51
|
Affiliation(s)
- Heather B Patisaul
- Department of Biology and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695, USA.
| |
Collapse
|
52
|
Kaludjerovic J, Chen J, Ward WE. Early life exposure to genistein and daidzein disrupts structural development of reproductive organs in female mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:649-660. [PMID: 22712850 DOI: 10.1080/15287394.2012.688482] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In mice, exposure to isoflavones (ISO), abundant in soy infant formula, during the first 5 d of life alters structural and functional development of reproductive organs. Effects of longer exposures are unknown. The study objective was to evaluate whether exposure to a combination of daidzein and genistein in the first 10 compared to 5 d of life results in greater adverse effects on ovarian and uterine structure in adult mice. Thirteen litters of 8-12 pups were cross-fostered and randomized to corn oil or ISO (2 mg daidzein + 5 mg genistein/kg body weight/d) for the first 5 or 10 d of life. The 10-d protocol mimicked the period when infants are fed soy protein formula (SPF) but avoids the time when suckling pups can consume mother's diet. Body and organ weights, and histology of ovaries and uteri were analyzed. There were no differences in the ovary or uterus weight, number of ovarian follicles, number of multiple oocyte follicles, or percent of ovarian cysts with 5 or 10 d ISO intervention compared to respective controls. The 10-d ISO group had higher body weights from 6 d to 4 mo of age and a higher percent of hyperplasia in the oviduct than the respective control. Lower number of ovarian corpus lutea and a higher incidence of abnormal changes were reported in the uteri of both ISO groups compared to their respective controls. Five and 10-d exposure to ISO had similar long-lasting adverse effects on the structure of ovaries and uterus in adult mice. Only the 10-d ISO exposure resulted in greater body weight gain at adulthood.
Collapse
Affiliation(s)
- Jovana Kaludjerovic
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
53
|
|
54
|
Pihlajamaa P, Zhang FP, Saarinen L, Mikkonen L, Hautaniemi S, Jänne OA. The phytoestrogen genistein is a tissue-specific androgen receptor modulator. Endocrinology 2011; 152:4395-405. [PMID: 21878517 DOI: 10.1210/en.2011-0221] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To enable studies of androgen signaling in different tissues in vivo, we generated an androgen receptor (AR) reporter mouse line by inserting a luciferase gene construct into the murine genome. The construct is driven by four copies of androgen-responsive elements from the mouse sex-limited protein gene (slp-HRE2) and a minimal thymidine kinase promoter. Luciferase activity was readily measurable in a number of murine tissues, including prostate, lung, testis, brain, and skeletal muscle, and testosterone administration elicited a significant increase in reporter gene activity in these tissues. Consumption of isoflavonoid genistein is linked to reduced risk of prostate cancer, but direct effects of genistein on the AR pathway are not well understood. To examine androgen-modulating activity of genistein in vivo, male mice received daily doses of genistein (10 mg/kg) for 5 d. In intact males, genistein was antiandrogenic in testis, prostate, and brain, and it attenuated reporter gene activity by 50-80%. In castrated males, genistein exhibited significant androgen agonistic activity in prostate and brain by increasing reporter gene activity over 2-fold in both tissues. No antiandrogenic action was seen in lung or skeletal muscle of intact males. Gene expression profiling of the murine prostate under the same experimental conditions revealed that genistein modulates androgen-dependent transcription program in prostate in a fashion similar to that observed in reporter mice by luciferase expression. In conclusion, genistein is a partial androgen agonist/antagonist in some but not in all mouse tissues and should be considered as a tissue-specific AR modulator.
Collapse
Affiliation(s)
- Päivi Pihlajamaa
- Institute of Biomedicine, Physiology, Biomedicum Helsinki, University of Helsinki, and Department of Clinical Chemistry, Helsinki University Central Hospital, P.O. Box 63, FI-00014 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
55
|
Sullivan AW, Hamilton P, Patisaul HB. Neonatal agonism of ERβ impairs male reproductive behavior and attractiveness. Horm Behav 2011; 60:185-94. [PMID: 21554883 PMCID: PMC3126896 DOI: 10.1016/j.yhbeh.2011.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 04/19/2011] [Accepted: 04/19/2011] [Indexed: 12/14/2022]
Abstract
The organization of the developing male rodent brain is profoundly influenced by endogenous steroids, most notably estrogen. This process may be disrupted by estrogenic endocrine disrupting compounds (EDCs) resulting in altered sex behavior and the capacity to attract a mate in adulthood. To better understand the relative role each estrogen receptor (ER) subtype (ERα and ERβ) plays in mediating these effects, we exposed male Long Evans rats to estradiol benzoate (EB, 10 μg), vehicle, or agonists specific for ERβ (DPN, 1 mg/kg) or ERα (PPT, 1 mg/kg) daily for the first four days of life, and then assessed adult male reproductive behavior and attractiveness via a partner preference paradigm. DPN had a greater adverse impact than PPT on reproductive behavior, suggesting a functional role for ERβ in the organization of these male-specific behaviors. Therefore the impact of neonatal ERβ agonism was further investigated by repeating the experiment using vehicle, EB and additional DPN doses (0.5 mg/kg, 1 mg/kg, and 2 mg/kg bw). Exposure to DPN suppressed male reproductive behavior and attractiveness in a dose dependent manner. Finally, males were exposed to EB or an environmentally relevant dose of genistein (GEN, 10 mg/kg), a naturally occurring xenoestrogen, which has a higher relative binding affinity for ERβ than ERα. Sexual performance was impaired by GEN but not attractiveness. In addition to suppressing reproductive behavior and attractiveness, EB exposure significantly lowered the testis to body weight ratio, and circulating testosterone levels. DPN and GEN exposure only impaired behavior, suggesting that disrupted androgen secretion does not underlie the impairment.
