51
|
Diz-Chaves Y, Toba L, Fandiño J, González-Matías LC, Garcia-Segura LM, Mallo F. The GLP-1 analog, liraglutide prevents the increase of proinflammatory mediators in the hippocampus of male rat pups submitted to maternal perinatal food restriction. J Neuroinflammation 2018; 15:337. [PMID: 30518432 PMCID: PMC6282252 DOI: 10.1186/s12974-018-1370-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/18/2018] [Indexed: 12/17/2022] Open
Abstract
Background Perinatal maternal malnutrition is related to altered growth of tissues and organs. The nervous system development is very sensitive to environmental insults, being the hippocampus a vulnerable structure, in which altered number of neurons and granular cells has been observed. Moreover, glial cells are also affected, and increased expression of proinflammatory mediators has been observed. We studied the effect of Glucagon-like peptide-1 receptor (GLP-1R) agonists, liraglutide, which have very potent metabolic and neuroprotective effects, in order to ameliorate/prevent the glial alterations present in the hippocampus of the pups from mothers with food restriction during pregnancy and lactation (maternal perinatal food restriction—MPFR). Methods Pregnant Sprague-Dawley rats were randomly assigned to 50% food restriction (FR; n = 12) or ad libitum controls (CT, n = 12) groups at day of pregnancy 12 (GD12). From GD14 to parturition, pregnant FR and CT rats were treated with liraglutide (100 μg/kg) or vehicle. At postnatal day 21 and before weaning, 48 males and 45 females (CT and MPFR) were sacrificed. mRNA expression levels of interleukin-1β (IL1β), interleukin-6 (IL-6), nuclear factor-κβ, major histocompatibility complex-II (MHCII), interleukin 10 (IL10), arginase 1 (Arg1), and transforming growth factor (TGFβ) were assessed in the hippocampus by quantitative real-time polymerase chain reaction. Iba1 and GFAP-immunoreactivity were assessed by immunocytochemistry. Results The mRNA expression IL1β, IL6, NF-κB, and MHCII increased in the hippocampus of male but not in female pups from MPFR. In addition, there was an increase in the percentage of GFAP and Iba1-immupositive cells in the dentate gyrus compared to controls, indicating an inflammatory response in the brain. On the other hand, liraglutide treatment prevented the neuroinflammatory process, promoting the production of anti-inflammatory molecules such as IL10, TGFβ, and arginase 1, and decreasing the number and reactivity of microglial cells and astrocytes in the hippocampus of male pups. Conclusion Therefore, the GLP-1 analog, liraglutide, emerges as neuroprotective drug that minimizes the harmful effects of maternal food restriction, decreasing neuroinflammation in the hippocampus in a very early stage.
Collapse
Affiliation(s)
- Y Diz-Chaves
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Campus As Lagoas-Marcosende, E-36310, Vigo (Pontevedra), Spain.
