51
|
Huttinger AL, Wheeler DG, Gnyawali S, Dornbos D, Layzer JM, Venetos N, Talentino S, Musgrave NJ, Jones C, Bratton C, Joseph ME, Sen C, Sullenger BA, Nimjee SM. Ferric Chloride-induced Canine Carotid Artery Thrombosis: A Large Animal Model of Vascular Injury. J Vis Exp 2018. [PMID: 30247470 DOI: 10.3791/57981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Occlusive arterial thrombosis leading to cerebral ischemic stroke and myocardial infarction contributes to ~13 million deaths every year globally. Here, we have translated a vascular injury model from a small animal into a large animal (canine), with slight modifications that can be used for pre-clinical screening of prophylactic and thrombolytic agents. In addition to the surgical methods, the modified protocol describes the step-by-step methods to assess carotid artery canalization by angiography, detailed instructions to process both the brain and carotid artery for histological analysis to verify carotid canalization and cerebral hemorrhage, and specific parameters to complete an assessment of downstream thromboembolic events by utilizing magnetic resonance imaging (MRI). In addition, specific procedural changes from the previously well-established small animal model necessary to translate into a large animal (canine) vascular injury are discussed.
Collapse
Affiliation(s)
| | | | | | - David Dornbos
- Department of Neurological Surgery, Ohio State University
| | | | | | | | | | - Cheyenne Jones
- Department of Neurological Surgery, Ohio State University
| | | | | | - Chandan Sen
- Department of Surgery, Ohio State University
| | | | | |
Collapse
|
52
|
Chen R, Jin G, Li W, McIntyre TM. Epidermal Growth Factor (EGF) Autocrine Activation of Human Platelets Promotes EGF Receptor-Dependent Oral Squamous Cell Carcinoma Invasion, Migration, and Epithelial Mesenchymal Transition. THE JOURNAL OF IMMUNOLOGY 2018; 201:2154-2164. [PMID: 30150285 DOI: 10.4049/jimmunol.1800124] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022]
Abstract
Activated platelets release functional, high m.w. epidermal growth factor (HMW-EGF). In this study, we show platelets also express epidermal growth factor (EGF) receptor (EGFR) protein, but not ErbB2 or ErbB4 coreceptors, and so might respond to HMW-EGF. We found HMW-EGF stimulated platelet EGFR autophosphorylation, PI3 kinase-dependent AKT phosphorylation, and a Ca2+ transient that were blocked by EGFR tyrosine kinase inhibition. Strong (thrombin) and weak (ADP, platelet-activating factor) G protein-coupled receptor agonists and non-G protein-coupled receptor collagen recruited EGFR tyrosine kinase activity that contributed to platelet activation because EGFR kinase inhibition reduced signal transduction and aggregation induced by each agonist. EGF stimulated ex vivo adhesion of platelets to collagen-coated microfluidic channels, whereas systemic EGF injection increased initial platelet deposition in FeCl3-damaged murine carotid arteries. EGFR signaling contributes to oral squamous cell carcinoma (OSCC) tumorigenesis, but the source of its ligand is not established. We find individual platelets were intercalated within OSCC tumors. A portion of these platelets expressed stimulation-dependent Bcl-3 and IL-1β and so had been activated. Stimulated platelets bound OSCC cells, and material released from stimulated platelets induced OSCC epithelial-mesenchymal transition and stimulated their migration and invasion through Matrigel barriers. Anti-EGF Ab or EGFR inhibitors abolished platelet-induced tumor cell phenotype transition, migration, and invasion; so the only factor released from activated platelets necessary for OSCC metastatic activity was HMW-EGF. These results establish HMW-EGF in platelet function and elucidate a previously unsuspected connection between activated platelets and tumorigenesis through rapid, and prolonged, autocrine-stimulated release of HMW-EGF by tumor-associated platelets.
Collapse
Affiliation(s)
- Rui Chen
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Ge Jin
- Case Western Reserve University School of Dental Medicine, Cleveland, OH 44106
| | - Wei Li
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195.,Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106; and.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195
| | - Thomas M McIntyre
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; .,Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106; and.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195
| |
Collapse
|
53
|
Zha C, Zhang W, Gao F, Xu J, Jia R, Cai J, Liu Y. Anti-β 2GPI/β 2GPI induces neutrophil extracellular traps formation to promote thrombogenesis via the TLR4/MyD88/MAPKs axis activation. Neuropharmacology 2018; 138:140-150. [PMID: 29883691 DOI: 10.1016/j.neuropharm.2018.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022]
Abstract
Antiphospholipid antibodies (aPLs) are a large group of heterogeneous antibodies that bind to anionic phospholipids alone or in combination with phospholipid binding proteins. Increasing evidence has converged to indicate that aPLs especially anti-β2 glycoprotein I antibody (anti-β2GPI) correlate with stroke severity and outcome. Though studies have shown that aPLs promote thrombus formation in a neutrophil-dependent way, the underlying mechanisms remain largely unknown. In the present study, we investigated the effect of anti-β2GPI in complex with β2GPI (anti-β2GPI/β2GPI) on neutrophil extracellular traps (NETs) formation and thrombus generation in vitro and in vivo. We found that anti-β2GPI/β2GPI immune complex induced NETs formation in a time- and concentration-dependent manner. This effect was mediated by its interaction with TLR4 and the production of ROS. We demonstrated that MyD88-IRAKs-MAPKs, an intracellular signaling pathway, was involved in anti-β2GPI/β2GPI-induced NETs formation. We also presented evidence that tissue factor was expressed on anti-β2GPI/β2GPI-induced NETs, and NETs could promote platelet aggregation in vitro. In addition, we identified that anti-β2GPI/β2GPI-induced NETs enhanced thrombus formation in vivo, and this effect was counteracted by using DNase I. Our data suggest that anti-β2GPI/β2GPI induces NETs formation to promote thrombogenesis via the TLR4/MyD88/MAPKs axis activation, and could be a potentially novel target for aPLs related ischemic stroke.
