51
|
Doorn KJ, Brevé JJP, Drukarch B, Boddeke HW, Huitinga I, Lucassen PJ, van Dam AM. Brain region-specific gene expression profiles in freshly isolated rat microglia. Front Cell Neurosci 2015; 9:84. [PMID: 25814934 PMCID: PMC4357261 DOI: 10.3389/fncel.2015.00084] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/23/2015] [Indexed: 12/30/2022] Open
Abstract
Microglia are important cells in the brain that can acquire different morphological and functional phenotypes dependent on the local situation they encounter. Knowledge on the region-specific gene signature of microglia may hold valuable clues for microglial functioning in health and disease, e.g., Parkinson's disease (PD) in which microglial phenotypes differ between affected brain regions. Therefore, we here investigated whether regional differences exist in gene expression profiles of microglia that are isolated from healthy rat brain regions relevant for PD. We used an optimized isolation protocol based on a rapid isolation of microglia from discrete rat gray matter regions using density gradients and fluorescent-activated cell sorting. Application of the present protocol followed by gene expression analysis enabled us to identify subtle differences in region-specific microglial expression profiles and show that the genetic profile of microglia already differs between different brain regions when studied under control conditions. As such, these novel findings imply that brain region-specific microglial gene expression profiles exist that may contribute to the region-specific differences in microglia responsivity during disease conditions, such as seen in, e.g., PD.
Collapse
Affiliation(s)
- Karlijn J Doorn
- Department Structural and Functional Plasticity of the Nervous System, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands ; Neuroscience Campus Amsterdam, Department Anatomy and Neurosciences, VU University Medical Center Amsterdam, Netherlands
| | - John J P Brevé
- Neuroscience Campus Amsterdam, Department Anatomy and Neurosciences, VU University Medical Center Amsterdam, Netherlands
| | - Benjamin Drukarch
- Neuroscience Campus Amsterdam, Department Anatomy and Neurosciences, VU University Medical Center Amsterdam, Netherlands
| | - Hendrikus W Boddeke
- Section Medical Physiology, Department of Neuroscience, University Medical Centre Groningen Groningen, Netherlands
| | - Inge Huitinga
- Neuroimmunology Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands
| | - Paul J Lucassen
- Department Structural and Functional Plasticity of the Nervous System, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Anne-Marie van Dam
- Department Structural and Functional Plasticity of the Nervous System, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
52
|
Tan AH, Mahadeva S, Marras C, Thalha AM, Kiew CK, Yeat CM, Ng SW, Ang SP, Chow SK, Loke MF, Vadivelu JS, Ibrahim N, Yong HS, Tan CT, Fox SH, Lang AE, Lim SY. Helicobacter pylori infection is associated with worse severity of Parkinson's disease. Parkinsonism Relat Disord 2015; 21:221-5. [DOI: 10.1016/j.parkreldis.2014.12.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 02/08/2023]
|
53
|
Sanchez-Guajardo V, Tentillier N, Romero-Ramos M. The relation between α-synuclein and microglia in Parkinson's disease: Recent developments. Neuroscience 2015; 302:47-58. [PMID: 25684748 DOI: 10.1016/j.neuroscience.2015.02.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 01/13/2015] [Accepted: 02/04/2015] [Indexed: 12/14/2022]
Abstract
Recent research suggests a complex role for microglia not only in Parkinson's disease but in other disorders involving alpha-synuclein aggregation, such as multiple system atrophy. In these neurodegenerative processes, the activation of microglia is a common pathological finding, which disturbs the homeostasis of the neuronal environment otherwise maintained, among others, by microglia. The term activation comprises any deviation from what otherwise is considered normal microglia status, including cellular abundance, morphology or protein expression. The microglial response during disease will sustain survival or otherwise promote cell degeneration. The novel concepts of alpha-synuclein being released and uptaken by neighboring cells, and their importance in disease progression, positions microglia as the main cell that can clear and handle alpha-synuclein efficiently. Microglia's behavior will therefore be a determinant on the disease's progression. For this reason we believe that the better understanding of microglia's response to alpha-synuclein pathological accumulation across brain areas and disease stages is essential to develop novel therapeutic tools for Parkinson's disease and other alpha-synucleinopathies. In this review we will revise the most recent findings and developments with regard to alpha-synuclein and microglia in Parkinson's disease.
Collapse
Affiliation(s)
- V Sanchez-Guajardo
- AU IDEAS center NEURODIN, Aarhus University, DK-8000 Aarhus C, Denmark; Neuroimmunology of Degenerative Disease, Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - N Tentillier
- AU IDEAS center NEURODIN, Aarhus University, DK-8000 Aarhus C, Denmark; CNS Disease Modeling Group, Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - M Romero-Ramos
- AU IDEAS center NEURODIN, Aarhus University, DK-8000 Aarhus C, Denmark; CNS Disease Modeling Group, Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
54
|
Pepe G, Calderazzi G, De Maglie M, Villa AM, Vegeto E. Heterogeneous induction of microglia M2a phenotype by central administration of interleukin-4. J Neuroinflammation 2014; 11:211. [PMID: 25551794 PMCID: PMC4302702 DOI: 10.1186/s12974-014-0211-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/02/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acquisition of the M1 or M2 phenotypes by microglia has been shown to occur during the development of pathological conditions, with M1 activation being widely involved in neurotoxicity in relation with the anatomical localization and the reactivity of subtypes of microglia cells. On the contrary, little is known on the ability of microglia to undergo M2 polarization by interleukin-4 (IL4), the typical M2a polarization signal for peripheral macrophages. METHODS Recombinant mouse IL4 was injected in the third cerebral ventricle of mice to induce brain alternative polarization. The mRNA levels of Fizz1, Arg1, and Ym1 genes, known to be up-regulated by IL4 in peripheral macrophages, together with additional polarization markers, were evaluated in the striatum and frontal cortex at different time intervals after central administration of IL4; in parallel, M2a protein expression was evaluated in tissue extracts and at the cellular level. RESULTS Our results show that the potency and temporal profile of IL4-mediated M2a gene induction vary depending on the gene analyzed and according to the specific brain area analyzed, with the striatum showing a reduced M2a response compared with the frontal cortex, as further substantiated by assays of polarization protein levels. Of notice, Fizz1 mRNA induction reached 100-fold level, underscoring the potency of this specific IL4 signaling pathway in the brain. In addition, immunochemistry assays demonstrated the localization of the M2 response specifically to microglia cells and, more interestingly, the existence of a subpopulation of microglia cells amenable to undergoing M2a polarization in the healthy mouse brain. CONCLUSIONS These results show that the responsiveness of brain macrophages to centrally administered IL4 may vary depending on the gene and brain area analyzed, and that M2a polarization can be ascribed to a subpopulation of IL4-responsive microglia cells. The biochemical pathways that enable microglia to undergo M2a activation represent key aspects for understanding the physiopathology of neuroinflammation and for developing novel therapeutic and diagnostic agents.
