51
|
Spiroux de Vendômois J, Bourdineaud JP, Apoteker A, Defarge N, Gaillard E, Lepage C, Testart J, Vélot C. Trans-disciplinary diagnosis for an in-depth reform of regulatory expertise in the field of environmental toxicology and security. Toxicol Res 2021; 37:405-419. [PMID: 34631497 DOI: 10.1007/s43188-020-00075-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/18/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023] Open
Abstract
Repeated health and environmental scandals, the loss of biodiversity and the recent burst of chronic diseases constantly remind us the inability of public authorities and risk assessment agencies to protect health and the environment. After reviewing the main shortcomings of our evaluation system of chemicals and new technologies, supported by some concrete examples, we develop a number of proposals to reform both the risk assessment agencies and the evaluation processes. We especially propose the establishment of an independent structure, a High Authority of Expertise, supervising, either at European level or at national level, all the evaluation agencies, and ensuring the transparency, the methodology and the deontology of the expertise. In addition to modifying the evaluation protocols, both in their nature and in their content, especially in order to adapt them to current pollutants such as endocrine disruptors, we propose a reform of the expertise processes based on transparency, contradiction, and greater democracy, including close collaboration between the institutional and scientific parties on the one hand and the whole civil society on the other. All the proposals we make are inspired by the desire to prevent, through appropriate mechanisms, the human, health, ecological, but also economic consequences of contemporary technological choices.
Collapse
Affiliation(s)
- Joël Spiroux de Vendômois
- Committee for Independent Research and Information on Genetic Engineering (CRIIGEN), 42 rue de Lisbonne, 75008 Paris, France
| | - Jean-Paul Bourdineaud
- CNRS, UMR 5234, Laboratory of Fundamental Microbiology and Pathogenicity, European Institute of Chemistry and Biology, University of Bordeaux, Bordeaux, France
| | - Arnaud Apoteker
- Committee for Independent Research and Information on Genetic Engineering (CRIIGEN), 42 rue de Lisbonne, 75008 Paris, France
| | - Nicolas Defarge
- Committee for Independent Research and Information on Genetic Engineering (CRIIGEN), 42 rue de Lisbonne, 75008 Paris, France.,Institute of Integrative Biology IBZ, Swiss Federal Institute of Technology, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Emilie Gaillard
- Committee for Independent Research and Information on Genetic Engineering (CRIIGEN), 42 rue de Lisbonne, 75008 Paris, France.,Université de Caen-Basse Normandie, Esplanade de la Paix, 14000 Caen, France
| | - Corinne Lepage
- Committee for Independent Research and Information on Genetic Engineering (CRIIGEN), 42 rue de Lisbonne, 75008 Paris, France
| | - Jacques Testart
- Committee for Independent Research and Information on Genetic Engineering (CRIIGEN), 42 rue de Lisbonne, 75008 Paris, France.,Sciences Citoyennes, 38 rue Saint Sabin, 75011 Paris, France
| | - Christian Vélot
- Committee for Independent Research and Information on Genetic Engineering (CRIIGEN), 42 rue de Lisbonne, 75008 Paris, France.,Sciences Citoyennes, 38 rue Saint Sabin, 75011 Paris, France.,Laboratory VEAC, University Paris-Saclay, Faculty of Sciences, Bât. 350-RdC, Avenue Jean Perrin, 91405 Orsay, France.,Risk Pole MRSH-CNRS, EA2608, University of Caen, Esplanade de la Paix, 14032 Caen, France
| |
Collapse
|
52
|
Fealy S, Leigh L, Hazelton M, Attia J, Foureur M, Oldmeadow C, Collins CE, Smith R, Hure AJ. Translation of the Weight-Related Behaviours Questionnaire into a Short-Form Psychosocial Assessment Tool for the Detection of Women at Risk of Excessive Gestational Weight Gain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189522. [PMID: 34574447 PMCID: PMC8472452 DOI: 10.3390/ijerph18189522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022]
Abstract
The identification and measurement of psychosocial factors that are specific to pregnancy and relevant to gestational weight gain is a challenging task. Given the general lack of availability of pregnancy-specific psychosocial assessment instruments, the aim of this study was to develop a short-form psychosocial assessment tool for the detection of women at risk of excessive gestational weight gain with research and clinical practice applications. A staged scale reduction analysis of the weight-related behaviours questionnaire was conducted amongst a sample of 159 Australian pregnant women participating in the Women and Their Children’s Health (WATCH) pregnancy cohort study. Exploratory factor analysis, univariate logistic regression, and item response theory techniques were used to derive the minimum and most predictive questions for inclusion in the short-form assessment tool. Of the total 49 questionnaire items, 11 items, all 4 body image items, n = 4 attitudes towards weight gain, and n = 3 self-efficacy items, were retained as the strongest predictors of excessive gestational weight gain. These within-scale items were highly correlated, exhibiting high item information function value statistics, and were observed to have high probability (p < 0.05) for excessive gestational weight gain, in the univariate analysis. The short-form questionnaire may assist with the development of tailored health promotion interventions to support women psychologically and physiologically to optimise their pregnancy weight gain. Confirmatory factor analysis is now required.
Collapse
Affiliation(s)
- Shanna Fealy
- School of Nursing, Paramedicine, and Healthcare Sciences, Faculty of Science and Health, Charles Sturt University, 7 Major Innes Road, Port Macquarie, NSW 2444, Australia;
- School of Medicine and Public Health, College of Health and Wellbeing, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.A.); (R.S.); (A.J.H.)
