51
|
Epstein D, Hoffman Y, Dahoud G, Raz A, Miller A. Simultaneous ventilation of two simulated ARDS patients in COVID-19 pandemic. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:214. [PMID: 32393390 PMCID: PMC7213771 DOI: 10.1186/s13054-020-02940-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/01/2020] [Indexed: 11/17/2022]
Affiliation(s)
- Danny Epstein
- Internal Medicine "B" department, Rambam Health Care Campus, HaAliya HaShniya St. 8, 3109601, Haifa, Israel.
| | - Yoav Hoffman
- Pediatric Intensive Care unit, Galilee Medical Center, Nahariya, Israel
| | - George Dahoud
- Critical Care division, Rambam Health Care Campus, Haifa, Israel
| | - Aeyal Raz
- Department of Anesthesiology, Rambam Health Care Campus, Haifa, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Asaf Miller
- Medical Intensive Care unit, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
52
|
Personalized Ventilation to Multiple Patients Using a Single Ventilator: Description and Proof of Concept. Crit Care Explor 2020; 2:e0118. [PMID: 32671348 PMCID: PMC7259561 DOI: 10.1097/cce.0000000000000118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Supplemental Digital Content is available in the text. Objectives: To design and test a ventilator circuit that can be used for ventilation of two or more patients with a single ventilator, while allowing individualization of tidal volume, fractional concentration of oxygen, and positive end-expiratory pressure to each patient, irrespective of the other patient’s respiratory system mechanics. Design: Description and proof of concept studies. Settings: Respiratory therapy laboratory. Subjects: Ventilation of mechanical test lungs. Interventions: Following a previously advocated design, we used components readily available in our hospital to assemble two “bag-in-a-box” breathing circuits. Each patient circuit consisted of a flexible bag in a rigid container connected via one-way valve to a test lung, along with an inline positive end-expiratory pressure valve, connected to the ventilator’s expiratory limb. Compressed gas fills the bags during “patient” exhalation. During inspiration, gas from the ventilator, in pressure control mode, enters the containers and displaces gas from the bags to the test lungs. We varied tidal volume, “respiratory system” compliance, and positive end-expiratory pressure in one lung and observed the effect on the tidal volume of the other. Measurements and Main Results: We were able to obtain different tidal volume, dynamic driving pressure, and positive end-expiratory pressure in the two lungs under widely different compliances in both lungs. Complete obstruction, or disconnection at the circuit connection to one test lung, had minimal effect (< 5% on average) on the ventilation to the co-ventilated lung. Conclusions: A secondary circuit “bag-in-the-box” system enables individualized ventilation of two lungs overcoming many of the concerns of ventilating more than one patient with a single ventilator.
Collapse
|
53
|
Cook DC. Implementing shared ventilation must be scientific and ethical, or it risks harm. Br J Anaesth 2020; 125:e181-e183. [PMID: 32416993 PMCID: PMC7183957 DOI: 10.1016/j.bja.2020.04.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 04/16/2020] [Indexed: 11/28/2022] Open
|
54
|
Clarke AL, Stephens AF, Liao S, Byrne TJ, Gregory SD. Coping with COVID-19: ventilator splitting with differential driving pressures using standard hospital equipment. Anaesthesia 2020; 75:872-880. [PMID: 32271942 PMCID: PMC7262199 DOI: 10.1111/anae.15078] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2020] [Indexed: 12/01/2022]
Abstract
The global COVID‐19 pandemic has led to a worldwide shortage of ventilators. This shortage has initiated discussions on how to support multiple patients with a single ventilator (ventilator splitting). Ventilator splitting is incompletely tested, experimental and the effects have not been fully characterised. This study investigated the effect of ventilator splitting on system variables (inspiratory pressure, flow and volume) and the possibility of different ventilation targets for each limb using only standard hospital equipment. Experiments were conducted on two test lungs with different compliances (0.02 l.cmH2O−1 and 0.04 l.cmH2O−1). The ventilator was used in both pressure and volume control modes and was set to ventilate the low compliance lungs at end‐tidal volumes of 500 ± 20 ml. A flow restrictor apparatus consisting of a Hoffman clamp and tracheal tube was connected in series to the inspiratory limb of the high compliance test lungs and the resistance modified to achieve end‐tidal volumes of 500 ± 20 ml. The restriction apparatus successfully modified the inspiratory pressure, minute ventilation and volume delivered to the high compliance test lungs in both pressure control (27.3–17.8 cmH2O, 15.2–8.0 l.min−1 and 980–499 ml, respectively) and volume control (21.0–16.7 cmH2O, 10.7–7.9 l.min−1 and 659–498 ml, respectively) ventilation modes. Ventilator splitting is not condoned by the authors. However, these experiments demonstrate the capacity to simultaneously ventilate two test lungs of different compliances, and using only standard hospital equipment, modify the delivered pressure, flow and volume in each test lung.