Collapse
Affiliation(s)
- Alana W Sullivan
- Department of Biology, North Carolina State University, Raleigh NC 27695, USA
| | | | | |
Collapse
|
56
|
Circulating isoflavonoid levels in CD-1 mice: effect of oral versus subcutaneous delivery and frequency of administration. J Nutr Biochem 2011; 23:437-42. [PMID: 21658927 DOI: 10.1016/j.jnutbio.2011.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/13/2011] [Accepted: 01/21/2011] [Indexed: 11/22/2022]
Abstract
The CD-1 mouse is a commonly used animal model to understand the biological effects of early-life exposure to soy isoflavones in infants. Most studies using CD-1 mice have administered isoflavones by daily subcutaneous injection, while infants receive oral feeds every few hours. The study objectives were to compare the total serum levels of genistein (GEN), daidzein (DAI) and the DAI metabolites equol and O-desmethyl-angolensin (O-DMA), after subcutaneous injection and oral dosing and to determine if frequency of oral administration results in different circulating levels of isoflavones using the CD-1 mouse model. From postnatal days 1 to 5, pups randomly received corn oil or soy isoflavones (total daily dose, 0.010 mg DAI+0.025 mg GEN) by subcutaneous injection once a day, orally once a day or orally every 4 hours. On postnatal day 5, 1 h posttreatment, mice were killed and serum was collected. Mice treated with soy isoflavones had higher (P<.05) serum GEN (female: 1895-3391 ng/ml and male: 483-578 ng/ml) and DAI (female: 850-1580 ng/ml and male: 248-322 ng/ml) concentrations versus control (5-20 ng/ml) mice, regardless of route or frequency of administration, and were similar among dosing strategies. Total serum concentrations of GEN and DAI were higher (P<.05) among females (GEN: 2714 ± 393 ng/ml and DAI: 1205 ± 164 ng/ml) than males (GEN: 521 ± 439 ng/ml and DAI: 288 ± 184 ng/ml) across treatment groups. Serum equol and O-DMA concentrations were negligible (<3 ng/ml) across groups. In conclusion, different routes of delivery and frequency of administration resulted in similar total serum levels of GEN, DAI¸ equol or O-DMA.
Collapse
|
57
|
Losa SM, Todd KL, Sullivan AW, Cao J, Mickens JA, Patisaul HB. Neonatal exposure to genistein adversely impacts the ontogeny of hypothalamic kisspeptin signaling pathways and ovarian development in the peripubertal female rat. Reprod Toxicol 2011; 31:280-9. [PMID: 20951797 PMCID: PMC3034101 DOI: 10.1016/j.reprotox.2010.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/15/2010] [Accepted: 10/04/2010] [Indexed: 01/27/2023]
Abstract
Neonatal exposure to estrogenic endocrine disrupting compounds (EDCs) can advance pubertal onset and induce premature anestrous in female rats. It was recently discovered that hypothalamic kisspeptin (KISS) signaling pathways are sexually dimorphic and regulate both the timing of pubertal onset and estrous cyclicity. Thus we hypothesized that disrupted sex specific ontogeny of KISS signaling pathways might be a mechanism underlying these EDC effects. We first established the sex specific development of KISS gene expression, cell number and neural fiber density across peripuberty in the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC), hypothesizing that the sexually dimorphic aspects of KISS signaling would be most vulnerable to EDCs. We next exposed female rats to the phytoestrogen genistein (GEN, 1 or 10 mg/kg bw), estradiol benzoate (EB, 10 μg), or vehicle from post natal day (P) 0-3 via subcutaneous (sc) injection. Animals were sacrificed on either P21, 24, 28, or 33 (n=5-14 per group at each age). Vaginal opening was significantly advanced by EB and the higher dose of GEN compared to control animals and was accompanied by lower numbers of KISS immunoreactive fibers in the AVPV and ARC. Ovarian morphology was also assessed in all age groups for the presence of multiple oocyte follicles (MOFs). The number of MOFs decreased over time in each group, and none were observed in control animals by P24. MOFs were still present, however, in the EB and 10 mg/kg GEN groups beyond P24 indicating a disruption in the timing of ovarian development.
Collapse
Affiliation(s)
- Sandra M Losa
- North Carolina State University, Department of Biology, Raleigh, NC 27695, United States
| | | | | | | | | | | |
Collapse
|
58
|
Jefferson WN, Williams CJ. Circulating levels of genistein in the neonate, apart from dose and route, predict future adverse female reproductive outcomes. Reprod Toxicol 2011; 31:272-9. [PMID: 20955782 PMCID: PMC3192433 DOI: 10.1016/j.reprotox.2010.10.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/08/2010] [Accepted: 10/04/2010] [Indexed: 11/16/2022]
Abstract
Developmental exposure to estrogenic compounds can disrupt sexual differentiation and adult reproductive function in many animals including humans. Phytoestrogens (plant estrogens) in the diet comprise a significant source of estrogenic exposure to humans, particularly in infants who are fed soy-based infant formula. Animal models have been developed to test the effects of phytoestrogen exposure on the developing fetus and neonate. Here we review studies quantifying the amount of phytoestrogen exposure in human adults and infants and discuss the few available epidemiological studies that have addressed long-term consequences of developmental phytoestrogen exposure. We then describe in detail rodent models of developmental exposure to the most prevalent phytoestrogen in soy products, genistein, and the effects of this exposure on female reproductive function. These models have used various dosing strategies to mimic the phytoestrogen levels in human populations. Serum circulating levels of genistein following each of the models and their correlation to reproductive outcomes are also discussed. Taken together, the studies clearly demonstrate that environmentally relevant doses of genistein have significant negative impacts on ovarian differentiation, estrous cyclicity, and fertility in the rodent model. Additional studies of reproductive function in human populations exposed to high levels of phytoestrogens during development are warranted.
Collapse
Affiliation(s)
- Wendy N Jefferson
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States.
| | | |
Collapse
|
59
|
Isoflavones and PPAR Signaling: A Critical Target in Cardiovascular, Metastatic, and Metabolic Disease. PPAR Res 2011; 2010:153252. [PMID: 21461045 PMCID: PMC3061262 DOI: 10.1155/2010/153252] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 12/17/2010] [Indexed: 11/18/2022] Open
Abstract
Isoflavone intake through foods and dietary supplements has both health advocates and critics. The latter come from a concern about the estrogenic effects of isoflavones in certain species. However, careful removal of isoflavones and other estrogens from the diet of rodents leads to the metabolic syndrome. These results suggest that isoflavones have other mechanisms of action, potentially those involving regulation of fatty acid metabolism via the nuclear receptors PPARα and PPARγ. The goal of this paper was to examine the evidence for isoflavone/PPAR signaling and to identify diseases in which such signaling would have an important impact. It is therefore of note that investigators using a chemical structure approach to discover PPAR ligands identified isoflavones as the best structures in the library of compounds that they tested. Future studies will involve careful identification of the underlying mechanisms whereby isoflavones have their action via PPAR signaling.
