51
|
Dommisch H, Jepsen S. Diverse functions of defensins and other antimicrobial peptides in periodontal tissues. Periodontol 2000 2015; 69:96-110. [DOI: 10.1111/prd.12093] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2015] [Indexed: 02/06/2023]
|
52
|
Antibacterial products of marine organisms. Appl Microbiol Biotechnol 2015; 99:4145-73. [PMID: 25874533 DOI: 10.1007/s00253-015-6553-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
Abstract
Marine organisms comprising microbes, plants, invertebrates, and vertebrates elaborate an impressive array of structurally diverse antimicrobial products ranging from small cyclic compounds to macromolecules such as proteins. Some of these biomolecules originate directly from marine animals while others arise from microbes associated with the animals. It is noteworthy that some of the biomolecules referred to above are structurally unique while others belong to known classes of compounds, peptides, and proteins. Some of the antibacterial agents are more active against Gram-positive bacteria while others have higher effectiveness on Gram-negative bacteria. Some are efficacious against both Gram-positive and Gram-negative bacteria and against drug-resistant strains as well. The mechanism of antibacterial action of a large number of the chemically identified antibacterial agents, possible synergism with currently used antibiotics, and the issue of possible toxicity on mammalian cells and tissues await elucidation. The structural characteristics pivotal to antibacterial activity have been ascertained in only a few studies. Demonstration of efficacy of the antibacterial agents in animal models of bacterial infection is highly desirable. Structural characterization of the active principles present in aqueous and organic extracts of marine organisms with reportedly antibacterial activity would be desirable.
Collapse
|
53
|
Isolation of a Ribonuclease with Antiproliferative and HIV-1 Reverse Transcriptase Inhibitory Activities from Japanese Large Brown Buckwheat Seeds. Appl Biochem Biotechnol 2014; 175:2456-67. [DOI: 10.1007/s12010-014-1438-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/28/2014] [Indexed: 01/03/2023]
|
54
|
Wong JH, Liu Z, Law KWK, Liu F, Xia L, Wan DCC, Ng TB. A study of effects of peptide fragments of bovine and human lactoferrins on activities of three key HIV-1 enzymes. Peptides 2014; 62:183-8. [PMID: 25445609 DOI: 10.1016/j.peptides.2014.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 07/03/2014] [Accepted: 07/03/2014] [Indexed: 11/20/2022]
Abstract
The intent of this study was to examine human and bovine lactoferrin fragments including lactoferrin (1-11), lactoferricin and lactoferrampin, all of which did not demonstrate hemolytic activity toward rabbit erythrocytes at 1 mM concentration, for possible inhibitory effects on the activities of HIV-1 reverse transcriptase, protease and integrase. The data showed that human lactoferricin was the most potent in inhibiting HIV-1 reverse transcriptase (IC50 =2 μM). Bovine lactoferricin (IC50 = 10 μM) and bovine lactoferrampin (IC50 = 150 μM) were less potent. Human lactoferrampin and human and bovine lactoferrin (1-11) at 1 mM concentration did not exhibit any inhibitory effect on HIV-1 reverse transcriptase. All peptides showed only a slight inhibitory effect (from slightly below 2% to 6% inhibition) on HIV-1 protease. Human lactoferrampin and bovine lactoferrampin showed obvious inhibitory effect on HIV-1 integrase at 37 μM and 18.5 μM, respectively. The HIV-1 integrase inhibitory activity of human lactoferrampin and bovine lactoferrampin was dose-dependent. The other peptides were devoid of HIV-1 integrase inhibitory activity. Thus, it is concluded that some lactoferrin fragments exert an inhibitory action on HIV-1 reverse transcriptase and HIV-1 integrase.