Collapse
Affiliation(s)
- A L Clarke
- Department of Anaesthesia, Royal Women's Hospital, Melbourne, Vic., Australia
| | - A F Stephens
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Vic., Australia
| | - S Liao
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Vic., Australia
| | - T J Byrne
- Department of Intensive Care and Hyperbaric Medicine, Alfred Hospital, Melbourne, Vic., Australia
| | - S D Gregory
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
55
|
Tonetti T, Zanella A, Pizzilli G, Irvin Babcock C, Venturi S, Nava S, Pesenti A, Ranieri VM. One ventilator for two patients: feasibility and considerations of a last resort solution in case of equipment shortage. Thorax 2020; 75:517-519. [PMID: 32327566 PMCID: PMC7211107 DOI: 10.1136/thoraxjnl-2020-214895] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 11/03/2022]
Affiliation(s)
- Tommaso Tonetti
- Department of Medical and Surgical Sciences (DIMEC), Anesthesia and Intensive Care Medicine, Sant'Orsola-Malpighi Hospital, Alma Mater Studiorum University of Bologna, Bologna, Emilia-Romagna, Italy
| | - Alberto Zanella
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milano, Lombardia, Italy.,Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ospedale Maggiore Policlinico Mangiagalli e Regina Elena, Milano, Italy
| | - Giacinto Pizzilli
- Anesthesia and Intensive Care Medicine, Sant'Orsola Malpighi Hospital, Bologna, Italy
| | - Charlene Irvin Babcock
- Department of Emergency Medicine, Ascension St John Hospital and Medical Center, Detroit, Michigan, USA
| | - Sergio Venturi
- Covid-19 Commissioner, Emilia-Romagna Region, Bologna, Emilia-Romagna, Italy
| | - Stefano Nava
- Department of Clinical, Integrated and Experimental Medicine (DIMES), Respiratory and Critical Care Unit, Sant'Orsola-Malpighi Hospital, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Antonio Pesenti
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milano, Lombardia, Italy.,Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ospedale Maggiore Policlinico Mangiagalli e Regina Elena, Milano, Italy
| | - V Marco Ranieri
- Department of Medical and Surgical Sciences (DIMEC), Anesthesia and Intensive Care Medicine, Sant'Orsola-Malpighi Hospital, Alma Mater Studiorum University of Bologna, Bologna, Emilia-Romagna, Italy
| |
Collapse
|
56
|
Pearson SD, Hall JB, Parker WF. Two for one with split- or co-ventilation at the peak of the COVID-19 tsunami: is there any role for communal care when the resources for personalised medicine are exhausted? Thorax 2020; 75:444-445. [PMID: 32327565 DOI: 10.1136/thoraxjnl-2020-214929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2020] [Indexed: 11/04/2022]
Affiliation(s)
- Steven Dale Pearson
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, USA
| | - Jesse B Hall
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, USA
| | - William F Parker
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
57
|
Irvin Babcock C, Paladino L. Advances in the methodology of co-ventilation during a disaster. Thorax 2020; 75:448. [PMID: 32327567 DOI: 10.1136/thoraxjnl-2020-214967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 11/04/2022]
Affiliation(s)
- Charlene Irvin Babcock
- Department of Emergency Medicine, Ascension St John Hospital and Medical Center, Detroit, Michigan, USA
| | - Lorenzo Paladino
- Department of Emergency Medicine, State University of New York Downstate Medical Center, Brooklyn, New York, USA.,Department of Emergency Medicine, Kings County Hospital Center, Brooklyn, New York, USA
| |
Collapse
|
58
|
Clarke AL. 3D printed circuit splitter and flow restriction devices for multiple patient lung ventilation using one anaesthesia workstation or ventilator. Anaesthesia 2020; 75:819-820. [PMID: 32233030 DOI: 10.1111/anae.15063] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A L Clarke
