, and GT Crop Improvement, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh 502 324, India
| | - Hossain A. Mondal
- Plant Molecular and Cellular Genetics, Bose Institute, P-1/12, C.I.T. Scheme, VII-M, Kolkata 700054, India, The Protein Analysis Facility, Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, CH-4058 Basel, Switzerland, and GT Crop Improvement, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh 502 324, India
| | - Santanu Banerjee
- Plant Molecular and Cellular Genetics, Bose Institute, P-1/12, C.I.T. Scheme, VII-M, Kolkata 700054, India, The Protein Analysis Facility, Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, CH-4058 Basel, Switzerland, and GT Crop Improvement, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh 502 324, India
| | - Hari C. Sharma
- Plant Molecular and Cellular Genetics, Bose Institute, P-1/12, C.I.T. Scheme, VII-M, Kolkata 700054, India, The Protein Analysis Facility, Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, CH-4058 Basel, Switzerland, and GT Crop Improvement, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh 502 324, India
| | - Sampa Das
- Plant Molecular and Cellular Genetics, Bose Institute, P-1/12, C.I.T. Scheme, VII-M, Kolkata 700054, India, The Protein Analysis Facility, Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, CH-4058 Basel, Switzerland, and GT Crop Improvement, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh 502 324, India
| |
Collapse
|
65
|
Chemical modification of Bacillus thuringiensis Cry1Aa toxin single-cysteine mutants reveals the importance of domain I structural elements in the mechanism of pore formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:575-80. [DOI: 10.1016/j.bbamem.2008.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 11/17/2022]
|
66
|
Application (Reference EFSA-GMO-NL-2007-37) for the placing on the market of the insect-resistant genetically modified maize MON89034, for food and feed uses, import and processing under Regulation (EC) No 1829/2003 from Monsanto. EFSA J 2008. [DOI: 10.2903/j.efsa.2008.909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
67
|
Helix alpha 4 of the Bacillus thuringiensis Cry1Aa toxin plays a critical role in the postbinding steps of pore formation. Appl Environ Microbiol 2008; 75:359-65. [PMID: 19011060 DOI: 10.1128/aem.01930-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Helix alpha 4 of Bacillus thuringiensis Cry toxins is thought to play a critical role in the toxins' mode of action. Accordingly, single-site substitutions of many Cry1Aa helix alpha 4 amino acid residues have previously been shown to cause substantial reductions in the protein's pore-forming activity. Changes in protein structure and formation of intermolecular disulfide bonds were investigated as possible factors responsible for the inactivity of these mutants. Incubation of each mutant with trypsin and chymotrypsin for 12 h did not reveal overt structural differences with Cry1Aa, although circular dichroism was slightly decreased in the 190- to 210-nm region for the I132C, S139C, and V150C mutants. The addition of dithiothreitol stimulated pore formation by the E128C, I132C, S139C, T142C, I145C, P146C, and V150C mutants. However, in the presence of these mutants, the membrane permeability never reached that measured for Cry1Aa, indicating that the formation of disulfide bridges could only partially explain their loss of activity. The ability of a number of inactive mutants to compete with wild-type Cry1Aa for pore formation in brush border membrane vesicles isolated from Manduca sexta was also investigated with an osmotic swelling assay. With the exception of the L147C mutant, all mutants tested could inhibit the formation of pores by Cry1Aa, indicating that they retained receptor binding ability. These results strongly suggest that helix alpha 4 is involved mainly in the postbinding steps of pore formation.