Collapse
|
60
|
|
61
|
Lawson C, Gieske M, Murdoch B, Ye P, Li Y, Hassold T, Hunt PA. Gene expression in the fetal mouse ovary is altered by exposure to low doses of bisphenol A. Biol Reprod 2010; 84:79-86. [PMID: 20739668 DOI: 10.1095/biolreprod.110.084814] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Evidence from experimental studies suggests that fetal exposure to the endocrine-disrupting chemical bisphenol A (BPA) has adverse reproductive effects in both males and females. Studies from our laboratory suggest that exposure to the developing female fetus produces a unique, multigenerational effect. Specifically, maternal exposure affects the earliest stages of oogenesis in the developing fetal ovary, and the resulting subtle meiotic defects increase the likelihood that embryos produced by the exposed female in adulthood (i.e., the grandchildren) will be chromosomally abnormal. To understand the impact of BPA on the developing ovary, we conducted expression studies to characterize gene expression changes in the fetal ovary that result from BPA exposure. We first tested the validity of the approach, asking whether we could reliably detect temporal changes in expression levels of meiotic genes in controls. As anticipated, we were able to identify appropriate increases in expression in meiotic, but in few other, genes. Intriguingly, this analysis provided data on a small set of genes for which timing and expression changes suggest that they may have important and heretofore unrecognized meiotic roles. After verifying the utility of our approach, we focused our analysis on BPA-exposed animals. We found modest, but significant, changes in gene expression in the fetal ovaries from exposed fetuses. The first changes were evident within 24 h of exposure, and the most extensive changes correlated with the onset of meiosis. Furthermore, gene ontology analysis suggested that BPA acts to down-regulate mitotic cell-cycle genes, raising the possibility that fetal BPA exposure may act to limit expansion of the primordial germ cell population.
Collapse
Affiliation(s)
- Crystal Lawson
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164-7520, USA
| | | | | | | | | | | | | |
Collapse
|
62
|
Mohamed ESA, Song WH, Oh SA, Park YJ, You YA, Lee S, Choi JY, Kim YJ, Jo I, Pang MG. The transgenerational impact of benzo(a)pyrene on murine male fertility. Hum Reprod 2010; 25:2427-33. [DOI: 10.1093/humrep/deq205] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
63
|
Šošić-Jurjević B, Filipović B, Ajdžanović V, Savin S, Nestorović N, Milošević V, Sekulić M. Suppressive effects of genistein and daidzein on pituitary–thyroid axis in orchidectomized middle-aged rats. Exp Biol Med (Maywood) 2010; 235:590-8. [DOI: 10.1258/ebm.2009.009279] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
High intake of soybean phytoestrogens, isoflavones genistein (G) and daidzein (D), has been associated with health benefits. However, isoflavones were reported to affect adversely thyroid function in the presence of other goitrogenic factors. As the thyroid gland becomes functionally impaired with age, we examined whether supplementary doses of G or D would affect morphology and function of pituitary–thyroid axis in middle-aged male rats. Sixteen-month-old orchidectomized Wistar rats were treated with 10 mg/kg of either G or D, while the control sham-operated and orchidectomized group received just the vehicle for three weeks. The animals were fed soy-free diet with increased iodine content, and killed 24 h after the last treatment. Their pituitaries and thyroids were excised and prepared for further immunohistochemical and morphometric investigation. The concentrations of thyroid-stimulating hormone (TSH), total T4 and T3, in the serum were determined. In both isoflavone-treated groups, pituitary TSH-immunopositive cells had increased cellular volume and relative volume density ( P < 0.05), as well as increased serum TSH levels ( P < 0.05) in comparison to the controls; their thyroid tissue was characterized by increased volume of thyroglobulin-immunopositive epithelium ( P < 0.05), epithelial height and index of activation rate ( P < 0.05), while the volume of luminal colloid, and total serum T4 and T3 levels decreased ( P < 0.05) in comparison to the controls. In conclusion, this study provides the first direct evidence that both G and D can induce microfollicular changes in the thyroid tissue and reduce the level of thyroid hormones in Orx middle-aged male rats, a model of andropause. This reduction consequently led to a feedback stimulation of pituitary TSH cells. The detected stimulatory effect was higher in the daidzein-treated rats.
Collapse
Affiliation(s)
- Branka Šošić-Jurjević
- Institute for Biological Research ‘Siniša Stanković’, University of Belgrade, Despot Stefan Blvd 142, 11060 Belgrade
| | - Branko Filipović
- Institute for Biological Research ‘Siniša Stanković’, University of Belgrade, Despot Stefan Blvd 142, 11060 Belgrade
| | - Vladimir Ajdžanović
- Institute for Biological Research ‘Siniša Stanković’, University of Belgrade, Despot Stefan Blvd 142, 11060 Belgrade
| | - Svetlana Savin
- Institute for the Application of Nuclear Energy, 31b Banatska, 11080 Zemun, Serbia
| | - Nataša Nestorović
- Institute for Biological Research ‘Siniša Stanković’, University of Belgrade, Despot Stefan Blvd 142, 11060 Belgrade
| | - Verica Milošević
- Institute for Biological Research ‘Siniša Stanković’, University of Belgrade, Despot Stefan Blvd 142, 11060 Belgrade
| | - Milka Sekulić
- Institute for Biological Research ‘Siniša Stanković’, University of Belgrade, Despot Stefan Blvd 142, 11060 Belgrade
| |
Collapse
|
64
|
Balakrishnan B, Thorstensen EB, Ponnampalam AP, Mitchell MD. Transplacental transfer and biotransformation of genistein in human placenta. Placenta 2010; 31:506-11. [PMID: 20413155 DOI: 10.1016/j.placenta.2010.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/26/2010] [Accepted: 03/16/2010] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To study transplacental transfer and biotransformation of genistein in the human placenta. STUDY DESIGN AND OUTCOMES: Human placentae obtained from healthy term singleton pregnancies were utilised in a dual re-circulating model of ex-vivo placental perfusion. Four placentae were perfused for 180min following addition of genistein (10ng/mL) to the maternal perfusate. Antipyrine and FITC dextran were used as positive and negative controls respectively to validate integrity of the circuits. Concentrations of genistein and its conjugates were determined by liquid chromatography-mass spectrometry (LC-MS). RESULTS The transfer percentage for antipyrine and genistein was 25.6+/-1.40% and 22.1+/-1.61% respectively and the transfer index for genistein was 0.90+/-0.04 after 180min of perfusion. 12.0+/-2.40% of genistein in the fetal compartment and 7.36+/-4.73% of genistein in the maternal compartment were in the conjugated form. CONCLUSIONS Genistein can transfer across the human placenta at environmentally relevant levels. Placental metabolizing enzymes conjugate a small fraction of genistein into the glucuronide/sulphate form, which is devoid of estrogenic action.