- The Royal Women's Hospital, Melbourne, Vic., Australia
| |
Collapse
|
59
|
Stawicki SP, Jeanmonod R, Miller AC, Paladino L, Gaieski DF, Yaffee AQ, De Wulf A, Grover J, Papadimos TJ, Bloem C, Galwankar SC, Chauhan V, Firstenberg MS, Di Somma S, Jeanmonod D, Garg SM, Tucci V, Anderson HL, Fatimah L, Worlton TJ, Dubhashi SP, Glaze KS, Sinha S, Opara IN, Yellapu V, Kelkar D, El-Menyar A, Krishnan V, Venkataramanaiah S, Leyfman Y, Saoud Al Thani HA, WB Nanayakkara P, Nanda S, Cioè-Peña E, Sardesai I, Chandra S, Munasinghe A, Dutta V, Dal Ponte ST, Izurieta R, Asensio JA, Garg M. The 2019-2020 Novel Coronavirus (Severe Acute Respiratory Syndrome Coronavirus 2) Pandemic: A Joint American College of Academic International Medicine-World Academic Council of Emergency Medicine Multidisciplinary COVID-19 Working Group Consensus Paper. J Glob Infect Dis 2020; 12:47-93. [PMID: 32773996 PMCID: PMC7384689 DOI: 10.4103/jgid.jgid_86_20] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/25/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
What started as a cluster of patients with a mysterious respiratory illness in Wuhan, China, in December 2019, was later determined to be coronavirus disease 2019 (COVID-19). The pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel Betacoronavirus, was subsequently isolated as the causative agent. SARS-CoV-2 is transmitted by respiratory droplets and fomites and presents clinically with fever, fatigue, myalgias, conjunctivitis, anosmia, dysgeusia, sore throat, nasal congestion, cough, dyspnea, nausea, vomiting, and/or diarrhea. In most critical cases, symptoms can escalate into acute respiratory distress syndrome accompanied by a runaway inflammatory cytokine response and multiorgan failure. As of this article's publication date, COVID-19 has spread to approximately 200 countries and territories, with over 4.3 million infections and more than 290,000 deaths as it has escalated into a global pandemic. Public health concerns mount as the situation evolves with an increasing number of infection hotspots around the globe. New information about the virus is emerging just as rapidly. This has led to the prompt development of clinical patient risk stratification tools to aid in determining the need for testing, isolation, monitoring, ventilator support, and disposition. COVID-19 spread is rapid, including imported cases in travelers, cases among close contacts of known infected individuals, and community-acquired cases without a readily identifiable source of infection. Critical shortages of personal protective equipment and ventilators are compounding the stress on overburdened healthcare systems. The continued challenges of social distancing, containment, isolation, and surge capacity in already stressed hospitals, clinics, and emergency departments have led to a swell in technologically-assisted care delivery strategies, such as telemedicine and web-based triage. As the race to develop an effective vaccine intensifies, several clinical trials of antivirals and immune modulators are underway, though no reliable COVID-19-specific therapeutics (inclusive of some potentially effective single and multi-drug regimens) have been identified as of yet. With many nations and regions declaring a state of emergency, unprecedented quarantine, social distancing, and border closing efforts are underway. Implementation of social and physical isolation measures has caused sudden and profound economic hardship, with marked decreases in global trade and local small business activity alike, and full ramifications likely yet to be felt. Current state-of-science, mitigation strategies, possible therapies, ethical considerations for healthcare workers and policymakers, as well as lessons learned for this evolving global threat and the eventual return to a "new normal" are discussed in this article.
