51
|
Microplastics: impacts on corals and other reef organisms. Emerg Top Life Sci 2022; 6:81-93. [PMID: 35137913 PMCID: PMC9023018 DOI: 10.1042/etls20210236] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/30/2021] [Accepted: 01/17/2022] [Indexed: 12/24/2022]
Abstract
Plastic pollution in a growing problem globally. In addition to the continuous flow of plastic particles to the environment from direct sources, and through the natural wear and tear of items, the plastics that are already there have the potential to breakdown further and therefore provide an immense source of plastic particles. With the continued rise in levels of plastic production, and consequently increasing levels entering our marine environments it is imperative that we understand its impacts. There is evidence microplastic and nanoplastic (MNP) pose a serious threat to all the world's marine ecosystems and biota, across all taxa and trophic levels, having individual- to ecosystem-level impacts, although these impacts are not fully understood. Microplastics (MPs; 0.1–5 mm) have been consistently found associated with the biota, water and sediments of all coral reefs studied, but due to limitations in the current techniques, a knowledge gap exists for the level of nanoplastic (NP; <1 µm). This is of particular concern as it is this size fraction that is thought to pose the greatest risk due to their ability to translocate into different organs and across cell membranes. Furthermore, few studies have examined the interactions of MNP exposure and other anthropogenic stressors such as ocean acidification and rising temperature. To support the decision-making required to protect these ecosystems, an advancement in standardised methods for the assessment of both MP and NPs is essential. This knowledge, and that of predicted levels can then be used to determine potential impacts more accurately.
Collapse
|
52
|
Bejarano S, Diemel V, Feuring A, Ghilardi M, Harder T. No short-term effect of sinking microplastics on heterotrophy or sediment clearing in the tropical coral Stylophora pistillata. Sci Rep 2022; 12:1468. [PMID: 35087129 PMCID: PMC8795188 DOI: 10.1038/s41598-022-05420-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/12/2022] [Indexed: 11/10/2022] Open
Abstract
Investigations of encounters between corals and microplastics have, to date, used particle concentrations that are several orders of magnitude above environmentally relevant levels. Here we investigate whether concentrations closer to values reported in tropical coral reefs affect sediment shedding and heterotrophy in reef-building corals. We show that single-pulse microplastic deposition elicits significantly more coral polyp retraction than comparable amounts of calcareous sediments. When deposited separately from sediments, microplastics remain longer on corals than sediments, through stronger adhesion and longer periods of examination by the coral polyps. Contamination of sediments with microplastics does not retard corals' sediment clearing rates. Rather, sediments speed-up microplastic shedding, possibly affecting its electrostatic behaviour. Heterotrophy rates are three times higher than microplastic ingestion rates when corals encounter microzooplankton (Artemia salina cysts) and microplastics separately. Exposed to cysts-microplastic combinations, corals feed preferentially on cysts regardless of microplastic concentration. Chronic-exposure experiments should test whether our conclusions hold true under environmental conditions typical of inshore marginal coral reefs.
Collapse
Affiliation(s)
- Sonia Bejarano
- Reef Systems Research Group, Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany.