Collapse
|
55
|
Development of an Analytical Method for the Rapid Quantitation of Peptides Used in Microbicide Formulations. Chromatographia 2014; 77:1713-1720. [PMID: 25477555 PMCID: PMC4244548 DOI: 10.1007/s10337-014-2777-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/25/2014] [Indexed: 01/21/2023]
Abstract
Recently, a growing number of macromolecules such as peptides and proteins have been formulated into various microbicide formulations for the prevention of sexually transmitted infections. However, a fast and reliable high-throughput method for quantitating peptide/protein in polymer-based microbicide formulations is still lacking. As a result, we developed and validated a reversed-phase high-performance liquid chromatography method for the quantitation of gp120 fragment and LL-37 simultaneously in various microbicide gel formulations. This method was capable of detecting a limit of linearity (regression coefficient of 0.999) for gp120 fragment and LL-37 within a range of 0.625-80 and 1.25-80 µg mL-1, respectively. The lower limit of quantification for gp120 fragment and LL-37 was 1.14 and 0.31 µg mL-1, respectively. Method validation demonstrated acceptable intra- and inter-day RSD % (<5 %) and accuracy (95.67-100.5 %). Formulating both peptides into polymeric pharmaceutical gel formulations showed high extraction efficiency (in the range of 95.90 ± 3.03 to 111.45 ± 2.51 %). Using this method, we were able to separate and identify the forced degraded products from both peptides simultaneously without affecting the quantitation of both peptides in the polymeric dosage forms. Furthermore, this method was able to detect and separate degradants that were unable to be revealed using gel eletrophoresis.
Collapse
|
56
|
Romas LM, Hasselrot K, Aboud LG, Birse KD, Ball TB, Broliden K, Burgener AD. A comparative proteomic analysis of the soluble immune factor environment of rectal and oral mucosa. PLoS One 2014; 9:e100820. [PMID: 24978053 PMCID: PMC4076261 DOI: 10.1371/journal.pone.0100820] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/30/2014] [Indexed: 02/04/2023] Open
Abstract
Objective Sexual transmission of HIV occurs across a mucosal surface, which contains many soluble immune factors important for HIV immunity. Although the composition of mucosal fluids in the vaginal and oral compartments has been studied extensively, the knowledge of the expression of these factors in the rectal mucosa has been understudied and is very limited. This has particular relevance given that the highest rates of HIV acquisition occur via the rectal tract. To further our understanding of rectal mucosa, this study uses a proteomics approach to characterize immune factor components of rectal fluid, using saliva as a comparison, and evaluates its antiviral activity against HIV. Methods Paired salivary fluid (n = 10) and rectal lavage fluid (n = 10) samples were collected from healthy, HIV seronegative individuals. Samples were analyzed by label-free tandem mass spectrometry to comprehensively identify and quantify mucosal immune protein abundance differences between saliva and rectal fluids. The HIV inhibitory capacity of these fluids was further assessed using a TZM-bl reporter cell line. Results Of the 315 proteins identified in rectal lavage fluid, 72 had known immune functions, many of which have described anti-HIV activity, including cathelicidin, serpins, cystatins and antileukoproteinase. The majority of immune factors were similarly expressed between fluids, with only 21 differentially abundant (p<0.05, multiple comparison corrected). Notably, rectal mucosa had a high abundance of mucosal immunoglobulins and antiproteases relative to saliva, Rectal lavage limited HIV infection by 40–50% in vitro (p<0.05), which is lower than the potent anti-HIV effect of oral mucosal fluid (70–80% inhibition, p<0.005). Conclusions This study reveals that rectal mucosa contains many innate immune factors important for host immunity to HIV and can limit viral replication in vitro. This indicates an important role for this fluid as the first line of defense against HIV.
Collapse
Affiliation(s)
- Laura M. Romas
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Klara Hasselrot
- Karolinska Institutet, Department of Medicine Solna, Unit of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Lindsay G. Aboud
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Kenzie D. Birse
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - T. Blake Ball
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
- National Laboratory for HIV Immunology, Public Health Agency of Canada, Winnipeg, Canada
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - Kristina Broliden
- National Laboratory for HIV Immunology, Public Health Agency of Canada, Winnipeg, Canada
| | - Adam D. Burgener
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
- National Laboratory for HIV Immunology, Public Health Agency of Canada, Winnipeg, Canada
- * E-mail:
| |
Collapse
|
57
|
Abstract
There is a pressing need to develop new antiviral treatments; of the 60 drugs currently available, half are aimed at HIV-1 and the remainder target only a further six viruses. This demand has led to the emergence of possible peptide therapies, with 15 currently in clinical trials. Advancements in understanding the antiviral potential of naturally occurring host defence peptides highlights the potential of a whole new class of molecules to be considered as antiviral therapeutics. Cationic host defence peptides, such as defensins and cathelicidins, are important components of innate immunity with antimicrobial and immunomodulatory capabilities. In recent years they have also been shown to be natural, broad-spectrum antivirals against both enveloped and non-enveloped viruses, including HIV-1, influenza virus, respiratory syncytial virus and herpes simplex virus. Here we review the antiviral properties of several families of these host peptides and their potential to inform the design of novel therapeutics.
