51
|
Natural Products as Inducers of Non-Canonical Cell Death: A Weapon against Cancer. Cancers (Basel) 2021; 13:cancers13020304. [PMID: 33467668 PMCID: PMC7830727 DOI: 10.3390/cancers13020304] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Anticancer therapeutic approaches based solely on apoptosis induction are often unsuccessful due to the activation of resistance mechanisms. The identification and characterization of compounds capable of triggering non-apoptotic, also called non-canonical cell death pathways, could represent an important strategy that may integrate or offer alternative approaches to the current anticancer therapies. In this review, we critically discuss the promotion of ferroptosis, necroptosis, and pyroptosis by natural compounds as a new anticancer strategy. Abstract Apoptosis has been considered the main mechanism induced by cancer chemotherapeutic drugs for a long time. This paradigm is currently evolving and changing, as increasing evidence pointed out that antitumor agents could trigger various non-canonical or non-apoptotic cell death types. A considerable number of antitumor drugs derive from natural sources, both in their naturally occurring form or as synthetic derivatives. Therefore, it is not surprising that several natural compounds have been explored for their ability to induce non-canonical cell death. The aim of this review is to highlight the potential antitumor effects of natural products as ferroptosis, necroptosis, or pyroptosis inducers. Natural products have proven to be promising non-canonical cell death inducers, capable of overcoming cancer cells resistance to apoptosis. However, as discussed in this review, they often lack a full characterization of their antitumor activity together with an in-depth investigation of their toxicological profile.
Collapse
|
52
|
Sayed HM, Said MM, Morcos NYS, El Gawish MA, Ismail AFM. Antitumor and Radiosensitizing Effects of Zinc Oxide-Caffeic Acid Nanoparticles against Solid Ehrlich Carcinoma in Female Mice. Integr Cancer Ther 2021; 20:15347354211021920. [PMID: 34105411 PMCID: PMC8193661 DOI: 10.1177/15347354211021920] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/19/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
This study aimed to evaluate the anticancer and radio-sensitizing efficacy of Zinc Oxide-Caffeic Acid Nanoparticles (ZnO-CA NPs). ZnO-CA NPs were formulated by the conjugation of Zinc Oxide nanoparticles (ZnO NPs) with caffeic acid (CA) that were characterized by Fourier Transform Infrared Spectra (FT-IR), X-ray Diffractometer (XRD), and Transmission Electron Microscopy (TEM). In vitro anticancer potential of ZnO-CA NPs was evaluated by assessing cell viability in the human breast (MCF-7) and hepatocellular (HepG2) carcinoma cell lines. In vivo anticancer and radio-sensitizing effects of ZnO-CA NPs in solid Ehrlich carcinoma-bearing mice (EC mice) were also assessed. Treatment of EC mice with ZnO-CA NPs resulted in a considerable decline in tumor size and weight, down-regulation of B-cell lymphoma 2 (BCL2) and nuclear factor kappa B (NF-κB) gene expressions, decreased vascular cell adhesion molecule 1 (VCAM-1) level, downregulation of phosphorylated-extracellular-regulated kinase 1 and 2 (p-ERK1/2) protein expression, DNA fragmentation and a recognizable peak at sub-G0/G1 indicating dead cells' population in cancer tissues. Combined treatment of ZnO-CA NPs with γ-irradiation improved these effects. In conclusion: ZnO-CA NPs exhibit in-vitro as well as in-vivo antitumor activity, which is augmented by exposure of mice to γ-irradiation. Further explorations are warranted previous to clinical application of ZnO-CA NPs.
Collapse
Affiliation(s)
- Hayam M. Sayed
- Radiation Biology Department, National
Center for Radiation Research and Technology, Egyptian Atomic Energy Authority,
Cairo, Egypt
| | - Mahmoud M. Said
- Biochemistry Department, Faculty of
Science, Ain Shams University, Cairo, Egypt
| | - Nadia Y. S. Morcos
- Biochemistry Department, Faculty of
Science, Ain Shams University, Cairo, Egypt
| | - Mona A. El Gawish
- Radiation Biology Department, National
Center for Radiation Research and Technology, Egyptian Atomic Energy Authority,
Cairo, Egypt
| | - Amel F. M. Ismail
- Drug Radiation Research Department,
National Center for Radiation Research and Technology, Egyptian Atomic Energy
Authority, Cairo, Egypt
| |
Collapse
|
53
|
Mbaveng AT, Noulala CGT, Samba ARM, Tankeo SB, Abdelfatah S, Fotso GW, Happi EN, Ngadjui BT, Beng VP, Kuete V, Efferth T. The alkaloid, soyauxinium chloride, displays remarkable cytotoxic effects towards a panel of cancer cells, inducing apoptosis, ferroptosis and necroptosis. Chem Biol Interact 2020; 333:109334. [PMID: 33245930 DOI: 10.1016/j.cbi.2020.109334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/19/2020] [Accepted: 11/20/2020] [Indexed: 01/20/2023]
Abstract
The cytotoxic potential of a naturally occurring indoloquinazoline alkaloid, soyauxinium chloride (SCHL), was determined on a broad panel of animal and human cancer cell lines, including various sensitive and drug-resistant phenotypes. The cytotoxicity, SCHL-induced autophagic, ferroptotic, and necroptotic cell death were evaluated by the resazurin reduction assay (RRA). Caspase-Glo assay was used to detect the activity of caspases using spectrophotometric analysis. Flow cytometry was applied for cell cycle analysis (PI staining), apoptosis (annexin V/PI staining), mitochondrial membrane potential (MMP) (JC-1) and reactive oxygen species (ROS) (H2DCFH-DA). SCHL and doxorubicin (reference molecule) exhibited cytotoxic effects towards the 18 cancer cell lines tested. The IC50 values obtained ranged from 3.64 μM (towards CCRF-CEM leukemia cells) to 16.86 μM (against the BRAF-wildtype SKMel-505 melanoma cells for SCHL). Collateral sensitivity of the resistant HCT116 p53-/- colon adenocarcinoma cells to SCHL was observed as well as the normal sensitivity of CEM/ADR5000 leukemia cells, MDA-MB-231-BCRP breast adenocarcinoma cells and U87. MGΔEGFR glioblastoma cells. SCHL induced apoptosis in CCRF-CEM cells via caspases 3/7-, 8- and 9-activation, MMP alteration and increased ROS production, and otherwise ferroptosis and necroptosis. SCHL is a prominent cytotoxic alkaloid that should be further studied to develop a novel drug to combat cancers including refractory phenotypes.