| | - L Toba
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Campus As Lagoas-Marcosende, E-36310, Vigo (Pontevedra), Spain
| | - J Fandiño
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Campus As Lagoas-Marcosende, E-36310, Vigo (Pontevedra), Spain
| | - L C González-Matías
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Campus As Lagoas-Marcosende, E-36310, Vigo (Pontevedra), Spain
| | - L M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, E-28002, Madrid, Spain.,Centro de Investigación en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - F Mallo
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Campus As Lagoas-Marcosende, E-36310, Vigo (Pontevedra), Spain
| |
Collapse
|
52
|
Malhotra A, Castillo-Melendez M, Allison BJ, Sutherland AE, Nitsos I, Pham Y, Alves de Alencar Rocha AK, Fahey MC, Polglase GR, Jenkin G, Miller SL. Neuropathology as a consequence of neonatal ventilation in premature growth-restricted lambs. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1183-R1194. [PMID: 30230932 DOI: 10.1152/ajpregu.00171.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fetal growth restriction (FGR) and prematurity are associated with high risk of brain injury and long-term neurological deficits. FGR infants born preterm are commonly exposed to mechanical ventilation, but it is not known whether ventilation differentially induces brain pathology in FGR infants compared with appropriate for gestational age (AGA) infants. We investigated markers of neuropathology in moderate- to late-preterm FGR lambs, compared with AGA lambs, delivered by caesarean birth and ventilated under standard neonatal conditions for 24 h. FGR was induced by single umbilical artery ligation in fetal sheep at 88-day gestation (term, 150 days). At 125-day gestation, FGR and AGA lambs were delivered, dried, intubated, and commenced on noninjurious ventilation, with surfactant administration at 10 min. A group of unventilated FGR and AGA lambs at the same gestation was also examined. Over 24 h, circulating pH, Po2, and lactate levels were similar between groups. Ventilated FGR lambs had lower cerebral blood flow compared with AGA lambs ( P = 0.01). The brain of ventilated FGR lambs showed neuropathology compared with unventilated FGR, and unventilated and ventilated AGA lambs, with increased apoptosis (caspase-3), blood-brain barrier dysfunction (albumin extravasation), activated microglia (Iba-1), and increased expression of cellular oxidative stress (4-hydroxynonenal). The neuropathologies seen in the ventilated FGR brain were most pronounced in the periventricular and subcortical white matter but also evident in the subventricular zone, cortical gray matter, and hippocampus. Ventilation of preterm FGR lambs increased brain injury compared with AGA preterm lambs and unventilated FGR lambs, mediated via increased vascular permeability, neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Atul Malhotra
- Monash Newborn, Monash Children's Hospital , Melbourne , Australia.,Department of Paediatrics, Monash University , Melbourne , Australia.,The Ritchie Centre, Hudson Institute of Medical Research , Melbourne , Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research , Melbourne , Australia.,Department of Obstetrics and Gynaecology, Monash University , Melbourne , Australia
| | - Beth J Allison
- The Ritchie Centre, Hudson Institute of Medical Research , Melbourne , Australia.,Department of Obstetrics and Gynaecology, Monash University , Melbourne , Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research , Melbourne , Australia
| | - Ilias Nitsos
- The Ritchie Centre, Hudson Institute of Medical Research , Melbourne , Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research , Melbourne , Australia
| | | | - Michael C Fahey
- Department of Paediatrics, Monash University , Melbourne , Australia.,The Ritchie Centre, Hudson Institute of Medical Research , Melbourne , Australia
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research , Melbourne , Australia.,Department of Obstetrics and Gynaecology, Monash University , Melbourne , Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research , Melbourne , Australia.,Department of Obstetrics and Gynaecology, Monash University , Melbourne , Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research , Melbourne , Australia.,Department of Obstetrics and Gynaecology, Monash University , Melbourne , Australia
| |
Collapse
|
53
|
Korzeniewski SJ, Slaughter J, Lenski M, Haak P, Paneth N. The complex aetiology of cerebral palsy. Nat Rev Neurol 2018; 14:528-543. [PMID: 30104744 DOI: 10.1038/s41582-018-0043-6] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cerebral palsy (CP) is the most prevalent, severe and costly motor disability of childhood. Consequently, CP is a public health priority for prevention, but its aetiology has proved complex. In this Review, we summarize the evidence for a decline in the birth prevalence of CP in some high-income nations, describe the epidemiological evidence for risk factors, such as preterm delivery and fetal growth restriction, genetics, pregnancy infection and other exposures, and discuss the success achieved so far in prevention through the use of magnesium sulfate in preterm labour and therapeutic hypothermia for birth-asphyxiated infants. We also consider the complexities of disentangling prenatal and perinatal influences, and of establishing subtypes of the disorder, with a view to accelerating the translation of evidence into the development of strategies for the prevention of CP.