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia; (L.L.); (C.O.); (C.E.C.)
- Correspondence:
| | - Lucy Leigh
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia; (L.L.); (C.O.); (C.E.C.)
| | - Michael Hazelton
- School of Nursing, Paramedicine, and Healthcare Sciences, Faculty of Science and Health, Charles Sturt University, 7 Major Innes Road, Port Macquarie, NSW 2444, Australia;
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia; (L.L.); (C.O.); (C.E.C.)
- School of Nursing and Midwifery, College of Health and Wellbeing, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia;
| | - John Attia
- School of Medicine and Public Health, College of Health and Wellbeing, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.A.); (R.S.); (A.J.H.)
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia; (L.L.); (C.O.); (C.E.C.)
| | - Maralyn Foureur
- School of Nursing and Midwifery, College of Health and Wellbeing, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia;
- Hunter New England Health Nursing and Midwifery Research Centre, Newcastle, NSW 2300, Australia
| | - Christopher Oldmeadow
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia; (L.L.); (C.O.); (C.E.C.)
| | - Clare E. Collins
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia; (L.L.); (C.O.); (C.E.C.)
- School of Health Sciences, College of Health and Wellbeing, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Roger Smith
- School of Medicine and Public Health, College of Health and Wellbeing, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.A.); (R.S.); (A.J.H.)
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia; (L.L.); (C.O.); (C.E.C.)
- Department of Endocrinology, John Hunter Hospital, Newcastle, NSW 2305, Australia
| | - Alexis J. Hure
- School of Medicine and Public Health, College of Health and Wellbeing, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.A.); (R.S.); (A.J.H.)
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia; (L.L.); (C.O.); (C.E.C.)
| |
Collapse
|
53
|
Natural Membrane Differentiates Human Adipose-Derived Mesenchymal Stem Cells to Neurospheres by Mechanotransduction Related to YAP and AMOT Proteins. MEMBRANES 2021; 11:membranes11090687. [PMID: 34564504 PMCID: PMC8469618 DOI: 10.3390/membranes11090687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022]
Abstract
Adipose tissue-derived mesenchymal stem cells (ADMSCs) are promising candidates for regenerative medicine, as they have good cell yield and can differentiate into several cell lines. When induced to the neuronal differentiation, they form neurospheres composed of neural precursors (NPs) that can be an alternative in treating neurodegenerative diseases. This study aimed to characterize NPs from neurospheres obtained after seeding ADMSCs on a natural polyisoprene-based membrane. The ADMSCs were isolated from adipose tissue by enzymatic dissociation, were subjected to trilineage differentiation, and were characterized by flow cytometry for specific ADMSC surface markers. For neuronal differentiation, the cells were seeded on polystyrene flasks coated with the membrane and were characterized by immunocytochemistry and RT-PCR. The results demonstrated that the isolated cells showed characteristics of ADMSCs. At 15 to 25 days, ADMSCs seeded on the natural membrane developed neurospheres. Then, after dissociation, the cells demonstrated characteristic neuronal markers expressed on NPs: nestin, ß-III tubulin, GFAP, NeuN, and the YAP1/AMOT in the cytoplasm. In conclusion, it was demonstrated that this membrane differentiates the ADMSCs to NPs without any induction factors, and suggests that their differentiation mechanisms are related to mechanotransduction regulated by the YAP and AMOT proteins.
Collapse
|
54
|
Chan K, Li X. Current Epigenetic Insights in Kidney Development. Genes (Basel) 2021; 12:genes12081281. [PMID: 34440455 PMCID: PMC8391601 DOI: 10.3390/genes12081281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 12/31/2022] Open
Abstract
The kidney is among the best characterized developing tissues, with the genes and signaling pathways that regulate embryonic and adult kidney patterning and development having been extensively identified. It is now widely understood that DNA methylation and histone modification patterns are imprinted during embryonic development and must be maintained in adult cells for appropriate gene transcription and phenotypic stability. A compelling question then is how these epigenetic mechanisms play a role in kidney development. In this review, we describe the major genes and pathways that have been linked to epigenetic mechanisms in kidney development. We also discuss recent applications of single-cell RNA sequencing (scRNA-seq) techniques in the study of kidney development. Additionally, we summarize the techniques of single-cell epigenomics, which can potentially be used to characterize epigenomes at single-cell resolution in embryonic and adult kidneys. The combination of scRNA-seq and single-cell epigenomics will help facilitate the further understanding of early cell lineage specification at the level of epigenetic modifications in embryonic and adult kidney development, which may also be used to investigate epigenetic mechanisms in kidney diseases.
Collapse
Affiliation(s)
- Katrina Chan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA;
| | - Xiaogang Li
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +1-507-266-0110
| |
Collapse
|
55
|
Mori A, Sumida D, Kondo R, Nakano A, Arima S, Asano D, Morita A, Sakamoto K, Nagamitsu T, Nakahara T. Impairment of endothelium-dependent vasodilator function of retinal blood vessels in adult rats with a history of retinopathy of prematurity. J Pharmacol Sci 2021; 146:233-243. [PMID: 34116737 DOI: 10.1016/j.jphs.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/03/2021] [Accepted: 04/27/2021] [Indexed: 01/04/2023] Open
Abstract
Retinopathy of prematurity (ROP) is a proliferative retinal vascular disease, initiated by delayed retinal vascular growth after premature birth. In the majority of cases, ROP resolves spontaneously; however, a history of ROP may increase the risk of long-term visual problems. In this study, we evaluated the endothelial function of retinal blood vessels in adult rats with a history of ROP. ROP was induced in rats by subcutaneous injection of a vascular endothelial growth factor receptor tyrosine kinase inhibitor (KRN633) on postnatal day (P) 7 and P8. On P56, vasodilator responses to acetylcholine, GSK1016790A (an activator of transient receptor potential vanilloid 4 channels), NOR3 (a nitric oxide [NO] donor), and salbutamol (a β2-adrenoceptor agonist) were assessed. Compared to age-matched controls, retinal vasodilator responses to acetylcholine and GSK1016790A were attenuated in P56 rats with a history of ROP. No attenuation of acetylcholine-induced retinal vasodilator response was observed under inhibition of NO synthase. Retinal vasodilator responses to NOR3 and salbutamol were unaffected. These results suggest that the production of and/or release of NO is impaired in retinal blood vessels in adult rats with a history of ROP. A history of ROP might increase the risk of impaired retinal circulation in adulthood.