| | - Valeska Diemel
- Reef Systems Research Group, Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany
- Department of Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Straße 6, 28359, Bremen, Germany
- Bund Für Umwelt Und Naturschutz (BUND) E.V., Am Dobben 44, 28203, Bremen, Germany
| | - Anna Feuring
- Reef Systems Research Group, Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany
- Department of Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Straße 6, 28359, Bremen, Germany
- Biological Oceanography Department, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, D-18119, Rostock, Germany
| | - Mattia Ghilardi
- Reef Systems Research Group, Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany
- Department of Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Straße 6, 28359, Bremen, Germany
| | - Tilmann Harder
- Department of Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Straße 6, 28359, Bremen, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570, Bremerhaven, Germany
| |
Collapse
|
53
|
Wang Q, Guan C, Han J, Chai M, Li R. Microplastics in China Sea: Analysis, status, source, and fate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149887. [PMID: 34487899 DOI: 10.1016/j.scitotenv.2021.149887] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) in marine environments have raised increasing concerns worldwide in recent years. China is one of the largest plastic producers in the world. In this review, available information on MPs in China Sea was reviewed, including studies on seawater, sediment, and biota. The status and limits of sampling methods of MPs were summarized, such as sampling tools, sampling volume, and depth of sampling. The analytical methods of MPs were outlined, such as sieving, density separation, purification, filtration, and visual sorting. The characteristics of MPs, such as abundances, sizes, shapes, polymer types, sources, and fates were analyzed. The abundances of MPs in China Sea varied from 0.1 to 27,840.0 items m-3 in seawater, and from 13.0 to 14,712.0 items kg-1 d.w. in sediments. Furthermore, MPs were mainly featured with sizes ranging from 0.001 to 0.5 mm, with colors of transparent and black, and polymer types of polypropylene and polyethylene. To promote research on MPs in China Sea, the sampling and analytical methods were insufficiently standardized and should be improved. As for microplastic (MP) pollution in China Sea, laws and regulations have already been established to manage and control plastic waste. Furthermore, several suggestions to control plastic pollution were as follows: (1) control marine plastic pollution at the source; (2) strengthen technological innovations; (3) urge people to minimize disposable plastic products in their daily lives; (4) strengthen international cooperation in the treatment of marine plastic waste.
Collapse
Affiliation(s)
- Qian Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Chunya Guan
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jie Han
- School of Science and Technology, The Open University of Hong Kong, Ho Man Tin, Kowloon, Hong Kong, China
| | - Minwei Chai
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ruili Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
54
|
Esposito G, Prearo M, Renzi M, Anselmi S, Cesarani A, Barcelò D, Dondo A, Pastorino P. Occurrence of microplastics in the gastrointestinal tract of benthic by-catches from an eastern Mediterranean deep-sea environment. MARINE POLLUTION BULLETIN 2022; 174:113231. [PMID: 34933217 DOI: 10.1016/j.marpolbul.2021.113231] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Concern about microplastic pollution little is known about levels in deep-sea species; to fill this knowledge gap, levels of microplastics in the gastrointestinal (GI) tracts of 34 fish from eight different deep-sea by-catches: blackmouth catshark, lesser spotted dogfish, and velvet belly, armless snake eel, hollowsnout grenadier, phaeton dragonet, royal flagfin, and slender snipe eel were measured. All were collected at the same site (east Sardinia, Mediterranean Sea; 40°10'12.49″N, 9°44'12.31″E) using a bottom gillnet at depths between -820/250 and -1148 ft./350 m. Microplastics (MPs) were retrieved in 16 out of 34 fish. At least one microplastic item was found in 48% (33%, E. spinax - 75%, G. melastomus) of the samples. The most frequent was polyethylene (PE), with nine items (filaments, films, fragments) found in five specimens. This preliminary study of by-catches adds new data on MPs ingestion by species inhabiting a deep-sea environment of the Mediterranean.
Collapse
Affiliation(s)
- Giuseppe Esposito
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle D'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Marino Prearo
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle D'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Monia Renzi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy.
| | - Serena Anselmi
- Bioscience Research Center, Via Aurelia Vecchia 32, 58015 Orbetello, Italy
| | - Alberto Cesarani
- Department of Agriculture, University of Sassari, Viale Italia 39/a, 07100 Sassari, Italy
| | - Damià Barcelò
- Institute of Environmental Assessment and Water Research, IDAEA - CSIC, C/ Jordi Girona 18 - 26, 08034 Barcelona, Spain; Catalan Institute for Water Research, ICRA - CERCA, Emili Grahit 101, 17003 Girona, Spain
| | - Alessandro Dondo
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle D'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Paolo Pastorino
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle D'Aosta, Via Bologna 148, 10154 Torino, Italy
| |
Collapse
|
55
|
Santodomingo N, Perry C, Waheed Z, Syed Hussein MAB, Rosedy A, Johnson KG. Marine litter pollution on coral reefs of Darvel Bay (East Sabah, Malaysia). MARINE POLLUTION BULLETIN 2021; 173:112998. [PMID: 34624630 DOI: 10.1016/j.marpolbul.2021.112998] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/29/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Marine litter is recognized as an increasing component of marine ecosystem pollution. In this baseline study, we document the magnitude, types, sources, and potential impacts of litter on six coral reefs in East Sabah. We applied a simplified classification of litter to extract abundance data from video transects. The average density was 10.7 items per 100 m2. Plastics represent 91% and the remaining 9% were metal, glass, and wood. Most (~70%) plastics are single-use items derived from dumping. Discarded fishing gear accounts for ~25%. Litter pollution increases closer to urban developments, with Sakar reef having higher densities (51 items per 100 m2), and higher Clean Coast Index (CCI = 10.2, dirty) and higher Plastic Abundance Index (PAI = 4.68) scores. This method could and should be readily integrated into ongoing monitoring programs to support assessments of the extent and magnitude of marine litter pollution on reefs worldwide.
