51
|
Bai X, Fu R, Duan Z, Liu Y, Zhu C, Fan D. Ginsenoside Rh4 alleviates antibiotic-induced intestinal inflammation by regulating the TLR4-MyD88-MAPK pathway and gut microbiota composition. Food Funct 2021; 12:2874-2885. [PMID: 33877243 DOI: 10.1039/d1fo00242b] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ginsenoside Rh4, as a bioactive component obtained from Panax notoginseng, has excellent pharmacological properties. However, its role in regulating gut microbiota and intestinal inflammation is still poorly understood. Thus, the aim of this study is to investigate the effect of Rh4 on gut microbiota, especially antibiotic-induced microbiota perturbation, and the underlying mechanisms. C57BL/6 mice were given different doses of Rh4 after the establishment of a gut microbiota disturbance model with antibiotics. Our data revealed that Rh4 administration could greatly improve the pathological phenotype, gut barrier disruption, and intestinal inflammation in mice that had been antibiotic-induced. Notably, it was found that Rh4 significantly inhibited the TLR4-MyD88-MAPK signaling pathway. In addition, Rh4 treatment could significantly increase the number of short chain fatty acids (SCFAs) and bile acids (BAs). These changes were accompanied with beneficial alterations in gut microbiota diversity and composition. In conclusion, Rh4 improves intestinal inflammation and induces potentially beneficial changes in the gut microbiota, which are conducive to revealing host-microbe interactions.
Collapse
Affiliation(s)
- Xue Bai
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| | | | | | | | | | | |
Collapse
|
52
|
Wang S, Li XY, Shen L. Modulation effects of Dendrobium officinale on gut microbiota of type 2 diabetes model mice. FEMS Microbiol Lett 2021; 368:6145026. [PMID: 33606020 DOI: 10.1093/femsle/fnab020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
In recent years, the relationship between type 2 diabetes (T2D) and gut microbiota has attracted much interest. Dendrobium officinale is a valuable traditional Chinese medicine (TCM) with anti-T2D potential, while its action mechanism remains to be further studied. This study was designed to investigate the modulation effects of D. officinale on gut microbiota of T2D model mice to provide clues to its pharmacology by high-throughput sequencing techniques. It was found that D. officinale supplement could significantly reduce the fasting blood glucose levels of T2D mice. Dendrobium officinale supplement could modulate the composition of gut microbiota and increase the relative abundances of key bacterial taxa associated with T2D development, including Akkermansia and Parabacteroides. Compared with placebo group mice, several Kyoto Encyclopedia of Gene and Genomes pathways associated with T2D altered in the D. officinale treated group. These findings indicated the modulation of D. officinale on gut microbiota of T2D mice, which provide potential pharmacological implications.
Collapse
Affiliation(s)
- Sai Wang
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China.,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China
| | - Xin-Yu Li
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China.,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China
| | - Liang Shen
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China.,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China
| |
Collapse
|
53
|
Zhao T, Wang Z, Liu Z, Xu Y. Pivotal Role of the Interaction Between Herbal Medicines and Gut Microbiota on Disease Treatment. Curr Drug Targets 2021; 22:336-346. [PMID: 32208116 DOI: 10.2174/1389450121666200324151530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 11/22/2022]
Abstract
With the recognition of the important role of gut microbiota in both health and disease progression, attempts to modulate its composition, as well as its co-metabolism with the organism, have attracted special attention. Abundant studies have demonstrated that dysfunction or imbalance of gut microbiota is closely related to disease progression, including endocrine diseases, neurodegenerative diseases, tumors, cardiovascular diseases, etc. Herbal medicines have been applied to prevent and treat diseases worldwide for hundreds of years. Although the underlying mechanism seems to be complex, one of the important ones is through modulating gut microbiota. In this review, co-metabolism between herbal medicines and microbiota, as well as the potential pathways are summarized from most recent published papers.