Collapse
|
68
|
Angelucci C, Barrett-Wilt GA, Hunt DF, Akhurst RJ, East PD, Gordon KH, Campbell PM. Diversity of aminopeptidases, derived from four lepidopteran gene duplications, and polycalins expressed in the midgut of Helicoverpa armigera: identification of proteins binding the delta-endotoxin, Cry1Ac of Bacillus thuringiensis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:685-96. [PMID: 18549954 PMCID: PMC2852237 DOI: 10.1016/j.ibmb.2008.03.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 03/28/2008] [Accepted: 03/31/2008] [Indexed: 05/09/2023]
Abstract
Helicoverpa armigera midgut proteins that bind the Bacillus thuringiensis (Bt) delta-endotoxin Cry1Ac were purified by affinity chromatography. SDS-PAGE showed that several proteins were eluted with N-acetylgalactosamine and no further proteins were detected after elution with urea. Tandem mass spectral data for tryptic peptides initially indicated that the proteins resembled aminopeptidases (APNs) from other lepidopterans and cDNA sequences for seven APNs were isolated from H. armigera through a combination of cloning with primers derived from predicted peptide sequences and established EST libraries. Phylogenetic analysis showed lepidopteran APN genes in nine clades of which five were part of a lepidopteran-specific radiation. The Cry1Ac-binding proteins were then identified with four of the seven HaAPN genes. Three of those four APNs are likely orthologs of APNs characterised as Cry1Ac-binding proteins in other lepidopterans. The fourth Cry1Ac-binding APN has orthologs not previously identified as Cry1Ac-binding partners. The HaAPN genes were expressed predominantly in the midgut through larval development. Each showed consistent expression along the length of the midgut but five of the genes were expressed at levels about two orders of magnitude greater than the remaining two. The remaining mass spectral data identified sequences encoding polycalin proteins with multiple lipocalin-like domains. A polycalin has only been previously reported in another lepidopteran, Bombyx mori, but polycalins in both species are now linked with binding of Bt Cry toxins. This is the first report of hybrid, lipocalin-like domains in shorter polycalin sequences that are not present in the longest sequence. We propose that these hybrid domains are generated by alternative splicing of the mRNA.
Collapse
Affiliation(s)
| | | | - Donald F. Hunt
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
- Department of Pathology, University of Virginia, Charlottesville, VA 22904, USA
| | | | - Peter D. East
- CSIRO Entomology, PO Box 1700, Canberra, ACT 2601, Australia
| | | | - Peter M. Campbell
- CSIRO Entomology, PO Box 1700, Canberra, ACT 2601, Australia
- Corresponding author. Tel.: +612 62464394; fax: +612 62464173. (P.M. Campbell)
| |
Collapse
|
69
|
Iacovache I, van der Goot FG, Pernot L. Pore formation: an ancient yet complex form of attack. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1611-23. [PMID: 18298943 DOI: 10.1016/j.bbamem.2008.01.026] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 01/03/2008] [Accepted: 01/04/2008] [Indexed: 02/07/2023]
Abstract
Bacteria, as well as higher organisms such as sea anemones or earthworms, have developed sophisticated virulence factors such as the pore-forming toxins (PFTs) to mount their attack against the host. One of the most fascinating aspects of PFTs is that they can adopt a water-soluble form at the beginning of their lifetime and become an integral transmembrane protein in the membrane of the target cells. There is a growing understanding of the sequence of events and the various conformational changes undergone by these toxins in order to bind to the host cell surface, to penetrate the cell membranes and to achieve pore formation. These points will be addressed in this review.
Collapse
Affiliation(s)
- Ioan Iacovache
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Station 15, Lausanne, Switzerland
| | | | | |
Collapse
|
70
|
Bondzio A, Stumpff F, Schön J, Martens H, Einspanier R. Impact of Bacillus thuringiensis toxin Cry1Ab on rumen epithelial cells (REC) - a new in vitro model for safety assessment of recombinant food compounds. Food Chem Toxicol 2008; 46:1976-84. [PMID: 18325653 DOI: 10.1016/j.fct.2008.01.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 01/02/2008] [Accepted: 01/25/2008] [Indexed: 10/22/2022]
Abstract
The growing use of genetically modified crops necessitates viable screening methods for safety evaluation of recombinant feed, particularly for ruminants. A new sheep rumen epithelial cell culture is introduced as an in vitro cell system for safety evaluation especially focussing on feed and food compounds. We used lactate dehydrogenase (LDH) release, WST-1 conversion, ATP content and caspase 3/7 activity to evaluate cytotoxicity of Cry1Ab, one of the newly expressed Bt-proteins in transgene maize. The results were compared to the effects of valinomycin, a potassium ionophore known to induce cytotoxic effects on a wide range of cells. Whereas no toxicity of Cry1Ab was observed in short as well as in long term experiments, even at non-physiological high concentrations, exposure to valinomycin induced apoptosis and a significant response of all viability parameters after a number of hours. The ATP content and the WST-1 conversion reflecting the energy metabolism of the cells appear to be more sensitive indicators of valinomycin toxicity than the LDH release, a parameter which reflects the membrane integrity. This study presents an in vitro model system, that may be useful as a supplementary tool in toxicity screening before testing substances on animals in vivo.