Collapse
Affiliation(s)
- Nadiezhda Santodomingo
- Department of Earth Sciences, Natural History Museum, Cromwell Road, SW7 5BD London, United Kingdom.
| | - Chris Perry
- Geography, College of Life & Environmental Sciences, University of Exeter, Rennes Drive, EX4 4RJ Exeter, United Kingdom
| | - Zarinah Waheed
- Borneo Marine Research Institute, University Malaysia Sabah, Kota Kinabalu, Malaysia
| | | | - Allia Rosedy
- Borneo Marine Research Institute, University Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Kenneth G Johnson
- Department of Earth Sciences, Natural History Museum, Cromwell Road, SW7 5BD London, United Kingdom
| |
Collapse
|
56
|
Galafassi S, Sighicelli M, Pusceddu A, Bettinetti R, Cau A, Temperini ME, Gillibert R, Ortolani M, Pietrelli L, Zaupa S, Volta P. Microplastic pollution in perch (Perca fluviatilis, Linnaeus 1758) from Italian south-alpine lakes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117782. [PMID: 34280746 DOI: 10.1016/j.envpol.2021.117782] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Microplastic particles (MPs) contamination of aquatic environments has raised a growing concern in recent decades because of their numerous potential toxicological effects. Although fish are among the most studied aquatic organisms, reports on MPs ingestion in freshwater environments are still scarce. Thus, there is still much to study to understand the uptake mechanisms, their potential accumulation among the food webs and their ecotoxicological effects. Here, MPs presence in the digestive system of one of the most widespread and commercially exploited freshwater fish, the perch (Perca fluviatilis, Linnaeus 1758), was investigated in four different south-alpine lakes, to assess the extent of ingestion and evaluate its relation to the body health condition. A total of 80 perch specimen have been sampled from the Italian lakes Como, Garda, Maggiore and Orta. Microplastic particles occurred in 86% of the analysed specimens, with average values ranging from 1.24 ± 1.04 MPs fish-1 in L. Como to 5.59 ± 2.61 MPs fish-1 in L. Garda. The isolated particles were mainly fragments, except in L. Como where films were more abundant. The most common polymers were polyethylene, polyethylene terephthalate, polyamide, and polycarbonate, although a high degree of degradation was found in 43% of synthetic particles, not allowing their recognition up to a single polymer. Despite the high number of ingested MPs, fish health (evaluated by means of Fulton's body condition and hepatosomatic index) was not affected. Instead, fullness index showed an inverse linear relationship with the number of ingested particles, which suggests that also in perch MPs presence could interfere with feeding activity, as already described for other taxa.
Collapse
Affiliation(s)
- Silvia Galafassi
- CNR Water Research Institute, L.go Tonolli 50, 28922, Verbania, Pallanza, Italy.