Collapse
Affiliation(s)
- Stanislaw P Stawicki
- Working Group on International Health Security, The American College of Academic International Academic Medicine, USA
- COVID-19 Pandemic Taskforce, World Academic Council of Emergency Medicine, USA
| | - Rebecca Jeanmonod
- Working Group on International Health Security, The American College of Academic International Academic Medicine, USA
- COVID-19 Pandemic Taskforce, World Academic Council of Emergency Medicine, USA
| | - Andrew C Miller
- Working Group on International Health Security, The American College of Academic International Academic Medicine, USA
| | - Lorenzo Paladino
- Working Group on International Health Security, The American College of Academic International Academic Medicine, USA
- COVID-19 Pandemic Taskforce, World Academic Council of Emergency Medicine, USA
| | - David F Gaieski
- COVID-19 Pandemic Taskforce, World Academic Council of Emergency Medicine, USA
| | - Anna Q Yaffee
- Working Group on International Health Security, The American College of Academic International Academic Medicine, USA
| | - Annelies De Wulf
- Working Group on International Health Security, The American College of Academic International Academic Medicine, USA
| | - Joydeep Grover
- COVID-19 Pandemic Taskforce, World Academic Council of Emergency Medicine, USA
| | - Thomas J. Papadimos
- Working Group on International Health Security, The American College of Academic International Academic Medicine, USA
| | - Christina Bloem
- Working Group on International Health Security, The American College of Academic International Academic Medicine, USA
| | - Sagar C Galwankar
- Working Group on International Health Security, The American College of Academic International Academic Medicine, USA
- COVID-19 Pandemic Taskforce, World Academic Council of Emergency Medicine, USA
| | - Vivek Chauhan
- COVID-19 Pandemic Taskforce, World Academic Council of Emergency Medicine, USA
| | - Michael S. Firstenberg
- Working Group on International Health Security, The American College of Academic International Academic Medicine, USA
- COVID-19 Pandemic Taskforce, World Academic Council of Emergency Medicine, USA
| | - Salvatore Di Somma
- COVID-19 Pandemic Taskforce, World Academic Council of Emergency Medicine, USA
| | - Donald Jeanmonod
- Working Group on International Health Security, The American College of Academic International Academic Medicine, USA
- COVID-19 Pandemic Taskforce, World Academic Council of Emergency Medicine, USA
| | - Sona M Garg
- Working Group on International Health Security, The American College of Academic International Academic Medicine, USA
| | - Veronica Tucci
- Working Group on International Health Security, The American College of Academic International Academic Medicine, USA
| | - Harry L Anderson
- Working Group on International Health Security, The American College of Academic International Academic Medicine, USA
- COVID-19 Pandemic Taskforce, World Academic Council of Emergency Medicine, USA
| | - Lateef Fatimah
- COVID-19 Pandemic Taskforce, World Academic Council of Emergency Medicine, USA
| | - Tamara J Worlton
- Working Group on International Health Security, The American College of Academic International Academic Medicine, USA
| | | | - Krystal S Glaze
- Working Group on International Health Security, The American College of Academic International Academic Medicine, USA
| | - Sagar Sinha
- COVID-19 Pandemic Taskforce, World Academic Council of Emergency Medicine, USA
| | - Ijeoma Nnodim Opara
- Working Group on International Health Security, The American College of Academic International Academic Medicine, USA
| | - Vikas Yellapu
- Working Group on International Health Security, The American College of Academic International Academic Medicine, USA
| | - Dhanashree Kelkar
- COVID-19 Pandemic Taskforce, World Academic Council of Emergency Medicine, USA
| | - Ayman El-Menyar
- COVID-19 Pandemic Taskforce, World Academic Council of Emergency Medicine, USA