Collapse
Affiliation(s)
- Emily Gwyer Findlay
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ Scotland, UK
| | - Silke M. Currie
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ Scotland, UK
| | - Donald J. Davidson
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ Scotland, UK
| |
Collapse
|
58
|
A novel hemagglutinin with antiproliferative activity against tumor cells from the hallucinogenic mushroom Boletus speciosus. BIOMED RESEARCH INTERNATIONAL 2014; 2014:340467. [PMID: 24977148 PMCID: PMC4058106 DOI: 10.1155/2014/340467] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/30/2014] [Accepted: 04/29/2014] [Indexed: 11/26/2022]
Abstract
Little was known about bioactive compounds from the hallucinogenic mushroom Boletus speciosus. In the present study, a hemagglutinin (BSH, B. speciosus hemagglutinin) was isolated from its fruiting bodies and enzymatic properties were also tested. The chromatographic procedure utilized comprised anion exchange chromatography on Q-Sepharose, cation exchange chromatography on CM-Cellulose, cation exchange chromatography on SP-Sepharose, and gel filtration by FPLC on Superdex 75. The hemagglutinin was a homodimer which was estimated to be approximately 31 kDa in size. The activity of BSH was stable up to 60°C, while there was a precipitous drop in activity when the temperature was elevated to 70°C. BSH retained 25% hemagglutinating activity when exposed to 100 mM NaOH and 25 mM HCl. The activity was potently inhibited by 1.25 mM Hg2+ and slightly inhibited by Fe2+, Ca2+, and Pb2+. None of the sugars tested showed inhibition towards BSH. Its hemagglutinating activity towards human erythrocytes type A, type B, and type AB was higher than type O. The hemagglutinin showed antiproliferative activity towards hepatoma Hep G2 cells and mouse lymphocytic leukemia cells (L1210) in vitro, with IC50 of 4.7 μM and 7.0 μM, respectively. It also exhibited HIV-1 reverse transcriptase inhibitory activity with an IC50 of 7.1 μM.
Collapse
|
59
|
Lee CJ, Buznyk O, Kuffova L, Rajendran V, Forrester JV, Phopase J, Islam MM, Skog M, Ahlqvist J, Griffith M. Cathelicidin LL-37 and HSV-1 Corneal Infection: Peptide Versus Gene Therapy. Transl Vis Sci Technol 2014; 3:4. [PMID: 24932432 DOI: 10.1167/tvst.3.3.4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 04/13/2014] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To evaluate the potential utility of collagen-based corneal implants with anti-Herpes Simplex Virus (HSV)-1 activity achieved through sustained release of LL-37, from incorporated nanoparticles, as compared with cell-based delivery from model human corneal epithelial cells (HCECs) transfected to produce endogenous LL-37. METHODS We tested the ability of collagen-phosphorylcholine implants to tolerate the adverse microenvironment of herpetic murine corneas. Then, we investigated the efficacy of LL-37 peptides delivered through nanoparticles incorporated within the corneal implants to block HSV-1 viral activity. In addition, LL-37 complementary DNA (cDNA) was transferred into HCECs to confer viral resistance, and their response to HSV-1 infection was examined. RESULTS Our implants remained in herpetic murine corneas 7 days longer than allografts. LL-37 released from the implants blocked HSV-1 infection of HCECs by interfering with viral binding. However, in pre-infected HCECs, LL-37 delayed but could not prevent viral spreading nor clear viruses from the infected cells. HCECs transfected with the LL-37 expressed and secreted the peptide. Secreted LL-37 inhibited viral binding in vitro but was insufficient to protect cells completely from HSV-1 infection. Nevertheless, secreted LL-37 reduced both the incidence of plaque formation and plaque size. CONCLUSION LL-37 released from composite nanoparticle-hydrogel corneal implants and HCEC-produced peptide, both showed anti-HSV-1 activity by blocking binding. However, while both slowed down virus spread, neither was able on its own to completely inhibit the viruses. TRANSLATIONAL RELEVANCE LL-37 releasing hydrogels may have potential utility as corneal substitutes for grafting in HSV-1 infected corneas, possibly in combination with LL-37 producing therapeutic cells.