Collapse
Affiliation(s)
- Giovanna Pepe
- Center of Excellence on Neurodegenerative Diseases, Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti, 9, 20133, Milan, Italy.
| | - Giorgia Calderazzi
- Center of Excellence on Neurodegenerative Diseases, Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti, 9, 20133, Milan, Italy.
| | - Marcella De Maglie
- Department of Veterinary Science and Public Health Veterinary Medicine, University of Milan, Via Celoria, 20133, Milan, Italy.
| | - Alessandro Maria Villa
- Center of Excellence on Neurodegenerative Diseases, Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti, 9, 20133, Milan, Italy.
| | - Elisabetta Vegeto
- Center of Excellence on Neurodegenerative Diseases, Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti, 9, 20133, Milan, Italy.
| |
Collapse
|
55
|
Li HJ, Zhang MF, Chen MX, Hu AL, Li JB, Zhang B, Liu W. Validation of the nonmotor symptoms questionnaire for Parkinson's disease: results from a Chinese pilot study. Int J Neurosci 2014; 125:929-35. [DOI: 10.3109/00207454.2014.986573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
56
|
Irannejad H, Unsal Tan O, Ozadali K, Dadashpour S, Tuylu Kucukkilinc T, Ahangar N, Ahmadnejad M, Emami S. 1,2-Diaryl-2-hydroxyiminoethanones as Dual COX-1 and β
-Amyloid Aggregation Inhibitors: Biological Evaluation and In Silico
Study. Chem Biol Drug Des 2014; 85:494-503. [DOI: 10.1111/cbdd.12435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Hamid Irannejad
- Department of Medicinal Chemistry; Faculty of Pharmacy and Pharmaceutical Sciences Research Center; Mazandaran University of Medical Sciences; PO Box 48175-861 Sari Iran
| | - Oya Unsal Tan
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy; Hacettepe University; 06100 Ankara Turkey
| | - Keriman Ozadali
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy; Hacettepe University; 06100 Ankara Turkey
| | - Sakineh Dadashpour
- Department of Medicinal Chemistry; Faculty of Pharmacy and Pharmaceutical Sciences Research Center; Mazandaran University of Medical Sciences; PO Box 48175-861 Sari Iran
- Student Research Committee; Faculty of Pharmacy; Mazandaran University of Medical Sciences; PO Box 48175-861 Sari Iran
| | - Tuba Tuylu Kucukkilinc
- Department of Biochemistry; Faculty of Pharmacy; Hacettepe University; Sihhiye 06100 Ankara Turkey
| | - Nematollah Ahangar
- Department of Toxicology and Pharmacology; Faculty of Pharmacy and Pharmaceutical Sciences Research Center; Mazandaran University of Medical Sciences; PO Box 48175-861 Sari Iran
| | - Mahsa Ahmadnejad
- Faculty of Pharmacy; Mazandaran University of Medical Sciences-Ramsar International Branch; Ramsar Iran
| | - Saeed Emami
- Department of Medicinal Chemistry; Faculty of Pharmacy and Pharmaceutical Sciences Research Center; Mazandaran University of Medical Sciences; PO Box 48175-861 Sari Iran
| |
Collapse
|
57
|
Chinta SJ, Woods G, Rane A, Demaria M, Campisi J, Andersen JK. Cellular senescence and the aging brain. Exp Gerontol 2014; 68:3-7. [PMID: 25281806 DOI: 10.1016/j.exger.2014.09.018] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/18/2014] [Accepted: 09/30/2014] [Indexed: 12/31/2022]
Abstract
Cellular senescence is a potent anti-cancer mechanism that arrests the proliferation of mitotically competent cells to prevent malignant transformation. Senescent cells accumulate with age in a variety of human and mouse tissues where they express a complex 'senescence-associated secretory phenotype' (SASP). The SASP includes many pro-inflammatory cytokines, chemokines, growth factors and proteases that have the potential to cause or exacerbate age-related pathology, both degenerative and hyperplastic. While cellular senescence in peripheral tissues has recently been linked to a number of age-related pathologies, its involvement in brain aging is just beginning to be explored. Recent data generated by several laboratories suggest that both aging and age-related neurodegenerative diseases are accompanied by an increase in SASP-expressing senescent cells of non-neuronal origin in the brain. Moreover, this increase correlates with neurodegeneration. Senescent cells in the brain could therefore constitute novel therapeutic targets for treating age-related neuropathologies.