Collapse
Affiliation(s)
- Armelle T Mbaveng
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128, Mainz, Germany; Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| | - Cédric G T Noulala
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon.
| | - Anne R M Samba
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon; Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon.
| | - Simplice B Tankeo
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128, Mainz, Germany; Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| | - Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128, Mainz, Germany.
| | - Ghislain W Fotso
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon.
| | - Emmanuel N Happi
- Department of Chemistry, Faculty of Science, University of Douala, Douala, Cameroon.
| | - Bonaventure T Ngadjui
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon.
| | - Veronique P Beng
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon.
| | - Victor Kuete
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128, Mainz, Germany; Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128, Mainz, Germany.
| |
Collapse
|
54
|
Botanicals from the leaves of Acacia sieberiana had better cytotoxic effects than isolated phytochemicals towards MDR cancer cells lines. Heliyon 2020; 6:e05412. [PMID: 33163682 PMCID: PMC7609460 DOI: 10.1016/j.heliyon.2020.e05412] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/08/2020] [Accepted: 10/29/2020] [Indexed: 01/21/2023] Open
Abstract
The efficiency of cancer chemotherapy is seriously hampered by the development of resistance of neoplastic cells to cytotoxic agents. In the present investigation, the cytotoxicity of the dichloromethane-methanol (1:1) extract of Acacia sieberiana (ASL), fractions (ASLa-c) from the leaves and isolated compounds: chrysoeriol-7-O-rutinoside (1), luteolin-7-O-rutinoside (2), chrysoeriol-7-O-β-D-glucopyranoside (3), Apigenin-7-O-β-D-glucopyranoside (4), luteolin-3',4'-dimethoxylether-7-O-β-D-glucoside (5) and luteolin (6) was investigated. The study was extended to the assessment of the mode of induction of apoptosis by ASL. The resazurin reduction assay (RRA) was used for cytotoxicity studies. Assessments of cell cycle distribution, apoptosis, and reactive oxygen species (ROS) were performed by flow cytometry. A caspase-Glo assay was used to evaluate caspase activities. Botanicals ASL, ASLb and ASLc as well as doxorubicin displayed observable IC50 values towards the nine tested cancer cell lines while ASLa and compounds 1-7 had selective activities. The IC50 values ranged from 13.45 μg/mL (in CCRF-CEM leukemia cells) to 33.20 μg/mL (against MDA-MB-231-BCRP breast adenocarcinoma cells) for ASL, from 16.42 μg/mL (in CCRF-CEM cells) to 29.64 μg/mL (against MDA-MB-231-pcDNA cells) for ASLc, and from 22.94 μg/mL (in MDA-MB-231-BCRP cells) to 40.19 μg/mL (against HCT116 (p53-/-) colon adenocarcinoma cells) for ASLb (Table 1), and from 0.02 μM (against CCRF-CEM cells) to 122.96 μM (against CEM/ADR5000 cells) for doxorubicin. ASL induced apoptosis in CCRF-CEM cells, mediated by ROS production. Acacia sieberiana is a good cytotoxic plant and should be further explored to develop an anticancer phytomedicine to combat both sensitive and drug resistant phenotypes.
Collapse
|
55
|
Feng G, Zhang XF. Production of a codonopsis polysaccharide iron complex and evaluation of its properties. Int J Biol Macromol 2020; 162:1227-1240. [PMID: 32615228 DOI: 10.1016/j.ijbiomac.2020.06.210] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/14/2020] [Accepted: 06/22/2020] [Indexed: 11/20/2022]
Abstract
A water extraction and alcohol precipitation method was applied to extract polysaccharides from Codonopsis pilosula (CPP), response surface methodology was used to optimize the extraction conditions and synthesis of C. pilosula polysaccharide iron (CPPI), and the properties of CPPI were evaluated. The optimum extraction conditions for CPP were as follows: liquid-solid ratio of 29.39 mL/g, time of 1.25 h and temperature of 62.84 °C. The optimum synthesis conditions for CPPI were pH 8.9, temperature 70.30 °C and the ratio of citric acid to CPP1 of 2.95. An HPSEC-MALLS-RID system, UV spectroscopy, FT-IR spectroscopy and NMR were used for characterization of the polysaccharide. CPPI exhibited antioxidant activity in vitro and a relatively strong inhibitory effect on A2780 cells growth. After CPPI treatment, the reactive oxygen species increased, the mitochondrial membrane potential decreased, and DNA damage was observed in A2780 cells. Therefore, CPPI should be explored as a potential antioxidant and an antitumor drug in a clinical setting.
