51
|
Poly-(Lactic-co-Glycolic) Acid Nanoparticles for Synergistic Delivery of Epirubicin and Paclitaxel to Human Lung Cancer Cells. Molecules 2020; 25:molecules25184243. [PMID: 32947799 PMCID: PMC7570462 DOI: 10.3390/molecules25184243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/21/2022] Open
Abstract
Combination therapy using chemically distinct drugs has appeared as one of the promising strategies to improve anticancer treatment efficiency. In the present investigation, poly-(lactic-co-glycolic) acid (PLGA) nanoparticles electrostatically conjugated with polyethylenimine (PEI)-based co-delivery system for epirubicin and paclitaxel (PLGA-PEI-EPI-PTX NPs) has been developed. The PLGA-PEI-EPI-PTX NPs exhibited a monodispersed size distribution with an average size of 240.93 ± 12.70 nm as measured through DLS and 70.8-145 nm using AFM. The zeta potential of 41.95 ± 0.65 mV from -17.45 ± 2.15 mV further confirmed the colloidal stability and PEI modification on PLGA nanoparticles. Encapsulation and loading efficiency along with in vitro release of drug for nanoparticles were done spectrophotometrically. The FTIR analysis of PLGA-PEI-EPI-PTX NPs revealed the involvement of amide moiety between polymer PLGA and PEI. The effect of nanoparticles on the cell migration was also corroborated through wound healing assay. The MTT assay demonstrated that PLGA-PEI-EPI-PTX NPs exhibited considerable anticancer potential as compared to the naïve drugs. Further, p53 protein expression analysed through western blot showed enhanced expression. This study suggests that combination therapy using PLGA-PEI-EPI-PTX NPs represent a potential approach and could offer clinical benefits in the future for lung cancer patients.
Collapse
|
52
|
Rahmani A, Zavvar Mousavi H, Salehi R, Bagheri A. Novel pH-sensitive and biodegradable micelles for the combined delivery of doxorubicin and conferone to induce apoptosis in MDA-MB-231 breast cancer cell line. RSC Adv 2020; 10:29228-29246. [PMID: 35521092 PMCID: PMC9055950 DOI: 10.1039/d0ra03467c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/18/2020] [Indexed: 11/21/2022] Open
Abstract
pH-sensitive micelles are desirable for co-drug delivery in cancer chemotherapy. Herein, a novel, very pH-sensitive and biodegradable citric acid grafted poly maleate-block-poly lactic-co-glycolic acid was synthesized and assembled as micelles via ultrasonication. The engineered homogeneous nanomicelles were used for the first time for doxorubicin and conferone combination chemotherapy in the MDA-MB-231 breast cancer cell line. The physicochemical properties of the micelles were investigated via 13CNMR, 1HNMR, FTIR, CHNS, DSC, SEM, and DLS-zeta analysis, and the in vitro degradation of the synthetic copolymer was investigated to confirm its biodegradability. The critical micelle concentration (CMC) value of the micelles was determined using pyrene as a probe and a spectrofluorometer. The drug release process was studied in acidic and neutral pH. The anti-tumoral properties of the dual drug-loaded micelles were investigated via MTT assay, cell cycle, and apoptosis experiments. The apoptosis was confirmed by Annexin-V, qRT-PCR and western blotting. The particle size (51.9 nm), zeta potential (-6.57 mV) and CMC (1.793 μg mL-1) of the co-drug loaded micelles were in the acceptable range for electrostatic stability. The uptake of the co-drug loaded micelles in the MDA-MB-231 cell line and spheroids was 97% and 36.1%, respectively. The cell cycle and apoptosis tests revealed that the cells treated with the co-drug-loaded micelles showed the highest amount of apoptosis (95.35%) in comparison to the single drug-loaded micelles and free drugs. Reverse transcription PCR (RT-PCR) showed that the expression levels of the proapoptotic genes were significantly up-regulated in the presence of the co-drug loaded micelles versus the single-drug loaded micelles and free drugs. Western blotting revealed that the co-drug-loaded micelles promoted apoptosis via the caspase-dependent pathway. Our findings confirmed that the pH-responsive biodegradable micelles containing doxorubicin and conferone are novel and effective for combination chemotherapy and offer a promising strategy for future in vivo studies.
Collapse
Affiliation(s)
- Akram Rahmani
- Department of Applied Chemistry, Faculty of Chemistry, Semnan University Semnan Iran
| | - Hassan Zavvar Mousavi
- Department of Applied Chemistry, Faculty of Chemistry, Semnan University Semnan Iran
- Department of Chemistry, Faculty of Science, University of Guilan P.O. Box 41335-1914 Rasht Iran
| | - Roya Salehi
- Drug Applied Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz Iran
| | - Ahmad Bagheri
- Department of Applied Chemistry, Faculty of Chemistry, Semnan University Semnan Iran
| |
Collapse
|
53
|
Domańska IM, Oledzka E, Sobczak M. Sterilization process of polyester based anticancer-drug delivery systems. Int J Pharm 2020; 587:119663. [PMID: 32702451 DOI: 10.1016/j.ijpharm.2020.119663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/02/2020] [Accepted: 07/14/2020] [Indexed: 01/07/2023]
Abstract
Recently, growing interest in biodegradable polyesters as drug carriers in the development of innovative anticancer drug delivery systems (DDSs) has been observed. These compounds are thermally unstable, and are therefore, particularly demanding due to the limited number of available sterilization techniques. Furthermore, the DDSs sterilization process is often limited to aseptic filtration. Ensuring aseptic production is very demanding and costly, and it is therefore necessary to work on the application of new sterilization methods. In view of this, this review presents the current state of knowledge regarding the radiation sterilization process of some anticancer drugs as well biodegradable polyester carriers (such as polylactide, polyglycolide, poly(ε-caprolactone), poly(trimethylene carbonate) and co- or terpolymers of lactide, glycolide, ε-caprolactone and trimethylene carbonate). The structural changes in anticancer DDSs under the influence of ionizing radiation and the potential degradation mechanisms of both, polyester carriers and cytostatics during the sterilization process of ionizing radiation as well as their effects on the microstructure and properties of DDSs have been discussed in this paper.
Collapse
Affiliation(s)
- Izabela M Domańska
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., Warsaw 02-097, Poland.
| | - Ewa Oledzka
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., Warsaw 02-097, Poland.
| | - Marcin Sobczak
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., Warsaw 02-097, Poland.
| |
Collapse
|
54
|
PEG-b-PLGA Nanoparticles Loaded with Geraniin from Phyllanthus Watsonii Extract as a Phytochemical Delivery Model. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The study outlined a standardized double emulsion method for simple poly(ethylene glycol)-block-poly(lactic-co-glycolic acid) (PEG-b-PLGA) nanoparticle (NP) synthesis. The PEG-b-PLGA NP was also used for entrapment of geraniin as a simple model system for phytochemical delivery. PEG-b-PLGA NPs were prepared using the double emulsion method. The yields and particle sizes of PEG-b-PLGA NPs obtained with and without encapsulation of geraniin were 57.6% and 134.20 ± 1.45 nm and 66.7% and 102.70 ± 12.36 nm, respectively. High-performance liquid chromatography of geraniin that was extracted from Phyllanthus watsonii was detected at 64 min. Geraniin burst release began at 40 min and fully released at 3 h. PEG-b-PLGA NP was non-cytotoxic, while cytotoxicity of geraniin was dose dependant towards normal human epithelial colon cells, CCD 841 CoN cells.