Collapse
Affiliation(s)
| | - Georgia Woods
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Anand Rane
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Marco Demaria
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | |
Collapse
|
58
|
Fan Z, Aman Y, Ahmed I, Chetelat G, Landeau B, Ray Chaudhuri K, Brooks DJ, Edison P. Influence of microglial activation on neuronal function in Alzheimer's and Parkinson's disease dementia. Alzheimers Dement 2014; 11:608-21.e7. [DOI: 10.1016/j.jalz.2014.06.016] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 04/18/2014] [Accepted: 06/25/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Zhen Fan
- Neurology Imaging Unit, Department of Medicine; Imperial College London, Hammersmith Hospital; London UK
| | - Yahyah Aman
- Neurology Imaging Unit, Department of Medicine; Imperial College London, Hammersmith Hospital; London UK
| | - Imtiaz Ahmed
- Neurology Imaging Unit, Department of Medicine; Imperial College London, Hammersmith Hospital; London UK
| | - Gaël Chetelat
- Inserm-EPHE-University of Caen/Basse-Normandie; Caen France
| | | | - K. Ray Chaudhuri
- Department of Neurology, National Parkinson Foundation Centre of Excellence; King's College Hospital, and King's Health Partners; London UK
| | - David J. Brooks
- Neurology Imaging Unit, Department of Medicine; Imperial College London, Hammersmith Hospital; London UK
| | - Paul Edison
- Neurology Imaging Unit, Department of Medicine; Imperial College London, Hammersmith Hospital; London UK
| |
Collapse
|
59
|
Proliferation in the Alzheimer hippocampus is due to microglia, not astroglia, and occurs at sites of amyloid deposition. Neural Plast 2014; 2014:693851. [PMID: 25215243 PMCID: PMC4157009 DOI: 10.1155/2014/693851] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/23/2014] [Indexed: 01/19/2023] Open
Abstract
Microglia and astrocytes contribute to Alzheimer's disease (AD) etiology and may mediate early neuroinflammatory responses. Despite their possible role in disease progression and despite the fact that they can respond to amyloid deposition in model systems, little is known about whether astro- or microglia can undergo proliferation in AD and whether this is related to the clinical symptoms or to local neuropathological changes. Previously, proliferation was found to be increased in glia-rich regions of the presenile hippocampus. Since their phenotype was unknown, we here used two novel triple-immunohistochemical protocols to study proliferation in astro- or microglia in relation to amyloid pathology. We selected different age-matched cohorts to study whether proliferative changes relate to clinical severity or to neuropathological changes. Proliferating cells were found across the hippocampus but never in mature neurons or astrocytes. Almost all proliferating cells were colabeled with Iba1+, indicating that particularly microglia contribute to proliferation in AD. Proliferating Iba1+ cells was specifically seen within the borders of amyloid plaques, indicative of an active involvement in, or response to, plaque accumulation. Thus, consistent with animal studies, proliferation in the AD hippocampus is due to microglia, occurs in close proximity of plaque pathology, and may contribute to the neuroinflammation common in AD.
Collapse
|
60
|
Hippocampal proliferation is increased in presymptomatic Parkinson's disease and due to microglia. Neural Plast 2014; 2014:959154. [PMID: 25197578 PMCID: PMC4147270 DOI: 10.1155/2014/959154] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/01/2014] [Indexed: 01/08/2023] Open
Abstract
Besides dopamine-deficiency related motor symptoms, nonmotor symptoms, including cognitive changes occur in Parkinson's disease (PD) patients, that may relate to accumulation of α-synuclein in the hippocampus (HC). This brain region also contains stem cells that can proliferate. This is a well-regulated process that can, for example, be altered by neurodegenerative conditions. In contrast to proliferation in the substantia nigra and subventricular zone, little is known about the HC in PD. In addition, glial cells contribute to neurodegenerative processes and may proliferate in response to PD pathology. In the present study, we questioned whether microglial cells proliferate in the HC of established PD patients versus control subjects or incidental Lewy body disease (iLBD) cases as a prodromal state of PD. To this end, proliferation was assessed using the immunocytochemical marker minichromosome maintenance protein 2 (MCM2). Colocalization with Iba1 was performed to determine microglial proliferation. MCM2-positive cells were present in the HC of controls and were significantly increased in the presymptomatic iLBD cases, but not in established PD patients. Microglia represented the majority of the proliferating cells in the HC. This suggests an early microglial response to developing PD pathology in the HC and further indicates that neuroinflammatory processes play an important role in the development of PD pathology.
Collapse
|
61
|
Doorn KJ, Moors T, Drukarch B, van de Berg WDJ, Lucassen PJ, van Dam AM. Microglial phenotypes and toll-like receptor 2 in the substantia nigra and hippocampus of incidental Lewy body disease cases and Parkinson's disease patients. Acta Neuropathol Commun 2014; 2:90. [PMID: 25099483 PMCID: PMC4224021 DOI: 10.1186/s40478-014-0090-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 07/19/2014] [Indexed: 01/08/2023] Open
Abstract
Next to α-synuclein deposition, microglial activation is a prominent pathological feature in the substantia nigra (SN) of Parkinson's disease (PD) patients. Little is known, however, about the different phenotypes of microglia and how they change during disease progression, in the SN or in another brain region, like the hippocampus (HC), which is implicated in dementia and depression, important non-motor symptoms in PD. We studied phenotypes and activation of microglia in the SN and HC of established PD patients (Braak PD stage 4–6), matched controls (Braak PD stage 0) and of incidental Lewy Body disease (iLBD) cases (Braak PD stage 1–3) that are considered a prodromal state of PD. As recent experimental studies suggested that toll-like receptor 2 (TLR2) mediates α-synuclein triggered microglial activation, we also studied whether TLR2 expression is indeed related to pathology in iLBD and PD patients. A clear α-synuclein pathology-related increase in amoeboid microglia was present in the HC and SN in PD. Also, morphologically primed/reactive microglial cells, and a profound increase in microglial TLR2 expression were apparent in iLBD, but not PD, cases, indicative of an early activational response to PD pathology. Moreover, TLR2 was differentially expressed between the SN and HC, consistent with a region-specific pattern of microglial activation. In conclusion, the regional changes in microglial phenotype and TLR2 expression in primed/reactive microglia in the SN and HC of iLBD cases indicate that TLR2 may play a prominent role in the microglial-mediated responses that could be important for PD progression.
