51
|
Yadav A, Khan Y, Prasad M. Dehydration-responsive miRNAs in foxtail millet: genome-wide identification, characterization and expression profiling. PLANTA 2016; 243:749-66. [PMID: 26676987 DOI: 10.1007/s00425-015-2437-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/20/2015] [Indexed: 05/27/2023]
Abstract
A set of novel and known dehydration-responsive miRNAs have been identified in foxtail millet. These findings provide new insights into understanding the functional role of miRNAs and their respective targets in regulating plant response to dehydration stress. MicroRNAs perform significant regulatory roles in growth, development and stress response of plants. Though the miRNA-mediated gene regulatory networks under dehydration stress remain largely unexplored in plant including foxtail millet (Setaria italica), which is a natural abiotic stress tolerant crop. To find out the dehydration-responsive miRNAs at the global level, four small RNA libraries were constructed from control and dehydration stress treated seedlings of two foxtail millet cultivars showing contrasting tolerance behavior towards dehydration stress. Using Illumina sequencing technology, 55 known and 136 novel miRNAs were identified, representing 22 and 48 miRNA families, respectively. Eighteen known and 33 novel miRNAs were differentially expressed during dehydration stress. After the stress treatment, 32 dehydration-responsive miRNAs were up-regulated in tolerant cultivar and 22 miRNAs were down-regulated in sensitive cultivar, suggesting that miRNA-mediated molecular regulation might play important roles in providing contrasting characteristics to these cultivars. Predicted targets of identified miRNAs were found to encode various transcription factors and functional enzymes, indicating their involvement in broad spectrum regulatory functions and biological processes. Further, differential expression patterns of seven known miRNAs were validated by northern blot and expression of ten novel dehydration-responsive miRNAs were confirmed by SL-qRT PCR. Differential expression behavior of five miRNA-target genes was verified under dehydration stress treatment and two of them also validated by RLM RACE. Overall, the present study highlights the importance of dehydration stress-associated post-transcriptional regulation governed by miRNAs and their targets in a naturally stress-tolerant model crop.
Collapse
Affiliation(s)
- Amita Yadav
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Yusuf Khan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India.
| |
Collapse
|
52
|
Levesque-Tremblay G, Pelloux J, Braybrook SA, Müller K. Tuning of pectin methylesterification: consequences for cell wall biomechanics and development. PLANTA 2015; 242:791-811. [PMID: 26168980 DOI: 10.1007/s00425-015-2358-5] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 06/24/2015] [Indexed: 05/25/2023]
Abstract
Recent publications have increased our knowledge of how pectin composition and the degree of homogalacturonan methylesterification impact the biochemical and biomechanical properties of plant cell walls, plant development, and plants' interactions with their abiotic and biotic environments. Experimental observations have shown that the relationships between the DM, the pattern of de-methylesterificaton, its effect on cell wall elasticity, other biomechanical parameters, and growth are not straightforward. Working towards a detailed understanding of these relationships at single cell resolution is one of the big tasks of pectin research. Pectins are highly complex polysaccharides abundant in plant primary cell walls. New analytical and microscopy techniques are revealing the composition and mechanical properties of the cell wall and increasing our knowledge on the topic. Progress in plant physiological research supports a link between cell wall pectin modifications and plant development and interactions with the environment. Homogalacturonan pectins, which are major components of the primary cell wall, have a potential for modifications such as methylesterification, as well as an ability to form cross-linked structures with divalent cations. This contributes to changing the mechanical properties of the cell wall. This review aims to give a comprehensive overview of the pectin component homogalacturonan, including its synthesis, modification, regulation and role in the plant cell wall.
