51
|
Helm A, Totis C, Durante M, Fournier C. Are charged particles a good match for combination with immunotherapy? Current knowledge and perspectives. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 376:1-36. [PMID: 36997266 DOI: 10.1016/bs.ircmb.2023.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Charged particle radiotherapy, mainly using protons and carbon ions, provides physical characteristics allowing for a volume conformal irradiation and a reduction of the integral dose to normal tissue. Carbon ion therapy additionally features an increased biological effectiveness resulting in peculiar molecular effects. Immunotherapy, mostly performed with immune checkpoint inhibitors, is nowadays considered a pillar in cancer therapy. Based on the advantageous features of charged particle radiotherapy, we review pre-clinical evidence revealing a strong potential of its combination with immunotherapy. We argue that the combination therapy deserves further investigation with the aim of translation in clinics, where a few studies have been set up already.
Collapse
Affiliation(s)
- A Helm
- Biophysics Department, GSI, Darmstadt, Germany
| | - C Totis
- Biophysics Department, GSI, Darmstadt, Germany
| | - M Durante
- Biophysics Department, GSI, Darmstadt, Germany.
| | - C Fournier
- Biophysics Department, GSI, Darmstadt, Germany
| |
Collapse
|
52
|
de Kermenguy F, Meziani L, Mondini M, Clémenson C, Morel D, Deutsch E, Robert C. Radio-induced lymphopenia in the era of anti-cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023. [DOI: 10.1016/bs.ircmb.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
53
|
Hu A, Qiu R, Li WB, Zhou W, Wu Z, Zhang H, Li J. Radical recombination and antioxidants: a hypothesis on the FLASH effect mechanism. Int J Radiat Biol 2023; 99:620-628. [PMID: 35938944 DOI: 10.1080/09553002.2022.2110307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
PURPOSE FLASH (ultra-high dose rate) radiotherapy spares normal tissue while keeping tumor control. However, the mechanism of the FLASH effect remains unclear and may have consequences beyond the irradiated area. MATERIALS AND METHODS We reanalyze the available results of ultra-high-dose-rate-related experiments to find out the key points of the mechanism of the FLASH effect. Then, we present a hypothesis on the mechanism of the FLASH effect: FLASH beams generate a high transient concentration of peroxyl radicals leading to a high fraction of radical recombination, which results in less oxidation damage to normal tissue. For the cells containing higher concentrations of antioxidants, the fractions of radical recombination are smaller because the antioxidants compete to react with peroxyl radicals. Therefore the damages by different dose rate beams differ slightly in this condition. Since some tumors contain a higher level of antioxidants, this may be the reason for the loss of the protective effect in tumors irradiated by FLASH beams. The high concentration of antioxidants in tumors results in slight radiolytic oxygen consumption, and consequently the protective effect observed in in vitro experiment cannot be observed in in vivo experiment. To quantitatively elaborate our hypothesis, a kinetic model is implemented to simulate the reactions induced by irradiation. Two parameters are defined to abstractly study the factors affecting the reaction, such as dose rate, antioxidants, total dose and reaction rate constants. RESULTS AND CONCLUSIONS We find that the explanation of the difference between in vivo and in vitro experiments is crucial to understanding the mechanism of the FLASH effect. Our hypothesis agrees with the results of related experiments. Based on the kinetic model, the effects of these factors on the FLASH effect are quantitatively investigated.
Collapse
Affiliation(s)
- Ankang Hu
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, China
| | - Rui Qiu
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, China
| | - Wei Bo Li
- Institute of Radiation Medicine, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Wanyi Zhou
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, China
| | - Zhen Wu
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Nuctech Company Limited, Beijing, China
| | - Hui Zhang
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, China
| | - Junli Li
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, China
| |
Collapse
|
54
|
Iturri L, Bertho A, Lamirault C, Juchaux M, Gilbert C, Espenon J, Sebrie C, Jourdain L, Pouzoulet F, Verrelle P, De Marzi L, Prezado Y. Proton FLASH Radiation Therapy and Immune Infiltration: Evaluation in an Orthotopic Glioma Rat Model. Int J Radiat Oncol Biol Phys 2022:S0360-3016(22)03639-2. [PMID: 36563907 DOI: 10.1016/j.ijrobp.2022.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/02/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE FLASH radiation therapy (FLASH-RT) is a promising radiation technique that uses ultrahigh doses of radiation to increase the therapeutic window of the treatment. FLASH-RT has been observed to provide normal tissue sparing at high dose rates and similar tumor control compared with conventional RT, yet the biological processes governing these radiobiological effects are still unknown. In this study, we sought to investigate the potential immune response generated by FLASH-RT in a high dose of proton therapy in an orthotopic glioma rat model. METHODS AND MATERIALS We cranially irradiated rats with a single high dose (25 Gy) using FLASH dose rate proton irradiation (257 ± 2 Gy/s) or conventional dose rate proton irradiation (4 ± 0.02 Gy/s). We first assessed the protective FLASH effect that resulted in our setup through behavioral studies in naïve rats. This was followed by a comprehensive analysis of immune cells in blood, healthy tissue of the brain, and tumor microenvironment by flow cytometry. RESULTS Proton FLASH-RT spared memory impairment produced by conventional high-dose proton therapy and induced a similar tumor infiltrating lymphocyte recruitment. Additionally, a general neuroinflammation that was similar in both dose rates was observed. CONCLUSIONS Overall, this study demonstrated that FLASH proton therapy offers a neuro-protective effect even at high doses while mounting an effective lymphoid immune response in the tumor.
Collapse
Affiliation(s)
- Lorea Iturri
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France.
| | - Annaïg Bertho
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Charlotte Lamirault
- Institut Curie, PSL University, Département de Recherche Translationnelle, CurieCoreTech-Experimental Radiotherapy (RadeXp), Paris, France
| | - Marjorie Juchaux
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Cristèle Gilbert
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Julie Espenon
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Catherine Sebrie
- CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, BIOMAPS Université Paris-Saclay, Orsay, France
| | - Laurène Jourdain
- CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, BIOMAPS Université Paris-Saclay, Orsay, France
| | - Frédéric Pouzoulet
- Institut Curie, PSL University, Département de Recherche Translationnelle, CurieCoreTech-Experimental Radiotherapy (RadeXp), Paris, France
| | - Pierre Verrelle
- Institut Curie, Campus Universitaire, PSL Research University, University Paris Saclay, INSERM LITO (U1288), Orsay, 91898 France; Centre de Protonthérapie d'Orsay, Radiation Oncology Department, Campus Universitaire, Institut Curie, PSL Research University, Orsay, 91898 France
| | - Ludovic De Marzi
- Institut Curie, Campus Universitaire, PSL Research University, University Paris Saclay, INSERM LITO (U1288), Orsay, 91898 France; Centre de Protonthérapie d'Orsay, Radiation Oncology Department, Campus Universitaire, Institut Curie, PSL Research University, Orsay, 91898 France
| | - Yolanda Prezado
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| |
Collapse
|
55
|
Konradsson E, Liljedahl E, Gustafsson E, Adrian G, Beyer S, Ilaahi SE, Petersson K, Ceberg C, Nittby Redebrandt H. Comparable Long-Term Tumor Control for Hypofractionated FLASH Versus Conventional Radiation Therapy in an Immunocompetent Rat Glioma Model. Adv Radiat Oncol 2022; 7:101011. [PMID: 36092986 PMCID: PMC9449779 DOI: 10.1016/j.adro.2022.101011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose To ensure a clinical translation of FLASH radiation therapy (FLASH-RT) for a specific tumor type, studies on tumor control and toxicity within the same biological system are needed. In this study, our objective was to evaluate tumor control and toxicity for hypofractionated FLASH-RT and conventional radiation therapy (CONV-RT) in an immunocompetent rat glioma model. Methods and Materials Fisher 344 rats (N = 68) were inoculated subcutaneously with NS1 glioma cells and randomized into groups (n = 9-10 per group). CONV-RT (∼8 Gy/min) or FLASH-RT (70-90 Gy/s) was administered in 3 fractions of either 8 Gy, 12.5 Gy, or 15 Gy using a 10-MeV electron beam. The maximum tumor diameter was measured weekly, and overall survival was determined until day 100. Long-term tumor control was defined as no evident tumor on day 100. Animals were evaluated for acute dermal side effects at 2 to 5 weeks after completed RT and for late dermal side effects at 3 months after initiation of treatment. Results Survival was significantly increased in all irradiated groups compared with control animals (P < .001). In general, irradiated tumors started to shrink at 1 week post-completed RT. In 40% (23 of 58) of the irradiated animals, long-term tumor control was achieved. Radiation-induced skin toxic effects were mild and consisted of hair loss, erythema, and dry desquamation. No severe toxic effect was observed. There was no significant difference between FLASH-RT and CONV-RT in overall survival, acute side effects, or late side effects for any of the dose levels. Conclusions This study shows that hypofractionated FLASH-RT results in long-term tumor control rates similar to those of CONV-RT for the treatment of large subcutaneous glioblastomas in immunocompetent rats. Neither treatment technique induced severe skin toxic effects. Consequently, no significant difference in toxicity could be resolved, suggesting that higher doses may be required to detect a FLASH sparing of skin.
Collapse
Affiliation(s)
- Elise Konradsson
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Emma Liljedahl
- Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Emma Gustafsson
- Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Gabriel Adrian
- Division of Oncology and Pathology, Department of Clinical Sciences, Skåne University Hospital, Lund University, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Sarah Beyer
- Division of Oncology and Pathology, Department of Clinical Sciences, Skåne University Hospital, Lund University, Lund, Sweden
| | - Suhayb Ehsaan Ilaahi
- Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kristoffer Petersson
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Crister Ceberg
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Henrietta Nittby Redebrandt
- Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Neurosurgery, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
56
|
Comparison of intratumor and local immune response between MV X-ray FLASH and conventional radiotherapies. Clin Transl Radiat Oncol 2022; 38:138-146. [DOI: 10.1016/j.ctro.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
|
57
|
Vozenin MC, Bourhis J, Durante M. Towards clinical translation of FLASH radiotherapy. Nat Rev Clin Oncol 2022; 19:791-803. [DOI: 10.1038/s41571-022-00697-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
|
58
|
Potential Molecular Mechanisms behind the Ultra-High Dose Rate "FLASH" Effect. Int J Mol Sci 2022; 23:ijms232012109. [PMID: 36292961 PMCID: PMC9602825 DOI: 10.3390/ijms232012109] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/26/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
FLASH radiotherapy, or the delivery of a dose at an ultra-high dose rate (>40 Gy/s), has recently emerged as a promising tool to enhance the therapeutic index in cancer treatment. The remarkable sparing of normal tissues and equivalent tumor control by FLASH irradiation compared to conventional dose rate irradiation—the FLASH effect—has already been demonstrated in several preclinical models and even in a first patient with T-cell cutaneous lymphoma. However, the biological mechanisms responsible for the differential effect produced by FLASH irradiation in normal and cancer cells remain to be elucidated. This is of great importance because a good understanding of the underlying radiobiological mechanisms and characterization of the specific beam parameters is required for a successful clinical translation of FLASH radiotherapy. In this review, we summarize the FLASH investigations performed so far and critically evaluate the current hypotheses explaining the FLASH effect, including oxygen depletion, the production of reactive oxygen species, and an altered immune response. We also propose a new theory that assumes an important role of mitochondria in mediating the normal tissue and tumor response to FLASH dose rates.