Collapse
|
55
|
Baino F, Kargozar S. Regulation of the Ocular Cell/Tissue Response by Implantable Biomaterials and Drug Delivery Systems. Bioengineering (Basel) 2020; 7:E65. [PMID: 32629806 PMCID: PMC7552708 DOI: 10.3390/bioengineering7030065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 01/31/2023] Open
Abstract
Therapeutic advancements in the treatment of various ocular diseases is often linked to the development of efficient drug delivery systems (DDSs), which would allow a sustained release while maintaining therapeutic drug levels in the target tissues. In this way, ocular tissue/cell response can be properly modulated and designed in order to produce a therapeutic effect. An ideal ocular DDS should encapsulate and release the appropriate drug concentration to the target tissue (therapeutic but non-toxic level) while preserving drug functionality. Furthermore, a constant release is usually preferred, keeping the initial burst to a minimum. Different materials are used, modified, and combined in order to achieve a sustained drug release in both the anterior and posterior segments of the eye. After giving a picture of the different strategies adopted for ocular drug release, this review article provides an overview of the biomaterials that are used as drug carriers in the eye, including micro- and nanospheres, liposomes, hydrogels, and multi-material implants; the advantages and limitations of these DDSs are discussed in reference to the major ocular applications.
Collapse
Affiliation(s)
- Francesco Baino
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran;
| |
Collapse
|
56
|
Brauner B, Schuster C, Wirth M, Gabor F. Trimethoprim-Loaded Microspheres Prepared from Low-Molecular-Weight PLGA as a Potential Drug Delivery System for the Treatment of Urinary Tract Infections. ACS OMEGA 2020; 5:9013-9022. [PMID: 32337466 PMCID: PMC7178804 DOI: 10.1021/acsomega.0c00981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 05/09/2023]
Abstract
Commonly, therapy of urinary tract infections suffers from increasing resistance to antibiotics and the ability of uropathogenic Escherichia coli (UPEC) to invade bladder cells and cause recurring infections. As an alternative strategy for instillation into the bladder, trimethoprim-loaded microparticles with poly(d,l-lactic-co-glycolic acid) (PLGA) as a matrix were prepared. To reduce particle loss by washout, their surface was grafted with bioadhesive wheat germ agglutinin, providing biomimicry akin to UPEC. Since PLGA 503H has shown a slow drug release profile, the low-molecular-weight PLGA 2300 was studied. Whereas the drug loading of PLGA 503H particles amounted to 2.8%, the drug content of PLGA 2300 particles was twice as high. Although the drug release pattern started with an initial burst of 30% after 24 h for both PLGA types, half of the trimethoprim content was released after 4 days from PLGA 503H microparticles as opposed to 2 days in the case of PLGA 2300. Higher drug loading and accelerated release render PLGA 2300 a viable alternative to PLGA 503H.
Collapse
Affiliation(s)
| | | | | | - Franz Gabor
- . Tel: +43-1-4277-55406. Fax: +43-1-4277-855406
| |
Collapse
|
57
|
Di Natale C, Onesto V, Lagreca E, Vecchione R, Netti PA. Tunable Release of Curcumin with an In Silico-Supported Approach from Mixtures of Highly Porous PLGA Microparticles. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1807. [PMID: 32290458 PMCID: PMC7215757 DOI: 10.3390/ma13081807] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
In recent years, drug delivery systems have become some of the main topics within the biomedical field. In this scenario, polymeric microparticles (MPs) are often used as carriers to improve drug stability and drug pharmacokinetics in agreement with this kind of treatment. To avoid a mere and time-consuming empirical approach for the optimization of the pharmacokinetics of an MP-based formulation, here, we propose a simple predictive in silico-supported approach. As an example, in this study, we report the ability to predict and tune the release of curcumin (CUR), used as a model drug, from a designed combination of different poly(d,l-lactide-co-glycolide) (PLGA) MPs kinds. In detail, all CUR-PLGA MPs were synthesized by double emulsion technique and their chemical-physical properties were characterized by Mastersizer and scanning electron microscopy (SEM). Moreover, for all the MPs, CUR encapsulation efficiency and kinetic release were investigated through the UV-vis spectroscopy. This approach, based on the combination of in silico and experimental methods, could be a promising platform in several biomedical applications such as vaccinations, cancer-treatment, diabetes therapy and so on.
Collapse
Affiliation(s)
- Concetta Di Natale
- Center for Advanced Biomaterials for Health Care (CABHC), IstitutoItaliano di Tecnologia, Largo Barsanti Matteucci 53, 80125 Napoli, Italy; (C.D.N.); (V.O.); (E.L.); (P.A.N.)
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.leTecchio 80, 80125 Naples, Italy
| | - Valentina Onesto
- Center for Advanced Biomaterials for Health Care (CABHC), IstitutoItaliano di Tecnologia, Largo Barsanti Matteucci 53, 80125 Napoli, Italy; (C.D.N.); (V.O.); (E.L.); (P.A.N.)
| | - Elena Lagreca
- Center for Advanced Biomaterials for Health Care (CABHC), IstitutoItaliano di Tecnologia, Largo Barsanti Matteucci 53, 80125 Napoli, Italy; (C.D.N.); (V.O.); (E.L.); (P.A.N.)
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, P.leTecchio 80, 80125 Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (CABHC), IstitutoItaliano di Tecnologia, Largo Barsanti Matteucci 53, 80125 Napoli, Italy; (C.D.N.); (V.O.); (E.L.); (P.A.N.)
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care (CABHC), IstitutoItaliano di Tecnologia, Largo Barsanti Matteucci 53, 80125 Napoli, Italy; (C.D.N.); (V.O.); (E.L.); (P.A.N.)
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.leTecchio 80, 80125 Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, P.leTecchio 80, 80125 Naples, Italy
| |
Collapse
|
58
|
A multifunctional magnetic nanosystem based on "two strikes" effect for synergistic anticancer therapy in triple-negative breast cancer. J Control Release 2020; 322:401-415. [PMID: 32246976 DOI: 10.1016/j.jconrel.2020.03.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Multifunctional magnetic nanoparticles (MNPs) were widely used for ablation of cancer cells because of their potential on physical treatment. Herein, we developed the "cell targeting destructive" multifunctional polymeric nanoparticles (named as HA-Olb-PPMNPs) based on PEI-PLGA co-loaded with the anticancer drug Olaparib (Olb) and superparamagnetic iron oxide nanoparticles (Fe3O4 NPs), and further coated with a low molecular weight hyaluronic acid (HA) on its surface. Due to the high affinity between HA and CD44-receptor on cell surface of triple negative breast cancer (TNBC), an active targeting can be achieved. Under a rotating magnetic field (RMF), HA-Olb-PPMNPs produced a physical transfer of mechanical force by incomplete rotation. This mechanical force could cause the "two strikes" effect on the cells, in which "First-strike" was to damage the cell membrane structure (magneto-cell-lysis), another "Second-strike" could activate the lysosome-mitochondrial pathway by injuring lysosomes to induce cell apoptosis (magneto-cell-apoptosis). Therefore, the mechanical force and Olb exert dual anti-tumor effect to achieve synergistic therapeutic in the presence of RMF. This study proposes a novel multi-therapeutic concept for TNBC, as well as provided evidences of new anti-tumor therapeutic effects induced by the magnetic nanoparticles drug system.