Collapse
Affiliation(s)
- Asami Mori
- Department of Molecular Pharmacology, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Daiki Sumida
- Department of Molecular Pharmacology, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Ryo Kondo
- Department of Molecular Pharmacology, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Ayuki Nakano
- Department of Molecular Pharmacology, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shiho Arima
- Department of Organic Synthesis, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Daiki Asano
- Department of Molecular Pharmacology, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Akane Morita
- Department of Molecular Pharmacology, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tohru Nagamitsu
- Department of Organic Synthesis, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
56
|
Maschke J, Roetner J, Bösl S, Plank AC, Rohleder N, Goecke TW, Fasching PA, Beckmann MW, Kratz O, Moll GH, Lenz B, Kornhuber J, Eichler A. Association of Prenatal Alcohol Exposure and Prenatal Maternal Depression with Offspring Low-Grade Inflammation in Early Adolescence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18157920. [PMID: 34360212 PMCID: PMC8345560 DOI: 10.3390/ijerph18157920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022]
Abstract
(1) This longitudinal study aimed to investigate the link between prenatal alcohol exposure and prenatal maternal depression with the offspring’s low-grade inflammatory status. (2) Prenatal alcohol exposure was determined via maternal self-report during the 3rd trimester of pregnancy (self-report+: n = 29) and the meconium alcohol metabolite Ethyl Glucuronide (EtG), collected at birth (≥30 ng/g: n = 23). The Edinburgh Postnatal Depression Scale (EPDS) was used to screen for prenatal maternal depressive symptoms during the 3rd trimester (≥10: n = 35). Fifteen years later, 122 adolescents (M = 13.32 years; 48.4% female) provided blood samples for the analysis of high sensitivity C-reactive protein (hsCRP; M = 0.91; SD = 1.28). (3) Higher hsCRP levels were found in EtG positive adolescents (p = 0.036, ηp2 = 0.04) and an inverse non-significant dose–response relation with hsCRP (r = −0.35, p = 0.113). For maternal self-reported prenatal alcohol consumption (p = 0.780, ηp2 = 0.00) and prenatal depressive symptoms (p = 0.360, ηp2 = 0.01) no differences for hsCRP levels between the affected and unaffected groups were found. (4) Adolescents with prenatal alcohol exposure are at risk for low-grade systemic inflammation. The EtG biomarker may be more accurate compared to self-reports. The findings suggest that prenatal maternal depression does not evoke low-grade systemic inflammation.
Collapse
Affiliation(s)
- Janina Maschke
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.R.); (S.B.); (A.-C.P.); (O.K.); (G.H.M.); (A.E.)
- Correspondence: ; Tel.: +49-9131-8544657
| | - Jakob Roetner
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.R.); (S.B.); (A.-C.P.); (O.K.); (G.H.M.); (A.E.)
| | - Sophia Bösl
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.R.); (S.B.); (A.-C.P.); (O.K.); (G.H.M.); (A.E.)
| | - Anne-Christine Plank
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.R.); (S.B.); (A.-C.P.); (O.K.); (G.H.M.); (A.E.)
| | - Nicolas Rohleder
- Department of Psychology, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany;
| | - Tamme W. Goecke
- Department of Obstetrics and Gynecology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (T.W.G.); (P.A.F.); (M.W.B.)
- Department of Obstetrics and Gynecology, RoMed Klinikum Rosenheim, 83022 Rosenheim, Germany
| | - Peter A. Fasching
- Department of Obstetrics and Gynecology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (T.W.G.); (P.A.F.); (M.W.B.)
| | - Matthias W. Beckmann
- Department of Obstetrics and Gynecology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (T.W.G.); (P.A.F.); (M.W.B.)
| | - Oliver Kratz
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.R.); (S.B.); (A.-C.P.); (O.K.); (G.H.M.); (A.E.)
| | - Gunther H. Moll
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.R.); (S.B.); (A.-C.P.); (O.K.); (G.H.M.); (A.E.)
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (B.L.); (J.K.)