| | - Maria Sighicelli
- ENEA, Department for Sustainability (SSPT), C.R. Casaccia-Via Anguillarese 301, 00123, Rome, Italy
| | - Antonio Pusceddu
- University of Cagliari, Department of Life and Environmental Sciences, Via T. Fiorelli 1, 09126, Cagliari, Italy
| | - Roberta Bettinetti
- University of Insubria, Department of Human and Innovation for the Territory, Via Valleggio 11, 22100, Como, Italy
| | - Alessandro Cau
- University of Cagliari, Department of Life and Environmental Sciences, Via T. Fiorelli 1, 09126, Cagliari, Italy
| | | | - Raymond Gillibert
- Sapienza University of Rome, Department of Physics, P.le A. Moro 5, 00185, Rome, Italy
| | - Michele Ortolani
- Sapienza University of Rome, Department of Physics, P.le A. Moro 5, 00185, Rome, Italy
| | - Loris Pietrelli
- Sapienza University of Rome, Department of Chemistry, P.le A. Moro, 5, 00185, Rome, Italy
| | - Silvia Zaupa
- CNR Water Research Institute, L.go Tonolli 50, 28922, Verbania, Pallanza, Italy
| | - Pietro Volta
- CNR Water Research Institute, L.go Tonolli 50, 28922, Verbania, Pallanza, Italy
| |
Collapse
|
57
|
John J, Nandhini AR, Velayudhaperumal Chellam P, Sillanpää M. Microplastics in mangroves and coral reef ecosystems: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 20:397-416. [PMID: 34642583 PMCID: PMC8495182 DOI: 10.1007/s10311-021-01326-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 05/13/2023]
Abstract
Microplastic pollution has recently been identified as a major issue for the health of ecosystems. Microplastics have typically sizes of less than 5 mm and occur in various forms, such as pellets, fibres, fragments, films, and granules. Mangroves and coral reefs are sensitive and restricted ecosystems that provide free ecological services such as coastal protection, maintaining natural cycles, hotspots of biodiversity and economically valuable goods. However, urbanization and industrial activities have started contaminating even these preserved ecosystems. Here we review sources, occurrence, and toxicity of microplastics in the trophic levels of mangrove and coral reef ecosystems. We present detection methods, such as microscopic identification and spectroscopy. We discuss mitigating measures that prevent the entry of microplastics into the marine environment.
Collapse
Affiliation(s)
- Juliana John
- Department of Civil Engineering, National Institute of Technology, Tiruchchirappalli, India
| | - A R Nandhini
- Environmental Science and Technology, Anna University, Chennai, India
| | | | - Mika Sillanpää
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, Himachal Pradesh 173212 India
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, 2050 Johannesburg, South Africa
| |
Collapse
|
58
|
Harris PT, Tamelander J, Lyons Y, Neo ML, Maes T. Taking a mass-balance approach to assess marine plastics in the South China Sea. MARINE POLLUTION BULLETIN 2021; 171:112708. [PMID: 34273726 DOI: 10.1016/j.marpolbul.2021.112708] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
The South China Sea (SCS) is recognised as a global hotspot for plastic pollution. We review available field studies and identify a significant lack of data needed to construct a simple mass balance box model for plastic pollution in the SCS. Fundamental information on plastic mass input, transfer and sink terms are simply not available. Also unknown are the rates of accumulation in different environments, the dispersal pathways of plastic particles of different density, the residence times of plastic in the water column and the rate at which macroplastics are transformed into microplastics in different environments. Filling these information gaps is critical for states to determine adequate response measures, including developing and tracking impact of policies to deal with the problem of plastic pollution in the SCS.
Collapse
Affiliation(s)
- P T Harris
- GRID-Arendal, P.O. Box 183, N-4802, Arendal, Norway.