Collapse
Affiliation(s)
- Angelika Bondzio
- Department of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany.
| | | | | | | | | |
Collapse
|
71
|
Moonsom S, Chaisri U, Kasinrerk W, Angsuthanasombat C. Binding characteristics to mosquito-larval midgut proteins of the cloned domain II-III fragment from the Bacillus thuringiensis Cry4Ba toxin. BMB Rep 2008; 40:783-90. [PMID: 17927913 DOI: 10.5483/bmbrep.2007.40.5.783] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Receptor binding plays an important role in determining host specificity of the Bacillus thuringiensis Cry delta-endotoxins. Mutations in domains II and III have suggested the participation of certain residues in receptor recognition and insect specificity. In the present study, we expressed the cloned domain II-III fragment of Cry4Ba and examined its binding characteristics to mosquito-larval midgut proteins. The 43-kDa Cry4Ba-domain II-III protein over-expressed in Escherichia coli as inclusion bodies was only soluble when carbonate buffer, pH 10.0 was supplemented with 4 M urea. After renaturation via stepwise dialysis and subsequent purification, the refolded domain II-III protein, which specifically reacts with anti Cry4Ba-domain III monoclonal antibody, predominantly exists as a beta-sheet structure determined by circular dichroism spectroscopy. In vitro binding analysis to both histological midgut tissue sections and brush border membrane proteins prepared from susceptible Aedes aegypti mosquito-larvae revealed that the isolated Cry4Ba-domain II-III protein showed binding functionality comparable to the 65-kDa full-length active toxin. Altogether, the data present the 43-kDa Cry4Ba fragment comprising domains II and III that was produced in isolation was able to retain its receptor-binding characteristics to the target larval midgut proteins.
Collapse
Affiliation(s)
- Seangdeun Moonsom
- Laboratory of Molecular Biophysics and Structural Biochemistry, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand
| | | | | | | |
Collapse
|
72
|
Ounjai P, Unger VM, Sigworth FJ, Angsuthanasombat C. Two conformational states of the membrane-associated Bacillus thuringiensis Cry4Ba delta-endotoxin complex revealed by electron crystallography: implications for toxin-pore formation. Biochem Biophys Res Commun 2007; 361:890-5. [PMID: 17681273 PMCID: PMC2583932 DOI: 10.1016/j.bbrc.2007.07.086] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 07/16/2007] [Indexed: 11/21/2022]
Abstract
The insecticidal nature of Cry delta-endotoxins produced by Bacillus thuringiensis is generally believed to be caused by their ability to form lytic pores in the midgut cell membrane of susceptible insect larvae. Here we have analyzed membrane-associated structures of the 65-kDa dipteran-active Cry4Ba toxin by electron crystallography. The membrane-associated toxin complex was crystallized in the presence of DMPC via detergent dialysis. Depending upon the charge of the adsorbed surface, 2D crystals of the oligomeric toxin complex have been captured in two distinct conformations. The projection maps of those crystals have been generated at 17A resolution. Both complexes appeared to be trimeric; as in one crystal form, its projection structure revealed a symmetrical pinwheel-like shape with virtually no depression in the middle of the complex. The other form revealed a propeller-like conformation displaying an obvious hole in the center region, presumably representing the toxin-induced pore. These crystallographic data thus demonstrate for the first time that the 65-kDa activated Cry4Ba toxin in association with lipid membranes could exist in at least two different trimeric conformations, conceivably implying the closed and open states of the pore.
Collapse
Affiliation(s)
- Puey Ounjai
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8024, USA
- Laboratory of Molecular Biophysics and Structural Biochemistry, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, Nakornpathom 73170 Thailand
| | - Vinzenz M. Unger
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, P.O. Box 208024, New Haven, CT 06520-8024, USA
| | - Fred J. Sigworth
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8024, USA
| | - Chanan Angsuthanasombat
- Laboratory of Molecular Biophysics and Structural Biochemistry, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, Nakornpathom 73170 Thailand
- Corresponding Author. Fax: +66-2-4419906, E-mail: (C. Angsuthanasombat)
| |
Collapse
|