Collapse
Affiliation(s)
- Chyan-Jang Lee
- Integrative Regenerative Medicine Centre, Linköping University, Linköping, Sweden
| | - Oleksiy Buznyk
- Department of Eye Burns, Ophthalmic Reconstructive Surgery, Keratoplasty & Keratoprosthesis, Filatov Institute of Eye Diseases and Tissue Therapy, Odessa, Ukraine
| | - Lucia Kuffova
- Section of Immunity, Infection and Inflammation (3I's) (Ocular Immunology), Division of Applied Medicine, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, Scotland
| | - Vijayalakshmi Rajendran
- Integrative Regenerative Medicine Centre, Linköping University, Linköping, Sweden ; Section of Immunity, Infection and Inflammation (3I's) (Ocular Immunology), Division of Applied Medicine, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, Scotland
| | - John V Forrester
- Section of Immunity, Infection and Inflammation (3I's) (Ocular Immunology), Division of Applied Medicine, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, Scotland
| | - Jaywant Phopase
- Integrative Regenerative Medicine Centre, Linköping University, Linköping, Sweden
| | - Mohammad M Islam
- Integrative Regenerative Medicine Centre, Linköping University, Linköping, Sweden
| | - Mårten Skog
- Integrative Regenerative Medicine Centre, Linköping University, Linköping, Sweden
| | | | - May Griffith
- Integrative Regenerative Medicine Centre, Linköping University, Linköping, Sweden
| |
Collapse
|
60
|
Gasim A. Cathelicidin antimicrobial peptide as a serologic marker and potential pathogenic factor in antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Res Ther 2014; 16:105. [PMID: 25164257 PMCID: PMC3978818 DOI: 10.1186/ar4495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Antineutrophil cytoplasmic antibodies are associated with pauci-immune small-vessel vasculitis and crescentic glomerulonephritis. Cathelicidin LL37 is the human member of a family of antimicrobial peptides that are released from activated neutrophils and monocytes at sites of acute inflammation. Zhang and colleagues evaluated serum levels of cathelicidin LL37 and interferon-alpha in patients with antineutrophil cytoplasmic antibody-associated vasculitis (AAV) and glomerulonephritis. Increased levels of cathelicidin LL37 and interferon-alpha were associated with AAV patients, particularly those with glomerular crescent formation. Cathelicidin LL37 may also be involved in the pathogenesis of AAV and thus could be a target for novel therapy. Cathelicidin LL37 is a promising new biomarker for active AAV, including aggressive crescentic glomerulonephritis, and may prove to be both a prognostic marker and a guide for treatment.
Collapse
|
61
|
Cheung RCF, Wong JH, Pan WL, Chan YS, Yin CM, Dan XL, Wang HX, Fang EF, Lam SK, Ngai PHK, Xia LX, Liu F, Ye XY, Zhang GQ, Liu QH, Sha O, Lin P, Ki C, Bekhit AA, Bekhit AED, Wan DCC, Ye XJ, Xia J, Ng TB. Antifungal and antiviral products of marine organisms. Appl Microbiol Biotechnol 2014; 98:3475-94. [PMID: 24562325 DOI: 10.1007/s00253-014-5575-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 01/27/2023]
Abstract
Marine organisms including bacteria, fungi, algae, sponges, echinoderms, mollusks, and cephalochordates produce a variety of products with antifungal activity including bacterial chitinases, lipopeptides, and lactones; fungal (-)-sclerotiorin and peptaibols, purpurides B and C, berkedrimane B and purpuride; algal gambieric acids A and B, phlorotannins; 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol, spongistatin 1, eurysterols A and B, nortetillapyrone, bromotyrosine alkaloids, bis-indole alkaloid, ageloxime B and (-)-ageloxime D, haliscosamine, hamigeran G, hippolachnin A from sponges; echinoderm triterpene glycosides and alkene sulfates; molluscan kahalalide F and a 1485-Da peptide with a sequence SRSELIVHQR; and cepalochordate chitotriosidase and a 5026.9-Da antifungal peptide. The antiviral compounds from marine organisms include bacterial polysaccharide and furan-2-yl acetate; fungal macrolide, purpurester A, purpurquinone B, isoindolone derivatives, alterporriol Q, tetrahydroaltersolanol C and asperterrestide A, algal diterpenes, xylogalactofucan, alginic acid, glycolipid sulfoquinovosyldiacylglycerol, sulfated polysaccharide p-KG03, meroditerpenoids, methyl ester derivative of vatomaric acid, lectins, polysaccharides, tannins, cnidarian zoanthoxanthin alkaloids, norditerpenoid and capilloquinol; crustacean antilipopolysaccharide factors, molluscan hemocyanin; echinoderm triterpenoid glycosides; tunicate didemnin B, tamandarins A and B and; tilapia hepcidin 1-5 (TH 1-5), seabream SauMx1, SauMx2, and SauMx3, and orange-spotted grouper β-defensin. Although the mechanisms of antifungal and antiviral activities of only some of the aforementioned compounds have been elucidated, the possibility to use those known to have distinctly different mechanisms, good bioavailability, and minimal toxicity in combination therapy remains to be investigated. It is also worthwhile to test the marine antimicrobials for possible synergism with existing drugs. The prospects of employing them in clinical practice are promising in view of the wealth of these compounds from marine organisms. The compounds may also be used in agriculture and the food industry.