Collapse
|
62
|
Yao H, Ma R, Yang L, Hu G, Chen X, Duan M, Kook Y, Niu F, Liao K, Fu M, Hu G, Kolattukudy P, Buch S. MiR-9 promotes microglial activation by targeting MCPIP1. Nat Commun 2014; 5:4386. [PMID: 25019481 PMCID: PMC4104446 DOI: 10.1038/ncomms5386] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 06/13/2014] [Indexed: 12/21/2022] Open
Abstract
Microglia participate in innate inflammatory responses within the central nervous system. The highly conserved microRNA-9 (miR-9) plays critical roles in neurogenesis as well as axonal extension. Its role in microglial inflammatory responses, however, remains poorly understood. Here we identify a unique role of miR-9 in mediating the microglial inflammatory response via distinct signalling pathways. MiR-9-mediated regulation of cellular activation involved downregulated expression of the target protein, monocyte chemotactic protein-induced protein 1 (MCPIP1) that is crucial for controlling inflammation. Results indicate that miR-9-mediated cellular activation involved signalling via the NF-κB pathway, but not the β-catenin pathway.
Collapse
Affiliation(s)
- Honghong Yao
- 1] Department of Pharmacology, Medical School of Southeast University, Nanjing, Jiangsu 210009, China [2]
| | - Rong Ma
- 1] Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880, USA [2]
| | - Lu Yang
- 1] Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880, USA [2]
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880, USA
| | - Xufeng Chen
- The first Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ming Duan
- Key Laboratory for Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Yeonhee Kook
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880, USA
| | - Minggui Fu
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 210029, China
| | - Pappachan Kolattukudy
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, Florida 32816, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880, USA
| |
Collapse
|
63
|
Adult hippocampal neurogenesis in Parkinson's disease: impact on neuronal survival and plasticity. Neural Plast 2014; 2014:454696. [PMID: 25110593 PMCID: PMC4106176 DOI: 10.1155/2014/454696] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/19/2014] [Indexed: 12/23/2022] Open
Abstract
In Parkinson's disease (PD) and other synucleinopathies, chronic neurodegeneration occurs within different areas of the central nervous system leading to progressive motor and nonmotor symptoms. The symptomatic treatment options that are currently available do not slow or halt disease progression. This highlights the need of a better understanding of disease mechanisms and disease models. The generation of newborn neurons in the adult hippocampus and in the subventricular zone/olfactory bulb system is affected by many different regulators and possibly involved in memory processing, depression, and olfaction, symptoms which commonly occur in PD. The pathology of the adult neurogenic niches in human PD patients is still mostly elusive, but different preclinical models have shown profound alterations of adult neurogenesis. Alterations in stem cell proliferation, differentiation, and survival as well as neurite outgrowth and spine formation have been related to different aspects in PD pathogenesis. Therefore, neurogenesis in the adult brain provides an ideal model to study disease mechanisms and compounds. In addition, adult newborn neurons have been proposed as a source of endogenous repair. Herein, we review current knowledge about the adult neurogenic niches in PD and highlight areas of future research.
Collapse
|
64
|
Liu Y, Li W, Tan C, Liu X, Wang X, Gui Y, Qin L, Deng F, Hu C, Chen L. Meta-analysis comparing deep brain stimulation of the globus pallidus and subthalamic nucleus to treat advanced Parkinson disease. J Neurosurg 2014; 121:709-18. [PMID: 24905564 DOI: 10.3171/2014.4.jns131711] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECT Deep brain stimulation (DBS) is the surgical procedure of choice for patients with advanced Parkinson disease (PD). The globus pallidus internus (GPi) and the subthalamic nucleus (STN) are commonly targeted by this procedure. The purpose of this meta-analysis was to compare the efficacy of DBS in each region. METHODS MEDLINE/PubMed, EMBASE, Web of Knowledge, and the Cochrane Library were searched for English-language studies published before April 2013. RESULTS of studies investigating the efficacy and clinical outcomes of DBS of the GPi and STN for PD were analyzed. RESULTS Six eligible trials containing a total of 563 patients were included in the analysis. Deep brain stimulation of the GPi or STN equally improved motor function, measured by the Unified Parkinson's Disease Rating Scale Section III (UPDRSIII) (motor section, for patients in on- and off-medication phases), within 1 year postsurgery. The change score for the on-medication phase was 0.68 (95% CI - 2.12 to 3.47, p > 0.05; 5 studies, 518 patients) and for the off-medication phase was 1.83 (95% CI - 3.12 to 6.77, p > 0.05; 5 studies, 518 patients). The UPDRS Section II (activities of daily living) scores for patients on medication improved equally in both DBS groups (p = 0.97). STN DBS allowed medication dosages to be reduced more than GPi DBS (95% CI 129.27-316.64, p < 0.00001; 5 studies, 540 patients). Psychiatric symptoms, measured by Beck Depression Inventory, 2nd edition scores, showed greater improvement from baseline after GPi DBS than after STN DBS (standardized mean difference -2.28, 95% CI -3.73 to -0.84, p = 0.002; 3 studies, 382 patients). CONCLUSIONS GPi and STN DBS improve motor function and activities of daily living for PD patients. Differences in therapeutic efficacy for PD were not observed between the 2 procedures. STN DBS allowed greater reduction in medication for patients, whereas GPi DBS provided greater relief from psychiatric symptoms. An understanding of other symptomatic aspects of targeting each region and long-term observations on therapeutic effects are needed.