Collapse
Affiliation(s)
- Caijun Zha
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Wenjing Zhang
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Fei Gao
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jiali Xu
- Laboratory of Endocrinology and Metabolism Department, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ruichun Jia
- Department of Blood Transfusion, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Yanhong Liu
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
54
|
Methods available to assess therapeutic potential of fibrinolytic enzymes of microbial origin: a review. J Anal Sci Technol 2018. [DOI: 10.1186/s40543-018-0143-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
55
|
Adili R, Voigt EM, Bormann JL, Foss KN, Hurley LJ, Meyer ES, Veldman AJ, Mast KA, West JL, Whiteheart SW, Holinstat M, Larson MK. In vivo modeling of docosahexaenoic acid and eicosapentaenoic acid-mediated inhibition of both platelet function and accumulation in arterial thrombi. Platelets 2017; 30:271-279. [PMID: 29286871 DOI: 10.1080/09537104.2017.1420154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) are associated with a variety of cellular alterations that mitigate cardiovascular disease. However, pinpointing the positive therapeutic effects is challenging due to inconsistent clinical trial results and overly simplistic in vitro studies. Here we aimed to develop realistic models of n-3 PUFA effects on platelet function so that preclinical results can better align with and predict clinical outcomes. Human platelets incubated with the n-3 PUFAs docosahexaenoic acid and eicosapentaenoic acid were stimulated with agonist combinations mirroring distinct regions of a growing thrombus. Platelet responses were then monitored in a number of ex-vivo functional assays. Furthermore, intravital microscopy was used to monitor arterial thrombosis and fibrin deposition in mice fed an n-3 PUFA-enriched diet. We found that n-3 PUFA treatment had minimal effects on many basic ex-vivo measures of platelet function using agonist combinations. However, n-3 PUFA treatment delayed platelet-derived thrombin generation in both humans and mice. This impaired thrombin production paralleled a reduced platelet accumulation within thrombi formed in either small arterioles or larger arteries of mice fed an n-3 PUFA-enriched diet, without impacting P-selectin exposure. Despite an apparent lack of robust effects in many ex-vivo assays of platelet function, increased exposure to n-3 PUFAs reduces platelet-mediated thrombin generation and attenuates elements of thrombus formation. These data support the cardioprotective value of-3 PUFAs and strongly suggest that they modify elements of platelet function in vivo.
Collapse
Affiliation(s)
- Reheman Adili
- a Department of Pharmacology , University of Michigan , Ann Arbor , MI , USA
| | - Ellen M Voigt
- b Department of Biology , Augustana University , Sioux Falls , SD , USA
| | - Jordan L Bormann
- b Department of Biology , Augustana University , Sioux Falls , SD , USA
| | - Kaitlynn N Foss
- b Department of Biology , Augustana University , Sioux Falls , SD , USA
| | - Luke J Hurley
- b Department of Biology , Augustana University , Sioux Falls , SD , USA
| | - Evan S Meyer
- b Department of Biology , Augustana University , Sioux Falls , SD , USA
| | - Amber J Veldman
- b Department of Biology , Augustana University , Sioux Falls , SD , USA
| | - Katherine A Mast
- a Department of Pharmacology , University of Michigan , Ann Arbor , MI , USA
| | - Joshua L West
- a Department of Pharmacology , University of Michigan , Ann Arbor , MI , USA
| | - Sidney W Whiteheart
- c Department of Molecular and Cellular Biochemistry , University of Kentucky , Lexington , KY , USA
| | - Michael Holinstat
- a Department of Pharmacology , University of Michigan , Ann Arbor , MI , USA
| | - Mark K Larson
- b Department of Biology , Augustana University , Sioux Falls , SD , USA
| |
Collapse
|
56
|
Li W, Yue H. Thymidine phosphorylase: A potential new target for treating cardiovascular disease. Trends Cardiovasc Med 2017; 28:157-171. [PMID: 29108898 DOI: 10.1016/j.tcm.2017.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/03/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022]
Abstract
We recently found that thymidine phosphorylase (TYMP), also known as platelet-derived endothelial cell growth factor, plays an important role in platelet activation in vitro and thrombosis in vivo by participating in multiple signaling pathways. Platelets are a major source of TYMP. Since platelet-mediated clot formation is a key event in several fatal diseases, such as myocardial infarction, stroke and pulmonary embolism, understanding TYMP in depth may lead to uncovering novel mechanisms in the development of cardiovascular diseases. Targeting TYMP may become a novel therapeutic for cardiovascular disorders. In this review article, we summarize the discovery of TYMP and the potential molecular mechanisms of TYMP involved in the development of various diseases, especially cardiovascular diseases. We also offer insights regarding future studies exploring the role of TYMP in the development of cardiovascular disease as well as in therapy.
Collapse
Affiliation(s)
- Wei Li
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall, University, Huntington, WV; Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV.
| | - Hong Yue
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall, University, Huntington, WV
| |
Collapse
|
57
|
Manhardt CT, Punch PR, Dougher CWL, Lau JTY. Extrinsic sialylation is dynamically regulated by systemic triggers in vivo. J Biol Chem 2017; 292:13514-13520. [PMID: 28717006 DOI: 10.1074/jbc.c117.795138] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/12/2017] [Indexed: 12/19/2022] Open
Abstract
Recent reports have documented that extracellular sialyltransferases can remodel both cell-surface and secreted glycans by a process other than the canonical cell-autonomous glycosylation that occurs within the intracellular secretory apparatus. Despite association of the abundance of these extracellular sialyltransferases, particularly ST6Gal-1, with disease states such as cancer and a variety of inflammatory conditions, the prevalence of this extrinsic glycosylation pathway in vivo remains unknown. Here we observed no significant extrinsic sialylation in resting mice, suggesting that extrinsic sialylation is not a constitutive process. However, extrinsic sialylation in the periphery could be triggered by inflammatory challenges, such as exposure to ionizing radiation or to bacterial lipopolysaccharides. Sialic acids from circulating platelets were used in vivo to remodel target cell surfaces. Platelet activation was minimally sufficient to elicit extrinsic sialylation, as demonstrated with the FeCl3 model of mesenteric artery thrombosis. Although extracellular ST6Gal-1 supports extrinsic sialylation, other sialyltransferases are present in systemic circulation. We also observed in vivo extrinsic sialylation in animals deficient in ST6Gal-1, demonstrating that extrinsic sialylation is not mediated exclusively by ST6Gal-1. Together, these observations form an emerging picture of glycans biosynthesized by the canonical cell-autonomous glycosylation pathway, but subjected to remodeling by extracellular glycan-modifying enzymes.