Collapse
|
59
|
Teng X, Li F, Lu C. Visualization of materials using the confocal laser scanning microscopy technique. Chem Soc Rev 2020; 49:2408-2425. [PMID: 32134417 DOI: 10.1039/c8cs00061a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of materials science always benefits from advanced characterizations. Currently, imaging techniques are of great technological importance in both fundamental and applied research on materials. In comparison to conventional visualization methods, confocal laser scanning microscopy (CLSM) is non-invasive, with macroscale and high-contrast scanning, a simple and fast sample preparation procedure as well as easy operation. In addition, CLSM allows rapid acquisition of longitudinal and cross-sectional images at any position in a material. Therefore, the CLSM-based visualization technique could provide direct and model-independent insight into material characterizations. This review summarizes the recent applications of CLSM in materials science. The current CLSM approaches for the visualization of surface structures, internal structures, spatial structures and reaction processes are discussed in detail. Finally, we provide our thoughts and predictions on the future development of CLSM in materials science. The purpose of this review is to guide researchers to build a suitable CLSM approach for material characterizations, and to open viable opportunities and inspirations for the development of new strategies aiming at the preparation of advanced materials. We hope that this review will be useful for a wide range of research communities of materials science, chemistry, and engineering.
Collapse
Affiliation(s)
- Xu Teng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAICAS), State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | | | | |
Collapse
|
60
|
Brauner B, Schwarz P, Wirth M, Gabor F. Micro vs. nano: PLGA particles loaded with trimethoprim for instillative treatment of urinary tract infections. Int J Pharm 2020; 579:119158. [PMID: 32081799 DOI: 10.1016/j.ijpharm.2020.119158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/11/2020] [Accepted: 02/16/2020] [Indexed: 01/06/2023]
Abstract
Recurring infections and increasing resistances continue to complicate treatment of urinary tract infections. To investigate alternative treatment options, trimethoprim loaded micro- (D[4;3] of 1-9 µm) and nanoparticles (Z-Avg of 200-400 nm) were prepared from two types of poly(d,l-lactic-co-glycolic acid) (PLGA) for instillative therapy. While PLGA 503H microparticles could not be loaded with more than 2.6% trimethoprim, PLGA 2300 entrapped 22%. When preparing nanoparticles, both types displayed an even higher drug load of up to 29% using PLGA 2300, while PLGA 503H drug load stagnated at 10%. After eight hours, drug release from microparticles amounted to 55% (503H) and 35% (2300) whereas total drug release occurred after 8 (503H) and 9 days (2300). In case of nanoparticles, trimethoprim was liberated much faster with 60% after 2 h and a complete release after 24 h from both polymers. PLGA 2300 seems to be the better choice for entrapment of trimethoprim in microparticles considering the drug load. Both polymers, however, seem to be viable options for nanoparticles. Due to the higher overall drug load, nanoparticles seem to be advantageous over microparticles for instillative therapy, especially when prepared with PLGA 2300.
Collapse
Affiliation(s)
- Bernhard Brauner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Patrik Schwarz
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Michael Wirth
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Franz Gabor
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstraße 14, 1090 Vienna, Austria.
| |
Collapse
|
61
|
Essa D, Kondiah PPD, Choonara YE, Pillay V. The Design of Poly(lactide-co-glycolide) Nanocarriers for Medical Applications. Front Bioeng Biotechnol 2020; 8:48. [PMID: 32117928 PMCID: PMC7026499 DOI: 10.3389/fbioe.2020.00048] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/22/2020] [Indexed: 12/19/2022] Open
Abstract
Polymeric biomaterials have found widespread applications in nanomedicine, and poly(lactide-co-glycolide), (PLGA) in particular has been successfully implemented in numerous drug delivery formulations due to its synthetic malleability and biocompatibility. However, the need for preconception in these formulations is increasing, and this can be achieved by selection and elimination of design variables in order for these systems to be tailored for their specific applications. The starting materials and preparation methods have been shown to influence various parameters of PLGA-based nanocarriers and their implementation in drug delivery systems, while the implementation of computational simulations as a component of formulation studies can provide valuable information on their characteristics. This review provides a critical summary of the synthesis and applications of PLGA-based systems in bio-medicine and outlines experimental and computational design considerations of these systems.
Collapse
Affiliation(s)
| | | | | | - Viness Pillay
- Wits Advanced Drug Delivery Platform, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
62
|
Composite poly(DL-lactide-co-glycolide)/poly(acrylic acid) hydrogels synthesized using UV and gamma irradiation: comparison of material properties. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
63
|
Efficient and prolonged antibacterial activity from porous PLGA microparticles and their application in food preservation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110496. [PMID: 31923956 DOI: 10.1016/j.msec.2019.110496] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/14/2019] [Accepted: 11/26/2019] [Indexed: 12/28/2022]
Abstract
Simple addition of a minute quantity of non-toxic mustard oil in water/oil/water (W/O/W) double emulsion led to a porous morphology at the surface as well as in the interior of the biodegradable PLGA (Poly(l-lactide-co-glycolide)) microparticles. An attempt was made to understand the mechanism of pore formation by analyzing optical micrographs and SEM images in addition to solution viscosity of organic phase and interfacial tension values between organic and aqueous phases. The origin of surface porosity was thought to come from the inclusion of inner water droplet, stabilized by heteroaggregation of mustard oil and PLGA chains along with PVA (polyvinyl alcohol), to the solidifying polymer skin. The surface pores did not arise in absence of mustard oil. The encapsulation and release of antibacterial active (benzoic acid) from porous PLGA particles was studied in PBS buffer (pH 7) at 37 °C for 60 days. The release profiles were well-controlled in nature, and found to be influenced by surface porosity of the particles that can be manipulated by varying the amount of mustard oil. The release mechanism can well be explained with the help of power law model. Strikingly, in liquid medium, porous particles were found completely suppressing the growth of Escherichia coli and Staphylococcus aureus for a prolonged period of 60 days. The strong antimicrobial activity (100% inhibition of bacterial growth) in porous particles can be linked to the enhanced surface area due to the formation of micro/nano pores which accelerate the hydrolytic degradation of PLGA to release lactic acid/glycolic acid (antibacterial) in addition to encapsulated antibacterial (benzoic acid). In a food model system, the shelf life of the water melon juice was also found to be enhanced by suppressing the growth of the natural microbes in comparison to control.