Collapse
Affiliation(s)
- Ge Feng
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, People's Republic of China; College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Xi-Feng Zhang
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, People's Republic of China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China.
| |
Collapse
|
56
|
N. Adham A, F. Hegazy ME, Naqishbandi AM, Efferth T. Induction of Apoptosis, Autophagy and Ferroptosis by Thymus vulgaris and Arctium lappa Extract in Leukemia and Multiple Myeloma Cell Lines. Molecules 2020; 25:molecules25215016. [PMID: 33138135 PMCID: PMC7663330 DOI: 10.3390/molecules25215016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Thymus vulgaris and Arctium lappa have been used as a folk remedy in the Iraqi Kurdistan region to deal with different health problems. The aim of the current study is to investigate the cytotoxicity of T. vulgaris and A. lappa in leukemia and multiple myeloma (MM) cell lines and determine the mode of cell death triggered by the most potent cytotoxic fractions of both plants in MM. Resazurin assay was used to evaluate cytotoxic and ferroptosis activity, apoptosis, and modulation in the cell cycle phase were investigated via Annexin V-FITC/PI dual stain and cell-cycle arrest assays. Furthermore, we used western blotting assay for the determination of autophagy cell death. n-Hexane, chloroform, ethyl acetate, and butanol fractions of T. vulgaris and A. lappa exhibited cytotoxicity in CCRF-CEM and CEM/ADR 5000 cell lines at concentration range 0.001–100 μg/mL with potential activity revealed by chloroform and ethyl acetate fractions. NCI-H929 displayed pronounced sensitivity towards T. vulgaris (TCF) and A. lappa (ACF) chloroform fractions with IC50 values of 6.49 ± 1.48 and 21.9 ± 0.69 μg/mL, respectively. TCF induced apoptosis in NCI-H929 cells with a higher ratio (71%), compared to ACF (50%) at 4 × IC50. ACF demonstrated more potent autophagy activity than TCF. TCF and ACF induced cell cycle arrest and ferroptosis. Apigenin and nobiletin were identified in TCF, while nobiletin, ursolic acid, and lupeol were the main compounds identified in ACF. T. vulgaris and A. lappa could be considered as potential herbal drug candidates, which arrest cancer cell proliferation by induction of apoptosis, autophagic, and ferroptosis.
Collapse
Affiliation(s)
- Aveen N. Adham
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil 44001, Kurdistan Region, Iraq;
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
| | - Mohamed Elamir F. Hegazy
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Alaadin M. Naqishbandi
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil 44001, Kurdistan Region, Iraq;
- Correspondence: (A.M.N.); (T.E.); Tel.: +964-75-0448-2788 (A.M.N.); +49-6131-3925751 (T.E.)
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
- Correspondence: (A.M.N.); (T.E.); Tel.: +964-75-0448-2788 (A.M.N.); +49-6131-3925751 (T.E.)
| |
Collapse
|
57
|
Cytotoxic Constituents of the Bark of Hypericum roeperianum towards Multidrug-Resistant Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4314807. [PMID: 33062009 PMCID: PMC7532997 DOI: 10.1155/2020/4314807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022]
Abstract
The global cancer burden remains a serious concern with the alarming incidence of one in eight men and one in eleven women dying in developing countries. This situation is aggravated by the multidrug resistance (MDR) of cancer cells that hampers chemotherapy. In this study, the cytotoxicity of the methanol extract (HRB), fractions (HRBa, HRBb, and HRBa1-5), and compounds from the bark of Hypericum roeperianum (HRB) was evaluated towards a panel of 9 cancer cell lines. The mode of action of the HRB and trichadonic acid (1) was also studied. Column chromatography was applied to isolate the constituents of HRB. The cytotoxicity of botanicals and phytochemicals was evaluated by the resazurin reduction assay (RRA). Caspase-Glo assay was used to evaluate the activity of caspases, and reactive oxygen species (ROS) (H2DCFH-DA) were assessed by flow cytometry. Phytochemicals isolated from HRB were trichadonic acid (1), fridelan-3-one (2), 2-hydroxy-5-methoxyxanthone (3), norathyriol (4), 1,3,5,6-tetrahydroxyxanthone (5), betulinic acid (6), 3′-hydroxymethyl-2′-(4″-hydroxy-3″,5″-dimethoxyphenyl)-5′,6′:5,6-(6,8-dihydroxyxanthone)-1′,4′-dioxane (7), and 3′-hydroxymethyl-2′-(4″-hydroxy-3″,5″-dimethoxyphenyl)-5′,6′:5,6-(xanthone)-1′,4′-dioxane (8). Botanicals HRB, HRBa, HRBa2-4, HRBb, and doxorubicin displayed cytotoxic effects towards the 9 tested cancer cell lines. The recorded IC50 values ranged from 11.43 µg/mL (against the P-glycoprotein (gp)-overexpressing CEM/ADR5000 leukemia cells) to 26.75 µg/mL (against HCT116 (p53+/+) colon adenocarcinoma cells) for the crude extract HRB. Compounds 1, 5, and doxorubicin displayed cytotoxic effects towards the 9 tested cancer cell lines with IC50 values varying from 14.44 µM (against CCRF-CEM leukemia cells) to 44.20 µM (against the resistant HCT116 (p53−/−) cells) for 1 and from 38.46 µM (against CEM/ADR5000 cells) to 112.27 µM (against the resistant HCT116 (p53−/−) cells) for 5. HRB and compound 1 induced apoptosis in CCRF-CEM cells. The apoptotic process was mediated by enhanced ROS production for HRB or via caspases activation and enhanced ROS production for compound 1. This study demonstrated that Hypericum roeperianum is a potential source of cytotoxic phytochemicals such as trichadonic acid and could be further exploited in cancer chemotherapy.