Collapse
Affiliation(s)
- Tingting Zhao
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, Macao
| | - Zhe Wang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, Macao
| | - Zhilong Liu
- Department of Endocrinology, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, Macao
| |
Collapse
|
54
|
Wang Y, Zhang X, Li J, Zhang Y, Guo Y, Chang Q, Chen L, Wang Y, Wang S, Song Y, Zhao Y, Wang Z. Sini Decoction Ameliorates Colorectal Cancer and Modulates the Composition of Gut Microbiota in Mice. Front Pharmacol 2021; 12:609992. [PMID: 33776762 PMCID: PMC7991589 DOI: 10.3389/fphar.2021.609992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/25/2021] [Indexed: 01/05/2023] Open
Abstract
Sini Decoction (SND), as a classic prescription of Traditional Chinese Medicine (TCM), has been proved to be clinically useful in cardiomyopathy and inflammatory bowel diseases. However, the role and mechanism of SND in colitis-associated cancer remains unclear. This study aims to evaluate the effect of SND on colorectal cancer(CRC) symptoms and further explore the changes of gut microbes mediated by SND extract in azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced CRC mice through 16 S rRNA sequencing. Our results indicated that treatment with SND extract could ameliorate the tumors' malignant degree by decreasing tumor number and size. Also, the expression levels of Cyclooxygenase 2 and Mucin-2, which are typical CRC biomarkers, were reduced compared to the CRC group. In the meantime, SND extract can upregulate CD8+ T lymphocytes' expression and Occludin in the colonic mucosal layer. Besides, SND inhibited the expression of CD4+ T cells and inflammatory cytokines in CRC tissue. According to bioinformatics analysis, SND extract was also suggested could modulate the gut microbial community. After the SND treatment, compared with the CRC mice model, the number of pathogenic bacteria showed a significant reduction, including Bacteroides fragilis and Sulphate-reducing bacteria; and SND increased the relative contents of the beneficial bacteria, including Lactobacillus, Bacillus coagulans, Akkermansia muciniphila, and Bifidobacterium. In summary, SND can effectively intervene in colorectal cancer development by regulating intestinal immunity, protecting the colonic mucosal barrier, and SND can change the intestinal microbiota composition in mice.
Collapse
Affiliation(s)
- Yishan Wang
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Ministry of Education, Key Laboratory for Protection and Utilization of Tropical Marine Fishery Resources, College of Fishery and Life Science, Hainan Tropical Ocean University, Sanya, China
- College of Animal Science, Jilin University, Changchun, China
| | - Xiaodi Zhang
- College of Animal Science, Jilin University, Changchun, China
| | - Jiawei Li
- College of Animal Science, Jilin University, Changchun, China
| | - Ying Zhang
- Department of Virology, Institute of Military Veterinary Medicine, Changchun, China
| | - Yingjie Guo
- College of Animal Science, Jilin University, Changchun, China
| | - Qing Chang
- College of Animal Science, Jilin University, Changchun, China
| | - Li Chen
- College of Animal Science, Jilin University, Changchun, China
| | - Yiwei Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Siyao Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Yu Song
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Ministry of Education, Key Laboratory for Protection and Utilization of Tropical Marine Fishery Resources, College of Fishery and Life Science, Hainan Tropical Ocean University, Sanya, China
- *Correspondence: Yu Song, ; Yongkun Zhao, ; Zhihong Wang,
| | - Yongkun Zhao
- Department of Virology, Institute of Military Veterinary Medicine, Changchun, China
- *Correspondence: Yu Song, ; Yongkun Zhao, ; Zhihong Wang,
| | - Zhihong Wang
- Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Yu Song, ; Yongkun Zhao, ; Zhihong Wang,
| |
Collapse
|
55
|
Feng W, Liu J, Huang L, Tan Y, Peng C. Gut microbiota as a target to limit toxic effects of traditional Chinese medicine: Implications for therapy. Biomed Pharmacother 2020; 133:111047. [PMID: 33378954 DOI: 10.1016/j.biopha.2020.111047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
Traditional Chinese medicines (TCMs) are medicines that are widely used in oriental countries under the guidance of ancient Chinese medicinal philosophies. With thousands of years of experiences in fighting against diseases, TCMs are gaining increasing importance in the world. Although the efficacy of TCMs is well recognized in clinic, the toxicity of TCMs has become a serious issue around the world in recent years. In general, the toxicity of TCMs is caused by the toxic medicinal compounds and contaminants in TCMs such as pesticides, herbicides, and heavy metals. Recent studies have demonstrated that gut microbiota can interact with TCMs and thus influence the toxicity of TCMs. However, there is no focused review on gut microbiota and the toxicity of TCMs. Here, we summarized the influences of the gut microbiota on the toxicity of medicinal compounds in TCMs and the corresponding mechanisms were offered. Then, we discussed the relationships between gut microbiota and the TCM contaminants. In addition, we discussed the methods of manipulating gut microbiota to reduce the toxicity of TCMs. At the end of this review, the perspectives on gut microbiota and the toxicity of TCMs were also discussed.