Collapse
Affiliation(s)
- Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
High-quality 3D structures shine light on antibacterial, anti-biofilm and antiviral activities of human cathelicidin LL-37 and its fragments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2160-72. [PMID: 24463069 DOI: 10.1016/j.bbamem.2014.01.016] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/26/2013] [Accepted: 01/10/2014] [Indexed: 01/07/2023]
Abstract
Host defense antimicrobial peptides are key components of human innate immunity that plays an indispensible role in human health. While there are multiple copies of cathelicidin genes in horses, cattle, pigs, and sheep, only one cathelicidin gene is found in humans. Interestingly, this single cathelicidin gene can be processed into different forms of antimicrobial peptides. LL-37, the most commonly studied form, is not only antimicrobial but also possesses other functional roles such as chemotaxis, apoptosis, wound healing, immune modulation, and cancer metastasis. This article reviews recent advances made in structural and biophysical studies of human LL-37 and its fragments, which serve as a basis to understand their antibacterial, anti-biofilm and antiviral activities. High-quality structures were made possible by using improved 2D NMR methods for peptide fragments and 3D NMR spectroscopy for intact LL-37. The two hydrophobic domains in the long amphipathic helix (residues 2-31) of LL-37 separated by a hydrophilic residue serine 9 explain its cooperative binding to bacterial lipopolysaccharides (LPS). Both aromatic rings (F5, F6, F17, and F27) and interfacial basic amino acids of LL-37 directly interact with anionic phosphatidylglycerols (PG). Although the peptide sequences reported in the literature vary slightly, there is a consensus that the central helix of LL-37 is essential for disrupting superbugs (e.g., MRSA), bacterial biofilms, and viruses such as human immunodeficiency virus 1 (HIV-1) and respiratory syncytial virus (RSV). In the central helix, the central arginine R23 is of particular importance in binding to bacterial membranes or DNA. Mapping the functional roles of the cationic amino acids of the major antimicrobial region of LL-37 provides a basis for designing antimicrobial peptides with desired properties. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Collapse
|
63
|
Barlow PG, Findlay EG, Currie SM, Davidson DJ. Antiviral potential of cathelicidins. Future Microbiol 2014; 9:55-73. [DOI: 10.2217/fmb.13.135] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ABSTRACT: The global burden of morbidity and mortality arising from viral infections is high; however, the development of effective therapeutics has been slow. As our understanding of innate immunity has expanded over recent years, knowledge of natural host defenses against viral infections has started to offer potential for novel therapeutic strategies. An area of current research interest is in understanding the roles played by naturally occurring cationic host defense peptides, such as the cathelicidins, in these innate antiviral host defenses across different species. This research also has the potential to inform the design of novel synthetic antiviral peptide analogs and/or provide rationale for therapies aimed at boosting the natural production of these peptides. In this review, we will discuss our knowledge of the antiviral activities of cathelicidins, an important family of cationic host defense peptides, and consider the implications for novel antiviral therapeutic approaches.