Collapse
|
64
|
Higuchi J, Fortunato G, Woźniak B, Chodara A, Domaschke S, Męczyńska-Wielgosz S, Kruszewski M, Dommann A, Łojkowski W. Polymer Membranes Sonocoated and Electrosprayed with Nano-Hydroxyapatite for Periodontal Tissues Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1625. [PMID: 31731775 PMCID: PMC6915502 DOI: 10.3390/nano9111625] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 01/21/2023]
Abstract
Diseases of periodontal tissues are a considerable clinical problem, connected with inflammatory processes and bone loss. The healing process often requires reconstruction of lost bone in the periodontal area. For that purpose, various membranes are used to prevent ingrowth of epithelium in the tissue defect and enhance bone regeneration. Currently-used membranes are mainly non-resorbable or are derived from animal tissues. Thus, there is an urgent need for non-animal-derived bioresorbable membranes with tuned resorption rates and porosity optimized for the circulation of body nutrients. We demonstrate membranes produced by the electrospinning of biodegradable polymers (PDLLA/PLGA) coated with nanohydroxyapatite (nHA). The nHA coating was made using two methods: sonocoating and electrospraying of nHA suspensions. In a simulated degradation study, for electrosprayed membranes, short-term calcium release was observed, followed by hydrolytic degradation. Sonocoating produced a well-adhering nHA layer with full coverage of the fibers. The layer slowed the polymer degradation and increased the membrane wettability. Due to gradual release of calcium ions the degradation-associated acidity of the polymer was neutralized. The sonocoated membranes exhibited good cellular metabolic activity responses against MG-63 and BJ cells. The collected results suggest their potential use in Guided Tissue Regeneration (GTR) and Guided Bone Regeneration (GBR) periodontal procedures.
Collapse
Affiliation(s)
- Julia Higuchi
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, 01142 Warsaw, Poland; (B.W.); (A.C.); (W.Ł.)
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02507 Warsaw, Poland
- Laboratory for Biomimetic Membranes and Textiles, Empa Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Giuseppino Fortunato
- Laboratory for Biomimetic Membranes and Textiles, Empa Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Bartosz Woźniak
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, 01142 Warsaw, Poland; (B.W.); (A.C.); (W.Ł.)
| | - Agnieszka Chodara
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, 01142 Warsaw, Poland; (B.W.); (A.C.); (W.Ł.)
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02507 Warsaw, Poland
| | - Sebastian Domaschke
- Experimental Continuum Mechanics, Empa Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland;
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Sylwia Męczyńska-Wielgosz
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, 03195 Warsaw, Poland;
| | - Marcin Kruszewski
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20090 Lublin, Poland;
| | - Alex Dommann
- Department Materials meet Life, Empa Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland;
| | - Witold Łojkowski
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, 01142 Warsaw, Poland; (B.W.); (A.C.); (W.Ł.)
| |
Collapse
|
65
|
Polymeric nanoparticles as carrier for targeted and controlled delivery of anticancer agents. Ther Deliv 2019; 10:527-550. [DOI: 10.4155/tde-2019-0044] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In recent decades, many novel methods by using nanoparticles (NPs) have been investigated for diagnosis, drug delivery and treatment of cancer. Accordingly, the potential of NPs as carriers is very significant for the delivery of anticancer drugs, because cancer treatment with NPs has led to the improvement of some of the drug delivery limitations such as low blood circulation time and bioavailability, lack of water solubility, drug adverse effect. In addition, the NPs protect drugs against enzymatic degradation and can lead to the targeted and/or controlled release of the drug. The present review focuses on the potential of NPs that can help the targeted and/or controlled delivery of anticancer agents for cancer therapy.
Collapse
|
66
|
Zhou FL, Wu H, McHugh DJ, Wimpenny I, Zhang X, Gough JE, Hubbard Cristinacce PL, Parker GJM. Co-electrospraying of tumour cell mimicking hollow polymeric microspheres for diffusion magnetic resonance imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:217-227. [PMID: 31029314 DOI: 10.1016/j.msec.2019.03.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 12/31/2022]
Abstract
Diffusion magnetic resonance imaging (dMRI) is considered as a useful tool to study solid tumours. However, the interpretation of dMRI signal and validation of quantitative measurements of is challenging. One way to address these challenges is by using a standard reference material that can mimic tumour cell microstructure. There is a growing interest in using hollow polymeric microspheres, mainly prepared by multiple steps, as mimics of cells in healthy and diseased tissue. The present work reports on tumour cell-mimicking materials composed of hollow microspheres for application as a standard material in dMRI. These microspheres were prepared via one-step co-electrospraying process. The shell material was poly(d,l-lactic-co-glycolic acid) (PLGA) polymers with different molecule weights and/or ratios of glycolic acid-to-lactic, while the core was polyethylene glycol (PEG) or ethylene glycol. The resultant co-electrosprayed products were characterised by optical microscopy, scanning electron microscopy (SEM) and synchrotron X-ray micro-CT. These products were found to have variable structures and morphologies, e.g. from spherical particles with/without surface hole, through beaded fibres to smooth fibres, which mainly depend on PLGA composition and core materials. Only the shell material of PLGA polymer with ester terminated, Mw 50,000-75,000 g mol-1, and lactide:glycolide 85:15 formed hollow microspheres via the co-electrospraying process using the core material of 8 wt% PEG/chloroform as the core. A water-filled test object (or phantom) was designed and constructed from samples of the material generated from co-electrosprayed PLGA microspheres and tested on a 7 T MRI scanner. The preliminary MRI results provide evidence that hollow PLGA microspheres can restrict/hinder water diffusion as cells do in tumour tissue, implying that the phantom may be suitable for use as a quantitative validation and calibration tool for dMRI.
Collapse
Affiliation(s)
- Feng-Lei Zhou
- Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester M13 9PT, United Kingdom; The School of Materials, The University of Manchester, Manchester M13 9PL, United Kingdom.
| | - HuiHui Wu
- The School of Materials, The University of Manchester, Manchester M13 9PL, United Kingdom; Pan Tianshou Arts and Design Academy, Ningbo University, No.818, Fenghua Road, Ningbo 315200, China
| | - Damien J McHugh
- Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Ian Wimpenny
- Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester M13 9PT, United Kingdom; The School of Materials, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Xun Zhang
- Henry Moseley X-ray Imaging Facility, School of Materials, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Julie E Gough
- The School of Materials, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Penny L Hubbard Cristinacce
- Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Geoff J M Parker
- Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester M13 9PT, United Kingdom; Bioxydyn Limited, Rutherford House, Manchester Science Park, Pencroft Way, Manchester M15 6SZ, United Kingdom.