Collapse
Affiliation(s)
- Wuwen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihua Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
56
|
Yang M, Yan T, Yu M, Kang J, Gao R, Wang P, Zhang Y, Zhang H, Shi L. Advances in understanding of health‐promoting benefits of medicine and food homology using analysis of gut microbiota and metabolomics. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.49] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Minmin Yang
- College of Life Sciences Shaanxi Normal University Xi'an China
| | - Tao Yan
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Meng Yu
- The Institute of Medicinal Plant Development Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jie Kang
- Physical Education Institute Shaanxi Normal University Xi'an China
| | - Ruoxi Gao
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Peng Wang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Yuhuan Zhang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Huafeng Zhang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
- Internatinal Joint Research Center of Shaanxi Province for Food and Health Science Shaanxi Normal University Xi'an China
| | - Lin Shi
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
- Internatinal Joint Research Center of Shaanxi Province for Food and Health Science Shaanxi Normal University Xi'an China
- Department of Biology and Biological Engineering Chalmers University of Technology Gothenburg Sweden
| |
Collapse
|
57
|
Ferreira C, Viana SD, Reis F. Gut Microbiota Dysbiosis-Immune Hyperresponse-Inflammation Triad in Coronavirus Disease 2019 (COVID-19): Impact of Pharmacological and Nutraceutical Approaches. Microorganisms 2020; 8:E1514. [PMID: 33019592 PMCID: PMC7601735 DOI: 10.3390/microorganisms8101514] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is a pandemic infection caused by a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients present a complex clinical picture that, in severe cases, evolves to respiratory, hepatic, gastrointestinal, and neurological complications, and eventually death. The underlying pathophysiological mechanisms are complex and multifactorial and have been summarized as a hyperresponse of the immune system that originates an inflammatory/cytokine storm. In elderly patients, particularly in those with pre-existing cardiovascular, metabolic, renal, and pulmonary disorders, the disease is particularly severe, causing prolonged hospitalization at intensive care units (ICU) and an increased mortality rate. Curiously, the same populations have been described as more prone to a gut microbiota (GM) dysbiosis profile. Intestinal microflora plays a major role in many metabolic and immune functions of the host, including to educate and strengthen the immune system to fight infections, namely of viral origin. Notably, recent studies suggest the existence of GM dysbiosis in COVID-19 patients. This review article highlights the interplay between the triad GM dysbiosis-immune hyperresponse-inflammation in the individual resilience/fragility to SARS-CoV-2 infection and presents the putative impact of pharmacological and nutraceutical approaches on the triumvirate, with focus on GM.
Collapse
Affiliation(s)
- Carolina Ferreira
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075 Coimbra, Portugal
| | - Sofia D. Viana
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075 Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, 3046-854 Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075 Coimbra, Portugal
| |
Collapse
|
58
|
Bai X, Wang WX, Fu RJ, Yue SJ, Gao H, Chen YY, Tang YP. Therapeutic Potential of Hydroxysafflor Yellow A on Cardio-Cerebrovascular Diseases. Front Pharmacol 2020; 11:01265. [PMID: 33117148 PMCID: PMC7550755 DOI: 10.3389/fphar.2020.01265] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
The incidence rate of cardio-cerebrovascular diseases (CCVDs) is increasing worldwide, causing an increasingly serious public health burden. The pursuit of new promising treatment options is thus becoming a pressing issue. Hydroxysafflor yellow A (HSYA) is one of the main active quinochalcone C-glycosides in the florets of Carthamus tinctorius L., a medical and edible dual-purpose plant. HSYA has attracted much interest for its pharmacological actions in treating and/or managing CCVDs, such as myocardial and cerebral ischemia, hypertension, atherosclerosis, vascular dementia, and traumatic brain injury, in massive preclinical studies. In this review, we briefly summarized the mode and mechanism of action of HSYA on CCVDs based on these preclinical studies. The therapeutic effects of HSYA against CCVDs were presumed to reside mostly in its antioxidant, anti-inflammatory, and neuroprotective roles by acting on complex signaling pathways.