| | - Vimal Krishnan
- COVID-19 Pandemic Taskforce, World Academic Council of Emergency Medicine, USA
| | - S Venkataramanaiah
- COVID-19 Pandemic Taskforce, World Academic Council of Emergency Medicine, USA
| | - Yan Leyfman
- Working Group on International Health Security, The American College of Academic International Academic Medicine, USA
| | | | | | - Sudip Nanda
- Working Group on International Health Security, The American College of Academic International Academic Medicine, USA
| | - Eric Cioè-Peña
- Working Group on International Health Security, The American College of Academic International Academic Medicine, USA
| | - Indrani Sardesai
- COVID-19 Pandemic Taskforce, World Academic Council of Emergency Medicine, USA
| | - Shruti Chandra
- COVID-19 Pandemic Taskforce, World Academic Council of Emergency Medicine, USA
| | - Aruna Munasinghe
- COVID-19 Pandemic Taskforce, World Academic Council of Emergency Medicine, USA
| | - Vibha Dutta
- COVID-19 Pandemic Taskforce, World Academic Council of Emergency Medicine, USA
| | - Silvana Teixeira Dal Ponte
- Working Group on International Health Security, The American College of Academic International Academic Medicine, USA
| | - Ricardo Izurieta
- Working Group on International Health Security, The American College of Academic International Academic Medicine, USA
| | - Juan A Asensio
- Working Group on International Health Security, The American College of Academic International Academic Medicine, USA
- COVID-19 Pandemic Taskforce, World Academic Council of Emergency Medicine, USA
| | - Manish Garg
- Working Group on International Health Security, The American College of Academic International Academic Medicine, USA
- COVID-19 Pandemic Taskforce, World Academic Council of Emergency Medicine, USA
| |
Collapse
|
60
|
Abstract
Coronavirus Disease 2019 (COVID-19) threatens to overwhelm our medical infrastructure at the regional level causing spikes in mortality rates because of shortages of critical equipment, like ventilators. Fortunately, with the recent development and widespread deployment of small-scale manufacturing technologies like RepRap-class 3-D printers and open source microcontrollers, mass distributed manufacturing of ventilators has the potential to overcome medical supply shortages. In this study, after providing a background on ventilators, the academic literature is reviewed to find the existing and already openly-published, vetted designs for ventilators systems. These articles are analyzed to determine if the designs are open source both in spirit (license) as well as practical details (e.g. possessing accessible design source files, bill of materials, assembly instructions, wiring diagrams, firmware and software as well as operation and calibration instructions). Next, the existing Internet and gray literature are reviewed for open source ventilator projects and designs. The results of this review found that the tested and peer-reviewed systems lacked complete documentation and the open systems that were documented were either at the very early stages of design (sometimes without even a prototype) and were essentially only basically tested (if at all). With the considerably larger motivation of an ongoing pandemic, it is assumed these projects will garner greater attention and resources to make significant progress to reach a functional and easily-replicated system. There is a large amount of future work needed to move open source ventilators up to the level considered scientific-grade equipment, and even further work needed to reach medical-grade hardware. Future work is needed to achieve the potential of this approach by developing policies, updating regulations, and securing funding mechanisms for the development and testing of open source ventilators for both the current COVID19 pandemic as well as for future pandemics and for everyday use in low-resource settings.