| |
Collapse
|
67
|
Rapamycin-loaded polysorbate 80-coated PLGA nanoparticles: Optimization of formulation variables and in vitro anti-glioma assessment. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
68
|
Wang K, Hu H, Zhang Q, Zhang Y, Shi C. Synthesis, purification, and anticancer effect of magnetic Fe 3O 4-loaded poly (lactic-co-glycolic) nanoparticles of the natural drug tetrandrine. J Microencapsul 2019; 36:356-370. [PMID: 31190597 DOI: 10.1080/02652048.2019.1631403] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Here, we have successfully synthesised and purified multifunctional PLGA-based nanoparticles by the co-encapsulation of an anticancer drug (tetrandrine) and a magnetic material (Fe3O4). The obtained Tet-Fe3O4-PLGA NPs had a uniform spherical shape with a particle size of approximately 199 nm and a negative surface charge of -18.0 mV, displaying a high encapsulation efficiency. Furthermore, TEM studies provided representative images of the purification process of the magnetic nanoparticles with MACS® technology. The MFM and VSM results indicated that both the Fe3O4 NPs and Tet-Fe3O4-PLGA NPs were superparamagnetic. The DSC spectrum demonstrated that Tet was successfully encapsulated within the PLGA-based nanoparticles. Significantly, the release studies revealed NPs had a relatively slower release rate than free Tet after 8 h's initial burst release, which had decreased from 98% to 65% after 24 h. In vitro cellular studies revealed that NPs could effectively penetrate into A549 cells and A549 multicellular spheroids to exert cytotoxicity, displaying a significantly high anti-proliferation effect. Moreover, western blot demonstrated that the co-loaded NPs had a higher anticancer activity by injuring lysosomes to activate the mitochondria pathway and induce A549 cell apoptosis. The magnetic characteristics and high anticancer activity support the use of Tet/Fe3O4 co-loaded PLGA-based nanoparticles as a promising strategy in the treatment of lung cancer.
Collapse
Affiliation(s)
- Kaiping Wang
- a Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation , Tongji Medical College of Huazhong University of Science and Technology , Wuhan , China
| | - Huiping Hu
- a Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation , Tongji Medical College of Huazhong University of Science and Technology , Wuhan , China
| | - Qian Zhang
- b Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering , Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University , Shanghai , China
| | - Yu Zhang
- c Department of Pharmacy , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Chen Shi
- c Department of Pharmacy , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
69
|
Terahertz Spectroscopy: An Investigation of the Structural Dynamics of Freeze-Dried Poly Lactic-co-glycolic Acid Microspheres. Pharmaceutics 2019; 11:pharmaceutics11060291. [PMID: 31226751 PMCID: PMC6631728 DOI: 10.3390/pharmaceutics11060291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/30/2019] [Accepted: 06/11/2019] [Indexed: 11/26/2022] Open
Abstract
Biodegradable poly lactic-co-glycolic acid (PLGA) microspheres can be used to encapsulate peptide and offer a promising drug-delivery vehicle. In this work we investigate the dynamics of PLGA microspheres prepared by freeze-drying and the molecular mobility at lower temperatures leading to the glass transition temperature, using temperature-variable terahertz time-domain spectroscopy (THz-TDS) experiments. The microspheres were prepared using a water-in-oil-in-water (w/o/w) double-emulsion technique and subsequent freeze-drying of the samples. Physical characterization was performed by morphology measurements, scanning electron microscopy, and helium pycnometry. The THz-TDS data show two distinct transition processes, Tg,β in the range of 167–219 K, associated with local motions, and Tg,α in the range of 313–330 K, associated with large-scale motions, for the microspheres examined. Using Fourier transform infrared spectroscopy measurements in the mid-infrared, we were able to characterize the interactions between a model polypeptide, exendin-4, and the PLGA copolymer. We observe a relationship between the experimentally determined Tg,β and Tg,α and free volume and microsphere dynamics.
Collapse
|
70
|
Hodgkinson T, Stening JZ, White LJ, Shakesheff KM, Hoyland JA, Richardson SM. Microparticles for controlled growth differentiation factor 6 delivery to direct adipose stem cell-based nucleus pulposus regeneration. J Tissue Eng Regen Med 2019; 13:1406-1417. [PMID: 31066515 PMCID: PMC6771973 DOI: 10.1002/term.2882] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 03/28/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022]
Abstract
Currently, there is no effective long‐term treatment for intervertebral disc (IVD) degeneration, making it an attractive candidate for regenerative therapies. Hydrogel delivery of adipose stem cells (ASCs) in combination with controlled release of bioactive molecules is a promising approach to halt IVD degeneration and promote regeneration. Growth differentiation factor 6 (GDF6) can induce ASC differentiation into anabolic nucleus pulposus (NP) cells and hence holds promise for IVD regeneration. Here, we optimised design of novel poly(DL‐lactic acid‐co‐glycolic acid) (PLGA)–polyethylene glycol–PLGA microparticles to control GDF6 delivery and investigated effect of released GDF6 on human ASCs differentiation to NP cells. Recombinant human (rh)GDF6 was loaded into microparticles and total protein and rhGDF6 release assessed. The effect of microparticle loading density on distribution and gel formation was investigated through scanning electron microscopy. ASC differentiation to NP cells was examined after 14 days in hydrogel culture by quantitative polymerase chain reaction, histological, and immunohistochemical staining in normoxic and IVD‐like hypoxic conditions. RhGDF6 microparticles were distributed throughout gels without disrupting gelation and controlled rhGDF6 release over 14 days. Released GDF6 significantly induced NP differentiation of ASCs, with expression comparable with or exceeding media supplemented rhGDF6. Microparticle‐delivered rhGDF6 also up‐regulated sulphated glycosaminoglycan and aggrecan secretion in comparison with controls. In hypoxia, microparticle‐delivered rhGDF6 continued to effectively induce NP gene expression and aggrecan production. This study demonstrates the effective encapsulation and controlled delivery of rhGDF6, which maintained its activity and induced ASC differentiation to NP cells and synthesis of an NP‐like matrix suggesting suitability of microparticles for controlled growth factor release in regenerative strategies for treatment of IVD degeneration.
Collapse
Affiliation(s)
- Tom Hodgkinson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jasmine Z Stening
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Faculty of Science, University of Nottingham, Nottingham, UK
| | - Lisa J White
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Faculty of Science, University of Nottingham, Nottingham, UK
| | - Kevin M Shakesheff
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Faculty of Science, University of Nottingham, Nottingham, UK
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Central Manchester Foundation Trust, Manchester Academic Health Science Centre, NIHR Manchester Biomedical Research Centre, Manchester, UK
| | - Stephen M Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
71
|
Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00439-x] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
72
|
Amoyav B, Benny O. Microfluidic Based Fabrication and Characterization of Highly Porous Polymeric Microspheres. Polymers (Basel) 2019; 11:E419. [PMID: 30960403 PMCID: PMC6473737 DOI: 10.3390/polym11030419] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/23/2019] [Accepted: 02/28/2019] [Indexed: 11/24/2022] Open
Abstract
Polymeric porous particles are currently used for various applications in biotechnology, tissue engineering and pharmaceutical science, e.g., floating drug delivery systems and inhaled formulations. Particle shape and size depend on variable parameters; among them, polymer type and concentration, stirring speed, pH and type of solvent. In this study, porous poly(lactic-co-glycolic) acid (PLGA) and poly(d,l-lactide) (PLA) microspheres (MPs), with varying sizes and morphologies, were synthesized and optimized using both batch formulation and a flow-focusing microfluidic device. A well-established method of preparation utilizing solvent evaporation and the double emulsion technique was performed. Similar to other batch encapsulation methods, this technique is time and reagent consuming and consists of several steps. Hence, although porous structures provide tremendous opportunity in the design of new applications for tissue engineering and as improved controlled-release carriers, the synthesis of these particles with predefined properties remains challenging. We demonstrated the fabrication of porous MPs using a simple microfluidic device, compared to batch synthesis fabrication; and the effect of solvent, polymer concentration and type, post-hydrolysis treatment, on porosity degree. Moreover, a kinetic release study of fluorescent molecule was conducted for non-porous in comparison to porous particles. An overview of future prospects and the potential of these porous beads in this scientific area are discussed.