Collapse
|
58
|
Mahmoud N, Saeed MEM, Sugimoto Y, Klinger A, Fleischer E, Efferth T. Putative molecular determinants mediating sensitivity or resistance towards carnosic acid tumor cell responses. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 77:153271. [PMID: 32659679 DOI: 10.1016/j.phymed.2020.153271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/28/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Carnosic acid (CA) is one of the main constituents in rosemary extract. It possesses valuable pharmacological properties, including anti-oxidant, anti-inflammatory, anti-microbial and anti-cancer activities. Numerous in vitro and in vivo studies investigated the anticancer profile of CA and emphasized its potentiality for cancer treatment. Nevertheless, the role of multidrug-resistance (MDR) related mechanisms for CA's anticancer effect is not yet known. PURPOSE We investigated the cytotoxicity of CA against known mechanisms of anticancer drug resistance (P-gp, ABCB5, BCRP, EGFR and p53) and determined novel putative molecular factors associated with cellular response towards CA. STUDY DESIGN Cytotoxicity assays, bioinformatic analysis, flow cytometry and western blotting were performed to identify the mode of action of CA towards cancer cells. METHODS The cytotoxicity to CA was assessed using the resazurin assays in cell lines expressing the mentioned resistance mechanisms. A pharmacogenomic characterization of the NCI 60 cell line panel was applied via COMPARE, hierarchical cluster and network analyses. Flow cytometry was used to detect cellular mode of death and ROS generation. Changes in proteins-related to apoptosis were determined by Western blotting. RESULTS Cell lines expressing ABC transporters (P-gp, BCRP or ABCB5), mutant EGFR or p53 were not cross-resistant to CA compared to their parental counterparts. By pharmacogenomic approaches, we identified genes that belong to different functional groups (e.g. signal transduction, regulation of cytoskeleton and developmental regulatory system). These genes were predicted as molecular determinants that mediate CA tumor cellular responses. The top affected biofunctions included cellular development, cellular proliferation and cellular death and survival. The effect of CA-mediated apoptosis in leukemia cells, which were recognized as the most sensitive tumor type, was confirmed via flow cytometry and western blot analysis. CONCLUSION CA may provide a novel treatment option to target refractory tumors and to effectively cooperate with established chemotherapy. Using pharmacogenomic approaches and network pharmacology, the relationship between cancer complexity and multi-target potentials of CA was analyzed and many putative molecular determinants were identified. They could serve as novel targets for CA and further studies are needed to translate the possible implications to clinical cancer treatment.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Abietanes/pharmacology
- Antineoplastic Agents, Phytogenic/pharmacology
- Cell Line, Tumor
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/physiology
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Humans
- Neoplasm Proteins/metabolism
- Pharmacogenetics
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Nuha Mahmoud
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | | | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
59
|
Antiproliferative Properties of a Few Auranofin-Related Gold(I) and Silver(I) Complexes in Leukemia Cells and their Interferences with the Ubiquitin Proteasome System. Molecules 2020; 25:molecules25194454. [PMID: 32998355 PMCID: PMC7582876 DOI: 10.3390/molecules25194454] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/01/2023] Open
Abstract
A group of triethylphosphine gold(I) and silver(I) complexes, structurally related to auranofin, were prepared and investigated as potential anticancer drug candidates. The antiproliferative properties of these metal compounds were assessed against two leukemia cell lines, i.e., CCRF-CEM and its multidrug-resistant counterpart, CEM/ADR5000. Interestingly, potent cytotoxic effects were disclosed for both series of compounds against leukemia cells, with IC50 values generally falling in the low-micromolar range, the gold derivatives being on the whole more effective than the silver analogues. Some initial structure-function relationships were drawn. Subsequently, the ability of the study compounds to inhibit the three main catalytic activities of the proteasome was investigated. Different patterns of enzyme inhibition emerged for the various metal complexes. Notably, gold compounds were able to inhibit effectively both the trypsin-like and chymotrypsin-like proteasome activities, being less effective toward the caspase-like catalytic activity. In most cases, a significant selectivity of the study compounds toward the proteasome proteolytic activities was detected when compared to other proteases. The implications of the obtained results are discussed.