Collapse
Affiliation(s)
| | | | | | - Joseph T Y Lau
- From the Departments of Molecular and Cellular Biology and
| |
Collapse
|
58
|
Li B, Fu C, Ma G, Fan Q, Yao Y. Photoacoustic Imaging: A Novel Tool for Detecting Carotid Artery Thrombosis in Mice. J Vasc Res 2017; 54:217-225. [PMID: 28689199 DOI: 10.1159/000477631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/14/2017] [Indexed: 11/19/2022] Open
Abstract
Thrombosis is a main cause of acute cardiovascular events, and detecting thrombi in small arteries via noninvasive imaging remains challenging. In this study, we employed a novel imaging method, photoacoustic imaging (PAI), to study thrombosis in a mouse model of ferric chloride (FeCl3)-induced arterial thrombosis and compared the ability of this method to detect thrombosis with that of a conventional imaging method, namely, ultrasound. The mice (n = 20) were divided equally into the following 4 groups: (1) a normal group, and (2) 3 experimental groups, in which the left common carotid artery was treated with 20% FeCl3 for 1, 3, or 5 min, respectively. After 24 h, PAI detected thrombi of different sizes and generated images, enabling us to assess the changes in structure. The results of this study suggest that PAI is a useful, noninvasive visualization tool for investigating the mechanism underlying thrombosis development and is suitable for imaging arterial thrombosis in mouse carotid arteries.
Collapse
Affiliation(s)
- Bing Li
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, People's Republic of China
| | | | | | | | | |
Collapse
|
59
|
Platelet CD36 promotes thrombosis by activating redox sensor ERK5 in hyperlipidemic conditions. Blood 2017; 129:2917-2927. [PMID: 28336528 DOI: 10.1182/blood-2016-11-750133] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/13/2017] [Indexed: 12/19/2022] Open
Abstract
Atherothrombosis is a process mediated by dysregulated platelet activation that can cause life-threatening complications and is the leading cause of death by cardiovascular disease. Platelet reactivity in hyperlipidemic conditions is enhanced when platelet scavenger receptor CD36 recognizes oxidized lipids in oxidized low-density lipoprotein (oxLDL) particles, a process that induces an overt prothrombotic phenotype. The mechanisms by which CD36 promotes platelet activation and thrombosis remain incompletely defined. In this study, we identify a mechanism for CD36 to promote thrombosis by increasing activation of MAPK extracellular signal-regulated kinase 5 (ERK5), a protein kinase known to be exquisitely sensitive to redox stress, through a signaling pathway requiring Src kinases, NADPH oxidase, superoxide radical anion, and hydrogen peroxide. Pharmacologic inhibitors of ERK5 blunted platelet activation and aggregation in response to oxLDL and targeted genetic deletion of ERK5 in murine platelets prevented oxLDL-induced platelet deposition on immobilized collagen in response to arterial shear. Importantly, in vivo thrombosis experiments after bone marrow transplantation from platelet-specific ERK5 null mice into hyperlipidemic apolipoprotein E null mice showed decreased platelet accumulation and increased thrombosis times compared with mice transplanted with ERK5 expressing control bone marrows. These findings suggest that atherogenic conditions critically regulate platelet CD36 signaling by increasing superoxide radical anion and hydrogen peroxide through a mechanism that promotes activation of MAPK ERK5.
Collapse
|
60
|
Abstract
Arterial thrombosis (blood clot) is a common complication of many systemic diseases associated with chronic inflammation, including atherosclerosis, diabetes, obesity, cancer and chronic autoimmune rheumatologic disorders. Thrombi are the cause of most heart attacks, strokes and extremity loss, making thrombosis an extremely important public health problem. Since these thrombi stem from inappropriate platelet activation and subsequent coagulation, targeting these systems therapeutically has important clinical significance for developing safer treatments. Due to the complexities of the hemostatic system, in vitro experiments cannot replicate the blood-to-vessel wall interactions; therefore, in vivo studies are critical to understand pathological mechanisms of thrombus formation. To this end, various thrombosis models have been developed in mice. Among them, ferric chloride (FeCl3) induced vascular injury is a widely used model of occlusive thrombosis that reports platelet activation and aggregation in the context of an aseptic closed vascular system. This model is based on redox-induced endothelial cell injury, which is simple and sensitive to both anticoagulant and anti-platelets drugs. The time required for the development of a thrombus that occludes blood flow gives a quantitative measure of vascular injury, platelet activation and aggregation that is relevant to thrombotic diseases. We have significantly refined this FeCl3-induced vascular thrombosis model, which makes the data highly reproducible with minimal variation. Here we describe the model and present representative data from several experimental set-ups that demonstrate the utility of this model in thrombosis research.