Collapse
Affiliation(s)
- Benzion Amoyav
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, Campus Ein Kerem, The Hebrew University of Jerusalem, Jerusalem 9112192, Israel.
| | - Ofra Benny
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, Campus Ein Kerem, The Hebrew University of Jerusalem, Jerusalem 9112192, Israel.
| |
Collapse
|
73
|
Shi X, Cui L, Sun H, Jiang N, Heng L, Zhuang X, Gan Z, Chen X. Promoting cell growth on porous PLA microspheres through simple degradation methods. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
74
|
Manavitehrani I, Le TY, Daly S, Wang Y, Maitz PK, Schindeler A, Dehghani F. Formation of porous biodegradable scaffolds based on poly(propylene carbonate) using gas foaming technology. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:824-830. [DOI: 10.1016/j.msec.2018.11.088] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/20/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022]
|
75
|
Milovanovic S, Markovic D, Mrakovic A, Kuska R, Zizovic I, Frerich S, Ivanovic J. Supercritical CO 2 - assisted production of PLA and PLGA foams for controlled thymol release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:394-404. [PMID: 30889714 DOI: 10.1016/j.msec.2019.01.106] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/21/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022]
Abstract
Amorphous, medical grade poly(d,l-lactic acid) (PLA) and poly(d,l-lactic-co-glycolic acid) (PLGA) were used to develop systems for controlled release of a natural bioactive substance - thymol. Supercritical carbon dioxide (scCO2) was successfully used both as an impregnation medium for thymol incorporation into the polymer matrix and a foaming agent in a single-step batch process. Impregnation of samples using low to moderate scCO2 densities (273 kg/m3 and 630 kg/m3) and short processing times (2 h and 4 h) enabled thymol loading of 0.92%-6.62% and formation of microcellular foams upon system depressurization. Thymol effect on structural and thermal properties on foamed samples was proven by FTIR and DSC. The effect of CO2 under elevated pressure on the neat polymers was analysed by high pressure DSC. Foaming of polymers with lower molecular weight by CO2 of higher density yielded foams with smaller pores. All tested foams released thymol in a controlled manner in phosphate buffered saline (PBS) at 37 °C within 3 to 6 weeks. Higher loading and lower cell density favoured thymol release rate, while its concentration in PBS for the tested period depended on foam interaction with the medium. Representative PLGA foam sample with the highest thymol loading (6.62%) showed controlled thymol release within 72 h in mediums having pH values from 1.1 to 7.4.
Collapse
Affiliation(s)
- Stoja Milovanovic
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Darka Markovic
- University of Belgrade, Innovation Centre of Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Ana Mrakovic
- Vinča Institute of Nuclear Sciences, Department of Theoretical and Condensed Matter Physics, 11001 Belgrade, Serbia
| | - Robert Kuska
- Ruhr-University Bochum, Institute of Thermo and Fluid Dynamics, Universitätsstraβe 150, 44801 Bochum, Germany
| | - Irena Zizovic
- Wroclaw University of Science and Technology, Faculty of Chemistry, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Sulamith Frerich
- Ruhr-University Bochum, Institute of Thermo and Fluid Dynamics, Universitätsstraβe 150, 44801 Bochum, Germany
| | - Jasna Ivanovic
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia.
| |
Collapse
|
76
|
Shmool TA, Zeitler JA. Insights into the structural dynamics of poly lactic-co-glycolic acid at terahertz frequencies. Polym Chem 2019. [DOI: 10.1039/c8py01210e] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mechanical properties of an amorphous copolymer are directly related to the dynamic processes occurring at the molecular level.
Collapse
Affiliation(s)
- Talia A. Shmool
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Cambridge CB3 0AS
- UK
| | - J. Axel Zeitler
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Cambridge CB3 0AS
- UK
| |
Collapse
|
77
|
Xiong J, Han J, Tian J, Liu Y, Xi Z, Du W, Wu X, Hu S, Jiang T, Wang X. Simulation of irradiation uniformity for polyethylene and polypropylene in various high energy fields. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2018.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
78
|
Wilkosz N, Łazarski G, Kovacik L, Gargas P, Nowakowska M, Jamróz D, Kepczynski M. Molecular Insight into Drug-Loading Capacity of PEG-PLGA Nanoparticles for Itraconazole. J Phys Chem B 2018; 122:7080-7090. [PMID: 29927603 DOI: 10.1021/acs.jpcb.8b03742] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nanoparticles made of amphiphilic block copolymers comprising biodegradable core-forming blocks are very attractive for the preparation of drug-delivery systems with sustained release. Their therapeutic applications are, however, hindered by low values of the drug-loading content (DLC). The compatibility between the drug and the core-forming block of the copolymer is considered the most important factor affecting the DLC value. However, the molecular picture of the hydrophobic drug-copolymer interaction is still not fully recognized. Herein, we examined this complex issue using a range of experimental techniques in combination with atomistic molecular dynamics simulations. We performed an analysis of the interaction between itraconazole, a model hydrophobic drug, and a poly(ethylene glycol)-poly(lactide- co-glycolide) (PEG-PLGA) copolymer, a biodegradable copolymer commonly used for the preparation of drug-delivery systems. Our results clearly show that the limited capacity of the PEG-PLGA nanoparticles for the accumulation of hydrophobic drugs is due to the fact that the drug molecules are located only at the water-polymer interface, whereas the interior of the PLGA core remains empty. These findings can be useful in the rational design and development of amphiphilic copolymer-based drug-delivery systems.