Collapse
|
60
|
Li B, Yang L, Peng X, Fan Q, Wei S, Yang S, Li X, Jin H, Wu B, Huang M, Tang S, Liu J, Li H. Emerging mechanisms and applications of ferroptosis in the treatment of resistant cancers. Biomed Pharmacother 2020; 130:110710. [PMID: 33568263 DOI: 10.1016/j.biopha.2020.110710] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/09/2023] Open
Abstract
The development of chemotherapy drugs has promoted anticancer treatment, but the effect on tumours is not clear because of treatment resistance; thus, it is necessary to further understand the mechanism of cell death to explore new therapeutic targets. As a new type of programmed cell death, ferroptosis is increasingly being targeted in the treatment of many cancers with clinical drugs and experimental compounds. Ferroptosis is stimulated in tumours with inherently high levels of ferrous ions by a reaction with abundant polyunsaturated fatty acids and the inhibition of antioxidant enzymes, which can overcome treatment resistance in cancers mainly through GPX4. In this review, we focus on the intrinsic cellular regulators against ferroptosis in cancer resistance, such as GPX4, NRF2 and the thioredoxin system. We summarize the application of novel compounds and drugs to circumvent treatment resistance. We also introduce the application of nanoparticles for the treatment of resistant cancers. In conclusion, targeting ferroptosis represents a considerable strategy for resistant cancer treatment.
Collapse
Affiliation(s)
- Bowen Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Liang Yang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Xueqiang Peng
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Qin Fan
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Shibo Wei
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Shuo Yang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Xinyu Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Hongyuan Jin
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Bo Wu
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Mingyao Huang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Shilei Tang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Jingang Liu
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Hangyu Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China.
| |
Collapse
|
61
|
Wu Y, Dong G, Sheng C. Targeting necroptosis in anticancer therapy: mechanisms and modulators. Acta Pharm Sin B 2020; 10:1601-1618. [PMID: 33088682 PMCID: PMC7563021 DOI: 10.1016/j.apsb.2020.01.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/19/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
Necroptosis, a genetically programmed form of necrotic cell death, serves as an important pathway in human diseases. As a critical cell-killing mechanism, necroptosis is associated with cancer progression, metastasis, and immunosurveillance. Targeting necroptosis pathway by small molecule modulators is emerging as an effective approach in cancer therapy, which has the advantage to bypass the apoptosis-resistance and maintain antitumor immunity. Therefore, a better understanding of the mechanism of necroptosis and necroptosis modulators is necessary to develop novel strategies for cancer therapy. This review will summarize recent progress of the mechanisms and detecting methods of necroptosis. In particular, the relationship between necroptosis and cancer therapy and medicinal chemistry of necroptosis modulators will be focused on.
Collapse
|
62
|
The Application of Ferroptosis in Diseases. Pharmacol Res 2020; 159:104919. [DOI: 10.1016/j.phrs.2020.104919] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 01/17/2023]
|
63
|
Cytotoxicity of a naturally occuring spirostanol saponin, progenin III, towards a broad range of cancer cell lines by induction of apoptosis, autophagy and necroptosis. Chem Biol Interact 2020; 326:109141. [DOI: 10.1016/j.cbi.2020.109141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022]
|
64
|
Nguemo RT, Mbouangouere R, Bitchagno GTM, Tchuenguem R, Temgoua EVN, Ndontsa BL, Mpetga JS, Opatz T, Ngouela AS, Tane P. A new ceramide from the leaves of Lannea schimperi (Hochst. ex A.Rich.) Engl. Nat Prod Res 2020; 36:515-522. [PMID: 32627596 DOI: 10.1080/14786419.2020.1789632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A new ceramide is being reported herein together with six known compounds from the methanol extract of the leaves of Lannea schimperi (Hochst. ex A.Rich.) Engl. The metabolites were obtained through repeated open column chromatography and were characterized by spectroscopic and spectrometric techniques. The radical-scavenging activity of the crude extract and isolated compounds was evaluated using the DPPH radical. The obtained results suggest the studied species as prominent candidate to fight reactive oxygen species (ROS).
Collapse
Affiliation(s)
| | | | - Gabin Thierry M Bitchagno
- Department of Chemistry, University of Dschang, Dschang, Cameroon.,Institute of Organic Chemistry, Johannes Gutemberg-University of Mainz, Mainz, Germany
| | - Roland Tchuenguem
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | | | | | | | - Till Opatz
- Institute of Organic Chemistry, Johannes Gutemberg-University of Mainz, Mainz, Germany
| | | | - Pierre Tane
- Department of Chemistry, University of Dschang, Dschang, Cameroon
| |
Collapse
|
65
|
García Manzano MF, Joray MB, Laiolo J, Palacios SM, Carpinella MC. Cytotoxic Activity of Germacrane-Type Sesquiterpene Lactones from Dimerostemma aspilioides. JOURNAL OF NATURAL PRODUCTS 2020; 83:1909-1918. [PMID: 32496057 DOI: 10.1021/acs.jnatprod.0c00115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The need for effective candidates as cytotoxic drugs that at the same time challenge cancer multidrug resistance encouraged a search for these in plants of central Argentina. Bioassay-guided fractionation of the cytotoxic extract from Dimerostemma aspilioides led to the isolation of the germacranolide tomenphantin A (1), along with three new analogues (2-4). These efficiently inhibited the proliferation of the leukemia cell lines K562 and CCRF-CEM and their resistant variants, Lucena 1 and CEM/ADR5000, respectively, with IC50 values ranging from 0.40 to 7.7 μM. The structures and relative configurations of compounds 1-4 were elucidated by analysis of the spectroscopic data, in particular NMR spectroscopy. The most active among these was compound 1 (IC50 = 0.40-5.1 μM), and, therefore, this was selected as a model for a mechanistic study, which revealed that its antiproliferative effect was mediated by cell cycle arrest in the G2/M phase followed by apoptosis. The activity of compound 1 was selective, given the absence of cytotoxicity toward peripheral blood mononuclear cells. The results show the potential of these compounds, and in particular of compound 1, as leads for the development of drug candidates to fight sensitive and resistant leukemia cells.