Collapse
Affiliation(s)
- Xue Bai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Wen-Xiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Huan Gao
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| |
Collapse
|
59
|
Lin TL, Lu CC, Lai WF, Wu TS, Lu JJ, Chen YM, Tzeng CM, Liu HT, Wei H, Lai HC. Role of gut microbiota in identification of novel TCM-derived active metabolites. Protein Cell 2020; 12:394-410. [PMID: 32929698 PMCID: PMC8106560 DOI: 10.1007/s13238-020-00784-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/29/2020] [Indexed: 02/08/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has been extensively used to ameliorate diseases in Asia for over thousands of years. However, owing to a lack of formal scientific validation, the absence of information regarding the mechanisms underlying TCMs restricts their application. After oral administration, TCM herbal ingredients frequently are not directly absorbed by the host, but rather enter the intestine to be transformed by gut microbiota. The gut microbiota is a microbial community living in animal intestines, and functions to maintain host homeostasis and health. Increasing evidences indicate that TCM herbs closely affect gut microbiota composition, which is associated with the conversion of herbal components into active metabolites. These may significantly affect the therapeutic activity of TCMs. Microbiota analyses, in conjunction with modern multiomics platforms, can together identify novel functional metabolites and form the basis of future TCM research.
Collapse
Affiliation(s)
- Tzu-Lung Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan, China
| | - Chia-Chen Lu
- Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City, 24205, Taiwan, China.,Department of Chest Medicine, Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, 24205, Taiwan, China
| | - Wei-Fan Lai
- Department of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan, China
| | - Ting-Shu Wu
- Department of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan, China.,Department of Laboratory Medicine and Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan, China.,Central Research Laboratory, Xiamen Chang Gung Hospital, Xiamen, 361026, China
| | - Jang-Jih Lu
- Department of Laboratory Medicine and Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan, China.,Central Research Laboratory, Xiamen Chang Gung Hospital, Xiamen, 361026, China
| | - Young-Mao Chen
- Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, 20224, Taiwan, China
| | - Chi-Meng Tzeng
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005, China
| | - Hong-Tao Liu
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Hong Wei
- Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200435, China
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan, China. .,Department of Laboratory Medicine and Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan, China. .,Central Research Laboratory, Xiamen Chang Gung Hospital, Xiamen, 361026, China. .,Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Taoyuan, 33302, Taiwan, China. .,Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Gueishan, Taoyuan, 33303, Taiwan, China.
| |
Collapse
|
60
|
Feng W, Liu J, Ao H, Yue S, Peng C. Targeting gut microbiota for precision medicine: Focusing on the efficacy and toxicity of drugs. Theranostics 2020; 10:11278-11301. [PMID: 33042283 PMCID: PMC7532689 DOI: 10.7150/thno.47289] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Intra- and interindividual variation in drug responses is one major reason for the failure of drug therapy, drug toxicity, and even the death of patients. Precision medicine, or personalized medicine, is a field of medicine that customizes an individual's medical diagnosis and treatment based on his/her genes, microbiomes, environments, etc. Over the past decade, a large number of studies have demonstrated that gut microbiota can modify the efficacy and toxicity of drugs, and the extent of the modification varies greatly from person to person because of the variability of the gut microbiota. Personalized manipulation of gut microbiota is an important approach to rectify the abnormal drug response. In this review, we aim to improve drug efficacy and reduce drug toxicity by combining precision medicine and gut microbiota. After describing the interactions between gut microbiota and xenobiotics, we discuss (1) the effects of gut microbiota on drug efficacy and toxicity and the corresponding mechanisms, (2) the variability of gut microbiota, which leads to variation in drug responses, (3) the biomarkers used for the patient stratification and treatment decisions before the use of drugs, and (4) the methods used for the personalized manipulation of gut microbiota to improve drug outcomes. Overall, we hope to improve the drug response by incorporating the knowledge of gut microbiota into clinical practice.