Collapse
|
59
|
Li L, Yuan Y, Zuo Y. A review of the impact of FLASH radiotherapy on the central nervous system and glioma. RADIATION MEDICINE AND PROTECTION 2022. [DOI: 10.1016/j.radmp.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
60
|
Gao Y, Liu R, Chang C, Charyyev S, Zhou J, Bradley JD, Liu T, Yang X. A potential revolution in cancer treatment: A topical review of FLASH radiotherapy. J Appl Clin Med Phys 2022; 23:e13790. [PMID: 36168677 PMCID: PMC9588273 DOI: 10.1002/acm2.13790] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/08/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
FLASH radiotherapy (RT) is a novel technique in which the ultrahigh dose rate (UHDR) (≥40 Gy/s) is delivered to the entire treatment volume. Recent outcomes of in vivo studies show that the UHDR RT has the potential to spare normal tissue without sacrificing tumor control. There is a growing interest in the application of FLASH RT, and the ultrahigh dose irradiation delivery has been achieved by a few experimental and modified linear accelerators. The underlying mechanism of FLASH effect is yet to be fully understood, but the oxygen depletion in normal tissue providing extra protection during FLASH irradiation is a hypothesis that attracts most attention currently. Monte Carlo simulation is playing an important role in FLASH, enabling the understanding of its dosimetry calculations and hardware design. More advanced Monte Carlo simulation tools are under development to fulfill the challenge of reproducing the radiolysis and radiobiology processes in FLASH irradiation. FLASH RT may become one of standard treatment modalities for tumor treatment in the future. This paper presents the history and status of FLASH RT studies with a focus on FLASH irradiation delivery modalities, underlying mechanism of FLASH effect, in vivo and vitro experiments, and simulation studies. Existing challenges and prospects of this novel technique are discussed in this manuscript.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Ruirui Liu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Chih‐Wei Chang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Serdar Charyyev
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jeffrey D. Bradley
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
61
|
Lin B, Huang D, Gao F, Yang Y, Wu D, Zhang Y, Feng G, Dai T, Du X. Mechanisms of FLASH effect. Front Oncol 2022; 12:995612. [PMID: 36212435 PMCID: PMC9537695 DOI: 10.3389/fonc.2022.995612] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
FLASH radiotherapy (FLASH-RT) is a novel radiotherapy technology defined as ultra-high dose rate (≥ 40 Gy/s) radiotherapy. The biological effects of FLASH-RT include two aspects: first, compared with conventional dose rate radiotherapy, FLASH-RT can reduce radiation-induced damage in healthy tissue, and second, FLASH-RT can retain antitumor effectiveness. Current research shows that mechanisms of the biological effects of FLASH-RT are related to oxygen. However, due to the short time of FLASH-RT, evidences related to the mechanisms are indirect, and the exact mechanisms of the biological effects of FLASH-RT are not completely clear and some are even contradictory. This review focuses on the mechanisms of the biological effects of FLASH-RT and proposes future research directions.
Collapse
Affiliation(s)
- Binwei Lin
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Department of Oncology, Mianyang Central Hospital, Mianyang, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Dan Huang
- Department of Radiology Mianyang Central Hospital, Mianyang, China
| | - Feng Gao
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Department of Oncology, Mianyang Central Hospital, Mianyang, China
| | - Yiwei Yang
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China
| | - Dai Wu
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China
| | - Yu Zhang
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Department of Oncology, Mianyang Central Hospital, Mianyang, China
| | - Gang Feng
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Department of Oncology, Mianyang Central Hospital, Mianyang, China
| | - Tangzhi Dai
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Department of Oncology, Mianyang Central Hospital, Mianyang, China
| | - Xiaobo Du
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Department of Oncology, Mianyang Central Hospital, Mianyang, China
| |
Collapse
|
62
|
Telarovic I, Yong CSM, Guckenberger M, Unkelbach J, Pruschy M. Radiation-induced lymphopenia does not impact treatment efficacy in a mouse tumor model. Neoplasia 2022; 31:100812. [PMID: 35667149 PMCID: PMC9168138 DOI: 10.1016/j.neo.2022.100812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/03/2022]
Abstract
Radiation-induced lymphopenia is a common occurrence in radiation oncology and an established negative prognostic factor, however the mechanisms underlying the relationship between lymphopenia and inferior survival remain elusive. The relevance of lymphocyte co-irradiation as critical normal tissue component at risk is an emerging topic of high clinical relevance, even more so in the context of potentially synergistic radiotherapy-immunotherapy combinations. The impact of the radiotherapy treatment volume on the lymphocytes of healthy and tumor-bearing mice was investigated in a novel mouse model of radiation-induced lymphopenia. Using an image-guided small-animal radiotherapy treatment platform, translationally relevant tumor-oriented volumes of irradiation with an anatomically defined increasing amount of normal tissue were irradiated, with a focus on the circulating blood and lymph nodes. In healthy mice, the influence of irradiation with increasing radiotherapy treatment volumes was quantified on the level of circulating blood cells and in the spleen. A significant decrease in the lymphocytes was observed in response to irradiation, including the minimally irradiated putative tumor area. The extent of lymphopenia correlated with the increasing volumes of irradiation. In tumor-bearing mice, differential radiotherapy treatment volumes did not influence the overall therapeutic response to radiotherapy alone. Intriguingly, an improved treatment efficacy in mice treated with draining-lymph node co-irradiation was observed in combination with an immune checkpoint inhibitor. Taken together, our study reveals compelling data on the importance of radiotherapy treatment volume in the context of lymphocytes as critical components of normal tissue co-irradiation and highlights emerging challenges at the interface of radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Irma Telarovic
- Laboratory for Applied Radiobiology, Dept. Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Carmen S M Yong
- Laboratory for Applied Radiobiology, Dept. Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Dept. Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Dept. Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jan Unkelbach
- Dept. Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Dept. Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
63
|
Jansen J, Beyreuther E, García-Calderón D, Karsch L, Knoll J, Pawelke J, Schürer M, Seco J. oChanges in Radical Levels as a Cause for the FLASH effect: Impact of beam structure parameters at ultra-high dose rates on oxygen depletion in water. Radiother Oncol 2022; 175:193-196. [PMID: 36030933 DOI: 10.1016/j.radonc.2022.08.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/15/2023]
Abstract
The influence of different average and bunch dose rates in electron beams on the FLASH effect was investigated. The present study measures O2 content in water at different beam pulse patterns and finds strong correlation with biological data, strengthening the hypothesis of radical-related mechanisms as a reason for the FLASH effect.
Collapse
Affiliation(s)
- Jeannette Jansen
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elke Beyreuther
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Radiation Physics, Dresden, Germany
| | - Daniel García-Calderón
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, Ruprecht-Karls-University, Heidelberg, Germany
| | - Leonhard Karsch
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Jan Knoll
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, Ruprecht-Karls-University, Heidelberg, Germany
| | - Jörg Pawelke
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Michael Schürer
- National Center for Tumor Diseases Dresden (NCT/UCC), Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Joao Seco
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, Ruprecht-Karls-University, Heidelberg, Germany.
| |
Collapse
|
64
|
Wei S, Lin H, Isabelle Choi J, Shi C, Simone CB, Kang M. Advanced pencil beam scanning Bragg peak FLASH-RT delivery technique can enhance lung cancer planning treatment outcomes compared to conventional multiple-energy proton PBS techniques. Radiother Oncol 2022; 175:238-247. [PMID: 35961583 DOI: 10.1016/j.radonc.2022.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE To investigate the dosimetric characteristics between an advanced proton pencil beam scanning (PBS) Bragg peak FLASH technique and conventional PBS planning technique in lung tumors. To evaluate the "FLASHness" of single-field in a multiple-field delivery scheme for a hypofractionation regimen and move a step forward to clinical application. METHODS Single-energy PBS Bragg peak FLASH treatment plans were optimized based on a novel Bragg peak tracking technique to enable Bragg peaks to stop at the distal edge of the target. Inverse treatment planning using multiple-field optimization (MFO) can achieve sufficient FLASH dose rate and intensity-modulated proton therapy (IMPT)-equivalent dosimetric quality. The dose rate of organs-at-risk (OARs) and the target were calculated under FLASH machine parameters. A group of 10 consecutive lung SBRT patients was optimized to 34 Gy/fraction using a standard treatment of PBS technique with multiple energy layers as references to the Bragg peak plans. The dosimetric quality was compared between Bragg peak FLASH and conventional plans based on RTOG0915 dose metrics. FLASH dose rate ratios (V40Gy/s) were calculated as a metric of the FLASH-sparing effect. RESULTS For higher dose thresholds, the Bragg peak plans achieved greater V40Gy/s FLASH coverage for all major OARs. The V40Gy/s was close to 100% for all OARs when the dose thresholds were > 5 Gy for full plan and single beam evaluations. The less "FLASHness" region was associated with a low dose distribution, mainly occurring in the PBS field penumbra region. The conventional IMPT treatment plans yielded slightly superior target dose uniformity with a D2%(%) of 108.02% versus that of Bragg peak 300 MU plans of 111.81% (p < 0.01) and that of Bragg peak 1200 MU plans of 115.95% (p < 0.01). No significant difference in dose metrics was found between Bragg peak and IMPT treatment plans for the spinal cord, esophagus, heart, or lung-GTV (all p > 0.05). CONCLUSION Hypofractionated lung Bragg peak plans can maintain comparable plan quality to conventional PBS while achieving sufficient FLASH dose rate coverage for major OARs for each field under the multiple-field delivery scheme. The novel Bragg peak FLASH technique has the potential to enhance lung cancer planning treatment outcomes compared to standard PBS treatment techniques.
Collapse
Affiliation(s)
- Shouyi Wei
- New York Proton Center, New York, NY 10035, USA
| | - Haibo Lin
- New York Proton Center, New York, NY 10035, USA.
| | | | - Chengyu Shi
- City of Hope, Orange County, Irvine, CA 92618, USA
| | | | - Minglei Kang
- New York Proton Center, New York, NY 10035, USA.
| |
Collapse
|
65
|
Rothwell B, Lowe M, Traneus E, Krieger M, Schuemann J. Treatment planning considerations for the development of FLASH proton therapy. Radiother Oncol 2022; 175:222-230. [PMID: 35963397 DOI: 10.1016/j.radonc.2022.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
With increasing focus on the translation of the observed FLASH effect into clinical practice, this paper presents treatment planning considerations for its development using proton therapy. Potential requirements to induce a FLASH effect are discussed along with the properties of existing proton therapy delivery systems and the changes in planning and delivery approaches required to satisfy these prerequisites. For the exploration of treatment planning approaches for FLASH, developments in treatment planning systems are needed. Flexibility in adapting to new information will be important in such an evolving area. Variations in definitions, threshold values and assumptions can make it difficult to compare different published studies and to interpret previous studies in the context of new information. Together with the fact that much is left to be understood about the underlying mechanism behind the FLASH effect, a systematic and comprehensive approach to information storage is encouraged. Collecting and retaining more detailed information on planned and realised dose delivery as well as reporting the assumptions made in planning studies creates the potential for research to be revisited and re-evaluated in the light of future improvements in understanding. Forward thinking at the time of study development can help facilitate retrospective analysis. This, we hope, will increase the available evidence and accelerate the translation of the FLASH effect into clinical benefit.