Collapse
Affiliation(s)
- Yi Liu
- Department of Neurology, the Second Affiliated Hospital of Chong Qing Medical University, YuZhong, Chong Qing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Jensen SK, Yong VW. Microglial modulation as a mechanism behind the promotion of central nervous system well-being by physical exercise. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/cen3.12093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Samuel K. Jensen
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences; University of Calgary; Calgary AB Canada
| | - V. Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences; University of Calgary; Calgary AB Canada
| |
Collapse
|
66
|
Moreno B, Lopez I, Fernández-Díez B, Gottlieb M, Matute C, Sánchez-Gómez MV, Domercq M, Giralt A, Alberch J, Collon KW, Zhang H, Parent JM, Teixido M, Giralt E, Ceña V, Posadas I, Martínez-Pinilla E, Villoslada P, Franco R. Differential neuroprotective effects of 5'-deoxy-5'-methylthioadenosine. PLoS One 2014; 9:e90671. [PMID: 24599318 PMCID: PMC3944389 DOI: 10.1371/journal.pone.0090671] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 02/04/2014] [Indexed: 11/19/2022] Open
Abstract
Background 5′-deoxy-5′-methylthioadenosine (MTA) is an endogenous compound produced through the metabolism of polyamines. The therapeutic potential of MTA has been assayed mainly in liver diseases and, more recently, in animal models of multiple sclerosis. The aim of this study was to determine the neuroprotective effect of this molecule in vitro and to assess whether MTA can cross the blood brain barrier (BBB) in order to also analyze its potential neuroprotective efficacy in vivo. Methods Neuroprotection was assessed in vitro using models of excitotoxicity in primary neurons, mixed astrocyte-neuron and primary oligodendrocyte cultures. The capacity of MTA to cross the BBB was measured in an artificial membrane assay and using an in vitro cell model. Finally, in vivo tests were performed in models of hypoxic brain damage, Parkinson's disease and epilepsy. Results MTA displays a wide array of neuroprotective activities against different insults in vitro. While the data from the two complementary approaches adopted indicate that MTA is likely to cross the BBB, the in vivo data showed that MTA may provide therapeutic benefits in specific circumstances. Whereas MTA reduced the neuronal cell death in pilocarpine-induced status epilepticus and the size of the lesion in global but not focal ischemic brain damage, it was ineffective in preserving dopaminergic neurons of the substantia nigra in the 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-mice model. However, in this model of Parkinson's disease the combined administration of MTA and an A2A adenosine receptor antagonist did produce significant neuroprotection in this brain region. Conclusion MTA may potentially offer therapeutic neuroprotection.
Collapse
Affiliation(s)
- Beatriz Moreno
- Center of Neuroimmunology, Institut d'investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) - Hospital Clinic of Barcelona, Barcelona, Spain
- * E-mail:
| | - Iciar Lopez
- CIMA, Neurosciences Division, University of Navarra, Pamplona, Spain
- Oncology Area, Lung Cancer Unit, Center for Biomedical Research of la Rioja (CIBIR), Logroño, Spain
| | - Begoña Fernández-Díez
- Center of Neuroimmunology, Institut d'investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) - Hospital Clinic of Barcelona, Barcelona, Spain
| | - Miroslav Gottlieb
- Department of Neurosciences, University of Basque Country, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic
| | - Carlos Matute
- Department of Neurosciences, University of Basque Country, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic
- Centro de Investigaciones Biomédicas en red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - María Victoria Sánchez-Gómez
- Department of Neurosciences, University of Basque Country, Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - María Domercq
- Department of Neurosciences, University of Basque Country, Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Albert Giralt
- Centro de Investigaciones Biomédicas en red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Cellular Biology, Immunology and Neurosciences, Medicine School, University of Barcelona, Barcelona, Spain
| | - Jordi Alberch
- Centro de Investigaciones Biomédicas en red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Cellular Biology, Immunology and Neurosciences, Medicine School, University of Barcelona, Barcelona, Spain
| | - Kevin W. Collon
- Department of Neurology, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Helen Zhang
- Department of Neurology, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Jack M. Parent
- Department of Neurology, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | | | - Ernest Giralt
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | | | | | | | - Pablo Villoslada
- Center of Neuroimmunology, Institut d'investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) - Hospital Clinic of Barcelona, Barcelona, Spain
| | - Rafael Franco
- CIMA, Neurosciences Division, University of Navarra, Pamplona, Spain
- Oncology Area, Lung Cancer Unit, Center for Biomedical Research of la Rioja (CIBIR), Logroño, Spain
- Department of Neurosciences, University of Basque Country, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic
- Centro de Investigaciones Biomédicas en red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Cellular Biology, Immunology and Neurosciences, Medicine School, University of Barcelona, Barcelona, Spain
- Department of Neurology, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
- Universidad de Castilla la Mancha, Albacete, Spain
- Department of Biochemistry and Molecular Biology, School of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
67
|
Doorn KJ, Goudriaan A, Blits‐Huizinga C, Bol JG, Rozemuller AJ, Hoogland PV, Lucassen PJ, Drukarch B, van de Berg WD, van Dam A. Increased amoeboid microglial density in the olfactory bulb of Parkinson's and Alzheimer's patients. Brain Pathol 2014; 24:152-65. [PMID: 24033473 PMCID: PMC8029318 DOI: 10.1111/bpa.12088] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/12/2013] [Indexed: 12/31/2022] Open
Abstract
The olfactory bulb (OB) is affected early in both Parkinson's (PD) and Alzheimer's disease (AD), evidenced by the presence of disease-specific protein aggregates and an early loss of olfaction. Whereas previous studies showed amoeboid microglia in the classically affected brain regions of PD and AD patients, little was known about such changes in the OB. Using a morphometric approach, a significant increase in amoeboid microglia density within the anterior olfactory nucleus (AON) of AD and PD patients was observed. These amoeboid microglia cells were in close apposition to β-amyloid, hyperphosphorylated tau or α-synuclein deposits, but no uptake of pathological proteins by microglia could be visualized. Subsequent analysis showed (i) no correlation between microglia and α-synuclein (PD), (ii) a positive correlation with β-amyloid (AD), and (iii) a negative correlation with hyperphosphorylated tau (AD). Furthermore, despite the observed pathological alterations in neurite morphology, neuronal loss was not apparent in the AON of both patient groups. Thus, we hypothesize that, in contrast to the classically affected brain regions of AD and PD patients, within the AON rather than neuronal loss, the increased density in amoeboid microglial cells, possibly in combination with neurite pathology, may contribute to functional deficits.