Collapse
Affiliation(s)
- Wei Li
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University;
| | - Marvin Nieman
- Department of Pharmacology, Case Western Reserve University
| | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University
| |
Collapse
|
61
|
Lysyl oxidase is associated with increased thrombosis and platelet reactivity. Blood 2016; 127:1493-501. [PMID: 26755713 DOI: 10.1182/blood-2015-02-629667] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 12/17/2015] [Indexed: 01/26/2023] Open
Abstract
Lysyl oxidase (LOX) is overexpressed in various pathologies associated with thrombosis, such as arterial stenosis and myeloproliferative neoplasms (MPNs). LOX is elevated in the megakaryocytic lineage of mouse models of MPNs and in patients with MPNs. To gain insight into the role of LOX in thrombosis and platelet function without compounding the influences of other pathologies, transgenic mice expressing LOX in wild-type megakaryocytes and platelets (Pf4-Lox(tg/tg)) were generated. Pf4-Lox(tg/tg) mice had a normal number of platelets; however, time to vessel occlusion after endothelial injury was significantly shorter in Pf4-Lox(tg/tg) mice, indicating a higher propensity for thrombus formation in vivo. Exploring underlying mechanisms, we found that Pf4-Lox(tg/tg) platelets adhere better to collagen and have greater aggregation response to lower doses of collagen compared with controls. Platelet activation in response to the ligand for collagen receptor glycoprotein VI (cross-linked collagen-related peptide) was unaffected. However, the higher affinity of Pf4-Lox(tg/tg) platelets to the collagen sequence GFOGER implies that the collagen receptor integrin α2β1 is affected by LOX. Taken together, our findings demonstrate that LOX enhances platelet activation and thrombosis.
Collapse
|
62
|
Shaya SA, Saldanha LJ, Vaezzadeh N, Zhou J, Ni R, Gross PL. Comparison of the effect of dabigatran and dalteparin on thrombus stability in a murine model of venous thromboembolism. J Thromb Haemost 2016; 14:143-52. [PMID: 26514101 DOI: 10.1111/jth.13182] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 10/13/2015] [Indexed: 01/26/2023]
Abstract
UNLABELLED ESSENTIALS: Does thrombus stability alter the presentation of venous thromboembolism and do anticoagulants alter this? In a murine model, we imaged a femoral vein thrombus and quantified emboli in the pulmonary arteries. Dabigatran decreases thrombus stability via factor XIII increasing embolization and pulmonary emboli. This cautions against the unapproved use of dabigatran for acute initial treatment of deep vein thrombosis. BACKGROUND Venous thromboembolism (VTE) is a collective term for deep vein thrombosis (DVT) and pulmonary embolism (PE). Thrombus instability possibly contributes to progression of DVT to PE, and direct thrombin inhibitors (DTIs) may alter this. AIM To develop a model to assess thrombus stability and its link to PE burden, and identify whether DTIs, in contrast to low-molecular-weight heparin (LMWH), alter this correlation. METHODS Twelve minutes after ferric chloride-induced thrombus formation in the femoral vein of female mice, saline, dalteparin (LMWH) or dabigatran (DTI) was administered. Thrombus size and embolic events breaking off from the thrombus were quantified before treatment and at 10-min intervals after treatment for 2 h using intravital videomicroscopy. Lungs were stained for the presence of PE. RESULTS Thrombus size was similar over time and between treatment groups. Total and large embolic events and pulmonary emboli were highest after treatment with dabigatran. Variations in amounts of pulmonary embolic events were not attributed to variations in thrombus size. Large embolic events correlated with the number of emboli per lung slice independent of treatment. Embolization in factor XIII deficient (FXIII(-/-) ) saline-treated mice was greater than that in wild-type (WT) saline-treated mice, but was similar to WT dabigatran-treated mice. CONCLUSION We have developed a mouse model of VTE that can quantify emboli and correlate this with PE burden. Consistent with clinical data, dabigatran, a DTI, acutely decreases thrombus stability and increases PE burden compared with LMWH or saline, which is a FXIII-dependent effect.
Collapse
Affiliation(s)
- S A Shaya
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Canada
- Department of Medical Sciences, McMaster University, Hamilton, Canada
| | - L J Saldanha
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Canada
- Department of Medical Sciences, McMaster University, Hamilton, Canada
| | - N Vaezzadeh
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Canada
- Department of Medical Sciences, McMaster University, Hamilton, Canada
| | - J Zhou
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Canada
| | - R Ni
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Canada
- Department of Medical Sciences, McMaster University, Hamilton, Canada
| | - P L Gross
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Canada
- Department of Medical Sciences, McMaster University, Hamilton, Canada
- Department of Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
63
|
Vassequi-Silva T, Pereira DS, Nery Diez ACC, Braga GG, Godoy JA, Mendes CB, Dos Santos L, Krieger JE, Antunes E, Costa FTM, Vicente CP, Werneck CC. Losartan and captopril treatment rescue normal thrombus formation in microfibril associated glycoprotein-1 (MAGP1) deficient mice. Thromb Res 2015; 138:7-15. [PMID: 26826502 DOI: 10.1016/j.thromres.2015.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/10/2015] [Accepted: 12/09/2015] [Indexed: 11/18/2022]
Abstract
INTRODUCTION MAGP1 is a glycoprotein present in the elastic fibers and is a part of the microfibrils components. MAGP1 interacts with von Willebrand factor and the active form of TGF-β and BMP. In mice lacking MAGP1, thrombus formation is delayed, increasing the occlusion time of carotid artery despite presenting normal blood coagulation in vitro. MAGP1-containing microfibrils may play a role in hemostasis and thrombosis. In this work, we evaluated the function of MAGP1 and its relation to TGF-β in the arterial thrombosis process. METHODS AND RESULTS We analyzed thrombus formation time in wild type and MAGP1-deficient mice comparing Rose Bengal and Ferric Chloride induced arterial lesion. The potential participation of TGF-β in this process was accessed when we treated both wild type and MAGP1-deficient mice with losartan (an antihypertensive drug that decreases TGF-β activity) or captopril (an angiotensin converting enzyme inhibitor that was used as a control antihypertensive drug). Besides, we evaluated thrombus embolization and the gelatinolytic activity in the arterial walls in vitro and ex vivo. Losartan and captopril were able to recover the thrombus formation time without changing blood pressure, activated partial thromboplastin time (aPTT), PT (prothrombin time), platelet aggregation and adhesion, but decreased gelatinase activity. CONCLUSIONS Our results suggest that both treatments are effective in the prevention of the sub-endothelial ECM degradation, allowing the recovery of normal thrombus formation.