Collapse
Affiliation(s)
- Bethany Rothwell
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| | - Matthew Lowe
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | | - Miriam Krieger
- Varian Medical Systems Particle Therapy GmbH & Co. KG, Troisdorf, Germany
| | - Jan Schuemann
- Division of Physics, Dept. of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
66
|
Sung W, Cho B. Modeling of radiation effects to immune system: a review. THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY 2022; 81:1013-1019. [PMID: 35966936 PMCID: PMC9358382 DOI: 10.1007/s40042-022-00574-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Cancer metastasis is the major cause of cancer mortality and accounts for about 90% of cancer death. Although radiation therapy has been considered to reduce the localized cancer burden, emerging evidence that radiation can potentially turn tumors into an in situ vaccine has raised significant interest in combining radiation with immunotherapy. However, the combination approach might be limited by the radiation-induced immunosuppression. Assessment of radiation effects on the immune system at the patient level is critical to maximize the systemic antitumor response of radiation. In this review, we summarize the developed solutions in three different categories for systemic radiation therapy: blood dose, radiation-induced lymphopenia, and tumor control. Furthermore, we address how they could be combined to optimize radiotherapy regimens and maximize their synergy with immunotherapy.
Collapse
Affiliation(s)
- Wonmo Sung
- Department of Biomedical Engineering and of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Byungchul Cho
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
67
|
Schneider T, Fernandez-Palomo C, Bertho A, Fazzari J, Iturri L, Martin OA, Trappetti V, Djonov V, Prezado Y. Combining FLASH and spatially fractionated radiation therapy: The best of both worlds. Radiother Oncol 2022; 175:169-177. [PMID: 35952978 DOI: 10.1016/j.radonc.2022.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
Abstract
FLASH radiotherapy (FLASH-RT) and spatially fractionated radiation therapy (SFRT) are two new therapeutical strategies that use non-standard dose delivery methods to reduce normal tissue toxicity and increase the therapeutic index. Although likely based on different mechanisms, both FLASH-RT and SFRT have shown to elicit radiobiological effects that significantly differ from those induced by conventional radiotherapy. With the therapeutic potential having been established separately for each technique, the combination of FLASH-RT and SFRT could therefore represent a winning alliance. In this review, we discuss the state of the art, advantages and current limitations, potential synergies, and where a combination of these two techniques could be implemented today or in the near future.
Collapse
Affiliation(s)
- Tim Schneider
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | | | - Annaïg Bertho
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | - Jennifer Fazzari
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Lorea Iturri
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | - Olga A Martin
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland; Division of Radiation Oncology, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; University of Melbourne, Parkville, VIC 3010, Australia
| | - Verdiana Trappetti
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Yolanda Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France.
| |
Collapse
|
68
|
McCall NS, McGinnis HS, Janopaul-Naylor JR, Kesarwala AH, Tian S, Stokes WA, Shelton JW, Steuer CE, Carlisle JW, Leal T, Ramalingam SS, Bradley JD, Higgins KA. Impact of Radiation Dose to the Immune Cells in Unresectable or Stage III Non-Small Cell Lung Cancer in the Durvalumab Era. Radiother Oncol 2022; 174:133-140. [PMID: 35870727 DOI: 10.1016/j.radonc.2022.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND /PURPOSE Higher estimated radiation doses to immune cells (EDIC) have correlated with worse overall survival (OS) in patients with locally-advanced non-small cell lung cancer (NSCLC) prior to the PACIFIC trial, which established consolidative durvalumab as standard-of-care. Here, we examine the prognostic impact of EDIC in the durvalumab era. MATERIALS/METHODS This single-institution, multi-center study included patients with unresectable stage II/III NSCLC treated with chemoradiation followed by durvalumab. Associations between EDIC [analyzed continuously and categorically (≤6 Gy vs. >6 Gy)] and OS, progression-free survival (PFS), and locoregional control (LRC) were evaluated by Kaplan-Meier and Cox proportional methods. RESULTS 100 patients were included with median follow-up of 23.7 months. The EDIC >6 Gy group had a significantly greater percentage of stage IIIB/IIIC disease (76.0% vs. 32.6%; p<0.001) and larger tumor volumes (170cc vs. 42cc; p<0.001). There were no differences in early durvalumab discontinuation from toxicity (24.1% vs. 15.2%; p=0.27). Median OS was shorter among the EDIC >6 Gy group (29.6 months vs. not reached; p<0.001). On multivariate analysis, EDIC >6 Gy correlated with worse OS (HR: 4.15, 95%CI: 1.52-11.33; p=0.006), PFS (HR: 3.79; 95%CI: 1.80-8.0; p<0.001), and LRC (HR: 2.66, 95%CI: 1.15-6.18; p=0.023). Analyzed as a continuous variable, higher EDIC was associated with worse OS (HR: 1.34; 95%CI: 1.16-1.57; p<0.001), PFS (HR: 1.52; 95%CI: 1.29-1.79; p<0.001), and LRC (HR: 1.34, 95%CI: 1.13-1.60; p=0.007). CONCLUSIONS In the immunotherapy era, EDIC is an independent predictor of OS and disease control in locally advanced NSCLC, warranting investigation into techniques to reduce dose to the immune compartment.
Collapse
Affiliation(s)
- Neal S McCall
- Winship Cancer Institute of Emory University, Department of Radiation Oncology, United States.
| | - Hamilton S McGinnis
- Winship Cancer Institute of Emory University, Department of Radiation Oncology, United States
| | - James R Janopaul-Naylor
- Winship Cancer Institute of Emory University, Department of Radiation Oncology, United States
| | - Aparna H Kesarwala
- Winship Cancer Institute of Emory University, Department of Radiation Oncology, United States
| | - Sibo Tian
- Winship Cancer Institute of Emory University, Department of Radiation Oncology, United States
| | - William A Stokes
- Winship Cancer Institute of Emory University, Department of Radiation Oncology, United States
| | - Joseph W Shelton
- Winship Cancer Institute of Emory University, Department of Radiation Oncology, United States
| | - Conor E Steuer
- Winship Cancer Institute of Emory University, Department of Hematology & Medical Oncology, United States
| | - Jennifer W Carlisle
- Winship Cancer Institute of Emory University, Department of Hematology & Medical Oncology, United States
| | - Ticiana Leal
- Winship Cancer Institute of Emory University, Department of Hematology & Medical Oncology, United States
| | - Suresh S Ramalingam
- Winship Cancer Institute of Emory University, Department of Hematology & Medical Oncology, United States
| | - Jeffrey D Bradley
- Winship Cancer Institute of Emory University, Department of Radiation Oncology, United States
| | - Kristin A Higgins
- Winship Cancer Institute of Emory University, Department of Radiation Oncology, United States
| |
Collapse
|
69
|
Böhlen TT, Germond JF, Bourhis J, Vozenin MC, Ozsahin EM, Bochud F, Bailat C, Moeckli R. Normal tissue sparing by FLASH as a function of single fraction dose: A quantitative analysis. Int J Radiat Oncol Biol Phys 2022; 114:1032-1044. [PMID: 35810988 DOI: 10.1016/j.ijrobp.2022.05.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/26/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE The FLASH effect designates normal tissue sparing by ultra-high dose rate (UHDR) compared to conventional dose rate (CONV) irradiation without compromising tumor control. Understanding the magnitude of this effect and its dependency on dose are essential requirements for an optimized clinical translation of FLASH radiation therapy. In this context, we evaluated available experimental data on the magnitudes of normal tissue sparing provided by the FLASH effect as a function of dose, and followed a phenomenological data-driven approach for its parameterization. METHODS We gathered available in vivo data of the normal tissue sparing of CONV compared to UHDR single fraction doses and converted it to a common scale using isoeffect dose ratios, hereafter referred to as FLASH modifying factors (FMF). We then evaluated the suitability of a piecewise linear function with two pieces to parametrize FMF × D as a function of dose D. RESULTS We found that the magnitude of FMF generally decreases (i.e., sparing increases) as function of single fraction dose and that individual data series can be described by the piecewise linear function. The sparing magnitude appears organ specific. Pooled skin reaction data followed a consistent trend as a function of dose. Average FMF values and their standard deviations were 0.95±0.11 for all data below 10 Gy, 0.92±0.06 for mouse gut data between 10-25 Gy, and 0.96±0.07 and 0.71±0.06 for mammalian skin reaction data between 10-25 Gy and >25 Gy, respectively. CONCLUSIONS The magnitude of normal tissue sparing by FLASH is increasing with dose and is dependent on the irradiated tissue. A piecewise linear function can parameterize currently available individual data series.
Collapse
Affiliation(s)
- Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean-François Germond
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean Bourhis
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Marie-Catherine Vozenin
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Esat Mahmut Ozsahin
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - François Bochud
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland..
| |
Collapse
|
70
|
van Marlen P, Verbakel WF, Slotman BJ, Dahele M. Single-fraction 34 Gy Lung Stereotactic Body Radiation Therapy Using Proton Transmission Beams: FLASH-dose Calculations and the Influence of Different Dose-rate Methods and Dose/Dose-rate Thresholds. Adv Radiat Oncol 2022; 7:100954. [PMID: 35634574 PMCID: PMC9130077 DOI: 10.1016/j.adro.2022.100954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose Research suggests that in addition to the dose-rate, a dose threshold is also important for the reduction in normal tissue toxicity with similar tumor control after ultrahigh dose-rate radiation therapy (UHDR-RT). In this analysis we aimed to identify factors that might limit the ability to achieve this "FLASH"-effect in a scenario attractive for UHDR-RT (high fractional beam dose, small target, few organs-at-risk): single-fraction 34 Gy lung stereotactic body radiation therapy. Methods and Materials Clinical volumetric-modulated arc therapy (VMAT) plans, intensity modulated proton therapy (IMPT) plans and transmission beam (TB) plans were compared for 6 small and 1 large lung lesion. The TB-plan dose-rate was calculated using 4 methods and the FLASH-percentage (percentage of dose delivered at dose-rates ≥40/100 Gy/s and ≥4/8 Gy) was determined for various variables: a minimum spot time (minST) of 0.5/2 ms, maximum nozzle current (maxN) of 200/40 0nA, and 2 gantry current (GC) techniques (energy-layer based, spot-based [SB]). Results Based on absolute doses 5-beam TB and VMAT-plans are similar, but TB-plans have higher rib, skin, and ipsilateral lung dose than IMPT. Dose-rate calculation methods not considering scanning achieve FLASH-percentages between ∼30% to 80%, while methods considering scanning often achieve <30%. FLASH-percentages increase for lower minST/higher maxN and when using SB GC instead of energy-layer based GC, often approaching the percentage of dose exceeding the dose-threshold. For the small lesions average beam irradiation times (including scanning) varied between 0.06 to 0.31 seconds and total irradiation times between 0.28 to 1.57 seconds, for the large lesion beam times were between 0.16 to 1.47 seconds with total irradiation times of 1.09 to 5.89 seconds. Conclusions In a theoretically advantageous scenario for FLASH we found that TB-plan dosimetry was similar to that of VMAT, but inferior to that of IMPT, and that decreasing minST or using SB GC increase the estimated amount of FLASH. For the appropriate machine/delivery parameters high enough dose-rates can be achieved regardless of calculation method, meaning that a possible FLASH dose-threshold will likely be the primary limiting factor.