Collapse
Affiliation(s)
- Natalia Wilkosz
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| | - Grzegorz Łazarski
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| | - Lubomir Kovacik
- Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University , Albertov 4 , 128 01 Prague , Czech Republic
| | - Patrycja Gargas
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| | - Maria Nowakowska
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| | - Dorota Jamróz
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| | - Mariusz Kepczynski
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| |
Collapse
|
79
|
Monomer sequence in PLGA microparticles: Effects on acidic microclimates and in vivo inflammatory response. Acta Biomater 2018; 65:259-271. [PMID: 29101019 DOI: 10.1016/j.actbio.2017.10.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 01/12/2023]
Abstract
Controlling the backbone architecture of poly(lactic-co-glycolic acid)s (PLGAs) is demonstrated to have a strong influence on the production and release of acidic degradation by-products in microparticle matrices. Previous efforts for controlling the internal and external accumulation of acidity for PLGA microparticles have focused on the addition of excipients including neutralization and anti-inflammatory agents. In this report, we utilize a sequence-control strategy to tailor the microstructure of PLGA. The internal acidic microclimate distributions within sequence-defined and random PLGA microparticles were monitored in vitro using a non-invasive ratiometric two-photon microscopy (TPM) methodology. Sequence-defined PLGAs were found to have minimal changes in pH distribution and lower amounts of percolating acidic by-products. A parallel scanning electron microscopy study further linked external morphological events to internal degradation-induced structural changes. The properties of the sequenced and random copolymers characterized in vitro translated to differences in in vivo behavior. The sequence alternating copolymer, poly LG, had lower granulomatous foreign-body reactions compared to random racemic PLGA with a 50:50 ratio of lactic to glycolic acid. STATEMENT OF SIGNIFICANCE This paper demonstrates that changing the monomer sequence in poly(lactic-co-glycolic acid)s (PLGAs) leads to dramatic differences in the rate of degradation and the internal acidic microclimate of microparticles degrading in vitro. We note that the acidic microclimates within these particles were imaged for the first time with two-photon microscopy, which gives an extremely clear and detailed picture of the degradation process. Importantly, we also document that the observed sequence-controlled in vitro processes translate into differences in the in vivo behavior of polymers which have the same L to G composition but differing microstructures. These data, placed in the context of our prior studies on swelling, erosion, and MW loss (Biomaterials2017, 117, 66 and other references cited within the manuscript), provide significant insight not only about sequence effects in PLGAs but into the underlying mechanisms of PLGA degradation in general.
Collapse
|
80
|
Characterization of drug delivery particles produced by supercritical carbon dioxide technologies. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
81
|
Li Y, Chu Z, Li X, Ding X, Guo M, Zhao H, Yao J, Wang L, Cai Q, Fan Y. The effect of mechanical loads on the degradation of aliphatic biodegradable polyesters. Regen Biomater 2017; 4:179-190. [PMID: 28596915 PMCID: PMC5458542 DOI: 10.1093/rb/rbx009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 12/11/2022] Open
Abstract
Aliphatic biodegradable polyesters have been the most widely used synthetic polymers for developing biodegradable devices as alternatives for the currently used permanent medical devices. The performances during biodegradation process play crucial roles for final realization of their functions. Because physiological and biochemical environment in vivo significantly affects biodegradation process, large numbers of studies on effects of mechanical loads on the degradation of aliphatic biodegradable polyesters have been launched during last decades. In this review article, we discussed the mechanism of biodegradation and several different mechanical loads that have been reported to affect the biodegradation process. Other physiological and biochemical factors related to mechanical loads were also discussed. The mechanical load could change the conformational strain energy and morphology to weaken the stability of the polymer. Besides, the load and pattern could accelerate the loss of intrinsic mechanical properties of polymers. This indicated that investigations into effects of mechanical loads on the degradation should be indispensable. More combination condition of mechanical loads and multiple factors should be considered in order to keep the degradation rate controllable and evaluate the degradation process in vivo accurately. Only then can the degradable devise achieve the desired effects and further expand the special applications of aliphatic biodegradable polyesters.
Collapse
Affiliation(s)
- Ying Li
- School of Biological Science and Medical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, International Research Center for Implantable and Interventional Medical Devices, Beihang University, Beijing 100191, People’s Republic of China
| | - Zhaowei Chu
- School of Biological Science and Medical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, International Research Center for Implantable and Interventional Medical Devices, Beihang University, Beijing 100191, People’s Republic of China
| | - Xiaoming Li
- School of Biological Science and Medical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, International Research Center for Implantable and Interventional Medical Devices, Beihang University, Beijing 100191, People’s Republic of China
| | - Xili Ding
- School of Biological Science and Medical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, International Research Center for Implantable and Interventional Medical Devices, Beihang University, Beijing 100191, People’s Republic of China
| | - Meng Guo
- School of Biological Science and Medical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, International Research Center for Implantable and Interventional Medical Devices, Beihang University, Beijing 100191, People’s Republic of China
| | - Haoran Zhao
- Department of Biomedical Engineer, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jie Yao
- School of Biological Science and Medical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, International Research Center for Implantable and Interventional Medical Devices, Beihang University, Beijing 100191, People’s Republic of China
| | - Lizhen Wang
- School of Biological Science and Medical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, International Research Center for Implantable and Interventional Medical Devices, Beihang University, Beijing 100191, People’s Republic of China
| | - Qiang Cai
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yubo Fan
- School of Biological Science and Medical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, International Research Center for Implantable and Interventional Medical Devices, Beihang University, Beijing 100191, People’s Republic of China
- National Research Center for Rehabilitation Technical Aids, Beijing 100176, People’s Republic of China
| |
Collapse
|
82
|
Washington MA, Swiner DJ, Bell KR, Fedorchak MV, Little SR, Meyer TY. The impact of monomer sequence and stereochemistry on the swelling and erosion of biodegradable poly(lactic-co-glycolic acid) matrices. Biomaterials 2016; 117:66-76. [PMID: 27936418 DOI: 10.1016/j.biomaterials.2016.11.037] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 11/12/2016] [Accepted: 11/24/2016] [Indexed: 01/01/2023]
Abstract
Monomer sequence is demonstrated to be a primary factor in determining the hydrolytic degradation profile of poly(lactic-co-glycolic acid)s (PLGAs). Although many approaches have been used to tune the degradation of PLGAs, little effort has been expended in exploring the sequence-control strategy exploited by nature in biopolymers. Cylindrical matrices and films prepared from a series of sequenced and random PLGAs were subjected to hydrolysis in a pH 7.4 buffer at 37 °C. Swelling ranged from 107% for the random racemic PLGA with a 50:50 ratio of lactic (L) to glycolic (G) units to 6% for the sequenced alternating copolymer poly LG. Erosion followed an inverse trend with the random 50:50 PLGA showing an erosion half-life of 3-4 weeks while poly LG required ca. >10 weeks. Stereosequence was found to play a large role in determining swelling and erosion; stereopure analogs swelled less and were slower to lose mass. Molecular weight loss followed similar trends and increases in dispersity correlated with the onset of significant swelling. The relative proportion of rapidly cleavable G-G linkages relative to G-L/L-G (moderate) and L-L (slow) correlates strongly with the degree of swelling observed and the rate of erosion. The dramatic sequence-dependent variation in swelling, in the absence of a parallel hydrophilicity trend, suggest that osmotic pressure, driven by the differential accumulation of degradation products, plays an important role.