| | - J Tamelander
- United Nations Environment Programme, Bangkok 10200, Thailand
| | - Y Lyons
- Centre for International Law, National University of Singapore, Bukit Timah Campus, Singapore
| | - M L Neo
- Tropical Marine Science Institute, National University of Singapore, Kent Ridge Campus, Singapore
| | - T Maes
- GRID-Arendal, P.O. Box 183, N-4802, Arendal, Norway
| |
Collapse
|
59
|
Masiá P, Ardura A, García-Vázquez E. Virgin Polystyrene Microparticles Exposure Leads to Changes in Gills DNA and Physical Condition in the Mediterranean Mussel Mytilus Galloprovincialis. Animals (Basel) 2021; 11:ani11082317. [PMID: 34438773 PMCID: PMC8388471 DOI: 10.3390/ani11082317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Microplastic pollution is damaging ecosystems and marine organisms worldwide, and, as this problem is becoming greater, the fate of these marine organisms should be studied. In this study, the physical condition and the DNA integrity of gills of Mediterranean mussels (Mytilus galloprovincialis) have been studied under four microplastic concentrations for 21 days. A worse physical status was shown at the end of the experiment when exposed to highest concentrations; however, DNA damage was higher when exposed to lower concentrations. These results prove that mussels can be affected by direct exposure even at a low microplastic concentration due to their filter-feeding behavior, making them more vulnerable to this type of pollution. Abstract The ever-growing concentration of microplastics in the marine environment is leading to a plethora of questions regarding marine organisms’ present and future health status. In this article, the Mediterranean mussel (Mytilus galloprovincialis), a commercial species distributed worldwide, has been exposed to 21 daily doses of polystyrene microparticles (10 µm) at four different concentrations that are environmentally realistic (control: no microplastics, C1: 0.02 mg/L, C2: 0.2 mg/L, and C3: 2 mg/L). The physical status through the condition index, and damages in DNA integrity in gills, through DNA fragmentation, were determined. Results showed a minor effect on DNA integrity but a worse physical status at higher doses. Results could be interpreted as a decrease in mussel feeding activity/filtration rates when exposed to high microplastic concentrations, thus reducing the direct exposure to microplastics in gills. These effects could be happening currently and/or may happen in the near future, threatening populations inhabiting microplastics-polluted environments.
Collapse
|
60
|
Shaikh IV, Shaikh VAE. A comprehensive review on assessment of plastic debris in aquatic environment and its prevalence in fishes and other aquatic animals in India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146421. [PMID: 33744569 DOI: 10.1016/j.scitotenv.2021.146421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
The presence of meso, macro, and microplastics (MPs) in aquatic environments has raised concerns due to their potential risks to aquatic as well as human life. Though plastics are considered to be inert in nature, MPs with toxic additives and accumulated contaminants have harmful ecological effects. Reports of absorption of MPs by internal tissues and toxicity in vital organs such as lung cells, liver, and brain cells have proved its serious health hazards. The study of plastic debris in the aquatic environment deserves special attention due to its ecotoxicological impact. This review presents a detailed account of the assessment of plastic debris in marine as well as freshwater environments. The formation of MPs and their sources, sampling, isolation, identification and characterization methods adopted, and the prevalence of MPs in aquatic life are discussed. To the best of our knowledge, the present article is a first-ever comprehensive review covering the entire of India. Our review finds that, so far, very few studies have been carried out, and there is a paucity of information, especially on the prevalence of plastic debris in the freshwater environment, fish, and other aquatic animals in India. While major studies have been done at various coastal locations in the southern part of India and a few studies in the rest of India, south-eastern states remain neglected. Toxicological studies on various life forms, including humans, are lacking. The present review also fills the gap in our knowledge of the various locations studied across India and can guide future research.
Collapse
Affiliation(s)
- Ishrat Vasi Shaikh
- Department of Zoology, Abeda Inamdar Senior College, Azam Campus, Camp, Pune 411001, India.
| | - Vasi Ahmed Ebrahim Shaikh
- Polymer Chemistry Research Laboratory, School of Chemistry, MIT World Peace University, Pune 411038, India
| |
Collapse
|
61
|
Hierl F, Wu HC, Westphal H. Scleractinian corals incorporate microplastic particles: identification from a laboratory study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37882-37893. [PMID: 33718998 PMCID: PMC8302493 DOI: 10.1007/s11356-021-13240-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/26/2021] [Indexed: 05/23/2023]
Abstract
Microplastics have been detected on beaches and in the ocean from surface habitats to the deep-sea. Microplastics can be mistaken for food items by marine organisms, posing a potential risk for bioaccumulation and biomagnification in the food chain. Our understanding of microplastic pollution effects on ecosystem and physiological processes of coral reefs is still limited. This study contributes to the understanding of effects of microplastic pollution on skeletal precipitation of hermatypic corals. In a five month aquarium-based experiment, specimens of four tropical species were temporarily exposed to high concentrations (ca. 0.5 g L-1) of polyethylene terephthalate (PET) microplastic particles (< 500 μm). The coral specimens all survived this treatment and show skeletal growth. The skeletal material produced during the experiment, however, incorporated plastic particles and plastic fibres in the aragonitic structure. Long-term consequences of such inclusions on skeletal properties such as stability are yet unknown.