Collapse
Affiliation(s)
- María F García Manzano
- Fine Chemical and Natural Products Laboratory, Research Institute of Natural Resources and Sustainability José Sánchez Labrador S.J. (IRNASUS-CONICET), School of Chemistry, Catholic University of Córdoba, Córdoba X5016DHK, Argentina
| | - Mariana B Joray
- Fine Chemical and Natural Products Laboratory, Research Institute of Natural Resources and Sustainability José Sánchez Labrador S.J. (IRNASUS-CONICET), School of Chemistry, Catholic University of Córdoba, Córdoba X5016DHK, Argentina
| | - Jerónimo Laiolo
- Fine Chemical and Natural Products Laboratory, Research Institute of Natural Resources and Sustainability José Sánchez Labrador S.J. (IRNASUS-CONICET), School of Chemistry, Catholic University of Córdoba, Córdoba X5016DHK, Argentina
| | - Sara M Palacios
- Fine Chemical and Natural Products Laboratory, Research Institute of Natural Resources and Sustainability José Sánchez Labrador S.J. (IRNASUS-CONICET), School of Chemistry, Catholic University of Córdoba, Córdoba X5016DHK, Argentina
| | - María C Carpinella
- Fine Chemical and Natural Products Laboratory, Research Institute of Natural Resources and Sustainability José Sánchez Labrador S.J. (IRNASUS-CONICET), School of Chemistry, Catholic University of Córdoba, Córdoba X5016DHK, Argentina
| |
Collapse
|
66
|
Mbaveng AT, Chi GF, Bonsou IN, Abdelfatah S, Tamfu AN, Yeboah EMO, Kuete V, Efferth T. N-acetylglycoside of oleanolic acid (aridanin) displays promising cytotoxicity towards human and animal cancer cells, inducing apoptotic, ferroptotic and necroptotic cell death. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153261. [PMID: 32559584 DOI: 10.1016/j.phymed.2020.153261] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/14/2020] [Accepted: 06/02/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND The discovery of novel phytochemicals represents a reasonable approach to fight malignancies, especially those which are resistant to standard chemotherapy. PURPOSE We evaluated the cytotoxic potential of a naturally occurring N-acetylglycoside of oleanolic acid, aridanin, on 18 cancer cell lines, including sensitive and drug-resistant phenotypes mediated by P-glycoprotein, BCRP, p53 knockout, deletion-mutated EGFR, or BRAF mutations. Furthermore, metastasizing B16/F10 cells, HepG2 hepatocarcinoma and normal AML12 hepatocytes were investigated. The mechanisms of aridanin-induced cell death was further investigated. METHODS The resazurin reduction assay (RRA) was applied to evaluate the cytotoxicity, autophagy, ferroptotic and necroptotic cell death. CCRF-CEM leukemia cells were used for all mechanistic studies. A caspase-Glo assay was applied to evaluate the caspase activities. Flow cytometry was applied for the analyses of cell cycle (PI staining), apoptosis (annexin V/PI staining), mitochondrial membrane potential (MMP; JC-1) and reactive oxygen species (ROS; H2DCFH-DA). RESULTS Aridanin and doxorubicin (positive control) inhibited the proliferation of all cancer cell lines tested. The IC50 values for aridanin varied from 3.18 µM (CCRF-CEM cells) to 9.56 µM (HepG2 cells). Aridanin had considerably lower IC50 values than that of doxorubicin against multidrug-resistant CEM/ADR5000 cells and melanoma cell lines (MaMel-80a, Mel-2a, MV3, and SKMel-505). Aridanin induced apoptosis in CCRF-CEM cells through increase of ROS levels and MMP breakdown, and to a lesser extent via caspases activation. Aridanin also induced ferroptotic and necroptotic cell death. CONCLUSION The present study opens good perpectives for the use of this phytochemical as an anticancer drug to combat multi-facorial resistance to established chemotherapeutics.
Collapse
Affiliation(s)
- Armelle T Mbaveng
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany; Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| | - Godloves F Chi
- Department of Chemistry, Faculty of Science, University of Yaounde I, Yaounde, Cameroon.
| | - Idrios N Bonsou
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| | - Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany.
| | - Alfred N Tamfu
- Chemical Engineering and Mineral Industries School, University of Ngaoundere, 454 Ngaoundere Cameroon.
| | - Elisabeth M O Yeboah
- Department of Chemistry, University of Botswana, Private Bag 0022, Gaborone, Botswana.