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (B.L.); (J.K.)
| | - Anna Eichler
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.R.); (S.B.); (A.-C.P.); (O.K.); (G.H.M.); (A.E.)
| | | |
Collapse
|
57
|
Santos JH. Mitochondria signaling to the epigenome: A novel role for an old organelle. Free Radic Biol Med 2021; 170:59-69. [PMID: 33271282 PMCID: PMC8166959 DOI: 10.1016/j.freeradbiomed.2020.11.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/23/2022]
Abstract
Epigenetic modifications influence gene expression programs ultimately dictating physiological outcomes. In the past decades, an increasing body of work has demonstrated that the enzymes that deposit and/or remove epigenetic marks on DNA or histones use metabolites as substrates or co-factors, rendering the epigenome sensitive to metabolic changes. In this context, acetyl-CoA and α-ketoglutarate have been recognized as critical for epigenetics, impinging on histone marks and nuclear DNA methylation patterns. Given that these metabolites are primarily generated in the mitochondria through the tricarboxylic acid cycle (TCA), the requirement of proper mitochondrial function for maintenance of the epigenetic landscape seems obvious. Nevertheless, it was not until recently when the epigenomic outcomes of mitochondrial dysfunction were tested, revealing mitochondria's far-reaching impact on epigenetics. This review will focus on data that directly tested the role of mitochondria on the epigenetic landscape, the mechanisms by which mitochondrial dysfunction may dysregulate the epigenome and gene expression, and their potential implications to health and disease.
Collapse
Affiliation(s)
- Janine Hertzog Santos
- National Toxicology Program Laboratory (NTPL), National Toxicology Program (NTP), National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park (RTP), NC, USA.
| |
Collapse
|
58
|
Callet T, Li H, Coste P, Glise S, Heraud C, Maunas P, Mercier Y, Turonnet N, Zunzunegui C, Panserat S, Bolliet V, Marandel L. Modulation of Energy Metabolism and Epigenetic Landscape in Rainbow Trout Fry by a Parental Low Protein/High Carbohydrate Diet. BIOLOGY 2021; 10:biology10070585. [PMID: 34202225 PMCID: PMC8301017 DOI: 10.3390/biology10070585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary While the effects of parental diets on their progeny have been highly described in mammals, such studies are lacking in fish. To explore such a question in a high trophic level teleost fish, two-year old male and female rainbow trout were fed either a control diet (0% carbohydrate and 63.89% protein) or a high-carbohydrate diet (35% carbohydrate and 42.96% protein), for a complete reproductive cycle for females and for a period of 5 months for males. Neither the maternal nor the paternal high-carbohydrate diet alone had induced significant effects on their progeny. Nevertheless, when both parents were fed the high-carbohydrate diet, the energy metabolism and mitochondrial dynamics of their progeny were altered. Moreover, the epigenetic landscape was also highly affected. Even though, offspring growth was only slightly affected at the early stage of life; the effect of parental high-carbohydrate diet should be explored over the long term. Abstract It is now recognized that parental diets could highly affect offspring metabolism and growth. Studies in fish are, however, lacking. In particular, the effect of a parental diet high in carbohydrate (HC) and low in protein (LP) on progeny has never been examined in higher trophic level teleost fish. Thus, two-year old male and female rainbow trout (Oncorhynchus mykiss) were fed either a control diet (0% carbohydrate and 63.89% protein) or a diet containing 35% carbohydrate and 42.96% protein (HC/LP) for a complete reproductive cycle for females and over a 5-month period for males. Cross-fertilizations were then carried out. To evaluate the effect of the parental diet on their offspring, different phenotypic and metabolic traits were recorded for offspring before their first feeding and again three weeks later. When considering the paternal and maternal HC/LP nutrition independently, fry phenotypes and transcriptomes were only slightly affected. The combination of the maternal and paternal HC/LP diets altered the energy metabolism and mitochondrial dynamics of their progeny, demonstrating the existence of a synergistic effect. The global DNA methylation of whole fry was also highly affected by the HC/LP parental diet, indicating that it could be one of the fundamental mechanisms responsible for the effects of nutritional programming.
Collapse
Affiliation(s)
- Thérèse Callet
- INRAE, Université de Pau et des Pays de L’Adour, E2S UPPA, NUMEA, 64310 Saint-Pée-sur-Nivelle, France; (T.C.); (H.L.); (C.H.); (P.M.); (Y.M.); (N.T.); (C.Z.); (S.P.)
| | - Hongyan Li
- INRAE, Université de Pau et des Pays de L’Adour, E2S UPPA, NUMEA, 64310 Saint-Pée-sur-Nivelle, France; (T.C.); (H.L.); (C.H.); (P.M.); (Y.M.); (N.T.); (C.Z.); (S.P.)
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Pascale Coste
- INRAE, Université de Pau et des Pays de L’Adour, E2S UPPA, ECOBIOP, 64310 Saint-Pée-sur-Nivelle, France; (P.C.); (S.G.); (V.B.)
| | - Stéphane Glise
- INRAE, Université de Pau et des Pays de L’Adour, E2S UPPA, ECOBIOP, 64310 Saint-Pée-sur-Nivelle, France; (P.C.); (S.G.); (V.B.)
| | - Cécile Heraud
- INRAE, Université de Pau et des Pays de L’Adour, E2S UPPA, NUMEA, 64310 Saint-Pée-sur-Nivelle, France; (T.C.); (H.L.); (C.H.); (P.M.); (Y.M.); (N.T.); (C.Z.); (S.P.)
| | - Patrick Maunas
- INRAE, Université de Pau et des Pays de L’Adour, E2S UPPA, NUMEA, 64310 Saint-Pée-sur-Nivelle, France; (T.C.); (H.L.); (C.H.); (P.M.); (Y.M.); (N.T.); (C.Z.); (S.P.)
| | - Yvan Mercier
- INRAE, Université de Pau et des Pays de L’Adour, E2S UPPA, NUMEA, 64310 Saint-Pée-sur-Nivelle, France; (T.C.); (H.L.); (C.H.); (P.M.); (Y.M.); (N.T.); (C.Z.); (S.P.)