Collapse
Affiliation(s)
| | | | | | - Guilherme G Braga
- Department of Biochemistry and Tissue Biology, State University of Campinas, SP, Brazil
| | - Juliana A Godoy
- Department of Structural and Functional Biology, State University of Campinas, SP, Brazil
| | - Camila B Mendes
- Department of Pharmacology, State University of Campinas, SP, Brazil
| | - Leonardo Dos Santos
- Department of Physiological Sciences, Federal University of Espirito Santo, ES, Brazil
| | - José E Krieger
- Laboratory of Genetic and Molecular Cardiology, InCor-HC/FMUSP, SP, Brazil
| | - Edson Antunes
- Department of Pharmacology, State University of Campinas, SP, Brazil
| | - Fábio T M Costa
- Department of Genetics and Evolution and Bioagents, State University of Campinas, SP, Brazil
| | - Cristina P Vicente
- Department of Structural and Functional Biology, State University of Campinas, SP, Brazil
| | - Claudio C Werneck
- Department of Biochemistry and Tissue Biology, State University of Campinas, SP, Brazil.
| |
Collapse
|
64
|
Ferric chloride thrombosis model: unraveling the vascular effects of a highly corrosive oxidant. Blood 2015; 126:2652-3. [PMID: 26504184 DOI: 10.1182/blood-2015-09-668384] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
65
|
Gupta N, Li W, McIntyre TM. Deubiquitinases Modulate Platelet Proteome Ubiquitination, Aggregation, and Thrombosis. Arterioscler Thromb Vasc Biol 2015; 35:2657-66. [PMID: 26471267 DOI: 10.1161/atvbaha.115.306054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/24/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Platelets express a functional ubiquitin-proteasome system. Mass spectrometry shows that platelets contain several deubiquitinases, but whether these are functional, modulate the proteome, or affect platelet reactivity are unknown. APPROACH AND RESULTS Platelet lysates contained ubiquitin-protein deubiquitinase activity hydrolyzing both Lys48 and Lys63 polyubiquitin conjugates that was suppressed by the chemically unrelated deubiquitinase inhibitors PYR41 and PR619. These inhibitors acutely and markedly increased monoubiquitination and polyubiquitination of the proteome of resting platelets. PYR41 (intravenous, 15 minutes) significantly impaired occlusive thrombosis in FeCl3-damaged carotid arteries, and deubiquitinase inhibition reduced platelet adhesion and retention during high shear flow of whole blood through microfluidic chambers coated with collagen. Total internal reflection microscopy showed that adhesion and spreading in the absence of flow were strongly curtailed by these inhibitors with failure of stable process extension and reduced the retraction of formed clots. Deubiquitinase inhibition also sharply reduced homotypic platelet aggregation in response to not only the incomplete agonists ADP and collagen acting through glycoprotein VI but also to the complete agonist thrombin. Suppressed aggregation was accompanied by curtailed procaspase activating compound-1 binding to activated IIb/IIIa and inhibition of P-selectin translocation to the platelet surface. Deubiquitinase inhibition abolished the agonist-induced spike in intracellular calcium, suppressed Akt phosphorylation, and reduced agonist-stimulated phosphatase and tensin homolog phosphatase phosphorylation. Platelets express the proteasome-associated deubiquitinases USP14 and UCHL5, and selective inhibition of these enzymes by b-AP15 reproduced the inhibitory effect of the general deubiquitinase inhibitors on ex vivo platelet function. CONCLUSIONS Remodeling of the ubiquitinated platelet proteome by deubiquitinases promotes agonist-stimulated intracellular signal transduction and platelet responsiveness.
Collapse
Affiliation(s)
- Nilaksh Gupta
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH; and Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
| | - Wei Li
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH; and Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
| | - Thomas M McIntyre
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH; and Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH.
| |
Collapse
|
66
|
Page MJ, Lourenço AL, David T, LeBeau AM, Cattaruzza F, Castro HC, VanBrocklin HF, Coughlin SR, Craik CS. Non-invasive imaging and cellular tracking of pulmonary emboli by near-infrared fluorescence and positron-emission tomography. Nat Commun 2015; 6:8448. [PMID: 26423607 PMCID: PMC4593073 DOI: 10.1038/ncomms9448] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/21/2015] [Indexed: 12/22/2022] Open
Abstract
Functional imaging of proteolytic activity is an emerging strategy to quantify disease and response to therapy at the molecular level. We present a new peptide-based imaging probe technology that advances these goals by exploiting enzymatic activity to deposit probes labelled with near-infrared (NIR) fluorophores or radioisotopes in cell membranes of disease-associated proteolysis. This strategy allows for non-invasive detection of protease activity in vivo and ex vivo by tracking deposited probes in tissues. We demonstrate non-invasive detection of thrombin generation in a murine model of pulmonary embolism using our protease-activated peptide probes in microscopic clots within the lungs with NIR fluorescence optical imaging and positron-emission tomography. Thrombin activity is imaged deep in tissue and tracked predominantly to platelets within the lumen of blood vessels. The modular design of our probes allows for facile investigation of other proteases, and their contributions to disease by tailoring the protease activation and cell-binding elements. Functional imaging of proteolytic activity is an emerging strategy to guide patient diagnosis and monitor clinical outcome. Here the authors present a peptide-based probe to detect and localize thrombin activity ex vivo and non-invasively in mouse models of wounding and pulmonary thrombosis.