Collapse
Affiliation(s)
- B Balakrishnan
- The Liggins Institute, The University of Auckland, Grafton, Auckland, New Zealand.
| | | | | | | |
Collapse
|
65
|
Cimafranca MA, Davila J, Ekman GC, Andrews RN, Neese SL, Peretz J, Woodling KA, Helferich WG, Sarkar J, Flaws JA, Schantz SL, Doerge DR, Cooke PS. Acute and chronic effects of oral genistein administration in neonatal mice. Biol Reprod 2010; 83:114-21. [PMID: 20357267 DOI: 10.1095/biolreprod.109.080549] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Soy-based infant formulas are widely used in the United States and some other countries. These formulas contain high levels of the estrogenic isoflavone genistein, leading to concern that neonatal genistein exposure could cause acute and/or long-term adverse effects on reproductive and other organs. However, previous work to assess genistein effects in rodent models has not typically replicated the route of delivery and/or serum genistein concentrations reported for soy formula-fed human infants. Our objective was to develop a mouse model that more closely mimics the oral genistein exposure and total serum genistein concentrations observed in soy formula-fed infants. Mouse pups were dosed orally with genistein in a soy formula-corn oil emulsion from Postnatal Day (PND) 1 to PND 5, then effects on reproductive and non-reproductive organs were assessed after dosing and during subsequent development. Neonatal treatment resulted in changes both at the completion of dosing (PND 5) and in adult animals. At PND 5, neonatal genistein treatment caused increased relative uterine weight and down-regulation of progesterone receptor in uterine epithelia. Estrogenic effects of genistein were also seen in the neonatal ovary and thymus, which had an increase in the incidence of multioocyte follicles (MOFs) and a decrease in thymic weight relative to body weight, respectively. The increased incidence of MOFs persisted into adulthood for neonatally treated genistein females, and estrous cycle abnormalities were seen at 6 mo of age despite normal fertility in these mice. The immediate and long-term effects in this neonatal animal model raise concerns that high serum concentrations of genistein are estrogenic and could potentially impact the development of human infants fed soy formula.
Collapse
Affiliation(s)
- Melissa A Cimafranca
- Department of Veterinary Biosciences, Division of Nutritional Sciences, University of Illinois, 2001 S. Lincoln Ave., Urbana, IL 61802, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Laschke MW, Schwender C, Vollmar B, Menger MD. Genistein Does Not Affect Vascularization and Blood Perfusion of Endometriotic Lesions and Ovarian Follicles in Dorsal Skinfold Chambers of Syrian Golden Hamsters. Reprod Sci 2010; 17:568-77. [DOI: 10.1177/1933719110364417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Matthias W. Laschke
- Institute for Clinical & Experimental Surgery, University of Saarland, Homburg/Saar, Germany,
| | - Christine Schwender
- Institute for Clinical & Experimental Surgery, University of Saarland, Homburg/Saar, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany
| | - Michael D. Menger
- Institute for Clinical & Experimental Surgery, University of Saarland, Homburg/Saar, Germany
| |
Collapse
|
67
|
D'Aloisio AA, Baird DD, DeRoo LA, Sandler DP. Association of intrauterine and early-life exposures with diagnosis of uterine leiomyomata by 35 years of age in the Sister Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:375-81. [PMID: 20194067 PMCID: PMC2854766 DOI: 10.1289/ehp.0901423] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 12/03/2009] [Indexed: 05/15/2023]
Abstract
BACKGROUND Early-life exposures to hormonally active compounds and other factors may affect later response to estrogen or progesterone and hence may influence development of uterine leiomyomata (fibroids). OBJECTIVES We evaluated associations of in utero and early-life exposures, including soy formula, with self-report of physician-diagnosed fibroids by 35 years of age. METHODS Our study included 19,972 non-Hispanic white women who were 35-59 years of age when they enrolled in the Sister Study in 20032007. We estimated risk ratios (RRs) and 95% confidence intervals (CIs) using log-binomial regression models for fibroid associations with adjustment for participant's age and education, maternal age at participant's birth, birth order, and childhood family income. RESULTS Greater risk of early fibroid diagnosis was associated with soy formula during infancy (RR = 1.25; 95% CI, 0.971.61), maternal prepregnancy diabetes (RR = 2.05; 95% CI, 1.163.63), low childhood socioeconomic status (RR = 1.28; 95% CI, 1.011.63), and gestational age at birth (RR = 1.64; 95% CI, 1.272.13, for being born at least 1 month early). In utero diethylstilbestrol (DES) exposure was also associated with early fibroid diagnosis (RR = 1.42; 95% CI, 1.131.80), but this association was driven by women reporting probable rather than definite exposure. CONCLUSIONS There are plausible biological pathways by which these early-life factors could promote fibroid pathogenesis. This is the first epidemiologic study to evaluate such exposures, with the exception of in utero DES, in relation to fibroid risk, and replication of findings in other populations is needed.
Collapse
Affiliation(s)
- Aimee A D'Aloisio
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | |
Collapse
|
68
|
Jefferson WN, Doerge D, Padilla-Banks E, Woodling KA, Kissling GE, Newbold R. Oral exposure to genistin, the glycosylated form of genistein, during neonatal life adversely affects the female reproductive system. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1883-1889. [PMID: 20049207 PMCID: PMC2799462 DOI: 10.1289/ehp.0900923] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 07/27/2009] [Indexed: 05/28/2023]
Abstract
BACKGROUND Developmental exposure to environmental estrogens is associated with adverse consequences later in life. Exposure to genistin (GIN), the glycosylated form of the phytoestrogen genistein (GEN) found in soy products, is of concern because approximately 20% of U.S. infants are fed soy formula. High circulating levels of GEN have been measured in the serum of these infants, indicating that GIN is readily absorbed, hydrolyzed, and circulated. OBJECTIVES We investigated whether orally administered GIN is estrogenic in neonatal mice and whether it causes adverse effects on the developing female reproductive tract. METHODS Female CD-1 mice were treated on postnatal days 1-5 with oral GIN (6.25, 12.5, 25, or 37.5 mg/kg/day; GEN-equivalent doses), oral GEN (25, 37.5, or 75 mg/kg/day), or subcutaneous GEN (12.5, 20, or 25 mg/kg/day). Estrogenic activity was measured on day 5 by determining uterine wet weight gain and induction of the estrogen-responsive gene lactoferrin. Vaginal opening, estrous cyclicity, fertility, and morphologic alterations in the ovary/reproductive tract were examined. RESULTS Oral GIN elicited an estrogenic response in the neonatal uterus, whereas the response to oral GEN was much weaker. Oral GIN altered ovarian differentiation (i.e., multioocyte follicles), delayed vaginal opening, caused abnormal estrous cycles, decreased fertility, and delayed parturition. CONCLUSIONS Our results support the idea that the dose of the physiologically active compound reaching the target tissue, rather than the administered dose or route, is most important in modeling chemical exposures. This is particularly true with young animals in which phase II metabolism capacity is underdeveloped relative to adults.