Collapse
Affiliation(s)
- Patricia van Marlen
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Wilko F.A.R. Verbakel
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Ben J. Slotman
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Max Dahele
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
71
|
Jin JY. Prospect of radiotherapy technology development in the era of immunotherapy. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:106-112. [PMID: 39034954 PMCID: PMC11256706 DOI: 10.1016/j.jncc.2022.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022] Open
Abstract
Radiotherapy (RT) is one of the important modalities for cancer treatments. Mounting evidence suggests that the host immune system is involved in the tumor cell killing during RT, and future RT technology development should aim to minimize radiation dose to the immune system while maintaining a sufficient dose to the tumor. A brief history of RT technology development is first summarized. Three RT technologies, namely FLASH RT, proton therapy, and spatially fractionated RT (SFRT), are singled out for the era of immunotherapy. Besides the technical aspects, the mechanism of FLASH effect is discussed, which is likely the combined results of the recombination effect, oxygen depletion effect and immune sparing effect. The proton therapy should have the advantage of causing much less immune damage in comparison to X-ray based RT due to the Bragg peak. However, the relative biological effectiveness (RBE) uncertainty and range uncertainty may hinder the translation of this advantage into clinical benefit. Research approaches to overcome these two technical hurdles are discussed. Various SFRT approaches and their application are reviewed. These approaches are categorized as single-field 1D/2D SFRT, multi-field 3D SFRT and quasi-3D SFRT techniques. A 3D SFRT approach, which is achieved by placing the Bragg peak of a proton 2D SFRT field in discrete depths, may have special potential because all 3 technologies (FLASH RT, proton therapy and SFRT) may be used in this approach.
Collapse
Affiliation(s)
- Jian-Yue Jin
- Radiation Oncology, Seidman Cancer Center, University Hospitals, Case Western Reserve University, Cleveland, United States
| |
Collapse
|
72
|
Hart A, Cecchi D, Giguère C, Larose F, Therriault-Proulx F, Esplen N, Beaulieu L, Bazalova-Carter M. Lead-doped scintillator dosimeters for detection of ultrahigh dose-rate x-rays. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac69a5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/22/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Lead-doped scintillator dosimeters may be well suited for the dosimetry of FLASH-capable x-ray radiotherapy beams. Our study explores the dose rate dependence and temporal resolution of scintillators that makes them promising in the accurate detection of ultrahigh dose-rate (UHDR) x-rays. Approach. We investigated the response of scintillators with four material compositions to UHDR x-rays produced by a conventional x-ray tube. Scintillator output was measured using the HYPERSCINT-RP100 dosimetry research platform. Measurements were acquired at high frame rates (400 fps) which allowed for accurate dose measurements of sub-second radiation exposures from 1 to 100 ms. Dose-rate dependence was assessed by scaling tube current of the x-ray tube. Scintillator measurements were validated against Monte Carlo simulations of the probe geometries and UHDR x-ray system. Calibration factors converting dose-to-medium to dose-to-water were obtained from simulation data of plastic and lead-doped scintillator materials. Main Results. The results of this work suggest that lead-doped scintillators were dose-rate independent for UHDR x-rays from 1.1 to 40.1 Gy s−1 and capable of measuring conventional radiotherapy dose-rates (0.1 Gy s−1) at extended distance from the x-ray focal spot. Dose-to-water measured with a 5% lead-doped scintillator detector agreed with simulations within 0.6%. Significance. Lead-doped scintillators may be a valuable tool for the accurate real-time dosimetry of FLASH-capable UHDR x-ray beams.
Collapse
|
73
|
Tinganelli W, Weber U, Puspitasari A, Simoniello P, Abdollahi A, Oppermann J, Schuy C, Horst F, Helm A, Fournier C, Durante M. FLASH with carbon ions: tumor control, normal tissue sparing, and distal metastasis in a mouse osteosarcoma model. Radiother Oncol 2022; 175:185-190. [DOI: 10.1016/j.radonc.2022.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 12/30/2022]
|
74
|
Cui S, Pratx G. 3D computational model of oxygen depletion kinetics in brain vasculature during FLASH RT, and its implications for in vivo oximetry experiments. Med Phys 2022; 49:3914-3925. [PMID: 35393643 DOI: 10.1002/mp.15642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/19/2022] [Accepted: 03/23/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Ultra-high dose rate irradiation, also known as FLASH, has been shown to improve the therapeutic ratio of radiation therapy (RT). The mechanism behind this effect has been partially explained by the radiochemical oxygen depletion (ROD) hypothesis, which attributes the protection of the normal tissue to the induction of transient hypoxia by ROD. To better understand the contribution of oxygen to the FLASH effect, it is necessary to measure oxygen (O2 ) in vivo during FLASH irradiation. This study's goal is to determine the temporal resolution required to accurately measure the rapidly changing oxygen concentration immediately after FLASH irradiation. METHODS We conducted a computational simulation of oxygen dynamics using a real vascular model that was constructed from a public fluorescence microscopy dataset. The dynamic distribution of oxygen tension (po2 ) during and after FLASH RT was modeled by a partial differential equation (PDE) considering oxygen diffusion, metabolism, and ROD. The underestimation of ROD due to oxygen recovery was evaluated assuming either complete or partial depletion, and a range of possible values for parameters such as oxygen diffusion, consumption, vascular po2 and vessel density. RESULT The O2 concentration recovers rapidly after FLASH RT. Assuming a temporal resolution of 0.5 s, the estimated ROD is only 50.7% and 36.7% of its actual value in cases of partial and complete depletion, respectively. Additionally, the underestimation of ROD is highly dependent on the vascular density. To estimate ROD rate with 90% accuracy, temporal resolution on the order of milliseconds is required considering the uncertainty in parameters involved, especially, the diverse vascular density of the tissue. CONCLUSION The rapid recovery of O2 poses a great challenge for in vivo ROD measurements during FLASH RT. Temporal resolution on the order of milliseconds is recommended for ROD measurements in the normal tissue. Further work is warranted to investigate whether the same requirements apply to tumors, given their irregular vasculature. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sunan Cui
- Department of Radiation Oncology, Stanford University, Palo Alto, California, USA
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, Palo Alto, California, USA
| |
Collapse
|
75
|
Ohsawa D, Hiroyama Y, Kobayashi A, Kusumoto T, Kitamura H, Hojo S, Kodaira S, Konishi T. DNA strand break induction of aqueous plasmid DNA exposed to 30 MeV protons at ultra-high dose rate. JOURNAL OF RADIATION RESEARCH 2022; 63:255-260. [PMID: 34952540 PMCID: PMC8944314 DOI: 10.1093/jrr/rrab114] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/22/2021] [Indexed: 06/14/2023]
Abstract
Radiation cancer therapy with ultra-high dose rate exposure, so called FLASH radiotherapy, appears to reduce normal tissue damage without compromising tumor response. The aim of this study was to clarify whether FLASH exposure of proton beam would be effective in reducing the DNA strand break induction. We applied a simple model system, pBR322 plasmid DNA in aqueous 1 × TE solution, where DNA single strand breaks (SSBs) and double strand breaks (DSBs) can be precisely quantified by gel electrophoresis. Plasmid DNA were exposed to 27.5 MeV protons in the conventional dose rate of 0.05 Gy/s (CONV) and ultra-high dose rate of 40 Gy/s (FLASH). With both dose rate, the kinetics of the SSB and DSB induction were proportional to absorbed dose. The SSB induction of FLASH was significantly less than CONV, which were 8.79 ± 0.14 (10-3 SSB per Gy per molecule) and 10.8 ± 0.68 (10-3 SSB per Gy per molecule), respectively. The DSB induction of FLASH was also slightly less than CONV, but difference was not significant. Altogether, 27.5 MeV proton beam at 40 Gy/s reduced SSB and not DSB, thus its effect may not be significant in reducing lethal DNA damage that become apparent in acute radiation effect.
Collapse
Affiliation(s)
- Daisuke Ohsawa
- Single Cell Radiation Biology Group, National Institutes for Quantum Science and Technology; 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
| | - Yota Hiroyama
- Single Cell Radiation Biology Group, National Institutes for Quantum Science and Technology; 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
- Graduate School of Health Sciences, Hirosaki University, 66-1 Hommachi, Hirosaki-shi, Aomori, 036-8564, Japan
| | - Alisa Kobayashi
- Single Cell Radiation Biology Group, National Institutes for Quantum Science and Technology; 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
- Electrostatic Accelerator Operation Section, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
| | - Tamon Kusumoto
- Single Cell Radiation Biology Group, National Institutes for Quantum Science and Technology; 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
- Radiation Measurement Research Group, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
| | - Hisashi Kitamura
- Radiation Measurement Research Group, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
| | - Satoru Hojo
- Cyclotron Operation Section, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
| | - Satoshi Kodaira
- Single Cell Radiation Biology Group, National Institutes for Quantum Science and Technology; 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
- Radiation Measurement Research Group, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
| | - Teruaki Konishi
- Single Cell Radiation Biology Group, National Institutes for Quantum Science and Technology; 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
- Graduate School of Health Sciences, Hirosaki University, 66-1 Hommachi, Hirosaki-shi, Aomori, 036-8564, Japan
| |
Collapse
|
76
|
Friedl AA, Prise KM, Butterworth KT, Montay-Gruel P, Favaudon V. Radiobiology of the FLASH effect. Med Phys 2022; 49:1993-2013. [PMID: 34426981 DOI: 10.1002/mp.15184] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Radiation exposures at ultrahigh dose rates (UHDRs) at several orders of magnitude greater than in current clinical radiotherapy (RT) have been shown to manifest differential radiobiological responses compared to conventional (CONV) dose rates. This has led to studies investigating the application of UHDR for therapeutic advantage (FLASH-RT) that have gained significant interest since the initial discovery in 2014 that demonstrated reduced lung toxicity with equivalent levels of tumor control compared with conventional dose-rate RT. Many subsequent studies have demonstrated the potential protective role of FLASH-RT in normal tissues, yet the underlying molecular and cellular mechanisms of the FLASH effect remain to be fully elucidated. Here, we summarize the current evidence of the FLASH effect and review FLASH-RT studies performed in preclinical models of normal tissue response. To critically examine the underlying biological mechanisms of responses to UHDR radiation exposures, we evaluate in vitro studies performed with normal and tumor cells. Differential responses to UHDR versus CONV irradiation recurrently involve reduced inflammatory processes and differential expression of pro- and anti-inflammatory genes. In addition, frequently reduced levels of DNA damage or misrepair products are seen after UHDR irradiation. So far, it is not clear what signal elicits these differential responses, but there are indications for involvement of reactive species. Different susceptibility to FLASH effects observed between normal and tumor cells may result from altered metabolic and detoxification pathways and/or repair pathways used by tumor cells. We summarize the current theories that may explain the FLASH effect and highlight important research questions that are key to a better mechanistic understanding and, thus, the future implementation of FLASH-RT in the clinic.