Collapse
Affiliation(s)
| | - Devin J Swiner
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kerri R Bell
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Morgan V Fedorchak
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15260, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Steven R Little
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Tara Y Meyer
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
83
|
Jia J, Zhang W, Liu Q, Yang T, Wang L, Ma G. Adjuvanticity Regulation by Biodegradable Polymeric Nano/microparticle Size. Mol Pharm 2016; 14:14-22. [PMID: 28043126 DOI: 10.1021/acs.molpharmaceut.6b00434] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polymeric nano/microparticles as vaccine adjuvants have been researched in experimental and clinical studies. A more profound understanding of how the physicochemical properties regulate specific immune responses has become a vital requirement. Here we prepared poly(d,l-lactic-co-glycolic acid) (PLGA) nano/microparticles with uniform sizes (500 nm, 900 nm, 2.1 μm, and 4.9 μm), and the size effects on particle uptake, activation of macrophages, and antigen internalization were evaluated. Particle uptake kinetic studies demonstrated that 900 nm particles were the easiest to accumulate in cells. Moreover, they could induce macrophages to secrete NO and IL-1β and facilitate antigen internalization. Furthermore, 900 nm particles, mixed with antigen, could exhibit superior adjuvanticity in both humoral and cellular immune responses in vivo, including offering the highest antibody protection, promoting the maximum secretion levels of IFN-γ and IL-4 than particles with other sizes. Overall, 900 nm might be the optimum choice for PLGA particle-based vaccine adjuvants especially for recombinant antigens. Understanding the effect of particle size on the adjuvanticity based immune responses might have important enlightenments for rational vaccine design and applications.
Collapse
Affiliation(s)
- Jilei Jia
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, PR China.,University of Chinese Academy of Sciences , Beijing 100049, PR China
| | - Weifeng Zhang
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, PR China.,University of Chinese Academy of Sciences , Beijing 100049, PR China
| | - Qi Liu
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, PR China.,University of Chinese Academy of Sciences , Beijing 100049, PR China
| | - Tingyuan Yang
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, PR China
| | - Lianyan Wang
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, PR China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing 210023, PR China
| |
Collapse
|
84
|
Kang-Mieler JJ, Dosmar E, Liu W, Mieler WF. Extended ocular drug delivery systems for the anterior and posterior segments: biomaterial options and applications. Expert Opin Drug Deliv 2016; 14:611-620. [PMID: 27551742 DOI: 10.1080/17425247.2016.1227785] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION The development of new therapies for treating various eye conditions has led to a demand for extended release delivery systems, which would lessen the need for frequent application while still achieving therapeutic drug levels in the target tissues. Areas covered: Following an overview of the different ocular drug delivery modalities, this article surveys the biomaterials used to develop sustained release drug delivery systems. Microspheres, nanospheres, liposomes, hydrogels, and composite systems are discussed in terms of their primary materials. The advantages and disadvantages of each drug delivery system are discussed for various applications. Recommendations for modifications and strategies for improvements to these basic systems are also discussed. Expert opinion: An ideal sustained release drug delivery system should be able to encapsulate and deliver the necessary drug to the target tissues at a therapeutic level without any detriment to the drug. Drug encapsulation should be as high as possible to minimize loss and unless it is specifically desired, the initial burst of drug release should be kept to a minimum. By modifying various biomaterials, it is possible to achieve sustained drug delivery to both the anterior and posterior segments of the eye.
Collapse
Affiliation(s)
- Jennifer J Kang-Mieler
- a Department of Biomedical Engineering , Illinois Institute of Technology , Chicago , IL , USA
| | - Emily Dosmar
- a Department of Biomedical Engineering , Illinois Institute of Technology , Chicago , IL , USA
| | - Wenqiang Liu
- a Department of Biomedical Engineering , Illinois Institute of Technology , Chicago , IL , USA
| | - William F Mieler
- b Department of Ophthalmology and Visual Sciences , University of Illinois at Chicago , Chicago , IL , USA
| |
Collapse
|
85
|
Shi C, Thum C, Zhang Q, Tu W, Pelaz B, Parak WJ, Zhang Y, Schneider M. Inhibition of the cancer-associated TASK 3 channels by magnetically induced thermal release of Tetrandrine from a polymeric drug carrier. J Control Release 2016; 237:50-60. [DOI: 10.1016/j.jconrel.2016.06.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/09/2016] [Accepted: 06/29/2016] [Indexed: 12/15/2022]
|
86
|
|
87
|
Kirby GTS, White LJ, Steck R, Berner A, Bogoevski K, Qutachi O, Jones B, Saifzadeh S, Hutmacher DW, Shakesheff KM, Woodruff MA. Microparticles for Sustained Growth Factor Delivery in the Regeneration of Critically-Sized Segmental Tibial Bone Defects. MATERIALS 2016; 9:ma9040259. [PMID: 28773384 PMCID: PMC5502923 DOI: 10.3390/ma9040259] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 11/16/2022]
Abstract
This study trialled the controlled delivery of growth factors within a biodegradable scaffold in a large segmental bone defect model. We hypothesised that co-delivery of vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF) followed by bone morphogenetic protein-2 (BMP-2) could be more effective in stimulating bone repair than the delivery of BMP-2 alone. Poly(lactic-co-glycolic acid) (PLGA ) based microparticles were used as a delivery system to achieve a controlled release of growth factors within a medical-grade Polycaprolactone (PCL) scaffold. The scaffolds were assessed in a well-established preclinical ovine tibial segmental defect measuring 3 cm. After six months, mechanical properties and bone tissue regeneration were assessed. Mineralised bone bridging of the defect was enhanced in growth factor treated groups. The inclusion of VEGF and PDGF (with BMP-2) had no significant effect on the amount of bone regeneration at the six-month time point in comparison to BMP-2 alone. However, regions treated with VEGF and PDGF showed increased vascularity. This study demonstrates an effective method for the controlled delivery of therapeutic growth factors in vivo, using microparticles.
Collapse
Affiliation(s)
- Giles T S Kirby
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisban, QLD 4006, Australia.
- School of Pharmacy, University Park, The University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Lisa J White
- School of Pharmacy, University Park, The University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Roland Steck
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisban, QLD 4006, Australia.
| | - Arne Berner
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisban, QLD 4006, Australia.
- Department of Trauma Surgery, University of Regensburg, Regensburg 93164, Germany.
| | - Kristofor Bogoevski
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisban, QLD 4006, Australia.
| | - Omar Qutachi
- School of Pharmacy, University Park, The University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Brendan Jones
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisban, QLD 4006, Australia.
| | - Siamak Saifzadeh
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisban, QLD 4006, Australia.
| | - Dietmar W Hutmacher
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisban, QLD 4006, Australia.
| | - Kevin M Shakesheff
- School of Pharmacy, University Park, The University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Maria A Woodruff
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisban, QLD 4006, Australia.
| |
Collapse
|
88
|
Bardsley K, Wimpenny I, Yang Y, El Haj AJ. Fluorescent, online monitoring of PLGA degradation for regenerative medicine applications. RSC Adv 2016. [DOI: 10.1039/c6ra04690h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Poly(lactic-co-glycolic)acid was chemically modified by covalently binding an isothiocyanate fluorophore to the polymer, allowing for accurate prediction of degradation.
Collapse
Affiliation(s)
- K. Bardsley
- Institute for Science and Technology in Medicine
- Keele University
- Stoke-on-Trent ST4 7QB
- UK
| | - I. Wimpenny
- Institute for Science and Technology in Medicine
- Keele University
- Stoke-on-Trent ST4 7QB
- UK
| | - Y. Yang
- Institute for Science and Technology in Medicine
- Keele University
- Stoke-on-Trent ST4 7QB
- UK
| | - A. J. El Haj
- Institute for Science and Technology in Medicine
- Keele University
- Stoke-on-Trent ST4 7QB
- UK
| |
Collapse
|