| | - Victor Kuete
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany; Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
67
|
Mbaveng AT, Damen F, Guefack MGF, Tankeo SB, Abdelfatah S, Bitchagno GTM, Çelik İ, Kuete V, Efferth T. 8,8-bis-(Dihydroconiferyl)-diferulate displayed impressive cytotoxicity towards a panel of human and animal cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 70:153215. [PMID: 32388040 DOI: 10.1016/j.phymed.2020.153215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Recalcitrant cancers appear as a major obstacle to chemotherapy, prompting scientists to intensify the search for novel drugs to tackle the cell lines expressing multi-drug resistant (MDR) phenotypes. PURPOSE The purpose of this study was to evaluate the antiproliferative potential of a ferrulic acid derivative, 8,8-bis-(dihydroconiferyl)-diferulate (DHCF2) on a panel of 18 cancer cell lines, including various sensitive and drug-resistant phenotypes, belonging to human and animals. The mode of induction of cell death by this compound was further studied. METHODS The antiproliferative activity, autophagy, ferroptotic and necroptotic cell death were evaluated by the resazurin reduction assay (RRA). CCRF-CEM leukemia cells were used for all mechanistic studies. A caspase-Glo assay was applied to evaluate the activity of caspases. Cell cycle analysis (PI staining), apoptosis (annexin V/PI staining), mitochondrial membrane potential (MMP) (JC-1) and reactive oxygen species (ROS) (H2DCFH-DA) were assessed by flow cytometry. RESULTS DHCF2 demonstrated impressive cytotoxic effects towards the 18 cancer cell lines tested, with IC50 values all below 6.5 µM. The obtained IC50 values were in the range of 1.17 µM (towards CCRF-CEM leukemia cells) to 6.34 µM (towards drug-resistant HCT116 p53-/- human colon adenocarcinoma cells) for DHCF2 and from 0.02 µM (against CCRF-CEM cells) to 122.96 µM (against multidrug-resistant CEM/ADR5000 leukemia cells) for the reference drug, doxorubicin. DHCF2 had IC50 values lower than those of doxorubicin, against CEM/ADR5000 cells and on some melanoma cell lines, such as MaMel-80a cells, Mel-2a cells, MV3 cells and SKMel-505 cells. DHCF2 induced autophagy as well as apoptosis in CCRF-CEM cells though caspases activation, MMP alteration and increase of ROS production. CONCLUSION The studied diferulic acid, DHCF2, is a promising antiproliferative compound. It deserves further indepth investigations with the ultimate aim to develop a novel drug to fight cancer drug resistance.
Collapse
Affiliation(s)
- Armelle T Mbaveng
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany; Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Francois Damen
- Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Michel-Gael F Guefack
- Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Simplice Beaudelaire Tankeo
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany; Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Gabin T M Bitchagno
- Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - İlhami Çelik
- Department of Chemistry, Faculty of Science, Eskisehir Technical University, 26470 Eskisehir, Turkey
| | - Victor Kuete
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany; Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
68
|
Efferth T, Oesch F. Repurposing of plant alkaloids for cancer therapy: Pharmacology and toxicology. Semin Cancer Biol 2019; 68:143-163. [PMID: 31883912 DOI: 10.1016/j.semcancer.2019.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/15/2019] [Indexed: 02/08/2023]
Abstract
Drug repurposing (or repositioning) is an emerging concept to use old drugs for new treatment indications. Phytochemicals isolated from medicinal plants have been largely neglected in this context, although their pharmacological activities have been well investigated in the past, and they may have considerable potentials for repositioning. A grand number of plant alkaloids inhibit syngeneic or xenograft tumor growth in vivo. Molecular modes of action in cancer cells include induction of cell cycle arrest, intrinsic and extrinsic apoptosis, autophagy, inhibition of angiogenesis and glycolysis, stress and anti-inflammatory responses, regulation of immune functions, cellular differentiation, and inhibition of invasion and metastasis. Numerous underlying signaling processes are affected by plant alkaloids. Furthermore, plant alkaloids suppress carcinogenesis, indicating chemopreventive properties. Some plant alkaloids reveal toxicities such as hepato-, nephro- or genotoxicity, which disqualifies them for repositioning purposes. Others even protect from hepatotoxicity or cardiotoxicity of xenobiotics and established anticancer drugs. The present survey of the published literature clearly demonstrates that plant alkaloids have the potential for repositioning in cancer therapy. Exploitation of the chemical diversity of natural alkaloids may enrich the candidate pool of compounds for cancer chemotherapy and -prevention. Their further preclinical and clinical development should follow the same stringent rules as for any other synthetic drug as well. Prospective randomized, placebo-controlled clinical phase I and II trials should be initiated to unravel the full potential of plant alkaloids for drug repositioning.
Collapse
Affiliation(s)
- Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Mainz, Germany.
| | - Franz Oesch
- Institute of Toxicology, Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
69
|
Yu X, Ruan Y, Huang X, Dou L, Lan M, Cui J, Chen B, Gong H, Wang Q, Yan M, Sun S, Qiu Q, Zhang X, Man Y, Tang W, Li J, Shen T. Dexrazoxane ameliorates doxorubicin-induced cardiotoxicity by inhibiting both apoptosis and necroptosis in cardiomyocytes. Biochem Biophys Res Commun 2019; 523:140-146. [PMID: 31837803 DOI: 10.1016/j.bbrc.2019.12.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/05/2019] [Indexed: 12/31/2022]
Abstract
Doxorubicin, as a first line chemotherapeutic agent, its usage is limited owing to cardiotoxicity. Necroptosis is a new form of programmed cell death, and recent investigations indicated that necroptosis is vitally involved in serious cardiac pathological conditions. Dexrazoxane is the only cardiac protective drug approved by FDA for anthracycline. We aimed to explore whether and how dexrazoxane regulates doxorubicin-induced cardiomyocyte necroptosis. First, doxorubicin could cause heart failure and reduce cardiomyocyte viability by promoting cell apoptosis and necroptosis in vivo and in vitro. Second, necroptosis plays an important role in doxorubicin induced cardiomyocyte injury, which could be inhibited by Nec-1. Third, dexrazoxane increased cell viability and protect heart function by decreasing both cardiomyocyte apoptosis and necroptosis after doxorubicin treatment. Forth, dexrazoxane attenuated doxorubicin-induced inflammation and necroptosis by the inhibition of p38MAPK/NF-κB pathways. These results indicated that dexrazoxane ameliorates cardiotoxicity and protects heart function by attenuating both apoptosis and necroptosis in doxorubicin induced cardiomyocyte injury.