Collapse
Affiliation(s)
- Wendy N Jefferson
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | |
Collapse
|
69
|
McFee RM, Artac RA, McFee RM, Clopton DT, Smith RAL, Rozell TG, Cupp AS. Inhibition of vascular endothelial growth factor receptor signal transduction blocks follicle progression but does not necessarily disrupt vascular development in perinatal rat ovaries. Biol Reprod 2009; 81:966-77. [PMID: 19605787 PMCID: PMC2770022 DOI: 10.1095/biolreprod.109.078071] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 05/05/2009] [Accepted: 06/14/2009] [Indexed: 12/16/2022] Open
Abstract
We hypothesized that vascular endothelial growth factor A (VEGFA) angiogenic isoforms and their receptors, FLT1 and KDR, regulate follicular progression in the perinatal rat ovary. Each VEGFA angiogenic isoform has unique functions (based on its exons) that affect diffusibility, cell migration, branching, and development of large vessels. The Vegfa angiogenic isoforms (Vegfa_120, Vegfa_164, and Vegfa_188) were detected in developing rat ovaries, and quantitative RT-PCR determined that Vegfa_120 and Vegfa_164 mRNA was more abundant after birth, while Vegfa_188 mRNA was highest at Embryonic Day 16. VEGFA and its receptors were localized to pregranulosa and granulosa cells of all follicle stages and to theca cells of advanced-stage follicles. To determine the role of VEGFA in developing ovaries, Postnatal Day 3/4 rat ovaries were cultured with 8 muM VEGFR-TKI, a tyrosine kinase inhibitor that blocks FLT1 and KDR. Ovaries treated with VEGFR-TKI had vascular development reduced by 94% (P < 0.0001), with more primordial follicles (stage 0), fewer early primary, transitional, and secondary follicles (stages 1, 3, and 4, respectively), and greater total follicle numbers compared with control ovaries (P < 0.005). V1, an inhibitor specific for KDR, was utilized to determine the effects of only KDR inhibition. Treatment with 30 muM V1 had no effect on vascular density; however, treated ovaries had fewer early primary, transitional, and secondary follicles and more primary follicles (stage 2) compared with control ovaries (P < 0.05). We conclude that VEGFA may be involved in primordial follicle activation and in follicle maturation and survival, which are regulated through vascular-dependent and vascular-independent mechanisms.
Collapse
Affiliation(s)
- Renee M. McFee
- Department of Animal Science, Kansas State University, Manhattan, Kansas
| | - Robin A. Artac
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Ryann M. McFee
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Debra T. Clopton
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska
| | | | - Timothy G. Rozell
- Department of Animal Science, Kansas State University, Manhattan, Kansas
| | - Andrea S. Cupp
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
70
|
Patisaul HB, Adewale HB. Long-term effects of environmental endocrine disruptors on reproductive physiology and behavior. Front Behav Neurosci 2009; 3:10. [PMID: 19587848 PMCID: PMC2706654 DOI: 10.3389/neuro.08.010.2009] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 06/10/2009] [Indexed: 01/05/2023] Open
Abstract
It is well established that, over the course of development, hormones shape the vertebrate brain such that sex specific physiology and behaviors emerge. Much of this occurs in discrete developmental windows that span gestation through the prenatal period, although it is now becoming clear that at least some of this process continues through puberty. Perturbation of this developmental progression can permanently alter the capacity for reproductive success. Wildlife studies have revealed that exposure to endocrine disrupting compounds (EDCs), either naturally occurring or man made, can profoundly alter reproductive physiology and ultimately impact entire populations. Laboratory studies in rodents and other species have elucidated some of the mechanisms by which this occurs and strongly indicate that humans are also vulnerable to disruption. Use of hormonally active compounds in human medicine has also unfortunately revealed that the developing fetus can be exposed to and affected by endocrine disruptors, and that it might take decades for adverse effects to manifest. Research within the field of environmental endocrine disruption has also contributed to the general understanding of how early life experiences can alter reproductive physiology and behavior through non-genomic, epigenetic mechanisms such as DNA methylation and histone acetylation. These types of effects have the potential to impact future generations if the germ line is affected. This review provides an overview of how exposure to EDCs, particularly those that interfere with estrogen action, impacts reproductive physiology and behaviors in vertebrates.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biology, North Carolina State University Raleigh, NC 27695, USA.
| | | |
Collapse
|
71
|
Hunt PA, Susiarjo M, Rubio C, Hassold TJ. The bisphenol A experience: a primer for the analysis of environmental effects on mammalian reproduction. Biol Reprod 2009; 81:807-13. [PMID: 19458313 DOI: 10.1095/biolreprod.109.077008] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It is increasingly evident that environmental factors are a veritable Pandora's box from which new concerns and complications continue to emerge. Although previously considered the domain of toxicologists, it is now clear that an understanding of the effects of the environment on reproduction requires a far broader range of expertise and that, at least for endocrine-disrupting chemicals, many of the tenets of classical toxicology need to be revisited. Indeed, because of the wide range of reproductive effects induced by these chemicals, interest among reproductive biologists has grown rapidly: in 2000, the program for the annual Society for the Study of Reproduction meeting included a single minisymposium on the fetal origins of adult disease, one platform session on endocrine disruption, and 23 toxicology poster presentations. In contrast, environmental factors featured prominently at the 2009 meeting, with strong representation in the plenary, minisymposia, platform, and poster sessions. Clearly, a lot has happened in a decade, and environmental issues have become an increasingly important research focus for reproductive biologists. In this review, we summarize some of the inherent difficulties in assessing environmental effects on reproductive performance, focusing on the endocrine disruptor bisphenol A (BPA) to illustrate important emerging concerns. In addition, because the BPA experience serves as a prototype for scientific activism, public education, and advocacy, these issues are also discussed.
Collapse
Affiliation(s)
- Patricia A Hunt
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164-4660, USA.
| | | | | | | |
Collapse
|
72
|
King Heiden TC, Spitsbergen J, Heideman W, Peterson RE. Persistent adverse effects on health and reproduction caused by exposure of zebrafish to 2,3,7,8-tetrachlorodibenzo-p-dioxin during early development and gonad differentiation. Toxicol Sci 2009; 109:75-87. [PMID: 19279074 DOI: 10.1093/toxsci/kfp048] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Little is understood regarding the impacts of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure during early development on the health, survival, and reproductive capability of adults. Here we use zebrafish to determine whether early life stage exposure to TCDD induces toxicity in adult zebrafish and their offspring. Zebrafish were exposed to graded concentrations of TCDD (0-400 pg/ml) via waterborne exposure for 1 h/week from 0 to 7 weeks of age. The heart and swim bladder were identified as being most sensitive to TCDD exposure during early development. Subtle developmental toxic responses collectively impaired survival, and only zebrafish in the 0, 25, and 50 pg TCDD/ml groups survived to adulthood. Surviving fish exhibited TCDD toxicity in craniofacial structures (i.e., operculum and jaw), heart, swim bladder, and ovary. Exposure to 25 pg TCDD/ml impaired egg production (40% of control), fertility (90% of control), and gamete quality. TCDD-treated males contributed more than females to impaired reproductive capacity. Transgenerational effects were also discovered in that offspring from parents exposed to TCDD during early life stages showed a 25% increase in mortality compared with the F1 of dimethyl sulfoxide fish, reduced egg production (30-50% of control) and fertility (96% of control). Thus, adverse effects resulting from TCDD exposure during early life stages for one generation of zebrafish were sufficient to cause adverse health and reproductive effects on a second generation of zebrafish. In the environment, transgenerational effects such as these may contribute to population declines for the most TCDD sensitive fish species.