Collapse
Affiliation(s)
- Steven J Korzeniewski
- Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Jaime Slaughter
- Department of Health Systems and Sciences Research and Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA, USA
| | - Madeleine Lenski
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Peterson Haak
- Michigan Department of Health and Human Services, Lansing, MI, USA
| | - Nigel Paneth
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
54
|
Wixey JA, Chand KK, Pham L, Colditz PB, Bjorkman ST. Therapeutic potential to reduce brain injury in growth restricted newborns. J Physiol 2018; 596:5675-5686. [PMID: 29700828 DOI: 10.1113/jp275428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/28/2018] [Indexed: 12/27/2022] Open
Abstract
Brain injury in intrauterine growth restricted (IUGR) infants is a major contributing factor to morbidity and mortality worldwide. Adverse outcomes range from mild learning difficulties, to attention difficulties, neurobehavioral issues, cerebral palsy, epilepsy, and other cognitive and psychiatric disorders. While the use of medication to ameliorate neurological deficits in IUGR neonates has been identified as warranting urgent research for several years, few trials have been reported. This review summarises clinical trials focusing on brain protection in the IUGR newborn as well as therapeutic interventions trialled in animal models of IUGR. Therapeutically targeting mechanisms of brain injury in the IUGR neonate is fundamental to improving long-term neurodevelopmental outcomes. Inflammation is a key mechanism in neonatal brain injury; and therefore an appealing target. Ibuprofen, an anti-inflammatory drug currently used in the preterm neonate, may be a potential therapeutic candidate to treat brain injury in the IUGR neonate. To better understand the potential of ibuprofen and other therapeutic agents to be neuroprotective in the IUGR neonate, long-term follow-up information of neurodevelopmental outcomes must be studied. Where agents such as ibuprofen are shown to be effective, have a good safety profile and are relatively inexpensive, they can be widely adopted and lead to improved outcomes.
Collapse
Affiliation(s)
- Julie A Wixey
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, 4029, Australia
| | - Kirat K Chand
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, 4029, Australia
| | - Lily Pham
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, 4029, Australia
| | - Paul B Colditz
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, 4029, Australia
| | - S Tracey Bjorkman
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, 4029, Australia
| |
Collapse
|
55
|
Zinni M, Colella M, Batista Novais AR, Baud O, Mairesse J. Modulating the Oxytocin System During the Perinatal Period: A New Strategy for Neuroprotection of the Immature Brain? Front Neurol 2018; 9:229. [PMID: 29706926 PMCID: PMC5908892 DOI: 10.3389/fneur.2018.00229] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/23/2018] [Indexed: 11/13/2022] Open
Abstract
Oxytocin is a neurohypophysal hormone known for its activity during labor and its role in lactation. However, the function of oxytocin (OTX) goes far beyond the peripheral regulation of reproduction, and the central effects of OTX have been extensively investigated, since it has been recognized to influence the learning and memory processes. OTX has also prominent effects on social behavior, anxiety, and autism. Interaction between glucocorticoids, OTX, and maternal behavior may have long-term effects on the developmental program of the developing brain subjected to adverse events during pre and perinatal periods. OTX treatment in humans improves many aspects of social cognition and behavior. Its effects on the hypothalamic–pituitary–adrenal axis and inflammation appear to be of interest in neonates because these properties may confer benefits when the perinatal brain has been subjected to injury. Indeed, early life inflammation and abnormal adrenal response to stress have been associated with an abnormal white matter development. Recent investigations demonstrated that OTX is involved in the modulation of microglial reactivity in the developing brain. This review recapitulates state-of-the art data supporting the hypothesis that the OTX system could be considered as an innovative candidate for neuroprotection, especially in the immature brain.