Collapse
Affiliation(s)
- Anna A Friedl
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Kevin M Prise
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Karl T Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Pierre Montay-Gruel
- Department of Radiation Oncology, University of California at Irvine, Irvine, California, USA
| | - Vincent Favaudon
- Institut Curie, Inserm U 1021-CNRS UMR 3347, Université Paris-Saclay, PSL Research University, Centre Universitaire, Orsay, France
| |
Collapse
|
77
|
Kim MM, Darafsheh A, Schuemann J, Dokic I, Lundh O, Zhao T, Ramos-Méndez J, Dong L, Petersson K. Development of Ultra-High Dose-Rate (FLASH) Particle Therapy. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022; 6:252-262. [PMID: 36092270 PMCID: PMC9457346 DOI: 10.1109/trpms.2021.3091406] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Research efforts in FLASH radiotherapy have increased at an accelerated pace recently. FLASH radiotherapy involves ultra-high dose rates and has shown to reduce toxicity to normal tissue while maintaining tumor response in pre-clinical studies when compared to conventional dose rate radiotherapy. The goal of this review is to summarize the studies performed to-date with proton, electron, and heavy ion FLASH radiotherapy, with particular emphasis on the physical aspects of each study and the advantages and disadvantages of each modality. Beam delivery parameters, experimental set-up, and the dosimetry tools used are described for each FLASH modality. In addition, modeling efforts and treatment planning for FLASH radiotherapy is discussed along with potential drawbacks when translated into the clinical setting. The final section concludes with further questions that have yet to be answered before safe clinical implementation of FLASH radiotherapy.
Collapse
Affiliation(s)
- Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arash Darafsheh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ivana Dokic
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 222, Heidelberg, Germany
| | - Olle Lundh
- Department of Physics, Lund University, Lund, Sweden
| | - Tianyu Zhao
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - José Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kristoffer Petersson
- Department of Oncology, The Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
- Radiation Physics, Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
78
|
Abstract
FLASH radiotherapy is a novel technique that has been shown in numerous preclinical in vivo studies to have the potential to be the next important improvement in cancer treatment. However, the biological mechanisms responsible for the selective FLASH sparing effect of normal tissues are not yet known. An optimal translation of FLASH radiotherapy into the clinic would require a good understanding of the specific beam parameters that induces a FLASH effect, environmental conditions affecting the response, and the radiobiological mechanisms involved. Even though the FLASH effect has generally been considered as an in vivo effect, studies finding these answers would be difficult and ethically challenging to carry out solely in animals. Hence, suitable in vitro studies aimed towards finding these answers are needed. In this review, we describe and summarise several in vitro assays that have been used or could be used to finally elucidate the mechanisms behind the FLASH effect.
Collapse
|
79
|
Okoro CM, Schüler E, Taniguchi CM. The Therapeutic Potential of FLASH-RT for Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14051167. [PMID: 35267474 PMCID: PMC8909276 DOI: 10.3390/cancers14051167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Ultra-high dose rate radiation, widely nicknamed FLASH-RT, kills tumors without significantly damaging nearby normal tissues. This selective sparing of normal tissue by FLASH-RT tissue is called the FLASH effect. This review explores some of the proposed mechanisms of the FLASH effect and the current data that might support its use in pancreatic cancer. Since radiation for pancreatic cancer treatment is limited by GI toxicity issues and is a disease with one of the lowest five-year survival rates, FLASH-RT could have a large impact in the treatment of this disease with further study. Abstract Recent preclinical evidence has shown that ionizing radiation given at an ultra-high dose rate (UHDR), also known as FLASH radiation therapy (FLASH-RT), can selectively reduce radiation injury to normal tissue while remaining isoeffective to conventional radiation therapy (CONV-RT) with respect to tumor killing. Unresectable pancreatic cancer is challenging to control without ablative doses of radiation, but this is difficult to achieve without significant gastrointestinal toxicity. In this review article, we explore the propsed mechanisms of FLASH-RT and its tissue-sparing effect, as well as its relevance and suitability for the treatment of pancreatic cancer. We also briefly discuss the challenges with regard to dosimetry, dose rate, and fractionation for using FLASH-RT to treat this disease.
Collapse
Affiliation(s)
- Chidi M. Okoro
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emil Schüler
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (E.S.); (C.M.T.)
| | - Cullen M. Taniguchi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (E.S.); (C.M.T.)
| |
Collapse
|
80
|
Krieger M, van de Water S, Folkerts MM, Mazal A, Fabiano S, Bizzocchi N, Weber DC, Safai S, Lomax AJ. A quantitative FLASH effectiveness model to reveal potentials and pitfalls of high dose rate proton therapy. Med Phys 2022; 49:2026-2038. [PMID: 35032035 PMCID: PMC9305944 DOI: 10.1002/mp.15459] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/14/2021] [Accepted: 12/17/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose In ultrahigh dose rate radiotherapy, the FLASH effect can lead to substantially reduced healthy tissue damage without affecting tumor control. Although many studies show promising results, the underlying biological mechanisms and the relevant delivery parameters are still largely unknown. It is unclear, particularly for scanned proton therapy, how treatment plans could be optimized to maximally exploit this protective FLASH effect. Materials and Methods To investigate the potential of pencil beam scanned proton therapy for FLASH treatments, we present a phenomenological model, which is purely based on experimentally observed phenomena such as potential dose rate and dose thresholds, and which estimates the biologically effective dose during FLASH radiotherapy based on several parameters. We applied this model to a wide variety of patient geometries and proton treatment planning scenarios, including transmission and Bragg peak plans as well as single‐ and multifield plans. Moreover, we performed a sensitivity analysis to estimate the importance of each model parameter. Results Our results showed an increased plan‐specific FLASH effect for transmission compared with Bragg peak plans (19.7% vs. 4.0%) and for single‐field compared with multifield plans (14.7% vs. 3.7%), typically at the cost of increased integral dose compared to the clinical reference plan. Similar FLASH magnitudes were found across the different treatment sites, whereas the clinical benefits with respect to the clinical reference plan varied strongly. The sensitivity analysis revealed that the threshold dose as well as the dose per fraction strongly impacted the FLASH effect, whereas the persistence time only marginally affected FLASH. An intermediate dependence of the FLASH effect on the dose rate threshold was found. Conclusions Our model provided a quantitative measure of the FLASH effect for various delivery and patient scenarios, supporting previous assumptions about potentially promising planning approaches for FLASH proton therapy. Positive clinical benefits compared to clinical plans were achieved using hypofractionated, single‐field transmission plans. The dose threshold was found to be an important factor, which may require more investigation.
Collapse
Affiliation(s)
- Miriam Krieger
- Varian Medical Systems Particle Therapy GmbH & Co. KG, Troisdorf, 53842, Germany.,Center for Proton Therapy, Paul Scherrer Institute, Villigen, 5232, Switzerland
| | - Steven van de Water
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, 5232, Switzerland
| | | | | | - Silvia Fabiano
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, 5232, Switzerland.,Department of Physics, ETH Zurich, Zurich, 8092, Switzerland.,Department of Radiation Oncology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Nicola Bizzocchi
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, 5232, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, 5232, Switzerland.,Department of Radiation Oncology, University Hospital Zurich, Zurich, 8091, Switzerland.,Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, 5232, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, 5232, Switzerland.,Department of Physics, ETH Zurich, Zurich, 8092, Switzerland
| |
Collapse
|
81
|
Wei S, Lin H, Choi JI, Press RH, Lazarev S, Kabarriti R, Hajj C, Hasan S, Chhabra AM, Simone CB, Kang M. FLASH Radiotherapy Using Single-Energy Proton PBS Transmission Beams for Hypofractionation Liver Cancer: Dose and Dose Rate Quantification. Front Oncol 2022; 11:813063. [PMID: 35096620 PMCID: PMC8794777 DOI: 10.3389/fonc.2021.813063] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
PURPOSE This work aims to study the dose and ultra-high-dose rate characteristics of transmission proton pencil beam scanning (PBS) FLASH radiotherapy (RT) for hypofractionation liver cancer based on the parameters of a commercially available proton system operating under FLASH mode. METHODS AND MATERIALS An in-house treatment planning software (TPS) was developed to perform intensity-modulated proton therapy (IMPT) FLASH-RT planning. Single-energy transmission proton PBS plans of 4.5 Gy × 15 fractions were optimized for seven consecutive hepatocellular carcinoma patients, using 2 and 5 fields combined with 1) the minimum MU/spot chosen between 100 and 400, and minimum spot time (MST) of 2 ms, and 2) the minimum MU/spot of 100, and MST of 0.5 ms, based upon considerations in target uniformities, OAR dose constraints, and OAR FLASH dose rate coverage. Then, the 3D average dose rate distribution was calculated. The dose metrics for the mean dose of Liver-GTV and other major OARs were characterized to evaluate the dose quality for the different combinations of field numbers and minimum spot times compared to that of conventional IMPT plans. Dose rate quality was evaluated using 40 Gy/s volume coverage (V40Gy/s). RESULTS All plans achieved favorable and comparable target uniformities, and target uniformity improved as the number of fields increased. For OARs, no significant dose differences were observed between plans of different field numbers and the same MST. For plans using shorter MST and the same field numbers, better sparing was generally observed in most OARs and was statistically significant for the chest wall. However, the FLASH dose rate coverage V40Gy/s was increased by 20% for 2-field plans compared to 5-field plans in most OARs with 2-ms MST, which was less evident in the 0.5-ms cases. For 2-field plans, dose metrics and V40Gy/s of select OARs have large variations due to the beam angle selection and variable distances to the targets. The transmission plans generally yielded inferior dosimetric quality to the conventional IMPT plans. CONCLUSION This is the first attempt to assess liver FLASH treatment planning and demonstrates that it is challenging for hypofractionation with smaller fractional doses (4.5 Gy/fraction). Using fewer fields can allow higher minimum MU/spot, resulting in higher OAR FLASH dose rate coverages while achieving similar plan quality compared to plans with more fields. Shorter MST can result in better plan quality and comparable or even better FLASH dose rate coverage.