| | - Nicolas Turonnet
- INRAE, Université de Pau et des Pays de L’Adour, E2S UPPA, NUMEA, 64310 Saint-Pée-sur-Nivelle, France; (T.C.); (H.L.); (C.H.); (P.M.); (Y.M.); (N.T.); (C.Z.); (S.P.)
| | - Chloé Zunzunegui
- INRAE, Université de Pau et des Pays de L’Adour, E2S UPPA, NUMEA, 64310 Saint-Pée-sur-Nivelle, France; (T.C.); (H.L.); (C.H.); (P.M.); (Y.M.); (N.T.); (C.Z.); (S.P.)
| | - Stéphane Panserat
- INRAE, Université de Pau et des Pays de L’Adour, E2S UPPA, NUMEA, 64310 Saint-Pée-sur-Nivelle, France; (T.C.); (H.L.); (C.H.); (P.M.); (Y.M.); (N.T.); (C.Z.); (S.P.)
| | - Valérie Bolliet
- INRAE, Université de Pau et des Pays de L’Adour, E2S UPPA, ECOBIOP, 64310 Saint-Pée-sur-Nivelle, France; (P.C.); (S.G.); (V.B.)
| | - Lucie Marandel
- INRAE, Université de Pau et des Pays de L’Adour, E2S UPPA, NUMEA, 64310 Saint-Pée-sur-Nivelle, France; (T.C.); (H.L.); (C.H.); (P.M.); (Y.M.); (N.T.); (C.Z.); (S.P.)
- Correspondence:
| |
Collapse
|
59
|
Le F, Wang N, Wang Q, Yang X, Li L, Wang L, Liu X, Hu M, Jin F, Lou H. Long-Term Disturbed Expression and DNA Methylation of SCAP/SREBP Signaling in the Mouse Lung From Assisted Reproductive Technologies. Front Genet 2021; 12:566168. [PMID: 34249075 PMCID: PMC8266399 DOI: 10.3389/fgene.2021.566168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
Assisted reproductive technology (ART) has been linked to cholesterol metabolic and respiratory disorders later in life, but the mechanisms by which biosynthetic signaling remain unclear. Lung inflammatory diseases are tightly linked with the sterol regulatory element-binding protein (SREBP) and SREBP cleavage-activating protein (SCAP), but this has not been shown in an ART offspring. Here, mouse models from a young to old age were established including in vitro fertilization (IVF), intracytoplasmic injection (ICSI), and in vivo fertilized groups. In our results, significantly higher plasma levels of CRP, IgM, and IgG were identified in the aged ICSI mice. Additionally, pulmonary inflammation was found in four aged ART mice. At three weeks, ART mice showed significantly downregulated levels of Scap, Srebp-1a, Srebp-1c, and Srebf2 mRNA in the lung. At the same time, significant differences in the DNA methylation rates of Scap-Srebfs and protein expression of nuclear forms of SREBPs (nSREBPs) were detected in the ART groups. Only abnormalities in the expression levels of Srebp-1a and Srebp-1c mRNA and nSREBP1 protein were found in the ART groups at 10 weeks. However, at 1.5 years old, aberrant expression levels and DNA methylation of SCAP, SREBP1, and SREBP2, and their associated target genes, were observed in the lung of the ART groups. Our results indicate that ART increases long-term alterations in SCAP/SREBP expression that may be associated with their aberrant methylation status in mouse.
Collapse
Affiliation(s)
- Fang Le
- Center of Reproductive Medicine, Zhejiang University School of Medicine Women's Hospital, Hangzhou, China
| | - Ning Wang
- Center of Reproductive Medicine, Zhejiang University School of Medicine Women's Hospital, Hangzhou, China
| | - Qijing Wang
- Center of Reproductive Medicine, Zhejiang University School of Medicine Women's Hospital, Hangzhou, China
| | - Xinyun Yang
- Center of Reproductive Medicine, Zhejiang University School of Medicine Women's Hospital, Hangzhou, China
| | - Lejun Li
- Center of Reproductive Medicine, Zhejiang University School of Medicine Women's Hospital, Hangzhou, China
| | - Liya Wang
- Center of Reproductive Medicine, Zhejiang University School of Medicine Women's Hospital, Hangzhou, China
| | - Xiaozhen Liu
- Center of Reproductive Medicine, Zhejiang University School of Medicine Women's Hospital, Hangzhou, China
| | - Minhao Hu
- Center of Reproductive Medicine, Zhejiang University School of Medicine Women's Hospital, Hangzhou, China
| | - Fan Jin
- Center of Reproductive Medicine, Zhejiang University School of Medicine Women's Hospital, Hangzhou, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Hangzhou, China
| | - Hangying Lou
- Center of Reproductive Medicine, Zhejiang University School of Medicine Women's Hospital, Hangzhou, China
| |
Collapse
|
60
|
Fukunaga H. Mitochondrial DNA Copy Number and Developmental Origins of Health and Disease (DOHaD). Int J Mol Sci 2021; 22:ijms22126634. [PMID: 34205712 PMCID: PMC8235559 DOI: 10.3390/ijms22126634] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction is known to contribute to mitochondrial diseases, as well as to a variety of aging-based pathologies. Mitochondria have their own genomes (mitochondrial DNA (mtDNA)) and the abnormalities, such as point mutations, deletions, and copy number variations, are involved in mitochondrial dysfunction. In recent years, several epidemiological studies and animal experiments have supported the Developmental Origin of Health and Disease (DOHaD) theory, which states that the environment during fetal life influences the predisposition to disease and the risk of morbidity in adulthood. Mitochondria play a central role in energy production, as well as in various cellular functions, such as apoptosis, lipid metabolism, and calcium metabolism. In terms of the DOHaD theory, mtDNA copy number may be a mediator of health and disease. This paper summarizes the results of recent epidemiological studies on the relationship between environmental factors and mtDNA copy number during pregnancy from the perspective of DOHaD theory. The results of these studies suggest a hypothesis that mtDNA copy number may reflect environmental influences during fetal life and possibly serve as a surrogate marker of health risks in adulthood.