Collapse
Affiliation(s)
- Joshua M. Pearce
- Department of Materials Science & Engineering and Department of Electrical & Computer Engineering, Michigan Technological University, Houghton, MI, 49931, USA
- Équipe de Recherche sur les Processus Innovatifs (ERPI), Université de Lorraine, Nancy, France
- School of Electrical Engineering, Aalto University, Helsinki, Finland
| |
Collapse
|
61
|
Abstract
Coronavirus Disease 2019 (COVID-19) threatens to overwhelm our medical infrastructure at the regional level causing spikes in mortality rates because of shortages of critical equipment, like ventilators. Fortunately, with the recent development and widespread deployment of small-scale manufacturing technologies like RepRap-class 3-D printers and open source microcontrollers, mass distributed manufacturing of ventilators has the potential to overcome medical supply shortages. In this study, after providing a background on ventilators, the academic literature is reviewed to find the existing and already openly-published, vetted designs for ventilators systems. These articles are analyzed to determine if the designs are open source both in spirit (license) as well as practical details (e.g. possessing accessible design source files, bill of materials, assembly instructions, wiring diagrams, firmware and software as well as operation and calibration instructions). Next, the existing Internet and gray literature are reviewed for open source ventilator projects and designs. The results of this review found that the tested and peer-reviewed systems lacked complete documentation and the open systems that were documented were either at the very early stages of design (sometimes without even a prototype) and were essentially only basically tested (if at all). With the considerably larger motivation of an ongoing pandemic, it is assumed these projects will garner greater attention and resources to make significant progress to reach a functional and easily-replicated system. There is a large amount of future work needed to move open source ventilators up to the level considered scientific-grade equipment, and even further work needed to reach medical-grade hardware. Future work is needed to achieve the potential of this approach by developing policies, updating regulations, and securing funding mechanisms for the development and testing of open source ventilators for both the current COVID19 pandemic as well as for future pandemics and for everyday use in low-resource settings.
Collapse
Affiliation(s)
- Joshua M. Pearce
- Department of Materials Science & Engineering and Department of Electrical & Computer Engineering, Michigan Technological University, Houghton, MI, 49931, USA
- Équipe de Recherche sur les Processus Innovatifs (ERPI), Université de Lorraine, Nancy, France
- School of Electrical Engineering, Aalto University, Helsinki, Finland
| |
Collapse
|
62
|
Porther N, Barbieri MA. The role of endocytic Rab GTPases in regulation of growth factor signaling and the migration and invasion of tumor cells. Small GTPases 2015; 6:135-44. [PMID: 26317377 PMCID: PMC4601184 DOI: 10.1080/21541248.2015.1050152] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 05/04/2015] [Accepted: 05/07/2015] [Indexed: 01/05/2023] Open
Abstract
Metastasis is characterized pathologically by uncontrolled cell invasion, proliferation, migration and angiogenesis. It is a multistep process that encompasses the modulation of membrane permeability and invasion, cell spreading, cell migration and proliferation of the extracellular matrix, increase in cell adhesion molecules and interaction, decrease in cell attachment and induced survival signals and propagation of nutrient supplies (blood vessels). In cancer, a solid tumor cannot expand and spread without a series of synchronized events. Changes in cell adhesion receptor molecules (e.g., integrins, cadherin-catenins) and protease expressions have been linked to tumor invasion and metastasis. It has also been determined that ligand-growth factor receptor interactions have been associated with cancer development and metastasis via the endocytic pathway. Specifically, growth factors, which include IGF-1 and IGF-2 therapy, have been associated with most if not all of the features of metastasis. In this review, we will revisit some of the key findings on perhaps one of the most important hallmarks of cancer metastasis: cell migration and cell invasion and the role of the endocytic pathway in mediating this phenomenon.