Collapse
Affiliation(s)
- Wuwen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shijun Yue
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
61
|
Scarmozzino F, Poli A, Visioli F. Microbiota and cardiovascular disease risk: A scoping review. Pharmacol Res 2020; 159:104952. [DOI: 10.1016/j.phrs.2020.104952] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023]
|
62
|
Sun Y, Zhong S, Deng B, Jin Q, Wu J, Huo J, Zhu J, Zhang C, Li Y. Impact of Phellinus gilvus mycelia on growth, immunity and fecal microbiota in weaned piglets. PeerJ 2020; 8:e9067. [PMID: 32377455 PMCID: PMC7194088 DOI: 10.7717/peerj.9067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/05/2020] [Indexed: 01/19/2023] Open
Abstract
Background Antibiotics are the most commonly used growth-promoting additives in pig feed especially for weaned piglets. But in recent years their use has been restricted because of bacterial resistance. Phellinus, a genus of medicinal fungi, is widely used in Asia to treat gastroenteric dysfunction, hemrrhage, and tumors. Phellinus is reported to improve body weight on mice with colitis. Therefore, we hypothesize that it could benefit the health and growth of piglets, and could be used as an alternative to antibiotic. Here, the effect of Phellinus gilvus mycelia (SH) and antibiotic growth promoter (ATB) were investigated on weaned piglets. Methods A total of 72 crossbred piglets were randomly assigned to three dietary treatment groups (n = 4 pens per treatment group with six piglets per pen). The control group was fed basal diet; the SH treatment group was fed basal diet containing 5 g/kg SH; the ATB treatment group was feed basal diet containing 75 mg/kg aureomycin and 20 mg/kg kitasamycin. The experiment period was 28 days. Average daily gain (ADG), average daily feed intake (ADFI), and feed intake to gain ratio were calculated. The concentrations of immunoglobulin G (IgG), interleukin-1β (IL-1β), tumor necrosis factor (TNF)-α and myeloperoxidase (MPO) in serum were assessed. Viable plate counts of Escherichia coli in feces were measured. Fecal microbiota was analyzed via the 16S rRNA gene sequencing method. Results The ADG (1–28 day) of piglets was significantly higher in SH and ATB treatment groups (P < 0.05) compared to the control, and the ADG did not show significant difference between SH and ATB treatment groups (P > 0.05). Both SH and ATB treatments increased the MPO, IL-1β, and TNF-α levels in serum compared to the control (P < 0.05), but the levels in SH group were all significantly higher than in the ATB group (P < 0.05). Fecal microbiological analysis showed that viable E. coli counts were dramatically decreased by SH and ATB. The 16S rRNA gene sequencing analysis showed that ATB shifted the microbiota structure drastically, and significantly increased the relative abundance of Prevotella, Megasphaera, and Faecalibacterium genera. But SH slightly influenced the microbiota structure, and only increased the relative abundance of Alloprevotella genus. Conclusion Our work demonstrated that though SH slightly influenced the microbiota structure, it markedly reduced the fecal E. coli population, and improved growth and innate immunity in piglets. Our finding suggested that SH could be an alternative to ATB in piglet feed.
Collapse
Affiliation(s)
- Yuqing Sun
- Sericultural Research Institute, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Shi Zhong
- Sericultural Research Institute, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Bo Deng
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qinsheng Jin
- Agricultural Technology Extension Service Center of Nanxun District, Huzhou, Zhejiang, China
| | - Jie Wu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jinxi Huo
- Sericultural Research Institute, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Jianxun Zhu
- Sericultural Research Institute, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Cheng Zhang
- Hangzhou Zhengxing Animal Husbandry co. LTD, Linan, Zhejiang, China
| | - Yougui Li
- Sericultural Research Institute, Zhejiang Academy of Agricultural Science, Hangzhou, China
| |
Collapse
|
63
|
Cross-Talk between Gut Microbiota and the Heart: A New Target for the Herbal Medicine Treatment of Heart Failure? EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9097821. [PMID: 32328141 PMCID: PMC7165350 DOI: 10.1155/2020/9097821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/19/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023]
Abstract
Heart failure (HF) is the severe and terminal stage of various heart diseases. A growing number of studies have suggested the potential clinical significance of gut microbiota in the pathophysiology of HF. Herbal medicine (HM) plays a role in rebalancing the composition of gut microbiota and is widely used in the prevention and treatment of HF. There are many similarities between intestinal microecology and the traditional Chinese medicine (TCM) theory, such as the holistic concept and the theory of the “heart's connection with the small intestine.” These similarities provide a theoretical basis for HM to prevent and treat diseases by regulating the intestinal flora and its metabolites. In this work, the cross-talk between gut microbiota and the heart is reviewed, and the relationship between TCM and gut microbiota is discussed. Based on the current literature and research, we hypothesize that the cross-talk between gut microbiota and the heart may offer a new therapeutic target for HF intervention.
Collapse
|