Collapse
Affiliation(s)
- Hisanori Fukunaga
- Center for Environmental and Health Sciences, Hokkaido University, N12 W7 Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
61
|
Sleiman HK, de Oliveira JM, Langoni de Freitas GB. Isoflavones alter male and female fertility in different development windows. Biomed Pharmacother 2021; 140:111448. [PMID: 34130202 DOI: 10.1016/j.biopha.2021.111448] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Isoflavones are a group of secondary metabolites found in plants belonging to the class of phytoestrogens. These, because they have a chemical structure similar to the endogenous hormone 17β-estradiol, act as endocrine disruptors over the different development window periods. This study aimed to evaluate male and female reproductive systems' responses when exposed to isoflavones during the development window. It is characterized as a bibliographic review, built after analyzing clinical and preclinical articles indexed in English, Portuguese, and Spanish published in the last ten years. The isoflavones, aglycone or glucosides, have essential therapeutic properties in the relief of postmenopausal symptoms in women, reduce the proliferation of cancers, in addition to being antioxidants. On the other hand, they can still behave in a similar way to 17β-estradiol, binding to hormone receptors and acting as endocrine disruptors over the gestational period until pre-puberty, negatively affecting the development of the reproductive system. The effects on reproduction are not dose-response but are influenced by the type of isoflavone and period. There are variations in the serum concentration of hormones and action on their negative feedback on the hypothalamic-pituitary-testicular axis in males. Reproductive functions are also affected by spermatogenesis, such as decreased sperm count, lower reproductive performance, reduced litter size, low sperm production, and reduced seminal vesicle size. In females, puberty is reached later, irregular estrous cycle, reduced weight of the ovary, uterus, lower serum levels of estradiol and progesterone, reduced fertility, or interrupted fertility. At the end of the analysis of the selected publications, it can be concluded that despite the beneficial therapeutic effects in the face of pathologies, the unknown consumption of doses and types of isoflavones in food can damage the development and reproduction of individuals. Therefore, further studies must be carried out to elucidate the usual safe doses of the analyzed phytoestrogen. Greater control over insertion in foods targeted at pediatric consumers should be implemented until we have adequate safety.
Collapse
Affiliation(s)
| | - Jeane Maria de Oliveira
- Laboratory of Medicinal Chemistry and Biotechnology (LaQuiMB), Department of Biochemistry and Pharmacology, Federal University of Piauí, Piauí, Brazil
| | - Guilherme Barroso Langoni de Freitas
- Department of Pharmacy, State University of Centro-Oeste, Parana, Brazil; Program in Biotechnology in Human and Animal Health - (PPGBiotec), State University of Ceará, Ceará, Brazil.
| |
Collapse
|
62
|
Burggren W. Developmental Physiology: Grand Challenges. Front Physiol 2021; 12:706061. [PMID: 34177630 PMCID: PMC8225327 DOI: 10.3389/fphys.2021.706061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/26/2022] Open
Affiliation(s)
- Warren Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| |
Collapse
|
63
|
Bisphenol A exposure prenatally delays bone development and bone mass accumulation in female rat offspring via the ERβ/HDAC5/TGFβ signaling pathway. Toxicology 2021; 458:152830. [PMID: 34097993 DOI: 10.1016/j.tox.2021.152830] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/13/2021] [Accepted: 06/02/2021] [Indexed: 11/20/2022]
Abstract
Previous studies have suggested that bisphenol A (BPA) has a toxic effect on bone development; however, its pathological mechanism has not been fully elucidated. In the present study, pregnant Wistar rats were intragastrically administered BPA (10 μg/kg per day) during gestational days 14-21. Then, bone tissues were obtained from neonatal rats on postnatal day 1 for histological analysis, and the bone mass of adult rat offspring was analyzed by micro-CT at postnatal week 10. Furthermore, osteoprogenitors from neonatal rats were obtained and treated with various concentrations of BPA in vitro to clarify the associated mechanism. In vivo, we found that prenatal BPA exposure reduced body weight and body length in female neonatal rats but not in male neonatal rats. Meanwhile, BPA exposure during pregnancy delayed bone development and reduced bone mass only in female rat offspring. Moreover, BPA exposure during pregnancy inhibited osteogenic function and downregulated the transforming growth factor β (TGF β) signaling pathway in the bone tissue of female neonatal rats. Our in vitro findings further indicated that various concentrations of BPA suppressed the osteogenic function of osteoprogenitors by downregulating the TGFβ signaling pathway. Meanwhile, BPA downregulated H3K9ac and expression levels of TGFβ via the ERβ/HDAC5 signaling pathway. Collectively, this research revealed that prenatal BPA exposure impairs bone development and bone mass accumulation in female rat offspring, which was attributed to inhibitory osteogenic function via the ERβ/HDAC5/TGFβ signaling pathway.