Collapse
Affiliation(s)
- N Porther
- Department of Biological Sciences; Florida International University; Miami, FL USA
| | - MA Barbieri
- Department of Biological Sciences; Florida International University; Miami, FL USA
- Biomolecular Sciences Institute; Florida International University; Miami, FL USA
- Fairchild Tropical Botanic Garden; Coral Gables, FL USA
- International Center of Tropical Botany; Florida International University; Miami, FL USA
| |
Collapse
|
63
|
Bellini C, Risso FM, Serveli S, Natalizia AR, Ramenghi LA. Simultaneous transport of twin newborns. Air Med J 2014; 32:334-7. [PMID: 24182882 DOI: 10.1016/j.amj.2013.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/24/2013] [Accepted: 05/15/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Carlo Bellini
- Neonatal Intensive Care Unit and Neonatal Emergency Transport Service, IRCCS Gaslini Children's Hospital, Genoa, Italy.
| | | | | | | | | |
Collapse
|
64
|
A porcine model for initial surge mechanical ventilator assessment and evaluation of two limited-function ventilators. Crit Care Med 2011; 39:527-32. [PMID: 21187747 DOI: 10.1097/ccm.0b013e318206b99b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES To adapt an animal model of acute lung injury for use as a standard protocol for a screening initial evaluation of limited function, or "surge," ventilators for use in mass casualty scenarios. DESIGN Prospective, experimental animal study. SETTING University research laboratory. SUBJECTS Twelve adult pigs. INTERVENTIONS Twelve spontaneously breathing pigs (six in each group) were subjected to acute lung injury/acute respiratory distress syndrome via pulmonary artery infusion of oleic acid. After development of respiratory failure, animals were mechanically ventilated with a limited-function ventilator (simplified automatic ventilator [SAVe] I or II; Automedx, Germantown, MD) for 1 hr or until the ventilator could not support the animal. The limited-function ventilator was then exchanged for a full-function ventilator (Servo 900C; Siemens-Elema, Solna, Sweden). MEASUREMENTS AND MAIN RESULTS Reliable and reproducible levels of acute lung injury/acute respiratory distress syndrome were induced. The SAVe I was unable to adequately oxygenate five animals with Pao2 (52.0±11.1 torr) compared to the Servo (106.0±25.6 torr; p=.002). The SAVe II was able to oxygenate and ventilate all six animals for 1 hr with no difference in Pao2 (141.8±169.3 torr) compared to the Servo (158.3±167.7 torr). CONCLUSIONS We describe a novel in vivo model of acute lung injury/acute respiratory distress syndrome that can be used to initially screen limited-function ventilators considered for mass respiratory failure stockpiles and that is intended to be combined with additional studies to definitively assess appropriateness for mass respiratory failure. Specifically, during this study we demonstrate that the SAVe I ventilator is unable to provide sufficient gas exchange, whereas the SAVe II, with several more functions, was able to support the same level of hypoxemic respiratory failure secondary to acute lung injury/acute respiratory distress syndrome for 1 hr.
Collapse
|
65
|
Williams D, Flory S, King R, Thornton M, Dingley J. A low oxygen consumption pneumatic ventilator for emergency construction during a respiratory failure pandemic. Anaesthesia 2010; 65:235-42. [PMID: 20064146 PMCID: PMC7161812 DOI: 10.1111/j.1365-2044.2009.06207.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The UK influenza pandemic plan predicts up to 750 000 additional deaths with hospitals prioritising patients against inadequate resources. We investigated three prototype low‐cost, gas‐efficient, pneumatic ventilators in a test lung model at different compliance and rate settings. Mean (SD) oxygen consumption was 0.913 (0.198) and 1.119 (0.267) l.min−1 at tidal volumes of 500 ml and 700 ml respectively. Values of FIo2 increased marginally as lung compliance reduced, reflecting the increased ventilator workload and consequent increased enrichment of breathing gas by waste oxygen from the pneumatic mechanism. We also demonstrated that a stable nitric oxide concentration could be delivered by this design following volumetric principles. It is possible to make a gas‐efficient ventilator costing less than £200 from industrial components for use where oxygen is available at 2‐4 bar, with no pressurised air or electrical requirements. Such a device could be mass‐produced for crises characterised by an overwhelming demand for mechanical ventilation and a limited oxygen supply.