Collapse
Affiliation(s)
- Florian Hierl
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany.
- Faculty of Geosciences, University of Bremen, Klagenfurter Straße 4, 28359, Bremen, Germany.
| | - Henry C Wu
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany
| | - Hildegard Westphal
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Klagenfurter Straße 4, 28359, Bremen, Germany
| |
Collapse
|
62
|
Paler MKO, Migo V, Delara AV. Preliminary Assessment on the Histological Changes in Juvenile Siganus guttattus (Bloch, 1787) Exposed to Plastic Debris. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:916-922. [PMID: 33835204 DOI: 10.1007/s00128-021-03211-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Plastic debris is ubiquitous in the marine environment and many of this is polyethylene based plastic bags. Its potential effect on marine organisms is still understudied. Hence, this study determined the histological changes induced in the intestine and liver of the juvenile rabbit fish, Siganus guttatus. S. guttatus (N = 150) were sub chronically exposed to plastic bag debris suspensions (0, 0.01, 0.1, 1.0 and 10 mg L-1) for 10 days. In addition to histological changes, the condition factor (CF) index of the fishes were assessed. Results showed that there was no significant difference in the CF index of the fishes exposed to varying concentrations of plastic suspensions, there was however histological changes in fishes exposed to 10 mg L-1. The histological changes in the intestine were hyperemia, necrosis, goblet cells hyperplasia, and shortening of the villi. Histological changes in the liver were hyperemic blood vessels and vacuolization. Fishes exposed to 10 mg L-1 exhibited a higher proximal, distal, liver and total organ index as compared to those unexposed (p < 0.05).
Collapse
Affiliation(s)
- Maria Kristina O Paler
- School of Environmental Science and Management, University of the Philippines Los Baños, College, Los Banos, Laguna, Philippines.
- Department of Biology, University of San Carlos, Talamban, Cebu, Philippines.
| | - Veronica Migo
- Department of Chemical Engineering, College of Engineering and Agro-Industrial Technology, University of the Philippines Los Baños, College, Los Banos, Laguna, Philippines
| | - Ayolani V Delara
- Animal Biology Division, Institute of Biological Science, University of the Philippines Los Baños, College, Los Banos, Laguna, Philippines
| |
Collapse
|
63
|
Chen JC, Fang C, Zheng RH, Hong FK, Jiang YL, Zhang M, Li Y, Hamid FS, Bo J, Lin LS. Microplastic pollution in wild commercial nekton from the South China Sea and Indian Ocean, and its implication to human health. MARINE ENVIRONMENTAL RESEARCH 2021; 167:105295. [PMID: 33714106 DOI: 10.1016/j.marenvres.2021.105295] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Marine biota, especially commercially important species, serves as a basis for human nutrition. However, millions of tons of plastic litter are produced and enter the marine environment every year, with potential adverse impacts on marine organisms. In the present study, we investigated the occurrence and characteristics of microplastic (MP) pollution in the digestive tracts of 13 species of wild nektons from 20 stations sampled in the South China Sea (SCS) and the Indian Ocean (IO), and assessed the human health risks of MPs. The detection rate of MPs ranged from 0.00% to 50.00% from the SCS, which was dramatically lower than that from the IO (10.00-80.00%). The average abundance of MP was 0.18 ± 0.06 items g wet weight-1 (ww-1) in the SCS, which was significantly lower than that in the IO with a concentration of 0.70 ± 0.16 items g ww-1. Most MPs were fibers in type, black in color, and polyester (PES) in polymer composition in both the SCS and IO. Interestingly, distinct profiles of MP pollution were found between the benthic and pelagic nektons: 1) The predominant MP composition was PES in the benthic nektons, whereas polyamide (PA) accounted for a larger part of the total MP count in the pelagic nektons within the SCS; 2) The abundance of MP in the benthic nektons (0.52 ± 0.24 items individual-1) was higher than that in the pelagic nektons (0.30 ± 0.11 items individual-1). Accordingly, the mean hazard score of MPs detected in the benthic nektons (220.66 ± 210.75) was higher than that in the pelagic nektons (49.53 ± 22.87); 3) The mean size of the MP in the pelagic nektons (0.84 ± 0.17 mm) was larger than that in the benthic nektons (0.49 ± 0.09 mm). Our findings highlight the need to further investigate the ecological impacts of MPs on wild nekton, especially commercially important species, and its potential implications for human health.