Collapse
Affiliation(s)
- Karlijn J. Doorn
- Swammerdam Institute for Life SciencesCenter for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Anatomy and NeurosciencesVU University Medical Center, Neuroscience Campus AmsterdamAmsterdamThe Netherlands
| | - Andrea Goudriaan
- Department of Anatomy and NeurosciencesVU University Medical Center, Neuroscience Campus AmsterdamAmsterdamThe Netherlands
- Present address:
VU UniversityFaculty of Earth and Life Sciences, Department of Molecular and Cellular NeurobiologyAmsterdamThe Netherlands
| | - Carla Blits‐Huizinga
- Department of Anatomy and NeurosciencesVU University Medical Center, Neuroscience Campus AmsterdamAmsterdamThe Netherlands
| | - John G.J.M. Bol
- Department of Anatomy and NeurosciencesVU University Medical Center, Neuroscience Campus AmsterdamAmsterdamThe Netherlands
| | - Annemieke J. Rozemuller
- Department of PathologyVU University Medical Center, Neuroscience Campus AmsterdamAmsterdamThe Netherlands
| | - Piet V.J.M. Hoogland
- Department of Anatomy and NeurosciencesVU University Medical Center, Neuroscience Campus AmsterdamAmsterdamThe Netherlands
| | - Paul J. Lucassen
- Swammerdam Institute for Life SciencesCenter for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Benjamin Drukarch
- Department of Anatomy and NeurosciencesVU University Medical Center, Neuroscience Campus AmsterdamAmsterdamThe Netherlands
| | - Wilma D.J. van de Berg
- Department of Anatomy and NeurosciencesVU University Medical Center, Neuroscience Campus AmsterdamAmsterdamThe Netherlands
| | - Anne‐Marie van Dam
- Department of Anatomy and NeurosciencesVU University Medical Center, Neuroscience Campus AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
68
|
Cadet JL, Bisagno V, Milroy CM. Neuropathology of substance use disorders. Acta Neuropathol 2014; 127:91-107. [PMID: 24292887 PMCID: PMC7453825 DOI: 10.1007/s00401-013-1221-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/20/2013] [Indexed: 01/23/2023]
Abstract
Addictions to licit and illicit drugs are chronic relapsing brain disorders that affect circuits that regulate reward, motivation, memory, and decision-making. Drug-induced pathological changes in these brain regions are associated with characteristic enduring behaviors that continue despite adverse biopsychosocial consequences. Repeated exposure to these substances leads to egocentric behaviors that focus on obtaining the drug by any means and on taking the drug under adverse psychosocial and medical conditions. Addiction also includes craving for the substances and, in some cases, involvement in risky behaviors that can cause death. These patterns of behaviors are associated with specific cognitive disturbances and neuroimaging evidence for brain dysfunctions in a diverse population of drug addicts. Postmortem studies have also revealed significant biochemical and/or structural abnormalities in some addicted individuals. The present review provides a summary of the evidence that has accumulated over the past few years to implicate brain dysfunctions in the varied manifestations of drug addiction. We thus review data on cerebrovascular alterations, brain structural abnormalities, and postmortem studies of patients who abuse cannabis, cocaine, amphetamines, heroin, and "bath salts". We also discuss potential molecular, biochemical, and cellular bases for the varied clinical presentations of these patients. Elucidation of the biological bases of addiction will help to develop better therapeutic approaches to these patient populations.
Collapse
Affiliation(s)
- Jean Lud Cadet
- NIDA Intramural Research Program, Molecular Neuropsychiatry Research Branch, NIDA/NIH/DHHS, 251 Bayview Boulevard, Baltimore, MD, 21224, USA,
| | | | | |
Collapse
|
69
|
Capitelli CS, Lopes CS, Alves AC, Barbiero J, Oliveira LF, da Silva VJD, Vital MABF. Opposite effects of bone marrow-derived cells transplantation in MPTP-rat model of Parkinson's disease: a comparison study of mononuclear and mesenchymal stem cells. Int J Med Sci 2014; 11:1049-64. [PMID: 25136260 PMCID: PMC4135227 DOI: 10.7150/ijms.8182] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 07/17/2014] [Indexed: 01/06/2023] Open
Abstract
The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) animal model is a useful tool to study Parkinson's disease (PD) and was used in the present study to investigate the potential beneficial as well as deleterious effects of systemic bone-marrow mononuclear cell (BMMC) or mesenchymal stem cell (BM-MSC) transplantation. MPTP administration resulted in a breakdown of the blood-brain barrier and motor impairment in the open field test 24 h after surgery. Three and 7 days after receiving the lesion, the injured animals showed remaining motor impairment compared to the sham groups along with a significant loss of tyrosine hydroxylase-immunoreactive (TH-ir) cells in the substantia nigra pars compacta (SNpc). The MPTP-lesioned rats treated with BMMCs immediately after lesioning exhibited motor impairment similar to the MPTP-saline group, though they presented a significantly higher loss of TH-ir cells in the SNpc compared to the MPTP-saline group. This increased loss of TH-ir cells in the SNpc was not observed when BMMC transplantation was performed 24 h after MPTP administration. In contrast, in the MPTP animals treated early with systemic BM-MSCs, no loss of TH-ir cells was observed. BMMCs and BM-MSCs previously labeled with CM-DiI cell tracker were found in brain sections of all transplanted animals. In addition, cells expressing CD45, an inflammatory white blood cell marker, were found in all brain sections analyzed and were more abundant in the MPTP-BMMC animals. In these animals, Iba1+ microglial cells showed also marked morphological changes indicating increased microglial activation. These results show that systemic BMMC transplantation did not ameliorate or prevent the lesion induced by MPTP. Instead, BMMC transplantation in MPTP-lesioned rats accelerated dopaminergic neuronal damage and induced motor impairment and immobility behavior. These findings suggest that caution should be taken when considering cell therapy using BMMCs to treat PD. However, systemic BM-MSC transplantation that reaches the injury site and prevents neuronal damage after an MPTP infusion could be considered as a potential treatment for PD during the early stage of disease development.