Collapse
Affiliation(s)
- D Williams
- Department of Anaesthetics, Morriston Hospital, Swansea, UK
| | | | | | | | | |
Collapse
|
66
|
Paladino L, DuCanto J, Manoach S. Development of a rapid, safe, fiber-optic guided, single-incision cricothyrotomy using a large ovine model: A pilot study. Resuscitation 2009; 80:1066-9. [DOI: 10.1016/j.resuscitation.2009.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 05/27/2009] [Indexed: 11/16/2022]
|
67
|
Smith R, Brown J. Simultaneous ventilation of two healthy subjects with a single ventilator. Resuscitation 2009; 80:1087. [PMID: 19573974 PMCID: PMC9912358 DOI: 10.1016/j.resuscitation.2009.05.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Accepted: 05/18/2009] [Indexed: 11/29/2022]
Affiliation(s)
- R. Smith
- Corresponding author. Tel.: +44 122 5425056; fax: +44 122 5825061
| | | |
Collapse
|
68
|
Iscoe S, Fisher J. Still better multi-patient ventilation. Resuscitation 2008; 79:173-4. [PMID: 18653271 DOI: 10.1016/j.resuscitation.2008.04.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 04/21/2008] [Indexed: 11/28/2022]
|
69
|
Branson RD, Rubinson L. One ventilator multiple patients--what the data really supports. Resuscitation 2008; 79:171-2; author reply 172-3. [PMID: 18653270 DOI: 10.1016/j.resuscitation.2008.04.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 04/21/2008] [Indexed: 11/19/2022]
|
70
|
Rubinson L, Hick JL, Curtis JR, Branson RD, Burns S, Christian MD, Devereaux AV, Dichter JR, Talmor D, Erstad B, Medina J, Geiling JA. Definitive care for the critically ill during a disaster: medical resources for surge capacity: from a Task Force for Mass Critical Care summit meeting, January 26-27, 2007, Chicago, IL. Chest 2008; 133:32S-50S. [PMID: 18460505 PMCID: PMC7094478 DOI: 10.1378/chest.07-2691] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Accepted: 03/03/2008] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Mass numbers of critically ill disaster victims will stress the abilities of health-care systems to maintain usual critical care services for all in need. To enhance the number of patients who can receive life-sustaining interventions, the Task Force on Mass Critical Care (hereafter termed the Task Force) has suggested a framework for providing limited, essential critical care, termed emergency mass critical care (EMCC). This article suggests medical equipment, concepts to expand treatment spaces, and staffing models for EMCC. METHODS Consensus suggestions for EMCC were derived from published clinical practice guidelines and medical resource utilization data for the everyday critical care conditions that are anticipated to predominate during mass critical care events. When necessary, expert opinion was used. TASK FORCE MAJOR SUGGESTIONS: The Task Force makes the following suggestions: (1) one mechanical ventilator that meets specific characteristics, as well as a set of consumable and durable medical equipment, should be provided for each EMCC patient; (2) EMCC should be provided in hospitals or similarly equipped structures; after ICUs, postanesthesia care units, and emergency departments all reach capacity, hospital locations should be repurposed for EMCC in the following order: (A) step-down units and large procedure suites, (B) telemetry units, and (C) hospital wards; and (3) hospitals can extend the provision of critical care using non-critical care personnel via a deliberate model of delegation to match staff competencies with patient needs. DISCUSSION By using the Task Force suggestions for adequate supplies of medical equipment, appropriate treatment space, and trained staff, communities may better prepare to deliver augmented essential critical care in response to disasters.
Collapse
Affiliation(s)
- Lewis Rubinson
- University of Washington, Harborview Medical Center, Campus Box 359762, 325 Ninth Ave, Seattle, WA 98104, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|