Collapse
Affiliation(s)
- Shouyi Wei
- New York Proton Center, New York, NY, United States
| | - Haibo Lin
- New York Proton Center, New York, NY, United States
| | | | | | | | | | - Carla Hajj
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | | | | | - Minglei Kang
- New York Proton Center, New York, NY, United States
| |
Collapse
|
82
|
Bertho A, Iturri L, Prezado Y. Radiation-induced immune response in novel radiotherapy approaches FLASH and spatially fractionated radiotherapies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 376:37-68. [PMID: 36997269 DOI: 10.1016/bs.ircmb.2022.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The last several years have revealed increasing evidence of the immunomodulatory role of radiation therapy. Radiotherapy reshapes the tumoral microenvironment can shift the balance toward a more immunostimulatory or immunosuppressive microenvironment. The immune response to radiation therapy appears to depend on the irradiation configuration (dose, particle, fractionation) and delivery modes (dose rate, spatial distributions). Although an optimal irradiation configuration (dose, temporal fractionation, spatial dose distribution, etc.) has not yet been determined, temporal schemes employing high doses per fraction appear to favor radiation-induced immune response through immunogenic cell death. Through the release of damage-associated molecular patterns and the sensing of double-stranded DNA and RNA breaks, immunogenic cell death activates the innate and adaptive immune response, leading to tumor infiltration by effector T cells and the abscopal effect. Novel radiotherapy approaches such as FLASH and spatially fractionated radiotherapies (SFRT) strongly modulate the dose delivery method. FLASH-RT and SFRT have the potential to trigger the immune system effectively while preserving healthy surrounding tissues. This manuscript reviews the current state of knowledge on the immunomodulation effects of these two new radiotherapy techniques in the tumor, healthy immune cells and non-targeted regions, as well as their therapeutic potential in combination with immunotherapy.
Collapse
|
83
|
Moon EJ, Petersson K, Oleina MM. The importance of hypoxia in radiotherapy for the immune response, metastatic potential and FLASH-RT. Int J Radiat Biol 2022; 98:439-451. [PMID: 34726575 PMCID: PMC7612434 DOI: 10.1080/09553002.2021.1988178] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Hypoxia (low oxygen) is a common feature of solid tumors that has been intensely studied for more than six decades. Here we review the importance of hypoxia to radiotherapy with a particular focus on the contribution of hypoxia to immune responses, metastatic potential and FLASH radiotherapy, active areas of research by leading women in the field. CONCLUSION Although hypoxia-driven metastasis and immunosuppression can negatively impact clinical outcome, understanding these processes can also provide tumor-specific vulnerabilities that may be therapeutically exploited. The different oxygen tensions present in tumors and normal tissues may underpin the beneficial FLASH sparing effect seen in normal tissue and represents a perfect example of advances in the field that can leverage tumor hypoxia to improve future radiotherapy treatments.
Collapse
Affiliation(s)
- Eui Jung Moon
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK,Equal Contribution and to whom correspondence should be addressed. ; :
| | - Kristoffer Petersson
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK,Radiation Physics, Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Sweden,Equal Contribution and to whom correspondence should be addressed. ; :
| | - Monica M. Oleina
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK,Equal Contribution and to whom correspondence should be addressed. ; :
| |
Collapse
|
84
|
Wang X, Luo H, Zheng X, Ge H. FLASH radiotherapy: Research process from basic experimentation to clinical application. PRECISION RADIATION ONCOLOGY 2021. [DOI: 10.1002/pro6.1140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Xiaohui Wang
- Department of Radiation Oncology Affiliated Cancer Hospital of Zhengzhou University Zhengzhou China
| | - Hui Luo
- Department of Radiation Oncology Affiliated Cancer Hospital of Zhengzhou University Zhengzhou China
| | - Xiaoli Zheng
- Department of Radiation Oncology Affiliated Cancer Hospital of Zhengzhou University Zhengzhou China
| | - Hong Ge
- Department of Radiation Oncology Affiliated Cancer Hospital of Zhengzhou University Zhengzhou China
| |
Collapse
|
85
|
Su S, Atwal P, Lobo J, Duzenli C, Popescu IA. A new DOSXYZnrc method for Monte Carlo simulations of 4D dose distributions. Phys Med Biol 2021; 66. [PMID: 34787104 DOI: 10.1088/1361-6560/ac3a24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/16/2021] [Indexed: 11/12/2022]
Abstract
The purpose of this study is to present a novel method for generating Monte Carlo 4D dose distributions in a single DOSXYZnrc simulation. During a standard simulation, individual energy deposition events are summed up to generate a 3D dose distribution and their associated temporal information is discarded. This means that in order to determine dose distributions as a function of time, separate simulations would have to be run for each interval of interest. Consequently, it has not been clinically feasible until now to routinely perform Monte Carlo simulations of dose rate, time-resolved dose accumulation, or electronic portal imaging devices (EPID) cine-mode images for volumetric modulated arc therapy (VMAT) plans. To overcome this limitation, we modified DOSXYZnrc and defined new input and output variables that allow a time-like parameter associated with each particle history to be binned in a user-defined manner. Under the new code version, computation times are the same as for a standard simulation, and the time-integrated 4D dose is identical to the standard 3D dose. We present a comparison of scintillator measurements and Monte Carlo simulations for dose rate during a VMAT beam delivery, a study of dose rate in a VMAT total body irradiation plan, and simulations of transit (through-patient) EPID cine-mode images.
Collapse
Affiliation(s)
- S Su
- BC Cancer, Vancouver, Canada
| | - P Atwal
- BC Cancer, Abbotsford, Canada
| | - J Lobo
- University of British Columbia, Vancouver, Canada
| | - C Duzenli
- BC Cancer, Vancouver, Canada.,University of British Columbia, Vancouver, Canada
| | - I A Popescu
- BC Cancer, Vancouver, Canada.,University of British Columbia, Vancouver, Canada
| |
Collapse
|
86
|
Jin JY, Hu C, Xiao Y, Zhang H, Paulus R, Ellsworth SG, Schild SE, Bogart JA, Dobelbower MC, Kavadi VS, Narayan S, Iyengar P, Robinson C, Greenberger JS, Koprowski C, Machtay M, Curran W, Choy H, Bradley JD, Kong FM(S. Higher Radiation Dose to the Immune Cells Correlates with Worse Tumor Control and Overall Survival in Patients with Stage III NSCLC: A Secondary Analysis of RTOG0617. Cancers (Basel) 2021; 13:6193. [PMID: 34944813 PMCID: PMC8699524 DOI: 10.3390/cancers13246193] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 12/31/2022] Open
Abstract
Background: We hypothesized that the Effective radiation Dose to the Immune Cells (EDIC) in circulating blood is a significant factor for the treatment outcome in patients with locally advanced non-small-cell lung cancer (NSCLC). Methods: This is a secondary study of a phase III trial, NRG/RTOG 0617, in patients with stage III NSCLC treated with radiation-based treatment. The EDIC was computed as equivalent uniform dose to the entire blood based on radiation doses to all blood-containing organs, with consideration of blood flow and fractionation effect. The primary endpoint was overall survival (OS), and the secondary endpoints were progression-free survival (PFS) and local progression-free survival (LPFS). The EDIC-survival relationship was analyzed with consideration of clinical significant factors. Results: A total of 456 patients were eligible. The median EDIC values were 5.6 Gy (range, 2.1-12.2 Gy) and 6.3 Gy (2.1-11.6 Gy) for the low- and high-dose groups, respectively. The EDIC was significantly associated with OS (hazard ratio [HR] = 1.12, p = 0.005) and LPFS (HR = 1.09, p = 0.02) but PFS (HR = 1.05, p = 0.17) after adjustment for tumor dose, gross tumor volume and other factors. OS decreased with an increasing EDIC in a non-linear pattern: the two-year OS decreased first with a slope of 8%/Gy when the EDIC < 6 Gy, remained relatively unchanged when the EDIC was 6-8 Gy, and followed by a further reduction with a slope of 12%/Gy when the EDIC > 8 Gy. Conclusions: The EDIC is a significant independent risk factor for poor OS and LPFS in RTOG 0617 patients with stage III NSCLC, suggesting that radiation dose to circulating immune cells is critical for tumor control. Organ at risk for the immune system should be considered during RT plan.
Collapse
Affiliation(s)
- Jian-Yue Jin
- Department of Radiation Oncology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH 44106, USA;
| | - Chen Hu
- NRG Oncology Statistics and Data Management Center, Philadelphia, PA 19103, USA or (C.H.); (R.P.)
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Ying Xiao
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19103, USA;
| | - Hong Zhang
- Department of Radiation Oncology, School of Medicine, University of Maryland, Maryland, MD 20742, USA;
| | - Rebecca Paulus
- NRG Oncology Statistics and Data Management Center, Philadelphia, PA 19103, USA or (C.H.); (R.P.)
| | - Susannah G. Ellsworth
- Department of Radiation Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 16251, USA; (S.G.E.); (J.S.G.)
| | - Steven E. Schild
- Department of Radiation Oncology, Mayo Clinic Hospital, Phoenix, AZ 85054, USA;
| | - Jeffrey A. Bogart
- Department of Radiation Oncology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA;
| | - Michael Chris Dobelbower
- Department of Radiation Oncology, University of Alabama at Birmingham Cancer Center, Birmingham, AL 35233, USA;
| | | | - Samir Narayan
- Michigan Cancer Research Consortium CCOP, Ann Arbor, MI 48106, USA;
| | - Puneeth Iyengar
- Department of Radiation Oncology, University of Texas Southwestern Medical School, Dallas, TX 75235, USA; (P.I.); (H.C.)
| | - Cliff Robinson
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO 63108, USA; (C.R.); (J.D.B.)
| | - Joel S. Greenberger
- Department of Radiation Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 16251, USA; (S.G.E.); (J.S.G.)
| | | | - Mitchell Machtay
- Department of Radiation Oncology, Penn State University Cancer Institute, Hershey, PA 17033, USA;
| | - Walter Curran
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA;
| | - Hak Choy
- Department of Radiation Oncology, University of Texas Southwestern Medical School, Dallas, TX 75235, USA; (P.I.); (H.C.)
| | - Jeffrey D. Bradley
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO 63108, USA; (C.R.); (J.D.B.)
| | - Feng-Ming (Spring) Kong
- Department of Clinical Oncology, Hong Kong University Shenzhen Hospital, Shenzhen 518009, China
- Department of Clinical Oncology, Queen Mary Hospital, Li Ka Shing Medical School, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
87
|
Can Rational Combination of Ultra-high Dose Rate FLASH Radiotherapy with Immunotherapy Provide a Novel Approach to Cancer Treatment? Clin Oncol (R Coll Radiol) 2021; 33:713-722. [PMID: 34551871 DOI: 10.1016/j.clon.2021.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
FLASH radiotherapy (FLASH-RT) delivers radiation treatment at an ultra-high dose rate that is several orders of magnitude higher than current clinical practice. In multiple preclinical studies, FLASH-RT has shown consistent normal tissue sparing effects while preserving equivalent antitumour activity in comparison with conventional dose rate radiation treatment. This is known as the 'FLASH effect'. Given the recent research interest in combining hypofractionated radiotherapy with immunotherapy to try to improve clinical outcomes, there is an intriguing clinical question as to whether FLASH irradiation may be a rational partner to combine with immune modulating drugs? To better predict the synergistic effect of both modalities, here we review the biological mechanisms of how FLASH differentially impacts the immune landscape, including circulating immune cells, tumour microenvironment and the inflammatory response. In order to make recommendations for future research, we summarise all published studies that investigated the immune modulatory effects of FLASH-RT and further explore the scientific reasons for combining FLASH with immunotherapy for potential clinical applications.