Collapse
Affiliation(s)
- Gabriel Levesque-Tremblay
- Energy Bioscience Institute, University of California Berkeley, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | | | | | | |
Collapse
|
53
|
Arias NS, Bucci SJ, Scholz FG, Goldstein G. Freezing avoidance by supercooling in Olea europaea cultivars: the role of apoplastic water, solute content and cell wall rigidity. PLANT, CELL & ENVIRONMENT 2015; 38:2061-70. [PMID: 25737264 DOI: 10.1111/pce.12529] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/22/2015] [Accepted: 02/25/2015] [Indexed: 05/11/2023]
Abstract
Plants can avoid freezing damage by preventing extracellular ice formation below the equilibrium freezing temperature (supercooling). We used Olea europaea cultivars to assess which traits contribute to avoid ice nucleation at sub-zero temperatures. Seasonal leaf water relations, non-structural carbohydrates, nitrogen and tissue damage and ice nucleation temperatures in different plant parts were determined in five cultivars growing in the Patagonian cold desert. Ice seeding in roots occurred at higher temperatures than in stems and leaves. Leaves of cold acclimated cultivars supercooled down to -13 °C, substantially lower than the minimum air temperatures observed in the study site. During winter, leaf ice nucleation and leaf freezing damage (LT50 ) occurred at similar temperatures, typical of plant tissues that supercool. Higher leaf density and cell wall rigidity were observed during winter, consistent with a substantial acclimation to sub-zero temperatures. Larger supercooling capacity and lower LT50 were observed in cold-acclimated cultivars with higher osmotically active solute content, higher tissue elastic adjustments and lower apoplastic water. Irreversible leaf damage was only observed in laboratory experiments at very low temperatures, but not in the field. A comparative analysis of closely related plants avoids phylogenetic independence bias in a comparative study of adaptations to survive low temperatures.
Collapse
Affiliation(s)
- Nadia S Arias
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1033AAJ, Argentina
- Grupo de Estudios Biofísicos y Eco-fisiológicos (GEBEF), Departamento de Biología, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, 9000, Argentina
| | - Sandra J Bucci
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1033AAJ, Argentina
- Grupo de Estudios Biofísicos y Eco-fisiológicos (GEBEF), Departamento de Biología, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, 9000, Argentina
| | - Fabian G Scholz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1033AAJ, Argentina
- Grupo de Estudios Biofísicos y Eco-fisiológicos (GEBEF), Departamento de Biología, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, 9000, Argentina
| | - Guillermo Goldstein
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1033AAJ, Argentina
- Laboratorio de Ecología Funcional (LEF), Departamento de Ecología, Genética y Evolución, FCEyN, Universidad de Buenos Aires, Buenos Aires, 1425, Argentina
- Department of Biology, University of Miami, Coral Gables, FL, 33124, USA
| |
Collapse
|
54
|
Sénéchal F, L'Enfant M, Domon JM, Rosiau E, Crépeau MJ, Surcouf O, Esquivel-Rodriguez J, Marcelo P, Mareck A, Guérineau F, Kim HR, Mravec J, Bonnin E, Jamet E, Kihara D, Lerouge P, Ralet MC, Pelloux J, Rayon C. Tuning of Pectin Methylesterification: PECTIN METHYLESTERASE INHIBITOR 7 MODULATES THE PROCESSIVE ACTIVITY OF CO-EXPRESSED PECTIN METHYLESTERASE 3 IN A pH-DEPENDENT MANNER. J Biol Chem 2015; 290:23320-35. [PMID: 26183897 DOI: 10.1074/jbc.m115.639534] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Indexed: 11/06/2022] Open
Abstract
Pectin methylesterases (PMEs) catalyze the demethylesterification of homogalacturonan domains of pectin in plant cell walls and are regulated by endogenous pectin methylesterase inhibitors (PMEIs). In Arabidopsis dark-grown hypocotyls, one PME (AtPME3) and one PMEI (AtPMEI7) were identified as potential interacting proteins. Using RT-quantitative PCR analysis and gene promoter::GUS fusions, we first showed that AtPME3 and AtPMEI7 genes had overlapping patterns of expression in etiolated hypocotyls. The two proteins were identified in hypocotyl cell wall extracts by proteomics. To investigate the potential interaction between AtPME3 and AtPMEI7, both proteins were expressed in a heterologous system and purified by affinity chromatography. The activity of recombinant AtPME3 was characterized on homogalacturonans (HGs) with distinct degrees/patterns of methylesterification. AtPME3 showed the highest activity at pH 7.5 on HG substrates with a degree of methylesterification between 60 and 80% and a random distribution of methyl esters. On the best HG substrate, AtPME3 generates long non-methylesterified stretches and leaves short highly methylesterified zones, indicating that it acts as a processive enzyme. The recombinant AtPMEI7 and AtPME3 interaction reduces the level of demethylesterification of the HG substrate but does not inhibit the processivity of the enzyme. These data suggest that the AtPME3·AtPMEI7 complex is not covalently linked and could, depending on the pH, be alternately formed and dissociated. Docking analysis indicated that the inhibition of AtPME3 could occur via the interaction of AtPMEI7 with a PME ligand-binding cleft structure. All of these data indicate that AtPME3 and AtPMEI7 could be partners involved in the fine tuning of HG methylesterification during plant development.