Collapse
Affiliation(s)
| | - Carolina Salomão Lopes
- 2. Department of Biochemistry, Pharmacology, Physiology and Molecular Biology, Triângulo Mineiro Federal University, Uberaba, Minas Gerais, Brazil
| | - Angélica Cristina Alves
- 2. Department of Biochemistry, Pharmacology, Physiology and Molecular Biology, Triângulo Mineiro Federal University, Uberaba, Minas Gerais, Brazil
| | - Janaína Barbiero
- 1. Department of Pharmacology, Paraná Federal University, Curitiba, Paraná, Brazil
| | - Lucas Felipe Oliveira
- 2. Department of Biochemistry, Pharmacology, Physiology and Molecular Biology, Triângulo Mineiro Federal University, Uberaba, Minas Gerais, Brazil
| | - Valdo José Dias da Silva
- 2. Department of Biochemistry, Pharmacology, Physiology and Molecular Biology, Triângulo Mineiro Federal University, Uberaba, Minas Gerais, Brazil
| | | |
Collapse
|
70
|
Lucassen PJ, Pruessner J, Sousa N, Almeida OFX, Van Dam AM, Rajkowska G, Swaab DF, Czéh B. Neuropathology of stress. Acta Neuropathol 2014; 127:109-35. [PMID: 24318124 PMCID: PMC3889685 DOI: 10.1007/s00401-013-1223-5] [Citation(s) in RCA: 290] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/26/2013] [Indexed: 02/06/2023]
Abstract
Environmental challenges are part of daily life for any individual. In fact, stress appears to be increasingly present in our modern, and demanding, industrialized society. Virtually every aspect of our body and brain can be influenced by stress and although its effects are partly mediated by powerful corticosteroid hormones that target the nervous system, relatively little is known about when, and how, the effects of stress shift from being beneficial and protective to becoming deleterious. Decades of stress research have provided valuable insights into whether stress can directly induce dysfunction and/or pathological alterations, which elements of stress exposure are responsible, and which structural substrates are involved. Using a broad definition of pathology, we here review the "neuropathology of stress" and focus on structural consequences of stress exposure for different regions of the rodent, primate and human brain. We discuss cytoarchitectural, neuropathological and structural plasticity measures as well as more recent neuroimaging techniques that allow direct monitoring of the spatiotemporal effects of stress and the role of different CNS structures in the regulation of the hypothalamic-pituitary-adrenal axis in human brain. We focus on the hypothalamus, hippocampus, amygdala, nucleus accumbens, prefrontal and orbitofrontal cortex, key brain regions that not only modulate emotions and cognition but also the response to stress itself, and discuss disorders like depression, post-traumatic stress disorder, Cushing syndrome and dementia.
Collapse
Affiliation(s)
- Paul J. Lucassen
- SILS-Center for Neuroscience, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jens Pruessner
- Department of Psychiatry, Douglas Institute, McGill University, Montreal, QC Canada
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | | | - Anne Marie Van Dam
- Department of Anatomy and Neurosciences, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS USA
| | - Dick F. Swaab
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Boldizsár Czéh
- Department of Laboratory Medicine, Faculty of Medicine, University of Pécs, Pécs, Hungary
- Szentágothai János Research Center, Neuroendocrinology Research Group, University of Pécs, Pécs, Hungary
| |
Collapse
|
71
|
Zhang Y, Zhang J, Xu J, Wu X, Zhang Y, Feng H, Wang J, Jiang T. Cortical gyrification reductions and subcortical atrophy in Parkinson's disease. Mov Disord 2013; 29:122-6. [PMID: 24123500 DOI: 10.1002/mds.25680] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 08/12/2013] [Accepted: 08/19/2013] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yuanchao Zhang
- Key Laboratory for NeuroInformation of the Ministry of Education; School of Life Science and Technology; University of Electronic Science and Technology of China; Chengdu People's Republic of China
| | - Jiuqun Zhang
- Department of Radiology, Southwest Hospital; Third Military Medical University; Chongqing People's Republic of China
| | - Jinping Xu
- Key Laboratory for NeuroInformation of the Ministry of Education; School of Life Science and Technology; University of Electronic Science and Technology of China; Chengdu People's Republic of China
| | - Xiu Wu
- Key Laboratory for NeuroInformation of the Ministry of Education; School of Life Science and Technology; University of Electronic Science and Technology of China; Chengdu People's Republic of China
| | - Yanling Zhang
- Department of Neurology, Southwest Hospital; Third Military Medical University; Chongqing People's Republic of China
| | - Hua Feng
- Department of Neurosurgery; Southwest Hospital, Third Military Medical University; Chongqing People's Republic of China
| | - Jian Wang
- Department of Radiology, Southwest Hospital; Third Military Medical University; Chongqing People's Republic of China
| | - Tianzi Jiang
- Key Laboratory for NeuroInformation of the Ministry of Education; School of Life Science and Technology; University of Electronic Science and Technology of China; Chengdu People's Republic of China
- LIAMA Center for Computational Medicine, National Laboratory of Pattern Recognition; Institute of Automation, Chinese Academy of Sciences; Beijing People's Republic of China
- The Queensland Brain Institute; The University of Queensland; Brisbane Queensland Australia
| |
Collapse
|
72
|