Collapse
Affiliation(s)
- Peter G Barlow
- Health, Life & Social Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, EH11 4BN, UK
| | - Emily Gwyer Findlay
- University of Edinburgh/MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Silke M Currie
- University of Edinburgh/MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Donald J Davidson
- University of Edinburgh/MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
64
|
ZHANG RUI, ZHAO LIYAN, WANG HEXIANG, NG TZIBUN. A novel ribonuclease with antiproliferative activity toward leukemia and lymphoma cells and HIV-1 reverse transcriptase inhibitory activity from the mushroom, Hohenbuehelia serotina. Int J Mol Med 2013; 33:209-14. [DOI: 10.3892/ijmm.2013.1553] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/30/2013] [Indexed: 11/06/2022] Open
|
65
|
Currie SM, Findlay EG, McHugh BJ, Mackellar A, Man T, Macmillan D, Wang H, Fitch PM, Schwarze J, Davidson DJ. The human cathelicidin LL-37 has antiviral activity against respiratory syncytial virus. PLoS One 2013; 8:e73659. [PMID: 24023689 PMCID: PMC3758310 DOI: 10.1371/journal.pone.0073659] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/20/2013] [Indexed: 11/19/2022] Open
Abstract
Respiratory syncytial virus is a leading cause of lower respiratory tract illness among infants, the elderly and immunocompromised individuals. Currently, there is no effective vaccine or disease modifying treatment available and novel interventions are urgently required. Cathelicidins are cationic host defence peptides expressed in the inflamed lung, with key roles in innate host defence against infection. We demonstrate that the human cathelicidin LL-37 has effective antiviral activity against RSV in vitro, retained by a truncated central peptide fragment. LL-37 prevented virus-induced cell death in epithelial cultures, significantly inhibited the production of new infectious particles and diminished the spread of infection, with antiviral effects directed both against the viral particles and the epithelial cells. LL-37 may represent an important targetable component of innate host defence against RSV infection. Prophylactic modulation of LL-37 expression and/or use of synthetic analogues post-infection may represent future novel strategies against RSV infection.
Collapse
Affiliation(s)
- Silke M. Currie
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Emily Gwyer Findlay
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Brian J. McHugh
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Annie Mackellar
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Tian Man
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Department of Respiratory Medicine, Affiliated Nanjing Children's Hospital of Nanjing Medical University, Nanjing, PR China
| | - Derek Macmillan
- Department of Chemistry, University College London, London, United Kingdom
| | - Hongwei Wang
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Center for Translational Medicine, Medical School of Nanjing University, Nanjing, PR China
| | - Paul M. Fitch
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Jürgen Schwarze
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Donald J. Davidson
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
66
|
Lin P, Wong JH, Ng TB, Ho VSM, Xia L. A sorghum xylanase inhibitor-like protein with highly potent antifungal, antitumor and HIV-1 reverse transcriptase inhibitory activities. Food Chem 2013; 141:2916-22. [PMID: 23871041 PMCID: PMC7115760 DOI: 10.1016/j.foodchem.2013.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 05/21/2012] [Accepted: 04/04/2013] [Indexed: 01/15/2023]
Abstract
The antifungal protein purified in this study is a pH stable and thermostable xylanase inhibitor. Sorghum antifungal protein is inhibitory toward various fungal species. The sorghum antifungal protein exerts suppressive action on the proliferating hepatoma (HepG2) cells and breast cancer (MCF7) cells. Sorghum antifungal protein exerts a highly potent inhibitory activity against HIV-1 reverse transcriptase.
A 25-kDa protein, with an N-terminal amino acid sequence homologous to that of xylanase inhibitor and designated as xylanase inbibitor-like protein (XILP) was purified from sorghum seeds. The isolation protocol consisted of affinity chromatography, ion exchange chromatography, and gel filtration. XILP inhibited mycelial growth in various phytopathogenic fungi. The antifungal activity was thermostable and pH-stable. XILP inhibited proliferation of various cancer cell lines but did not do so in human embryonic liver (WRL 68) cells. There was no mitogenic activity toward mouse splenocytes. XILP reduced the activity of HIV-1 reverse transcriptase with an IC50 of 11.1 μM, but lacked inhibitory activity toward HIV-1 integrase and SARS coronavirus proteinase. In conclusion, sorghum XILP is thermostable and pH stable and exhibits potent antifungal, antiproliferative, and HIV-1 reverse transcriptase inhibitory activities.