Collapse
Affiliation(s)
- Tisha C King Heiden
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | | | | | |
Collapse
|
73
|
Jefferson WN, Padilla-Banks E, Goulding EH, Lao SPC, Newbold RR, Williams CJ. Neonatal exposure to genistein disrupts ability of female mouse reproductive tract to support preimplantation embryo development and implantation. Biol Reprod 2009; 80:425-31. [PMID: 19005167 PMCID: PMC2677916 DOI: 10.1095/biolreprod.108.073171] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 09/19/2008] [Accepted: 11/07/2008] [Indexed: 11/01/2022] Open
Abstract
Female mice treated neonatally with the phytoestrogen genistein (50 mg/kg/day) have multioocyte follicles, lack regular estrous cyclicity, and are infertile even after superovulation. To determine the cause of their infertility, we examined oocyte developmental competence and timing of embryo loss. Eggs obtained by superovulation of genistein-treated or control females were equally capable of being fertilized in vitro and cultured to the blastocyst stage. However, if eggs were fertilized in vivo, retrieved at the pronucleus stage, and cultured, there was a significant reduction in the percentage of embryos from genistein-treated females reaching the blastocyst stage. When these blastocysts were transferred to pseudopregnant recipients, the number of live pups produced was similar to that in controls. Preimplantation embryo development in vivo was examined by flushing embryos from the oviduct and/or uterus. Similar numbers of one-cell and two-cell embryos were obtained from genistein-treated and control females. However, significantly fewer embryos (<50%) were obtained from genistein-treated females on postcoital Days 3 and 4. To determine if neonatal genistein treatment altered the ability of the uterus to support implantation, blastocysts from control donors were transferred to control and genistein-treated pseudopregnant recipients. These experiments demonstrated that genistein-treated females are not capable of supporting normal implantation of control embryos. Taken together, these results suggest that oocytes from mice treated neonatally with genistein are developmentally competent; however, the oviductal environment and the uterus have abnormalities that contribute to the observed reproductive failure.
Collapse
Affiliation(s)
- Wendy N. Jefferson
- Reproductive Medicine Group and Gamete Biology Section, Laboratory of Reproductive and Developmental Toxicology, and Developmental Endocrinology and Endocrine Disruptor Section, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Elizabeth Padilla-Banks
- Reproductive Medicine Group and Gamete Biology Section, Laboratory of Reproductive and Developmental Toxicology, and Developmental Endocrinology and Endocrine Disruptor Section, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Eugenia H. Goulding
- Reproductive Medicine Group and Gamete Biology Section, Laboratory of Reproductive and Developmental Toxicology, and Developmental Endocrinology and Endocrine Disruptor Section, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Shin-Ping C. Lao
- Reproductive Medicine Group and Gamete Biology Section, Laboratory of Reproductive and Developmental Toxicology, and Developmental Endocrinology and Endocrine Disruptor Section, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Retha R. Newbold
- Reproductive Medicine Group and Gamete Biology Section, Laboratory of Reproductive and Developmental Toxicology, and Developmental Endocrinology and Endocrine Disruptor Section, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Carmen J. Williams
- Reproductive Medicine Group and Gamete Biology Section, Laboratory of Reproductive and Developmental Toxicology, and Developmental Endocrinology and Endocrine Disruptor Section, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
74
|
Genistein-Induced Histomorphometric and Hormone Secreting Changes in the Adrenal Cortex in Middle-Aged Rats. Exp Biol Med (Maywood) 2009; 234:148-56. [DOI: 10.3181/0807-rm-231] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The soybean phytoestrogen, genistein, is increasingly consumed as an alternative therapeutic for age-related diseases, namely cardiovascular conditions, cancer and osteoporosis. Besides estrogenic/antiestrogenic action, this isoflavone exerts a prominent inhibitory effect on tyrosine kinase and the steroidogenic enzyme families, thus affecting hormonal homeostasis. The aim of this study was to examine the effects of genistein on: histomorphometric features of the adrenal cortex, blood concentrations of aldosterone, corticosterone and dehydroepiandrosterone (DHEA) and adrenal tissue corticosterone content in orchidectomized middle-aged male rats. Sixteen-month-old Wistar rats were divided into sham-operated (SO), orchidectomized (Orx) and genistein-treated orchidectomized (Orx+G) groups. Genistein (30 mg/kg/day) was administered subcutaneously for three weeks, while the control groups received the vehicle alone. The adrenal cortex was analysed histologically and morphometrically. Circulating concentrations of aldosterone, corticosterone and DHEA, as well as adrenal tissue corticosterone levels, were determined by immunoassay. When compared to the SO group, orchidectomy decreased the ZG and ZR cell volume by 43% and 29%, respectively ( P < 0.05). Serum concentrations of aldosterone and DHEA were markedly lower [13% and 41%, respectively ( P < 0.05)], while serum and adrenal tissue levels of corticosterone did not change after orchidectomy. Orchidectomy followed by genistein treatment increased the ZG, ZF and ZR cell volume by 54%, 34% and 77%, respectively ( P < 0.05), compared to the untreated orchidectomized group. Histological analysis revealed noticeable vacuolization of the ZG and ZF cells in the Orx+G group. Serum aldosterone and corticosterone concentrations together with adrenal tissue corticosterone were 47%, 31% and 44% lower, respectively ( P < 0.05), whereas serum DHEA concentration was 342% higher ( P < 0.05) in this group in comparison with the Orx group. This study shows that in orchidectomized middle-aged rats, genistein can cause the shunting of metabolic pathways in the adrenals, supporting DHEA secretion and inhibiting corticosterone and aldosterone secretion.