Collapse
Affiliation(s)
- Manuela Zinni
- INSERM U1141 Protect, Paris-Diderot University, Paris, France
| | - Marina Colella
- INSERM U1141 Protect, Paris-Diderot University, Paris, France
| | - Aline Rideau Batista Novais
- INSERM U1141 Protect, Paris-Diderot University, Paris, France.,Neonatal Intensive Care Unit, Robert Debré Children's Hospital, Paris, France
| | - Olivier Baud
- INSERM U1141 Protect, Paris-Diderot University, Paris, France.,University of Geneva, Geneva, Switzerland.,Division of Neonatology, Geneva Children's Hospital, Geneva, Switzerland
| | - Jérôme Mairesse
- INSERM U1141 Protect, Paris-Diderot University, Paris, France.,University of Geneva, Geneva, Switzerland
| |
Collapse
|
56
|
Wixey JA, Colditz PB, Björkman ST. Targeting inflammation to reduce brain injury in growth restricted newborns: A potential treatment? Neural Regen Res 2017; 12:1804-1806. [PMID: 29239322 PMCID: PMC5745830 DOI: 10.4103/1673-5374.219038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Julie A Wixey
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Paul B Colditz
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Stella Tracey Björkman
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
57
|
Korzeniewski SJ, Allred EN, Joseph RM, Heeren T, Kuban KC, O’Shea TM, Leviton A. Neurodevelopment at Age 10 Years of Children Born <28 Weeks With Fetal Growth Restriction. Pediatrics 2017; 140:peds.2017-0697. [PMID: 29030525 PMCID: PMC5654396 DOI: 10.1542/peds.2017-0697] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2017] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES We sought to evaluate the relationships between fetal growth restriction (FGR) (both severe and less severe) and assessments of cognitive, academic, and adaptive behavior brain function at age 10 years. METHODS At age 10 years, the Extremely Low Gestational Age Newborns Cohort Study assessed the cognitive function, academic achievement, social-communicative function, psychiatric symptoms, and overall quality of life of 889 children born before 28 weeks' gestation. A pediatric epileptologist also interviewed parents as part of a seizure evaluation. The 52 children whose birth weight z scores were <-2 were classified as having severe FGR, and the 113 whose birth weight z scores were between -2 and -1 were considered to have less severe FGR. RESULTS The more severe the growth restriction in utero, the lower the level of function on multiple cognitive and academic achievement assessments performed at age 10 years. Growth-restricted children were also more likely than their extremely preterm peers to have social awareness impairments, autistic mannerisms, autism spectrum diagnoses, difficulty with semantics and speech coherence, and diminished social and psychosocial functioning. They also more frequently had phobias, obsessions, and compulsions (according to teacher, but not parent, report). CONCLUSIONS Among children born extremely preterm, those with severe FGR appear to be at increased risk of multiple cognitive and behavioral dysfunctions at age 10 years, raising the possibility that whatever adversely affected their intrauterine growth also adversely affected multiple domains of cognitive and neurobehavioral development.
Collapse
Affiliation(s)
- Steven J. Korzeniewski
- Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, Michigan;,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan
| | - Elizabeth N. Allred
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts;,Department of Neurology, Harvard Medical School, Harvard University, Boston, Massachusetts
| | | | - Tim Heeren
- Department of Biostatistics, School of Public Health
| | - Karl C.K. Kuban
- Boston University, Boston, Massachusetts;,Departments of Pediatrics, Boston Medical Center, Boston, Massachusetts; and
| | - T. Michael O’Shea
- Department of Pediatrics, Wake Forest University, Winston-Salem, North Carolina
| | - Alan Leviton
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts;,Department of Neurology, Harvard Medical School, Harvard University, Boston, Massachusetts
| | | |
Collapse
|
58
|
Boucek J, de Haan J, Halaska MJ, Plzak J, Van Calsteren K, de Groot CJM, Dahl Steffensen K, Fruscio R, Massolt ET, Klaritsch P, Zola P, Amant F. Maternal and obstetrical outcome in 35 cases of well-differentiated thyroid carcinoma during pregnancy. Laryngoscope 2017; 128:1493-1500. [PMID: 28988434 DOI: 10.1002/lary.26936] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/13/2017] [Accepted: 08/29/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVES/HYPOTHESIS Thyroid cancer, with 6% to 10% of cancer diagnoses, is one of the most common malignancies during pregnancy. Its treatment poses a risk for the pregnancy, as the thyroid gland plays a crucial role in the evolution of pregnancy. The aim of this study is to evaluate treatment of primary well-differentiated thyroid carcinoma during pregnancy and fetal and maternal outcomes. STUDY DESIGN This is an international cohort study. METHODS Primary thyroid cancer patients were identified from the database of the International Network on Cancer, Infertility, and Pregnancy registration study. Data on histopathological characteristics, diagnostic and therapeutic interventions, outcome (obstetrical, neonatal, and maternal) and maternal follow-up were analyzed. RESULTS Thirty-five patients with well-differentiated thyroid carcinoma were eligible. All 35 patients underwent surgery, 29 (83%) of which during pregnancy. Procedures during pregnancy were mainly total thyroidectomies (n = 24). The median number of days between diagnosis and surgical treatment was different between the groups with surgery during and after pregnancy (27 vs. 139 days, P < .001). Both maternal and neonatal outcomes were uncomplicated, regardless of gestational age during surgery. CONCLUSIONS Well-differentiated thyroid carcinoma diagnosed during pregnancy has a favorable outcome for both mother and child. Surgical management during pregnancy has no negative impact on the pregnancy regardless of the trimester at the time of surgery. However, the potential negative effects of thyroid surgery early in pregnancy demand management of these patients in an experienced multidisciplinary team to provide the best possible care for these patients and their unborn babies. LEVEL OF EVIDENCE 4. Laryngoscope, 128:1493-1500, 2018.