Martinez A, Gil C. Phosphodiesterase Inhibitors as a New Therapeutic Approach for the Treatment of Parkinson’s Disease. EMERGING DRUGS AND TARGETS FOR PARKINSON’S DISEASE 2013. [DOI: 10.1039/9781849737357-00294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Phosphodiesterases (PDEs) are expressed in different brain areas including the striatum. PDEs have recently emerged as important drug targets for central nervous system disorders, including Parkinson’s disease (PD). Levels of cyclic adenosine monophosphate (cAMP) control many cellular signaling pathways and are crucial for the dopamine signal, which is disturbed in PD due to the progressive loss of dopaminergic neurons. PDEs play a key role in cAMP homeostasis, as they are the enzymes responsible for its degradation. Moreover, beyond dopamine neurotransmission, cAMP is involved in many other cellular processes, such as neuroinflammation and neuronal plasticity. This enhances the value of PDEs as promising pharmacological targets for neurological disorders. Furthermore, cAMP‐PDE inhibitors with drug profiles may be used in the near future as disease‐modifying drugs for the treatment of PD. A concise review of the main roles of cAMP‐PDEs expressed in the striatum and the potential of their inhibitors in different animal models of PD is described in this chapter.
Collapse
|
73
|
Gentleman SM. Review: microglia in protein aggregation disorders: friend or foe? Neuropathol Appl Neurobiol 2013; 39:45-50. [PMID: 23339288 DOI: 10.1111/nan.12017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/07/2013] [Indexed: 01/03/2023]
Abstract
Microglia cells have been implicated, to some extent, in the pathogenesis of all of the common neurodegenerative disorders involving protein aggregation such as Alzheimer's disease, Parkinson's disease and Amyotrophic Lateral Sclerosis. However, the precise role they play in the development of the pathologies remains unclear and it seems that they contribute to the pathological process in different ways depending on the specific disorder. A better understanding of their varied roles is essential if they are to be the target for novel therapeutic strategies.
Collapse
Affiliation(s)
- S M Gentleman
- Neuropathology Unit, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
74
|
Chinta SJ, Lieu CA, Demaria M, Laberge RM, Campisi J, Andersen JK. Environmental stress, ageing and glial cell senescence: a novel mechanistic link to Parkinson's disease? J Intern Med 2013; 273:429-36. [PMID: 23600398 PMCID: PMC3633085 DOI: 10.1111/joim.12029] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exposure to environmental toxins is associated with a variety of age-related diseases including cancer and neurodegeneration. For example, in Parkinson's disease (PD), chronic environmental exposure to certain toxins has been linked to the age-related development of neuropathology. Neuronal damage is believed to involve the induction of neuroinflammatory events as a consequence of glial cell activation. Cellular senescence is a potent anti-cancer mechanism that occurs in a number of proliferative cell types and causes the arrest of proliferation of cells at risk of malignant transformation following exposure to potentially oncogenic stimuli. With age, senescent cells accumulate and express a senescence-associated secretory phenotype (SASP; that is the robust secretion of many inflammatory cytokines, growth factors and proteases). Whereas cell senescence in peripheral tissues has been causally linked to a number of age-related pathologies, little is known about the induction of cellular senescence and the SASP in the brain. On the basis of recently reported findings, we propose that environmental stressors associated with PD may act in part by eliciting senescence and the SASP within non neuronal glial cells in the ageing brain, thus contributing to the characteristic decline in neuronal integrity that occurs in this disorder.
Collapse
Affiliation(s)
- S J Chinta
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | | | | | | | | |
Collapse
|
75
|
Fuster-Matanzo A, Llorens-Martín M, Hernández F, Avila J. Role of neuroinflammation in adult neurogenesis and Alzheimer disease: therapeutic approaches. Mediators Inflamm 2013; 2013:260925. [PMID: 23690659 PMCID: PMC3649701 DOI: 10.1155/2013/260925] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/12/2013] [Indexed: 01/22/2023] Open
Abstract
Neuroinflammation, a specialized immune response that takes place in the central nervous system, has been linked to neurodegenerative diseases, and specially, it has been considered as a hallmark of Alzheimer disease, the most common cause of dementia in the elderly nowadays. Furthermore, neuroinflammation has been demonstrated to affect important processes in the brain, such as the formation of new neurons, commonly known as adult neurogenesis. For this, many therapeutic approaches have been developed in order to avoid or mitigate the deleterious effects caused by the chronic activation of the immune response. Considering this, in this paper we revise the relationships between neuroinflammation, Alzheimer disease, and adult neurogenesis, as well as the current therapeutic approaches that have been developed in the field.
Collapse
Affiliation(s)
- Almudena Fuster-Matanzo
- Department of Molecular Neurobiology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), 28031 Madrid, Spain
| | - María Llorens-Martín
- Department of Molecular Neurobiology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), 28031 Madrid, Spain
| | - Félix Hernández
- Department of Molecular Neurobiology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), 28031 Madrid, Spain
| | - Jesús Avila
- Department of Molecular Neurobiology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), 28031 Madrid, Spain
| |
Collapse
|