Collapse
|
75
|
Patisaul HB, Adewale HB, Mickens JA. Neonatal agonism of ERalpha masculinizes serotonergic (5-HT) projections to the female rat ventromedial nucleus of the hypothalamus (VMN) but does not impair lordosis. Behav Brain Res 2009; 196:317-22. [PMID: 18950659 PMCID: PMC2645032 DOI: 10.1016/j.bbr.2008.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 08/28/2008] [Accepted: 09/13/2008] [Indexed: 02/01/2023]
Abstract
Serotonin (5-HT) is known to play a role in the suppression of the lordosis response in males. We have previously shown that there is a sex difference in the density of 5-HT immunoreactive (5-HT-ir) fibers in the ventrolateral division of the adult ventromedial nucleus of the hypothalamus (VMNvl) and that neonatal administration of estradiol (E2) increases 5-HT-ir in the female VMNvl to male-typical levels. Here we demonstrate that postnatal administration of the ERalpha agonist 1,3,5-tris(4-Hydroxyphenyl)-4-propyl-1H-pyrazole (PPT), but not the ERbeta agonist diarylpropionitrile (DPN), also masculinizes 5-HT-ir in the female VMNvl, suggesting a mechanistic role for ERalpha in this process. Sexual receptivity, as ascertained by the lordosis quotient, was unaffected by either PPT or DPN treatment but nearly abolished by estradiol benzoate (EB), a synthetic estrogen with high affinity for both ERalpha and ERbeta. Collectively, these observations show that postnatal estrogens increase the density of 5-HT projections to the VMNvl via an ERalpha dependent mechanism, but that this increased inhibitory input is not sufficient to suppress the lordosis response.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biology, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | |
Collapse
|
76
|
Affiliation(s)
- Gail S Prins
- Department Urology, MC 955, University of Illinois at Chicago, 820 South Wood Street, Chicago, Illinois 60612, USA.
| |
Collapse
|
77
|
Tang WY, Newbold R, Mardilovich K, Jefferson W, Cheng RYS, Medvedovic M, Ho SM. Persistent hypomethylation in the promoter of nucleosomal binding protein 1 (Nsbp1) correlates with overexpression of Nsbp1 in mouse uteri neonatally exposed to diethylstilbestrol or genistein. Endocrinology 2008; 149:5922-31. [PMID: 18669593 PMCID: PMC2613067 DOI: 10.1210/en.2008-0682] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neonatal exposure of CD-1 mice to diethylstilbestrol (DES) or genistein (GEN) induces uterine adenocarcinoma in aging animals. Uterine carcinogenesis in this model is ovarian dependent because its evolution is blocked by prepubertal ovariectomy. This study seeks to discover novel uterine genes whose expression is altered by such early endocrine disruption via an epigenetic mechanism. Neonatal mice were treated with 1 or 1000 microg/kg DES, 50 mg/kg GEN, or oil (control) on d 1-5. One group of treated mice was killed before puberty on d 19. Others were ovariectomized or left intact, and killed at 6 and 18 months of age. Methylation-sensitive restriction fingerprinting was performed to identify differentially methylated sequences associated with neonatal exposure to DES/GEN. Among 14 candidates, nucleosomal binding protein 1 (Nsbp1), the gene for a nucleosome-core-particle binding protein, was selected for further study because of its central role in chromatin remodeling. In uteri of immature control mice, Nsbp1 promoter CpG island (CGI) was minimally methylated. Once control mice reached puberty, the Nsbp1 CGI became hypermethylated, and gene expression declined further. In contrast, in neonatal DES/GEN-treated mice, the Nsbp1 CGI stayed anomalously hypomethylated, and the gene exhibited persistent overexpression throughout life. However, if neonatal DES/GEN-treated mice were ovariectomized before puberty, the CGI remained minimally to moderately methylated, and gene expression was subdued except in the group treated with 1000 microg/kg DES. Thus, the life reprogramming of uterine Nsbp1 expression by neonatal DES/GEN exposure appears to be mediated by an epigenetic mechanism that interacts with ovarian hormones in adulthood.
Collapse
Affiliation(s)
- Wan-Yee Tang
- Department of Environmental Health, Kettering Complex, Room 128, 3223 Eden Avenue, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, Ohio 45267-0056, USA
| | | | | | | | | | | | | |
Collapse
|
78
|
Crain DA, Janssen SJ, Edwards TM, Heindel J, Ho SM, Hunt P, Iguchi T, Juul A, McLachlan JA, Schwartz J, Skakkebaek N, Soto AM, Swan S, Walker C, Woodruff TK, Woodruff TJ, Giudice LC, Guillette LJ. Female reproductive disorders: the roles of endocrine-disrupting compounds and developmental timing. Fertil Steril 2008; 90:911-40. [PMID: 18929049 DOI: 10.1016/j.fertnstert.2008.08.067] [Citation(s) in RCA: 307] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 08/13/2008] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To evaluate the possible role of endocrine-disrupting compounds (EDCs) on female reproductive disorders emphasizing developmental plasticity and the complexity of endocrine-dependent ontogeny of reproductive organs. Declining conception rates and the high incidence of female reproductive disruptions warrant evaluation of the impact of EDCs on female reproductive health. DESIGN Publications related to the contribution of EDCs to disorders of the ovary (aneuploidy, polycystic ovary syndrome, and altered cyclicity), uterus (endometriosis, uterine fibroids, fetal growth restriction, and pregnancy loss), breast (breast cancer, reduced duration of lactation), and pubertal timing were identified, reviewed, and summarized at a workshop. CONCLUSION(S) The data reviewed illustrate that EDCs contribute to numerous human female reproductive disorders and emphasize the sensitivity of early life-stage exposures. Many research gaps are identified that limit full understanding of the contribution of EDCs to female reproductive problems. Moreover, there is an urgent need to reduce the incidence of these reproductive disorders, which can be addressed by correlative studies on early life exposure and adult reproductive dysfunction together with tools to assess the specific exposures and methods to block their effects. This review of the EDC literature as it relates to female health provides an important platform on which women's health can be improved.