Collapse
Affiliation(s)
- Peng Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | |
Collapse
|
67
|
Database-Guided Discovery of Potent Peptides to Combat HIV-1 or Superbugs. Pharmaceuticals (Basel) 2013; 6:728-58. [PMID: 24276259 PMCID: PMC3816732 DOI: 10.3390/ph6060728] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/02/2013] [Accepted: 05/13/2013] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial peptides (AMPs), small host defense proteins, are indispensable for the protection of multicellular organisms such as plants and animals from infection. The number of AMPs discovered per year increased steadily since the 1980s. Over 2,000 natural AMPs from bacteria, protozoa, fungi, plants, and animals have been registered into the antimicrobial peptide database (APD). The majority of these AMPs (>86%) possess 11–50 amino acids with a net charge from 0 to +7 and hydrophobic percentages between 31–70%. This article summarizes peptide discovery on the basis of the APD. The major methods are the linguistic model, database screening, de novo design, and template-based design. Using these methods, we identified various potent peptides against human immunodeficiency virus type 1 (HIV-1) or methicillin-resistant Staphylococcus aureus (MRSA). While the stepwise designed anti-HIV peptide is disulfide-linked and rich in arginines, the ab initio designed anti-MRSA peptide is linear and rich in leucines. Thus, there are different requirements for antiviral and antibacterial peptides, which could kill pathogens via different molecular targets. The biased amino acid composition in the database-designed peptides, or natural peptides such as θ-defensins, requires the use of the improved two-dimensional NMR method for structural determination to avoid the publication of misleading structure and dynamics. In the case of human cathelicidin LL-37, structural determination requires 3D NMR techniques. The high-quality structure of LL-37 provides a solid basis for understanding its interactions with membranes of bacteria and other pathogens. In conclusion, the APD database is a comprehensive platform for storing, classifying, searching, predicting, and designing potent peptides against pathogenic bacteria, viruses, fungi, parasites, and cancer cells.
Collapse
|
68
|
To KKW, Ren SX, Wong CCM, Cho CH. Reversal of ABCG2-mediated multidrug resistance by human cathelicidin and its analogs in cancer cells. Peptides 2013; 40:13-21. [PMID: 23274176 DOI: 10.1016/j.peptides.2012.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 01/16/2023]
Abstract
Multidrug resistance (MDR) of cancer cells to a wide spectrum of anticancer drugs is a major obstacle to successful chemotherapy. It is usually mediated by the overexpression of one of the three major ABC transporters actively pumping cytotoxic drugs out of the cells. There has been great interest in the search for inhibitors toward these transporters with an aim to circumvent resistance. This is usually achieved by screening from natural product library and the subsequent structural modifications. This study reported the reversal of ABCG2-mediated MDR in drug-selected resistant cancer cell lines by a class of host defense antimicrobial peptides, the human cathelicidin LL37 and its fragments. The effective human cathelicidin peptides (LL17-32 and LL13-37) were found to increase the accumulation of mitoxantrone in cancer cell lines with ABCG2 overexpression, thereby circumventing resistance to mitoxantrone. At the effective concentrations of the cathelicidin peptides, cell proliferation of the parental cells without elevated ABCG2 expression was not affected. Result from drug efflux and ATPase assays suggested that both LL17-32 and LL13-37 interact with ABCG2 and inhibit its transport activity in an uncompetitive manner. The peptides were also found to downregulate ABCG2 protein expression in the resistant cells, probably through a lysosomal degradation pathway. Our data suggest that the human cathelicidin may be further developed for sensitizing resistant cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Room 801N, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, New Territories, Hong Kong, China.
| | | | | | | |
Collapse
|
69
|
Human cathelicidin LL-37 prevents bacterial biofilm formation. Future Med Chem 2012; 4:1587-99. [PMID: 22917247 DOI: 10.4155/fmc.12.97] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Human pathogens often colonize their host by the formation of biofilms. These surface-attached aggregates of bacteria are characterized by a self-produced extracellular matrix, which makes them highly resistant towards antibiotic treatment. Their abilities to adhere to abiotic surfaces (e.g., catheters and other medical devices) also makes bacterial biofilm formation a challenge in modern medicine. Antimicrobial peptides have lately been introduced as a potential class of drug molecules for combating severe hospital-acquired infections. One of these peptides, human cathelicidin LL-37, has recently been demonstrated to bridge innate and adaptive host defence, in addition to facilitating a robust antibiofilm effect at sub-inhibitory concentrations. In this review we will discuss the evidence, potential and challenges for LL-37 as a candidate molecule for therapeutic use.