Collapse
Affiliation(s)
- Michael J Page
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2517, USA
| | - André L Lourenço
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2517, USA.,CAPES Foundation, Ministry of Education of Brazil, Brasília DF 70040-020, Brazil.,LABiEMol, Postgraduate Program in Pathology, Universidade Federal Fluminense, Niterói, Rio de Janeiro RJ 23230-060, Brazil
| | - Tovo David
- Cardiovascular Research Institute, University of California, San Francisco, California 94158-9001, USA
| | - Aaron M LeBeau
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2517, USA
| | - Fiore Cattaruzza
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2517, USA
| | - Helena C Castro
- LABiEMol, Postgraduate Program in Pathology, Universidade Federal Fluminense, Niterói, Rio de Janeiro RJ 23230-060, Brazil
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94107, USA
| | - Shaun R Coughlin
- Cardiovascular Research Institute, University of California, San Francisco, California 94158-9001, USA
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2517, USA
| |
Collapse
|
67
|
Tripeptide SQL Inhibits Platelet Aggregation and Thrombus Formation by Affecting PI3K/Akt Signaling. J Cardiovasc Pharmacol 2015; 66:254-60. [DOI: 10.1097/fjc.0000000000000269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
68
|
Bonnard T, Hagemeyer CE. Ferric Chloride-induced Thrombosis Mouse Model on Carotid Artery and Mesentery Vessel. J Vis Exp 2015:e52838. [PMID: 26167713 DOI: 10.3791/52838] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Severe thrombosis and its ischemic consequences such as myocardial infarction, pulmonary embolism and stroke are major worldwide health issues. The ferric chloride injury is now a well-established technique to rapidly and accurately induce the formation of thrombi in exposed veins or artery of small and large diameter. This model has played a key role in the study of the pathophysiology of thrombosis, in the discovery and validation of novel antithrombotic drugs and in the understanding of the mechanism of action of these new agents. Here, the implementation of this technique on a mesenteric vessel and carotid artery in mice is presented. The method describes how to label circulating leukocytes and platelets with a fluorescent dye and to observe, by intravital microscopy on the exposed mesentery, their accumulation at the injured vessel wall which leads to the formation of a thrombus. On the carotid artery, the occlusion caused by the clot formation is measured by monitoring the blood flow with a Doppler probe.
Collapse
Affiliation(s)
- Thomas Bonnard
- Vascular Biotechnology Laboratory, Baker IDI Heart and Diabetes Institute
| | | |
Collapse
|
69
|
Nouri S, Sharif MR. Use of ferric sulfate to control hepatic bleeding. Trauma Mon 2015; 20:e25257. [PMID: 25825702 PMCID: PMC4362037 DOI: 10.5812/traumamon.25257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 11/29/2022] Open
Abstract
Background: Controlling parenchymal hemorrhage, especially in liver parenchyma, despite all the progress in surgical science, is still one of the challenges surgeons face. Therefore, search for an effective method to control hepatic bleeding is an important research priority. Objectives: This study attempted to determine the haemostatic effect of ferric sulfate and compare it with the standard method (suturing technique). Materials and Methods: In this animal model study, 60 male Wistar rats were used. An incision (2 cm in length and 1/2 cm in depth) was made on each rat’s liver and the hemostasis time was measured using ferric sulfate with different concentrations (5%, 10%, 15%, 25%, and 50%) and then using simple suturing. The liver tissue was assessed for pathological changes. Results: In all the groups, complete hemostasis occurred. Hemostasis times of different concentrations of ferric sulfate were significantly less than those of the control group (P < 0.001). Conclusions: Ferric sulfate was effective in controlling hepatic bleeding in rats.
Collapse
Affiliation(s)
- Saeed Nouri
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
| | - Mohammad Reza Sharif
- Trauma Research Center, Kashan University of Medical Sciences, Kashan, IR Iran
- Corresponding author: Mohammad Reza Sharif, Trauma Research Center, Kashan University of Medical Sciences, Kashan, IR Iran. Tel: +98-9123788713, Fax: +98-3615558900, E-mail:
| |
Collapse
|
70
|
Nouri S, Sharif MR, Sahba S. The effect of ferric chloride on superficial bleeding. Trauma Mon 2015; 20:e18042. [PMID: 25825694 PMCID: PMC4362029 DOI: 10.5812/traumamon.18042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/27/2014] [Accepted: 05/21/2014] [Indexed: 01/22/2023] Open
Abstract
Background: Controlling superficial bleeding, despite all the progress in surgical science, is still a challenge in some settings. Objectives: This study assesses the hemostatic effects of ferric chloride and compares it with the standard method (suturing technique) to control superficial bleeding. Materials and Methods: In this animal model study, 60 male Wistar rats were used. An incision, 2 cm long and 0.5 cm deep was made on rat skin and the hemostasis time was recorded using ferric chloride at different concentrations (5%, 10%, 15%, 25%, and 50%) and then using a control (i.e. control of bleeding by suturing). The skin tissue was examined for pathological changes. Finally, the obtained data were entered into SPSS (ver. 16) and analyzed using Kruskal-Wallis test, Mann-Whitney, Kolmogorov-Smirnov, and Wilcoxon signed ranks test. Results: The hemostasis time for the ferric chloride concentration group was significantly less than for the control group (P < 0.001). Conclusions: Ferric chloride may be an effective hemostatic agent to control superficial bleeding in rats.