Collapse
|
79
|
Bateman HL, Patisaul HB. Disrupted female reproductive physiology following neonatal exposure to phytoestrogens or estrogen specific ligands is associated with decreased GnRH activation and kisspeptin fiber density in the hypothalamus. Neurotoxicology 2008; 29:988-97. [PMID: 18656497 PMCID: PMC2647326 DOI: 10.1016/j.neuro.2008.06.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/04/2008] [Accepted: 06/18/2008] [Indexed: 01/20/2023]
Abstract
It is well established that estrogen administration during neonatal development can advance pubertal onset and prevent the maintenance of regular estrous cycles in female rats. This treatment paradigm also eliminates the preovulatory rise of gonadotropin releasing hormone (GnRH). It remains unclear, however, through which of the two primary forms of the estrogen receptor (ERalpha or ERbeta) this effect is mediated. It is also unclear whether endocrine disrupting compounds (EDCs) can produce similar effects. Here we compared the effect of neonatal exposure to estradiol benzoate (EB), the ERalpha specific agonist 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT), the ERbeta specific agonist diarylpropionitrile (DPN) and the naturally occurring EDCs genistein (GEN) and equol (EQ) on pubertal onset, estrous cyclicity, GnRH activation, and kisspeptin content in the anteroventral periventricular (AVPV) and arcuate (ARC) nuclei. Vaginal opening was significantly advanced by EB and GEN. By 10 weeks post-puberty, irregular estrous cycles were observed in all groups except the control group. GnRH activation, as measured by the percentage of immunopositive GnRH neurons that were also immunopositive for Fos, was significantly lower in all treatment groups except the DPN group compared to the control group. GnRH activation was absent in the PPT group. These data suggest that neonatal exposure to EDCs can suppress GnRH activity in adulthood, and that ERalpha plays a pivotal role in this process. Kisspeptins (KISS) have recently been characterized to be potent stimulators of GnRH secretion. Therefore we quantified the density of KISS immunolabeled fibers in the AVPV and ARC. In the AVPV, KISS fiber density was significantly lower in the EB and GEN groups compared to the control group but only in the EB and PPT groups in the ARC. The data suggest that decreased stimulation of GnRH neurons by KISS could be a mechanism by which EDCs can impair female reproductive function.
Collapse
Affiliation(s)
- Heather L Bateman
- Department of Zoology, North Carolina State University, Raleigh, NC 27695, USA.
| | | |
Collapse
|
80
|
Laschke MW, Schwender C, Scheuer C, Vollmar B, Menger MD. Dietary glycine does not affect physiological angiogenesis and reproductive function, but inhibits apoptosis in endometrial and ovarian tissue by down-regulation of nuclear factor-κB. Fertil Steril 2008; 90:1460-9. [DOI: 10.1016/j.fertnstert.2007.08.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 07/26/2007] [Accepted: 08/16/2007] [Indexed: 11/29/2022]
|
81
|
Abstract
Over the last decades, the prevalence of obesity and related diseases has increased rapidly in the Western world. Obesity is a disorder of energy balance and is associated with hyper-insulinemia, insulin resistance, and abnormalities in lipid metabolism, and it is one of the most important risk factors in the development of Type II diabetes, cardiovascular disease, atherosclerosis, and certain cancers. Because of the lower frequency of these diseases in Asian countries, attention has been turned toward the Asian diet, which consists highly of soy and soy-based products. The health benefits associated with soy consumption have been linked to the content of isoflavones, the main class of the phytoestrogens. As a result of their structural similarities to endogenous estrogens, isoflavones elicit weak estrogenic effects by competing with 17beta-estradiol (E2) for binding to the intranuclear estrogen receptors (ERs) and exert estrogenic or antiestrogenic effects in various tissues. The estrogenic activities of soy isoflavones are thought to play an important role in their health-enhancing properties. Additionally, the isoflavones have been proved to exert non-ER-mediated effects through numerous other pathways. Genistein, daidzein, and glycitein are the principal isoflavones in soy. Genistein is the most thoroughly examined of these, because it is the most prevalent isoflavone in soy and the most active of these compounds, because of its higher binding affinity for the ER. Genistein and daidzein can be obtained in high levels in humans under certain nutritional conditions, and epidemiologic and laboratory data suggest that these compounds could have health benefits in human obesity. This review will focus on the latest results of research on isoflavones and their effect on obesity in cell cultures, rodents, and humans.
Collapse
Affiliation(s)
- Anne Ørgaard
- Department of Veterinary Pathobiology, Faculty of Life Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
82
|
Jefferson WN, Padilla-Banks E, Newbold RR. Disruption of the developing female reproductive system by phytoestrogens: Genistein as an example. Mol Nutr Food Res 2007; 51:832-44. [PMID: 17604387 DOI: 10.1002/mnfr.200600258] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Studies in our laboratory have shown that exposure to genistein causes deleterious effects on the developing female reproductive system. Mice treated neonatally on days 1-5 by subcutaneous injection of genistein (0.5-50 mg/kg) exhibited altered ovarian differentiation leading to multioocyte follicles (MOFs) at 2 months of age. Ovarian function and estrous cyclicity were also disrupted by neonatal exposure to genistein with increasing severity observed over time. Reduced fertility was observed in mice treated with genistein (0.5, 5, or 25 mg/kg) and infertility was observed at 50 mg/kg. Mammary gland and behavioral endpoints were also affected by neonatal genistein treatment. Further, transgenerational effects were observed; female offspring obtained from breeding genistein treated females (25 mg/kg) to control males had increased MOFs. Thus, neonatal treatment with genistein at environmentally relevant doses caused adverse consequences on female development which is manifested in adulthood. Whether adverse effects occur in human infants exposed to soy-based products such as soy infant formulas is unknown but the neonatal murine model may help address some of the current uncertainties since we have shown that many effects obtained from feeding genistin, the glycosolated form of genistein found in soy formula, are similar to those obtained from injecting genistein.
Collapse
Affiliation(s)
- Wendy N Jefferson
- Developmental Endocrinology and Endocrine Disruptor Section, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, USA.
| | | | | |
Collapse
|
83
|
Abstract
The traditional view that gene and environment interactions control disease susceptibility can now be expanded to include epigenetic reprogramming as a key determinant of origins of human disease. Currently, epigenetics is defined as heritable changes in gene expression that do not alter DNA sequence but are mitotically and transgenerationally inheritable. Epigenetic reprogramming is the process by which an organism's genotype interacts with the environment to produce its phenotype and provides a framework for explaining individual variations and the uniqueness of cells, tissues, or organs despite identical genetic information. The main epigenetic mediators are histone modification, DNA methylation, and non-coding RNAs. They regulate crucial cellular functions such as genome stability, X-chromosome inactivation, gene imprinting, and reprogramming of non-imprinting genes, and work on developmental plasticity such that exposures to endogenous or exogenous factors during critical periods permanently alter the structure or function of specific organ systems. Developmental epigenetics is believed to establish "adaptive" phenotypes to meet the demands of the later-life environment. Resulting phenotypes that match predicted later-life demands will promote health, while a high degree of mismatch will impede adaptability to later-life challenges and elevate disease risk. The rapid introduction of synthetic chemicals, medical interventions, environmental pollutants, and lifestyle choices, may result in conflict with the programmed adaptive changes made during early development, and explain the alarming increases in some diseases. The recent identification of a significant number of epigenetically regulated genes in various model systems has prepared the field to take on the challenge of characterizing distinct epigenomes related to various diseases. Improvements in human health could then be redirected from curative care to personalized, preventive medicine based, in part, on epigenetic markings etched in the "margins" of one's genetic make-up.
Collapse
Affiliation(s)
- Wan-yee Tang
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Shuk-mei Ho
- Department of Environmental Health and Cancer Center, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|