Collapse
|
64
|
Animal Models for DOHaD Research: Focus on Hypertension of Developmental Origins. Biomedicines 2021; 9:biomedicines9060623. [PMID: 34072634 PMCID: PMC8227380 DOI: 10.3390/biomedicines9060623] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence suggests that fetal programming through environmental exposure during a critical window of early life leads to long-term detrimental outcomes, by so-called developmental origins of health and disease (DOHaD). Hypertension can originate in early life. Animal models are essential for providing convincing evidence of a causal relationship between diverse early-life insults and the developmental programming of hypertension in later life. These insults include nutritional imbalances, maternal illnesses, exposure to environmental chemicals, and medication use. In addition to reviewing the various insults that contribute to hypertension of developmental origins, this review focuses on the benefits of animal models in addressing the underlying mechanisms by which early-life interventions can reprogram disease processes and prevent the development of hypertension. Our understanding of hypertension of developmental origins has been enhanced by each of these animal models, narrowing the knowledge gap between animal models and future clinical translation.
Collapse
|
65
|
Lozoya OA, Xu F, Grenet D, Wang T, Grimm SA, Godfrey V, Waidyanatha S, Woychik RP, Santos JH. Single Nucleotide Resolution Analysis Reveals Pervasive, Long-Lasting DNA Methylation Changes by Developmental Exposure to a Mitochondrial Toxicant. Cell Rep 2021; 32:108131. [PMID: 32937126 PMCID: PMC7553240 DOI: 10.1016/j.celrep.2020.108131] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/16/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial-driven alterations of the epigenome have been reported, but whether they are relevant at the organismal level remains unknown. The viable yellow agouti mouse (Avy) is a powerful epigenetic biosensor model that reports on the DNA methylation status of the Avy locus, which is established prior to the three-germ-layer separation, through the coat color of the animals. Here we show that maternal exposure to rotenone, a potent mitochondrial complex I inhibitor, not only changes the DNA methylation status of the Avy locus in the skin but broadly affects the liver DNA methylome of the offspring. These effects are accompanied by altered gene expression programs that persist throughout life, and which associate with impairment of antioxidant activity and mitochondrial function in aged animals. These pervasive and lasting genomic effects suggest a putative role for mitochondria in regulating life-long gene expression programs through developmental nuclear epigenetic remodeling. Lozoya et al. provide in vivo evidence of the epigenetic effects of mitochondrial dysfunction. Developmental-only exposure to rotenone through the mother’s diet inhibits mitochondrial complex I in the dams and results in lifelong nuclear DNA methylation and gene expression changes in the offspring. Aged offspring also show functional outcomes.
Collapse
Affiliation(s)
- Oswaldo A Lozoya
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Fuhua Xu
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Dagoberto Grenet
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Tianyuan Wang
- Integrative Bioinformatics Support Group, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Sara A Grimm
- Integrative Bioinformatics Support Group, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Veronica Godfrey
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Suramya Waidyanatha
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Richard P Woychik
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Janine H Santos
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA; National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
66
|
Crean AJ, Immler S. Evolutionary consequences of environmental effects on gamete performance. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200122. [PMID: 33866815 DOI: 10.1098/rstb.2020.0122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Variation in pre- and post-release gamete environments can influence evolutionary processes by altering fertilization outcomes and offspring traits. It is now widely accepted that offspring inherit epigenetic information from both their mothers and fathers. Genetic and epigenetic alterations to eggs and sperm-acquired post-release may also persist post-fertilization with consequences for offspring developmental success and later-life fitness. In externally fertilizing species, gametes are directly exposed to anthropogenically induced environmental impacts including pollution, ocean acidification and climate change. When fertilization occurs within the female reproductive tract, although gametes are at least partially protected from external environmental variation, the selective environment is likely to vary among females. In both scenarios, gamete traits and selection on gametes can be influenced by environmental conditions such as temperature and pollution as well as intrinsic factors such as male and female reproductive fluids, which may be altered by changes in male and female health and physiology. Here, we highlight some of the pathways through which changes in gamete environments can affect fertilization dynamics, gamete interactions and ultimately offspring fitness. We hope that by drawing attention to this important yet often overlooked source of variation, we will inspire future research into the evolutionary implications of anthropogenic interference of gamete environments including the use of assisted reproductive technologies. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Angela J Crean
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Simone Immler
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
67
|
Lecoutre S, Maqdasy S, Breton C. Maternal obesity as a risk factor for developing diabetes in offspring: An epigenetic point of view. World J Diabetes 2021; 12:366-382. [PMID: 33889285 PMCID: PMC8040079 DOI: 10.4239/wjd.v12.i4.366] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/30/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
According to the developmental origin of health and disease concept, the risk of many age-related diseases is not only determined by genetic and adult lifestyle factors but also by factors acting during early development. In particular, maternal obesity and neonatal accelerated growth predispose offspring to overweight and type 2 diabetes (T2D) in adulthood. This concept mainly relies on the developmental plasticity of adipose tissue and pancreatic β-cell programming in response to suboptimal milieu during the perinatal period. These changes result in unhealthy hypertrophic adipocytes with decreased capacity to store fat, low-grade inflammation and loss of insulin-producing pancreatic β-cells. Over the past years, many efforts have been made to understand how maternal obesity induces long-lasting adipose tissue and pancreatic β-cell dysfunction in offspring and what are the molecular basis of the transgenerational inheritance of T2D. In particular, rodent studies have shed light on the role of epigenetic mechanisms in linking maternal nutritional manipulations to the risk for T2D in adulthood. In this review, we discuss epigenetic adipocyte and β-cell remodeling during development in the progeny of obese mothers and the persistence of these marks as a basis of obesity and T2D predisposition.