Collapse
Affiliation(s)
- Xiaoxue Yu
- Peking University Fifth School of Clinical Medicine, Beijing, 100730, China; The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China, Beijing, 100730, China
| | - Yang Ruan
- Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China, Beijing, 100730, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China, Beijing, 100730, China
| | - Ming Lan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China, Beijing, 100730, China
| | - Ju Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China, Beijing, 100730, China
| | - Beidong Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China, Beijing, 100730, China
| | - Huan Gong
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China, Beijing, 100730, China
| | - Que Wang
- Peking University Fifth School of Clinical Medicine, Beijing, 100730, China; The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China, Beijing, 100730, China
| | - Mingjing Yan
- Peking University Fifth School of Clinical Medicine, Beijing, 100730, China; The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China, Beijing, 100730, China
| | - Shenghui Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China, Beijing, 100730, China
| | - Quan Qiu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China, Beijing, 100730, China
| | - Xiyue Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China, Beijing, 100730, China
| | - Yong Man
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China, Beijing, 100730, China
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China, Beijing, 100730, China
| | - Jian Li
- Peking University Fifth School of Clinical Medicine, Beijing, 100730, China; The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China, Beijing, 100730, China
| | - Tao Shen
- Peking University Fifth School of Clinical Medicine, Beijing, 100730, China; The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China, Beijing, 100730, China.
| |
Collapse
|
70
|
Bitchagno GTM, Schüffler A, Simo IK, Krumb M, Tane P, Opatz T. Neo-clerodane diterpenoids from Conyza pyrrhopappa Sch.Bip. ex A.Rich. Nat Prod Res 2019; 35:3210-3219. [PMID: 31726857 DOI: 10.1080/14786419.2019.1690490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Two hitherto unknown neo-clerodane-type diterpenoids along with twelve known compounds have been isolated from Conyza pyrrhopappa Sch.Bip. ex A.Rich, a medicinal plant traditionally used across tropical Africa to relieve fever. The structures of isolates have been elucidated by a combination of spectroscopic techniques. The crude extract and the isolated compounds were evaluated in the Hela-S3 cell line and in a panel of microorganisms (bacteria and fungi) at concentrations up to 50 µg/mL. The new compounds were inactive while the pentamethylated flavonoids showed low to significant activity against the cancer cell line used. However, none of the samples showed any activity against the tested microorganisms at this concentration. The present manuscript is the first investigation of the cytotoxicity of phytochemicals and extract from C. pyrrhopappa.
Collapse
Affiliation(s)
- Gabin Thierry M Bitchagno
- Department of Chemistry, University of Dschang, Dschang, Cameroon.,Institute of Organic Chemistry, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Anja Schüffler
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH (IBWF), Kaiserslautern, Germany
| | - Ingrid K Simo
- Department of Chemistry, University of Dschang, Dschang, Cameroon
| | - Matthias Krumb
- Institute of Organic Chemistry, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Pierre Tane
- Department of Chemistry, University of Dschang, Dschang, Cameroon
| | - Till Opatz
- Institute of Organic Chemistry, Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
71
|
Damen F, Demgne OMF, Bitchagno GTM, Celik I, Mpetga JDS, Tankeo SB, Opatz T, Kuete V, Tane P. A new polyketide from the bark of Hypericum roeperianum Schimp. (Hypericaceae). Nat Prod Res 2019; 35:2381-2387. [PMID: 31612738 DOI: 10.1080/14786419.2019.1677655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The isolation and spectroscopic data of a hitherto undescribed polyketide (1) from Hypericum roeperianum Schimp. (Hypericaceae) together with six known compounds (2-7) is herein reported. The structure elucidation is based on extensive 1D- and 2D-NMR, infrared, UV and MS experiments. The structures of the known compounds were confirmed by comparison of their spectroscopic data with those of similar reported compounds in the literature. Some of the isolated compounds had a significant activity against a panel of multidrug-resistant bacterial strains.Supplemental data for this article can be accessed at https://doi.org/10.1080/14786419.2019.1677655.
Collapse
Affiliation(s)
- François Damen
- Department of Chemistry, University of Dschang , Dschang , Cameroon
| | | | - Gabin Thierry M Bitchagno
- Department of Chemistry, University of Dschang , Dschang , Cameroon.,Institute of Organic Chemistry, Johannes Gutenberg-University of Mainz , Mainz , Germany
| | - Ilhami Celik
- Department of Chemistry, Faculty of Science, Eskishir Technical University , Eskishir , Turkey
| | | | | | - Till Opatz
- Institute of Organic Chemistry, Johannes Gutenberg-University of Mainz , Mainz , Germany
| | - Victor Kuete
- Department of Biochemistry, University of Dschang , Dschang , Cameroon
| | - Pierre Tane
- Department of Chemistry, University of Dschang , Dschang , Cameroon
| |
Collapse
|