Collapse
|
70
|
A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol 2012; 280:22-35. [PMID: 23246832 DOI: 10.1016/j.cellimm.2012.11.009] [Citation(s) in RCA: 412] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/09/2012] [Accepted: 11/15/2012] [Indexed: 01/01/2023]
Abstract
Cathelicidins are a group of antimicrobial peptides. Since their discovery, it has become clear that they are an exceptional class of peptides, with some members having pleiotropic effects. Not only do they possess an antibacterial, antifungal and antiviral function, they also show a chemotactic and immunostimulatory/-modulatory effect. Moreover, they are capable of inducing wound healing, angiogenesis and modulating apoptosis. Recent insights even indicate for a role of these peptides in cancer. This review provides a comprehensive summary of the most recent and relevant insights concerning the human cathelicidin LL-37.
Collapse
|
71
|
Eade CR, Wood MP, Cole AM. Mechanisms and modifications of naturally occurring host defense peptides for anti-HIV microbicide development. Curr HIV Res 2012; 10:61-72. [PMID: 22264047 DOI: 10.2174/157016212799304580] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 09/30/2011] [Accepted: 10/27/2011] [Indexed: 11/22/2022]
Abstract
Despite advances in the treatment of HIV infection, heterosexual transmission of HIV remains high, and vaccines to prevent HIV acquisition have been unfruitful. Vaginal microbicides, on the other hand, have demonstrated considerable potential for HIV prevention, and a variety of compounds have been screened for their activity and safety as anti-HIV microbicides. Among these are the naturally occurring host defense peptides, small peptides from diverse lineages with intrinsic antiviral activity. Naturally occurring host defense peptides with anti-HIV activity are promising candidates for vaginal microbicide development. Their structural variance and accompanying mechanistic diversity provide a wide range of inhibitors whose antiviral activity can be exerted at nearly every stage of the HIV lifecycle. Additionally, peptide modification has been explored as a method for improving the anti-HIV activity of host defense peptides. Structure- and sequence-based alterations have achieved varying success in improving the potency and specificity of anti-HIV peptides. Overall, peptides have been discovered or engineered to inhibit HIV with therapeutic indices of > 1000, encouraging their advancement toward clinical trials. Here we review the naturally occurring anti-HIV host defense peptides, demonstrating their breadth of mechanistic diversity, and exploring approaches to enhance and optimize their activity in order to expedite their development as safe and effective anti-HIV vaginal microbicides.
Collapse
Affiliation(s)
- Colleen R Eade
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL 32816, USA.
| | | | | |
Collapse
|
72
|
Wong JH, Ng TB, Legowska A, Rolka K, Hui M, Cho CH. Antifungal action of human cathelicidin fragment (LL13-37) on Candida albicans. Peptides 2011; 32:1996-2002. [PMID: 21889964 DOI: 10.1016/j.peptides.2011.08.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/19/2011] [Accepted: 08/20/2011] [Indexed: 11/18/2022]
Abstract
Human cathelicidin LL37 and its fragments LL13-37 and LL17-32 exhibited similar potencies in inhibiting growth of the yeast Candida albicans. After treatment with 0.5 μM and 5 μM LL13-37, the hyphae changed from a uniformly thick to an increasingly slender appearance, with budding becoming less normal in appearance and cell death could be detected. Only the yeast form and no hyphal form could be observed following exposure to 50 μM LL13-37. LL13-37 at a concentration of 5 μM was able to permeabilize the membrane of yeast form as well as hyphal form of C. albicans since the nuclear stain SYTOX Green was localized in both forms. Mycelia treated with LL13-37 stained with SYTOX Green, but did not stain with MitoTracker deep red, indicating that the mitochondria were adversely affected by LL13-37. Bimane-labeled LL13-37 was able to enter some of the hyphae, but not all hyphae were affected, suggesting that LL37 impaired membrane permeability characteristics in some of the hyphae. Reactive oxygen species was detectable in the yeast form of C. albicans cells after treatment with LL13-37 but not in the untreated cells. The results suggest that the increased membrane permeability caused by LL13-37 might not be the sole cause of cell death. It might lead to the uptake of the peptide, which might have some intracellular targets.
Collapse
Affiliation(s)
- Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
| | | | | | | | | | | |
Collapse
|