Collapse
|
88
|
Potetnya VI, Koryakina EV, Troshina MV, Koryakin SN. Use of the chemical Fricke dosimeter and its modifications for dosimetry of gamma neutron radiation of a pulsed reactor. NUCLEAR ENERGY AND TECHNOLOGY 2021. [DOI: 10.3897/nucet.7.74149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The paper investigates the characteristics of the chemical Fricke dosimeter (with the standard composition (D1), without NaCl addition to the solution (D2), without NaCl but with a tenfold increased concentration of Fe2+ (D3)) under continuous and pulsed irradiation with an ultra-high dose rate of the BARS-6 reactor with unshielded metallic cores.
The dosimeter radiosensitivity had a linear dependence on the gamma neutron radiation dose in a range of 25 to 750 Gy and was respectively 1.96 ± 0.05 μGy–1 (D1), 2.04 ± 0.05 μGy–1 (D2), and 2.08 ± 0.5 μGy–1 (D3) in the continuous irradiation mode, and 1.24 ± 0.05 μGy–1, 2.00 ± 0.05 μGy–1, and 1.94 ± 0.05 μGy–1 in the pulsed irradiation mode. This makes ≈ 60% of their sensitivity to the 60Со gamma radiation (3.40 ± 0.02 μGy–1), and 36%, 1.6 times as less, for a standard Fricke dosimeter irradiated in the pulsed mode. The experimental value of the radiation chemical yield, Gn(Fe3+), for all solution modifications and both irradiation modes varied slightly and was 0.84 ± 0.11 μM/J on the average, except for the standard solution in the pulsed mode (0.66 ± 0.07 μM/J). The neutron doses determined by chemical and activation dosimeters coincided within the error limits, but the chemical dosimeter readings were systematically higher, by about 20%.
Therefore, in the fission spectrum neutron dose rate range of 0.4 to 7×108 Gy/min, there is no dose rate effect both in the standard Fricke dosimeter version (without NaCl) and in the modified version, which makes it possible to use modified Fricke dosimeters to assess the physical and dosimetry characteristics of mixed gamma neutron radiation beams.
Collapse
|
89
|
Zhu H, Li J, Deng X, Qiu R, Wu Z, Zhang H. Modeling of cellular response after FLASH irradiation: a quantitative analysis based on the radiolytic oxygen depletion hypothesis. Phys Med Biol 2021; 66. [PMID: 34464946 DOI: 10.1088/1361-6560/ac226d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/31/2021] [Indexed: 11/12/2022]
Abstract
Purpose.Recent studies suggest ultra-high dose rate (FLASH) irradiation can spare normal tissues from radiotoxicity, while efficiently controlling the tumor, and this is known as the 'FLASH effect'. This study performed theoretical analyses about the impact of radiolytic oxygen depletion (ROD) on the cellular responses after FLASH irradiation.Methods.Monte Carlo simulation was used to model the ROD process, determine the DNA damage, and calculate the amount of oxygen depleted (LROD) during FLASH exposure. A mathematical model was applied to analyze oxygen tension (pO2) distribution in human tissues and the recovery of pO2after FLASH irradiation. DNA damage and cell survival fractions (SFs) after FLASH irradiation were calculated. The impact of initial cellular pO2, FLASH pulse number, pulse interval, and radiation quality of the source particles on ROD and subsequent cellular responses were systematically evaluated.Results.The simulated electronLRODrange was 0.38-0.43μM Gy-1when pO2ranged from 7.5 to 160 mmHg. The calculated DNA damage and SFs show that the radioprotective effect is only evident in cells with a low pO2. Different irradiation setups alter the cellular responses by modifying the pO2. Single pulse delivery or multi-pulse delivery with pulse intervals shorter than 10-50 ms resulted in fewer DNA damages and higher SFs. Source particles with a low linear energy transfer (LET) have a higher capacity to deplete oxygen, and thus, lead to a more conspicuous radioprotective effect.Conclusions. A systematic analysis of the cellular response following FLASH irradiation was performed to provided suggestions for future FLASH applications. The FLASH radioprotective effect due to ROD may only be observed in cells with a low pO2. Single pulse delivery or multi-pulse delivery with short pulse intervals are suggested for FLASH irradiation to avoid oxygen tension recovery during pulse intervals. Source particles with low LET are preferred for their conspicuous radioprotective effects.
Collapse
Affiliation(s)
- Hongyu Zhu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, People's Republic of China.,Department of Engineering Physics, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, People's Republic of China
| | - Junli Li
- Department of Engineering Physics, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, People's Republic of China
| | - Xiaowu Deng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, People's Republic of China
| | - Rui Qiu
- Department of Engineering Physics, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, People's Republic of China
| | - Zhen Wu
- Department of Engineering Physics, Tsinghua University, Beijing 100084, People's Republic of China.,Nuctech Company Limited, Beijing 100084, People's Republic of China
| | - Hui Zhang
- Department of Engineering Physics, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, People's Republic of China
| |
Collapse
|
90
|
Shin J, Xing S, McCullum L, Hammi A, Pursley J, Correa CA, Withrow J, Domal S, Bolch W, Paganetti H, Grassberger C. HEDOS-a computational tool to assess radiation dose to circulating blood cells during external beam radiotherapy based on whole-body blood flow simulations. Phys Med Biol 2021; 66:10.1088/1361-6560/ac16ea. [PMID: 34293735 PMCID: PMC8720566 DOI: 10.1088/1361-6560/ac16ea] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/22/2021] [Indexed: 11/11/2022]
Abstract
We have developed a time-dependent computational framework, hematological dose (HEDOS), to estimate dose to circulating blood cells from radiation therapy treatment fields for any treatment site. Two independent dynamic models were implemented in HEDOS: one describing the spatiotemporal distribution of blood particles (BPs) in organs and the second describing the time-dependent radiation field delivery. A whole-body blood flow network based on blood volumes and flow rates from ICRP Publication 89 was simulated to produce the spatiotemporal distribution of BPs in organs across the entire body using a discrete-time Markov process. Constant or time-varying transition probabilities were applied and their impact on transition time was investigated. The impact of treatment time and anatomical site were investigated using imaging data and dose distributions from a liver cancer and a brain cancer patient. The simulations revealed different dose levels to the circulating blood for brain irradiation compared to liver irradiation even for similar field sizes due to the different blood flow properties of the two organs. The volume of blood receiving any dose (V>0 Gy) after a single radiation fraction increases from 1.2% for a 1 s delivery time to 20.9% for 120 s delivery time for the brain cancer treatment, and from 10% (1 s) to 48.7% (120 s) for a liver cancer treatment. Other measures of the low-dose bath to the circulating blood such as the dose to small volumes of blood (D2%) decreases with longer delivery time. Furthermore, we demonstrate that the blood dose-volume histogram is highly sensitive to changes in the treatment time, indicating that dynamic modeling of blood flow and radiation fields is necessary to evaluate dose to circulating blood cells for the assessment of radiation-induced lymphopenia. HEDOS is publicly available and allows for the estimation of patient-specific dose to circulating blood cells based on organ DVHs, thus enabling the study of the impact of different treatment plans, dose rates, and fractionation schemes.
Collapse
Affiliation(s)
- Jungwook Shin
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Shu Xing
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Lucas McCullum
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Abdelkhalek Hammi
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Jennifer Pursley
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Camilo A Correa
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Julia Withrow
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Sean Domal
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Wesley Bolch
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Harald Paganetti
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Clemens Grassberger
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
91
|
Weber UA, Scifoni E, Durante M. FLASH radiotherapy with carbon ion beams. Med Phys 2021; 49:1974-1992. [PMID: 34318508 DOI: 10.1002/mp.15135] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
FLASH radiotherapy is considered a new potential breakthrough in cancer treatment. Ultra-high dose rates (>40 Gy/s) have been shown to reduce toxicity in the normal tissue without compromising tumor control, resulting in a widened therapeutic window. These high dose rates are more easily achievable in the clinic with charged particles, and clinical trials are, indeed, ongoing using electrons or protons. FLASH could be an attractive solution also for heavier ions such as carbon and could even enhance the therapeutic window. However, it is not yet known whether the FLASH effect will be the same as for sparsely ionizing radiation when densely ionizing carbons ions are used. Here we discuss the technical challenges in beam delivery and present a promising solution using 3D range-modulators in order to apply ultra-high dose rates (UHDR) compatible with FLASH with carbon ions. Furthermore, we will discuss the possible outcome of C-ion therapy at UHDR on the level of the radiobiological and radiation chemical effects.
Collapse
Affiliation(s)
- Uli Andreas Weber
- Biophysics Department, GSI Helhmoltzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Emanuele Scifoni
- Istituto Nazionale di Fisica Nucleare (INFN), Trento Institute for Fundamental Physics and Applications (TIFPA), Trento, Italy
| | - Marco Durante
- Biophysics Department, GSI Helhmoltzzentrum für Schwerionenforschung, Darmstadt, Germany.,Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
92
|
Khan S, Bassenne M, Wang J, Manjappa R, Melemenidis S, Breitkreutz DY, Maxim PG, Xing L, Loo BW, Pratx G. Multicellular Spheroids as In Vitro Models of Oxygen Depletion During FLASH Irradiation. Int J Radiat Oncol Biol Phys 2021; 110:833-844. [PMID: 33545301 DOI: 10.1016/j.ijrobp.2021.01.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/15/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE The differential response of normal and tumor tissues to ultrahigh-dose-rate radiation (FLASH) has raised new hope for treating solid tumors but, to date, the mechanism remains elusive. One leading hypothesis is that FLASH radiochemically depletes oxygen from irradiated tissues faster than it is replenished through diffusion. The purpose of this study was to investigate these effects within hypoxic multicellular tumor spheroids through simulations and experiments. METHODS AND MATERIALS Physicobiological equations were derived to model (1) the diffusion and metabolism of oxygen within spheroids; (2) its depletion through reactions involving radiation-induced radicals; and (3) the increase in radioresistance of spheroids, modeled according to the classical oxygen enhancement ratio and linear-quadratic response. These predictions were then tested experimentally in A549 spheroids exposed to electron irradiation at conventional (0.075 Gy/s) or FLASH (90 Gy/s) dose rates. Clonogenic survival, cell viability, and spheroid growth were scored postradiation. Clonogenic survival of 2 other cell lines was also investigated. RESULTS The existence of a hypoxic core in unirradiated tumor spheroids is predicted by simulations and visualized by fluorescence microscopy. Upon FLASH irradiation, this hypoxic core transiently expands, engulfing a large number of well-oxygenated cells. In contrast, oxygen is steadily replenished during slower conventional irradiation. Experimentally, clonogenic survival was around 3-fold higher in FLASH-irradiated spheroids compared with conventional irradiation, but no significant difference was observed for well-oxygenated 2-dimensional cultured cells. This differential survival is consistent with the predictions of the computational model. FLASH irradiation of spheroids resulted in a dose-modifying factor of around 1.3 for doses above 10 Gy. CONCLUSIONS Tumor spheroids can be used as a model to study FLASH irradiation in vitro. The improved survival of tumor spheroids receiving FLASH radiation confirms that ultrafast radiochemical oxygen depletion and its slow replenishment are critical components of the FLASH effect.