Collapse
Affiliation(s)
- Fabien Sénéchal
- From the EA3900-BIOPI, Biologie des Plantes et Innovation and
| | | | - Jean-Marc Domon
- From the EA3900-BIOPI, Biologie des Plantes et Innovation and
| | - Emeline Rosiau
- From the EA3900-BIOPI, Biologie des Plantes et Innovation and
| | - Marie-Jeanne Crépeau
- INRA, UMR 1268, Biopolymères-Interactions-Assemblages, BP 71627, 44316 Nantes, France
| | - Ogier Surcouf
- the Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES EA 4358, Institut de Recherche et d'Innovation Biomédicale, Grand Réseau de Recherche-Végétal, Agronomie, Sol, Innovation, UFR des Sciences et Techniques, Normandie Université-Université de Rouen, 76821 Mont-Saint-Aignan Cedex 1, France
| | | | - Paulo Marcelo
- Plateforme d'Ingénierie Cellulaire and Analyses des Protéines (ICAP), Université de Picardie Jules Verne, 80039 Amiens, France
| | - Alain Mareck
- the Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES EA 4358, Institut de Recherche et d'Innovation Biomédicale, Grand Réseau de Recherche-Végétal, Agronomie, Sol, Innovation, UFR des Sciences et Techniques, Normandie Université-Université de Rouen, 76821 Mont-Saint-Aignan Cedex 1, France
| | | | - Hyung-Rae Kim
- Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Jozef Mravec
- the Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark, and
| | - Estelle Bonnin
- INRA, UMR 1268, Biopolymères-Interactions-Assemblages, BP 71627, 44316 Nantes, France
| | - Elisabeth Jamet
- the LRSV, UMR 5546 Université Toulouse 3/CNRS, 31326 Castanet-Tolosan, France
| | - Daisuke Kihara
- the Departments of Computer Sciences and Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Patrice Lerouge
- the Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES EA 4358, Institut de Recherche et d'Innovation Biomédicale, Grand Réseau de Recherche-Végétal, Agronomie, Sol, Innovation, UFR des Sciences et Techniques, Normandie Université-Université de Rouen, 76821 Mont-Saint-Aignan Cedex 1, France
| | - Marie-Christine Ralet
- INRA, UMR 1268, Biopolymères-Interactions-Assemblages, BP 71627, 44316 Nantes, France
| | - Jérôme Pelloux
- From the EA3900-BIOPI, Biologie des Plantes et Innovation and
| | - Catherine Rayon
- From the EA3900-BIOPI, Biologie des Plantes et Innovation and
| |
Collapse
|
55
|
Le Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C. Cell Wall Metabolism in Response to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2015; 4:112-66. [PMID: 27135320 PMCID: PMC4844334 DOI: 10.3390/plants4010112] [Citation(s) in RCA: 605] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/05/2015] [Accepted: 02/11/2015] [Indexed: 12/17/2022]
Abstract
This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.
Collapse
Affiliation(s)
- Hyacinthe Le Gall
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Florian Philippe
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Jean-Marc Domon
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Françoise Gillet
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Jérôme Pelloux
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Catherine Rayon
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039 Amiens, France.
| |
Collapse
|