Collapse
Affiliation(s)
- Saeed Nouri
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
| | - Mohammad Reza Sharif
- Trauma Research Center, Kashan University of Medical Sciences, Kashan, IR Iran
- Corresponding author: Mohammad Reza Sharif, Trauma Research Center, Kashan University of Medical Sciences, Kashan, IR Iran. Tel: +98-9123788713, Fax: +98-3615558900, E-mail:
| | - Sare Sahba
- Trauma Research Center, Kashan University of Medical Sciences, Kashan, IR Iran
| |
Collapse
|
71
|
Srikanthan S, Li W, Silverstein RL, McIntyre TM. Exosome poly-ubiquitin inhibits platelet activation, downregulates CD36 and inhibits pro-atherothombotic cellular functions. J Thromb Haemost 2014; 12:1906-17. [PMID: 25163645 PMCID: PMC4229405 DOI: 10.1111/jth.12712] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Activated platelets shed microparticles from plasma membranes, but also release smaller exosomes from internal compartments. While microparticles participate in athero-thrombosis, little is known of exosomes in this process. MATERIALS & METHODS Ex vivo biochemical experiments with human platelets and exosomes, and FeCl3 -induced murine carotid artery thrombosis. RESULTS Both microparticles and exosomes were abundant in human plasma. Platelet-derived exosomes suppressed ex vivo platelet aggregation and reduced adhesion to collagen-coated microfluidic channels at high shear. Injected exosomes inhibited occlusive thrombosis in FeCl3 -damaged murine carotid arteries. Control platelets infused into irradiated, thrombocytopenic mice reconstituted thrombosis in damaged carotid arteries, but failed to do so after prior ex vivo incubation with exosomes.CD36 promotes platelet activation, and exosomes dramatically reduced platelet CD36.CD36 is also expressed by macrophages, where it binds and internalizes oxidized LDL and microparticles, supplying lipid to promote foam cell formation. Platelet exosomes inhibited oxidized-LDL binding and cholesterol loading into macrophages. Exosomes were not competitive CD36 ligands, but instead sharply reduced total macrophage CD36 content. Exosomal proteins, in contrast to microparticle or cellular proteins, were highly adducted by ubiquitin. Exosomes enhanced ubiquitination of cellular proteins, including CD36, and blockade of proteosome proteolysis with MG-132 rescued CD36 expression. Recombinant unanchored K48 poly-ubiquitin behaved similarly to exosomes, inhibiting platelet function, macrophage CD36 expression and macrophage particle uptake. CONCLUSIONS Platelet-derived exosomes inhibit athero-thrombotic processes by reducing CD36-dependent lipid loading of macrophages and by suppressing platelet thrombosis. Exosomes increase protein ubiquitination and enhance proteasome degradation of CD36.
Collapse
Affiliation(s)
- S Srikanthan
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH, USA; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | |
Collapse
|
72
|
Li W, Gigante A, Perez-Perez MJ, Yue H, Hirano M, McIntyre TM, Silverstein RL. Thymidine phosphorylase participates in platelet signaling and promotes thrombosis. Circ Res 2014; 115:997-1006. [PMID: 25287063 DOI: 10.1161/circresaha.115.304591] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Platelets contain abundant thymidine phosphorylase (TYMP), which is highly expressed in diseases with high risk of thrombosis, such as atherosclerosis and type II diabetes mellitus. OBJECTIVE To test the hypothesis that TYMP participates in platelet signaling and promotes thrombosis. METHODS AND RESULTS By using a ferric chloride (FeCl3)-induced carotid artery injury thrombosis model, we found time to blood flow cessation was significantly prolonged in Tymp(-/-) and Tymp(+/-) mice compared with wild-type mice. Bone marrow transplantation and platelet transfusion studies demonstrated that platelet TYMP was responsible for the antithrombotic phenomenon in the TYMP-deficient mice. Collagen-, collagen-related peptide-, adenosine diphosphate-, or thrombin-induced platelet aggregation were significantly attenuated in Tymp(+/-) and Tymp(-/-) platelets, and in wild type or human platelets pretreated with TYMP inhibitor KIN59. Tymp deficiency also significantly decreased agonist-induced P-selectin expression. TYMP contains an N-terminal SH3 domain-binding proline-rich motif and forms a complex with the tyrosine kinases Lyn, Fyn, and Yes in platelets. TYMP-associated Lyn was inactive in resting platelets, and TYMP trapped and diminished active Lyn after collagen stimulation. Tymp/Lyn double haploinsufficiency diminished the antithrombotic phenotype of Tymp(+/-) mice. TYMP deletion or inhibition of TYMP with KIN59 dramatically increased platelet-endothelial cell adhesion molecule 1 tyrosine phosphorylation and diminished collagen-related peptide- or collagen-induced AKT phosphorylation. In vivo administration of KIN59 significantly inhibited FeCl3-induced carotid artery thrombosis without affecting hemostasis. CONCLUSIONS TYMP participates in multiple platelet signaling pathways and regulates platelet activation and thrombosis. Targeting TYMP might be a novel antiplatelet and antithrombosis therapy.
Collapse
Affiliation(s)
- Wei Li
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, The Cleveland Clinic, OH (W.L., T.M.M.); Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (W.L., T.M.M.); Instituto de Quimica Medica, Consejo Superior De Investigaciones Cientificas (IQM-CSIC), Madrid, Spain (A.G.,M.-J.P.-P.); Department of Biological Sciences, Case Western Reserve University, Cleveland, OH (H.Y.); Department of Neurology, Columbia University Medical Center, New York, NY (M.H.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| | - Alba Gigante
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, The Cleveland Clinic, OH (W.L., T.M.M.); Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (W.L., T.M.M.); Instituto de Quimica Medica, Consejo Superior De Investigaciones Cientificas (IQM-CSIC), Madrid, Spain (A.G.,M.-J.P.-P.); Department of Biological Sciences, Case Western Reserve University, Cleveland, OH (H.Y.); Department of Neurology, Columbia University Medical Center, New York, NY (M.H.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| | - Maria-Jesus Perez-Perez
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, The Cleveland Clinic, OH (W.L., T.M.M.); Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (W.L., T.M.M.); Instituto de Quimica Medica, Consejo Superior De Investigaciones Cientificas (IQM-CSIC), Madrid, Spain (A.G.,M.-J.P.-P.); Department of Biological Sciences, Case Western Reserve University, Cleveland, OH (H.Y.); Department of Neurology, Columbia University Medical Center, New York, NY (M.H.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| | - Hong Yue
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, The Cleveland Clinic, OH (W.L., T.M.M.); Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (W.L., T.M.M.); Instituto de Quimica Medica, Consejo Superior De Investigaciones Cientificas (IQM-CSIC), Madrid, Spain (A.G.,M.-J.P.-P.); Department of Biological Sciences, Case Western Reserve University, Cleveland, OH (H.Y.); Department of Neurology, Columbia University Medical Center, New York, NY (M.H.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| | - Michio Hirano