Collapse
Affiliation(s)
- Jin-Can Chen
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361102, China; State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Chao Fang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361102, China
| | - Rong-Hui Zheng
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361102, China
| | - Fu-Kun Hong
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361102, China
| | - Yu-Lu Jiang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361102, China; State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Min Zhang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361102, China
| | - Yuan Li
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361102, China
| | - Fauziah Shahul Hamid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361102, China.
| | - Long-Shan Lin
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361102, China.
| |
Collapse
|
64
|
Huang W, Chen M, Song B, Deng J, Shen M, Chen Q, Zeng G, Liang J. Microplastics in the coral reefs and their potential impacts on corals: A mini-review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143112. [PMID: 33172634 DOI: 10.1016/j.scitotenv.2020.143112] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 05/26/2023]
Abstract
Plastic debris exists worldwide and research on microplastic pollution has gradually spread from the oceans to freshwater and terrestrial systems. Coral reefs not only serve as one of the most charismatic and biodiverse ecosystems on our planet, but also maintain the human harvesting of natural resources and livelihoods of hundreds of millions of people. However, the abundance and distribution characteristics of microplastics in coral reef systems receive little scientific attention. Meanwhile, the impacts of microplastics and nanoplastics on coral health and its potential mechanisms remain further studied. Herein, this review first summarized the current status of microplastics pollution in global coral reefs, especially included (i) abundance and distribution characteristics of microplastics in different media (e.g., seawater, sediment, corals), and (ii) possible sources of microplastics in reef regions. Furthermore, the main interaction mechanisms between microplastics and corals are highlighted. Following this, the direct or indirect impacts of microplastics on coral species are discussed. With the rapid increase of plastic consumption and background of pervasive global coral bleaching, research on marine microplastics must focus on the critical coral reef regions and include a comprehensive knowledge about the distribution, fate, and potential risks from an ecosystem perspective.
Collapse
Affiliation(s)
- Wei Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiaqin Deng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Maocai Shen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qiang Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
65
|
Li C, Gan Y, Zhang C, He H, Fang J, Wang L, Wang Y, Liu J. "Microplastic communities" in different environments: Differences, links, and role of diversity index in source analysis. WATER RESEARCH 2021; 188:116574. [PMID: 33137530 DOI: 10.1016/j.watres.2020.116574] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/04/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Microplastics have been detected in various environments, yet the differences between microplastics in different environments are still largely unknown. Scientists have proposed the concept of the "microplastic cycle," but the evidence for the movement of microplastics between different environments is still scarce. By screening the literature and extracting information, we obtained microplastic data from 709 sampling sites in freshwater, seawater, freshwater sediment, sea sediment, and soil in China. Based on the similarity between microplastics and biological communities, here we propose the concept of a "microplastic community" and examine the differences, links, and diversity of microplastic communities in different environments. Wilcoxon sign-ranks test, Kruskal-Wallis test, and analysis of similarities (ANOSIM) showed that there were significant differences in abundance, proportion of small microplastics, and community composition (shape, color, and polymer types) of microplastics in different environments. The Mantel test showed that there were significant correlations between microplastic community composition in different environments. Network analysis based on community similarity further confirmed the links between microplastic communities. The distance decay models revealed that the links weakened with the increase of geographic distance, suggesting that sampling sites with closed geographical locations had similar pollution sources and more easily to migrate or exchange microplastics. The microplastic diversity integrated index (MDII) was established based on the diversity of microplastic shape, color, and polymer types, and its indication of the number of microplastic pollution sources was verified by the statistical fitting relationship between the number of industrial pollution sources and MDII. Our study provides new insight into the differences and links between microplastics in different environments, which contributes to the microplastic risk assessment and demonstrates the "microplastic cycle." The establishment of the microplastic diversity integrated index could be used in source analysis of microplastics.