Collapse
Affiliation(s)
- Syamantak Khan
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Maxime Bassenne
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Jinghui Wang
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Rakesh Manjappa
- Department of Radiation Oncology, Stanford University, Stanford, California
| | | | | | - Peter G Maxim
- Department of Radiation Oncology, Indiana University, Indianapolis, Indiana
| | - Lei Xing
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, Stanford, California.
| |
Collapse
|
93
|
Boscolo D, Scifoni E, Durante M, Krämer M, Fuss MC. May oxygen depletion explain the FLASH effect? A chemical track structure analysis. Radiother Oncol 2021; 162:68-75. [PMID: 34214612 DOI: 10.1016/j.radonc.2021.06.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND PURPOSE Recent observations in animal models show that ultra-high dose rate ("FLASH") radiation treatment significantly reduces normal tissue toxicity maintaining an equivalent tumor control. The dependence of this "FLASH" effect on target oxygenation has led to the assumption that oxygen "depletion" could be its major driving force. MATERIALS AND METHODS In a bottom-up approach starting from the chemical track evolution of 1 MeV electrons in oxygenated water simulated with the TRAX-CHEM Monte Carlo code, we determine the oxygen consumption and radiolytic reactive oxygen species production following a short radiation pulse. Based on these values, the effective dose weighted by oxygen enhancement ratio (OER) or the in vitro cell survival under dynamic oxygen pressure is calculated and compared to that of conventional exposures, at constant OER. RESULTS We find an excellent agreement of our Monte Carlo predictions with the experimental value for radiolytic oxygen removal from oxygenated water. However, the application of the present model to published radiobiological experiment conditions shows that oxygen depletion can only have a negligible impact on radiosensitivity through oxygen enhancement, especially at typical experimental oxygenations where a FLASH effect has been observed. CONCLUSION We show that the magnitude and dependence of the "oxygen depletion" hypothesis are not consistent with the observed biological effects of FLASH irradiation. While oxygenation plays an undoubted role in mediating the FLASH effect, we conclude that state-of-the-art radiation chemistry models do not support oxygen depletion and radiation-induced transient hypoxia as the main mechanism.
Collapse
Affiliation(s)
- Daria Boscolo
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Emanuele Scifoni
- Trento Institute for Fundamental Physics and Applications (TIFPA), National Institute for Nuclear Physics (INFN), Trento, Italy
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany; Institut für Physik Kondensierter Materie, Technische Universität Darmstadt, Germany.
| | - Michael Krämer
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Martina C Fuss
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.
| |
Collapse
|
94
|
Pawelke J, Brand M, Hans S, Hideghéty K, Karsch L, Lessmann E, Löck S, Schürer M, Szabó ER, Beyreuther E. Electron dose rate and oxygen depletion protect zebrafish embryos from radiation damage. Radiother Oncol 2021; 158:7-12. [DOI: 10.1016/j.radonc.2021.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
|
95
|
van Marlen P, Dahele M, Folkerts M, Abel E, Slotman BJ, Verbakel W. Ultra-High Dose Rate Transmission Beam Proton Therapy for Conventionally Fractionated Head and Neck Cancer: Treatment Planning and Dose Rate Distributions. Cancers (Basel) 2021; 13:cancers13081859. [PMID: 33924627 PMCID: PMC8070061 DOI: 10.3390/cancers13081859] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/02/2021] [Accepted: 04/11/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Standard intensity-modulated proton therapy (IMPT) places the Bragg-peak in the target. However, it is also possible to use high energy proton transmission beams (TBs), where the Bragg-peak is placed outside the patient, irradiating with the beam section proximal to the Bragg-peak. TBs use only one energy, increase robustness, are insensitive to density changes and have sharper penumbras. TBs can also be delivered at ultra-high dose-rates (UHDRs, e.g., ≥40 Gy/s), which is one of the requirements for the FLASH-effect. The aim of this work was twofold: (1) comparison of TB-plan quality to IMPT and photon volumetric-modulated arc therapy (VMAT) for conventionally fractionated head-and-neck cancer; (2) analysis of TB-plan UHDR-metrics. We showed that TB-plan quality was comparable to IMPT for contoured organs at risk and better than VMAT. Any potential FLASH-effect would only further improve plan quality. TB plans can also be delivered quickly, which might facilitate higher patient through-put and enhance patient comfort. Abstract Transmission beam (TB) proton therapy (PT) uses single, high energy beams with Bragg-peak behind the target, sharp penumbras and simplified planning/delivery. TB facilitates ultra-high dose-rates (UHDRs, e.g., ≥40 Gy/s), which is a requirement for the FLASH-effect. We investigated (1) plan quality for conventionally-fractionated head-and-neck cancer treatment using spot-scanning proton TBs, intensity-modulated PT (IMPT) and photon volumetric-modulated arc therapy (VMAT); (2) UHDR-metrics. VMAT, 3-field IMPT and 10-field TB-plans, delivering 70/54.25 Gy in 35 fractions to boost/elective volumes, were compared (n = 10 patients). To increase spot peak dose-rates (SPDRs), TB-plans were split into three subplans, with varying spot monitor units and different gantry currents. Average TB-plan organs-at-risk (OAR) sparing was comparable to IMPT: mean oral cavity/body dose were 4.1/2.5 Gy higher (9.3/2.0 Gy lower than VMAT); most other OAR mean doses differed by <2 Gy. Average percentage of dose delivered at UHDRs was 46%/12% for split/non-split TB-plans and mean dose-averaged dose-rate 46/21 Gy/s. Average total beam-on irradiation time was 1.9/3.8 s for split/non-split plans and overall time including scanning 8.9/7.6 s. Conventionally-fractionated proton TB-plans achieved comparable OAR-sparing to IMPT and better than VMAT, with total beam-on irradiation times <10s. If a FLASH-effect can be demonstrated at conventional dose/fraction, this would further improve plan quality and TB-protons would be a suitable delivery system.
Collapse
Affiliation(s)
- Patricia van Marlen
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands; (M.D.); (B.J.S.); (W.V.)
- Correspondence:
| | - Max Dahele
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands; (M.D.); (B.J.S.); (W.V.)
| | - Michael Folkerts
- Varian Medical Systems, 3120 Hansen Way, Palo Alto, CA 94304, USA; (M.F.); (E.A.)
| | - Eric Abel
- Varian Medical Systems, 3120 Hansen Way, Palo Alto, CA 94304, USA; (M.F.); (E.A.)
| | - Ben J. Slotman
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands; (M.D.); (B.J.S.); (W.V.)
| | - Wilko Verbakel
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands; (M.D.); (B.J.S.); (W.V.)
| |
Collapse
|
96
|
Wang JL, Ma R, Kong W, Zhao R, Wang YY. Lymphopenia in Esophageal Cancer: What Have We Learned? Front Oncol 2021; 11:625963. [PMID: 33791213 PMCID: PMC8006429 DOI: 10.3389/fonc.2021.625963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/01/2021] [Indexed: 02/03/2023] Open
Abstract
Lymphopenia caused by disease or treatment is frequent in patients with cancer, which seriously affects the prognosis of these patients. Immune checkpoint inhibitors (ICIs) have garnered attention as one of the most promising strategies for the treatment of esophageal cancer (EC). The status of the immune system, such as, the lymphocyte count, is now considered to be an important biomarker for ICI treatments. Recognition of the significant impact of the lymphocyte count on the survival of patients with EC in the era of immunotherapy has revived interest in understanding the causes of lymphopenia and in developing strategies to predict, prevent and eliminate the adverse effect of lymphopenia. Here, we review what we have learned about lymphopenia in EC, including the prognostic and predictive value of lymphopenia in patients with EC, the predictors of lymphopenia, and the strategies to ameliorate the effect of lymphopenia in patients with EC.
Collapse
Affiliation(s)
- Jia-Lin Wang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, China.,Cancer Institute, Ningxia Medical University, Yinchuan, China
| | - Rong Ma
- Graduate School, Ningxia Medical University, Yinchuan, China
| | - Wei Kong
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, China.,Cancer Institute, Ningxia Medical University, Yinchuan, China
| | - Ren Zhao
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, China.,Cancer Institute, Ningxia Medical University, Yinchuan, China
| | - Yan-Yang Wang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, China.,Cancer Institute, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
97
|
Marcu LG, Bezak E, Peukert DD, Wilson P. Translational Research in FLASH Radiotherapy-From Radiobiological Mechanisms to In Vivo Results. Biomedicines 2021; 9:181. [PMID: 33670409 PMCID: PMC7918545 DOI: 10.3390/biomedicines9020181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/18/2023] Open
Abstract
FLASH radiotherapy, or the administration of ultra-high dose rate radiotherapy, is a new radiation delivery method that aims to widen the therapeutic window in radiotherapy. Thus far, most in vitro and in vivo results show a real potential of FLASH to offer superior normal tissue sparing compared to conventionally delivered radiation. While there are several postulations behind the differential behaviour among normal and cancer cells under FLASH, the full spectra of radiobiological mechanisms are yet to be clarified. Currently the number of devices delivering FLASH dose rate is few and is mainly limited to experimental and modified linear accelerators. Nevertheless, FLASH research is increasing with new developments in all the main areas: radiobiology, technology and clinical research. This paper presents the current status of FLASH radiotherapy with the aforementioned aspects in mind, but also to highlight the existing challenges and future prospects to overcome them.
Collapse
Affiliation(s)
- Loredana G Marcu
- Faculty of Informatics & Science, Department of Physics, University of Oradea, 410087 Oradea, Romania
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
- School of Physical Sciences, Department of Physics, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Dylan D Peukert
- School of Civil, Environmental & Mining Engineering, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
- STEM, University of South Australia, Adelaide, SA 5001, Australia
| | - Puthenparampil Wilson
- STEM, University of South Australia, Adelaide, SA 5001, Australia
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| |
Collapse
|