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, The Cleveland Clinic, OH (W.L., T.M.M.); Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (W.L., T.M.M.); Instituto de Quimica Medica, Consejo Superior De Investigaciones Cientificas (IQM-CSIC), Madrid, Spain (A.G.,M.-J.P.-P.); Department of Biological Sciences, Case Western Reserve University, Cleveland, OH (H.Y.); Department of Neurology, Columbia University Medical Center, New York, NY (M.H.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| | - Thomas M McIntyre
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, The Cleveland Clinic, OH (W.L., T.M.M.); Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (W.L., T.M.M.); Instituto de Quimica Medica, Consejo Superior De Investigaciones Cientificas (IQM-CSIC), Madrid, Spain (A.G.,M.-J.P.-P.); Department of Biological Sciences, Case Western Reserve University, Cleveland, OH (H.Y.); Department of Neurology, Columbia University Medical Center, New York, NY (M.H.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| | - Roy L Silverstein
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, The Cleveland Clinic, OH (W.L., T.M.M.); Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (W.L., T.M.M.); Instituto de Quimica Medica, Consejo Superior De Investigaciones Cientificas (IQM-CSIC), Madrid, Spain (A.G.,M.-J.P.-P.); Department of Biological Sciences, Case Western Reserve University, Cleveland, OH (H.Y.); Department of Neurology, Columbia University Medical Center, New York, NY (M.H.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| |
Collapse
|
73
|
Gupta N, Li W, Willard B, Silverstein RL, McIntyre TM. Proteasome proteolysis supports stimulated platelet function and thrombosis. Arterioscler Thromb Vasc Biol 2013; 34:160-8. [PMID: 24177323 DOI: 10.1161/atvbaha.113.302116] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Proteasome inhibitors used in the treatment of hematologic cancers also reduce thrombosis. Whether the proteasome participates in platelet activation or function is unclear because little is known of the proteasome in these terminally differentiated cells. APPROACH AND RESULTS Platelets displayed all 3 primary proteasome protease activities, which MG132 and bortezomib (Velcade) inhibited. Proteasome substrates are marked by ubiquitin, and platelets contained a functional ubiquitination system that modified the proteome by monoubiquitination and polyubiquitination. Systemic MG132 strongly suppressed the formation of occlusive, platelet-rich thrombi in FeCl3-damaged carotid arteries. Transfusion of platelets treated ex vivo with MG132 and washed before transfusion into thrombocytopenic mice also reduced carotid artery thrombosis. Proteasome inhibition reduced platelet aggregation by low thrombin concentrations and ristocetin-stimulated agglutination through the glycoprotein Ib-IX-V complex. This receptor was not appropriately internalized after proteasome inhibition in stimulated platelets, and spreading and clot retraction after MG132 exposure also were decreased. The effects of proteasome inhibitors were not confined to a single receptor as MG132 suppressed thrombin-stimulated, ADP-stimulated, and lipopolysaccharide-stimulated microparticle shedding. Proteasome inhibition increased ubiquitin decoration of cytoplasmic proteins, including the cytoskeletal proteins Filamin A and Talin-1. Mass spectrometry revealed a single MG132-sensitive tryptic cleavage after R1745 in an extended Filamin A loop, which would separate its actin-binding domain from its carboxy terminal glycoprotein Ibα-binding domain. CONCLUSIONS Platelets contain a ubiquitin/proteasome system that marks cytoskeletal proteins for proteolytic modification to promote productive platelet-platelet and platelet-wall interactions.
Collapse
Affiliation(s)
- Nilaksh Gupta
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH (N.G., W.L., B.W., R.L.S., T.M.M.); and Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, OH (N.G., T.M.M.)
| | | | | | | | | |
Collapse
|
74
|
Brown GT, Narayanan P, Li W, Silverstein RL, McIntyre TM. Lipopolysaccharide stimulates platelets through an IL-1β autocrine loop. THE JOURNAL OF IMMUNOLOGY 2013; 191:5196-203. [PMID: 24081990 DOI: 10.4049/jimmunol.1300354] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
LPS activates platelets through TLR4, aiding productive sepsis, with stimulated splicing and translation of stored heteronuclear pro-IL-1β RNA. Although the IL-1R type 1 (IL-1R1) receptor for IL-1 shares downstream components with the TLR4 receptor, platelets are not known to express IL-1R1, nor are they known to respond to this cytokine. We show by flow cytometry and Western blotting that platelets express IL-1R1, and that IL-1β and IL-1α stimulate heteronuclear I-1β splicing and translation of the newly made mRNA in platelets. Platelets also respond to the IL-1β they make, which is exclusively associated with shed microparticles. Specific blockade of IL-1R1 with IL-1R antagonist suppressed platelet stimulation by IL-1, so IL-1β stimulates its own synthesis in an autocrine signaling loop. Strikingly, IL-1R antagonist inhibition, pharmacologic or genetic suppression of pro-IL-1β processing to active cytokine by caspase-1, or blockade of de novo protein synthesis also blocked LPS-induced IL-1β mRNA production. Robust stimulation of platelets by LPS therefore also required IL-1β amplification. Activated platelets made IL-1β in vivo as IL-1β rapidly accumulated in occluded murine carotid arteries by posttranscriptional RNA splicing unique to platelets. We conclude that IL-1β is a platelet agonist, that IL-1β acts through an autocrine stimulatory loop, that an IL-1β autocrine loop is required to amplify platelet activation by LPS, and that platelets immobilized in occlusive thrombi are activated over time to produce IL-1β. IL-1 is a new platelet agonist that promotes its own synthesis, connecting thrombosis with immunity.
Collapse
Affiliation(s)
- G Thomas Brown
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio.,Cell Biology Graduate Training Program, Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Padmini Narayanan
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio
| | - Wei Li
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio
| | - Roy L Silverstein
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio
| | - Thomas M McIntyre
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio.,Cell Biology Graduate Training Program, Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
75
|
Grune T, Darley-Usmar V, Yee Aw T, Lamas S. Launch of Redox Biology: A new venue for studies in translational, basic and applied research in the fields of antioxidants, cell signaling and redox therapeutics. Redox Biol 2013; 1:17-8. [PMID: 24024134 PMCID: PMC3757686 DOI: 10.1016/j.redox.2013.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|