Collapse
Affiliation(s)
- Changchao Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yandong Gan
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Chao Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Huan He
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jiaohui Fang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Lifei Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yan Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jian Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
66
|
Patti TB, Fobert EK, Reeves SE, Burke da Silva K. Spatial distribution of microplastics around an inhabited coral island in the Maldives, Indian Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141263. [PMID: 32814286 DOI: 10.1016/j.scitotenv.2020.141263] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Small plastic particles are considered environmental pollutants and are highly concentrated in marine sediments. However, knowledge about plastic abundance within coral reef habitat and beach sediments surrounding remote inhabited coral islands is scarce. In this study, microplastic accumulation was investigated on a small inhabited coral island located in the Maldives. Sediments from 22 sampling sites across fore reef, reef flat, and beach environments were analysed for plastic particles <5 mm. Density separation and microscope enumeration revealed a total of 1244 individual microplastic pieces, in filamentous (49%) and fragmented (51%) forms, found across all sampling sites. High concentrations were recorded at all sites, however, there was no significant relationship between microplastic concentration or size across regions (inner atoll and outer atoll) or environments (fore reef, reef flat, and beach). Furthermore, concentrations of microplastic fragment and filament forms, total concentration, and the microplastic community, showed little correlation with sediment particle size. Our findings show microplastics are ubiquitous in marine sediments around a remote coral island, at sizes ingestible by marine organisms, raising concerns about potential effects of microplastic ingestion by coral reef species.
Collapse
Affiliation(s)
- Toby B Patti
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Emily K Fobert
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Simon E Reeves
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia; The Nature Conservancy, Carlton, Victoria 3053, Australia
| | - Karen Burke da Silva
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia.
| |
Collapse
|
67
|
Portz L, Manzolli RP, Herrera GV, Garcia LL, Villate DA, Ivar do Sul JA. Marine litter arrived: Distribution and potential sources on an unpopulated atoll in the Seaflower Biosphere Reserve, Caribbean Sea. MARINE POLLUTION BULLETIN 2020; 157:111323. [PMID: 32658688 DOI: 10.1016/j.marpolbul.2020.111323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
The Albuquerque atoll was studied as a representative natural laboratory to explore the role of sea-based sources of marine litter. This work aimed to identify the small-scale spatial distribution of marine litter (i.e., plastic, glass, paper, and others) as well as to explore the connectivity among the atoll habitats (sand beach, water surface, and reef) to give insights of potential sources of marine litter (>5 cm), mainly plastics. Marine litter was dominated by plastic items, as expected, with an average value of 0.5 items/m2. Large microplastics (1-5 mm) were also sampled on beaches with an average value of 90 particles/m2. In the atoll inner lagoon, marine litter was also composed by plastic, mainly fragments (average 0.059 items/m3). The predominance of plastic fragments on both the sea surface and beaches of the atoll makes inferences on sources limited. However, o fishing activities and sea-based sources might be relevant since local sources are very limited.
Collapse
Affiliation(s)
- Luana Portz
- Civil and Environmental Department, Universidad de la Costa, Colombia, Calle 58 # 55 - 66, Barranquilla, Colombia.
| | - Rogério Portantiolo Manzolli
- Civil and Environmental Department, Universidad de la Costa, Colombia, Calle 58 # 55 - 66, Barranquilla, Colombia.
| | - Guido Vasquez Herrera
- Centro de Investigaciones Oceanográficas e Hidrográficas - C I O H, Sector Manzanillo Escuela Naval de Cadetes "Almirante Padilla", Cartagena, Colombia.
| | | | - Diego A Villate
- Coastal Environmental Marine Research Group, Escuela Naval de Suboficiales ARC Barranquilla, Barranquilla, Colombia
| | - Juliana A Ivar do Sul
- Leibniz Institute for Baltic Sea Research, Seestrasse 15, Warnemünde, 18119 Rostock, Germany.
| |
Collapse
|