Collapse
Affiliation(s)
- Jan Boucek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charles University in Prague, University Hospital Motol, Prague, Czech Republic
| | - Jorine de Haan
- Department of Oncology, University of Leuven, Leuven, Belgium.,Department of Obstetrics and Gynecology, VU University Medical Center, Amsterdam, the Netherlands
| | - Michael J Halaska
- Department of Obstetrics and Gynecology, 3rd Medical Faculty, Charles University and Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Jan Plzak
- Department of Otorhinolaryngology, Head and Neck Surgery, Charles University in Prague, University Hospital Motol, Prague, Czech Republic
| | - Kristel Van Calsteren
- Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium.,Department of Reproduction and Regeneration, University of Leuven, Leuven, Belgium
| | - Christianne J M de Groot
- Department of Obstetrics and Gynecology, VU University Medical Center, Amsterdam, the Netherlands
| | - Karina Dahl Steffensen
- Department of Clinical Oncology, Vejle Hospital, Vejle, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Robert Fruscio
- Clinic of Obstetrics and Gynecology, University of Milan-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Elske T Massolt
- Department of Endocrinology, Rotterdam Thyroid Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Philipp Klaritsch
- Division of Obstetrics and Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Paolo Zola
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Frédéric Amant
- Department of Oncology, University of Leuven, Leuven, Belgium.,Division of Gynecologic Oncology, University Hospitals Leuven, Leuven, Belgium.,Center for Gynecologic Oncology Amsterdam, Antoni van Leeuwenhoek-Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | |
Collapse
|
59
|
Douros K, Moustaki M, Tsabouri S, Papadopoulou A, Papadopoulos M, Priftis KN. Prenatal Maternal Stress and the Risk of Asthma in Children. Front Pediatr 2017; 5:202. [PMID: 28979893 PMCID: PMC5611367 DOI: 10.3389/fped.2017.00202] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/05/2017] [Indexed: 01/12/2023] Open
Abstract
Emerging evidence indicate that maternal prenatal stress (MPS) can result in a range of long-term adverse effects in the offspring. The underlying mechanism of MPS is not fully understood. However, its complexity is emphasized by the number of purportedly involved pathways namely, placental deregulated metabolism of maternal steroids, impaired maturation of fetal HPA axis, imbalanced efflux of commensal bacteria across the placenta, and skewed immune development toward Th2. Fetal programming probably exerts a pivotal role in the end result of the above pathways through the modulation of gene expression. In this review, we highlight the current knowledge from epidemiological and experimental studies regarding the effects of MPS on asthma development in the offspring.
Collapse
Affiliation(s)
- Konstantinos Douros
- 3rd Department of Pediatrics, "Attikon" University General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Moustaki
- Cystic Fibrosis Department, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Sophia Tsabouri
- Department of Paediatrics, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Anna Papadopoulou
- 3rd Department of Pediatrics, "Attikon" University General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Marios Papadopoulos
- 3rd Department of Pediatrics, "Attikon" University General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kostas N Priftis
- 3rd Department of Pediatrics, "Attikon" University General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|