Collapse
Affiliation(s)
- Simon Lecoutre
- Department of Medicine (H7), Karolinska Institutet, Stockholm 141-86, Sweden
- University of Lille, EA4489, Maternal Malnutrition and Programming of Metabolic Diseases, Lille 59000, France
| | - Salwan Maqdasy
- Department of Medicine (H7), Karolinska Institutet, Stockholm 141-86, Sweden
- Clermont-Ferrand CHU, Department of Endocrinology, Diabetology and Metabolic Diseases, Clermont-Ferrand 63003, France
| | - Christophe Breton
- University of Lille, EA4489, Maternal Malnutrition and Programming of Metabolic Diseases, Lille 59000, France
- U1283-UMR8199-EGID, University of Lille, Institut National de la Santé Et de la Recherche Médicale, Centre National de la Recherche Scientifique, Lille 59000, France
| |
Collapse
|
68
|
Bangarusamy DK, Lakshmanan AP, Al-Zaidan S, Alabduljabbar S, Terranegra A. Nutri-epigenetics: the effect of maternal diet and early nutrition on the pathogenesis of autoimmune diseases. Minerva Pediatr (Torino) 2021; 73:98-110. [PMID: 33880901 DOI: 10.23736/s2724-5276.20.06166-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Autoimmune diseases comprise a wide group of diseases involving a self-response of the immune system against the host. The etiopathogenesis is very complex involving disease-specific factors but also environmental factors, among which the diet. Maternal diet during pregnancy as well as early nutrition recently attracted the interest of the scientists as contributing to the immune programming. In this paper, we reviewed the most recent literature on the effect of maternal diet and early nutrition in modulating the immune system in a selected subset of autoimmune diseases: type 1 diabetes, celiac disease, inflammatory bowel disease, juvenile idiopathic arthritis and rheumatoid arthritis. Particularly, we focused our narrative on the role of maternal and perinatal nutrition in the epigenetic mechanisms underlying the auto-immune response. Maternal diet during pregnancy as well as breastfeeding and early nutrition play a big role in many epigenetic mechanisms. Most of the nutrients consumed by the mother and the infant are known exerting epigenetic functions, such as folate, methionine, zinc, vitamins B12 and D, fibers, casein and gliadin, and they were linked to gene expression changes in the immune pathways. Despite the common role of maternal diet, breastfeeding and early nutrition in almost all the autoimmune diseases, each disease seems to have specific diet-driver epigenetic mechanisms that require further investigations. The research in this field is opening new routes to establishing a precision nutrition approach to the auto-immune diseases.
Collapse
Affiliation(s)
- Dhinoth K Bangarusamy
- Unit of Maternal and Child Health, Department of Research, Sidra Medicine, Doha, Qatar
| | - Arun P Lakshmanan
- Unit of Maternal and Child Health, Department of Research, Sidra Medicine, Doha, Qatar
| | - Sara Al-Zaidan
- Unit of Maternal and Child Health, Department of Research, Sidra Medicine, Doha, Qatar
| | - Shaikha Alabduljabbar
- Unit of Maternal and Child Health, Department of Research, Sidra Medicine, Doha, Qatar
| | - Annalisa Terranegra
- Unit of Maternal and Child Health, Department of Research, Sidra Medicine, Doha, Qatar -
| |
Collapse
|
69
|
Developmental programming of cardiovascular function: a translational perspective. Clin Sci (Lond) 2021; 134:3023-3046. [PMID: 33231619 DOI: 10.1042/cs20191210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
The developmental origins of health and disease (DOHaD) is a concept linking pre- and early postnatal exposures to environmental influences with long-term health outcomes and susceptibility to disease. It has provided a new perspective on the etiology and evolution of chronic disease risk, and as such is a classic example of a paradigm shift. What first emerged as the 'fetal origins of disease', the evolution of the DOHaD conceptual framework is a storied one in which preclinical studies played an important role. With its potential clinical applications of DOHaD, there is increasing desire to leverage this growing body of preclinical work to improve health outcomes in populations all over the world. In this review, we provide a perspective on the values and limitations of preclinical research, and the challenges that impede its translation. The review focuses largely on the developmental programming of cardiovascular function and begins with a brief discussion on the emergence of the 'Barker hypothesis', and its subsequent evolution into the more-encompassing DOHaD framework. We then discuss some fundamental pathophysiological processes by which developmental programming may occur, and attempt to define these as 'instigator' and 'effector' mechanisms, according to their role in early adversity. We conclude with a brief discussion of some notable challenges that hinder the translation of this preclinical work.
Collapse
|
70
|
Wang M, Ibeagha-Awemu EM. Impacts of Epigenetic Processes on the Health and Productivity of Livestock. Front Genet 2021; 11:613636. [PMID: 33708235 PMCID: PMC7942785 DOI: 10.3389/fgene.2020.613636] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
The dynamic changes in the epigenome resulting from the intricate interactions of genetic and environmental factors play crucial roles in individual growth and development. Numerous studies in plants, rodents, and humans have provided evidence of the regulatory roles of epigenetic processes in health and disease. There is increasing pressure to increase livestock production in light of increasing food needs of an expanding human population and environment challenges, but there is limited related epigenetic data on livestock to complement genomic information and support advances in improvement breeding and health management. This review examines the recent discoveries on epigenetic processes due to DNA methylation, histone modification, and chromatin remodeling and their impacts on health and production traits in farm animals, including bovine, swine, sheep, goat, and poultry species. Most of the reports focused on epigenome profiling at the genome-wide or specific genic regions in response to developmental processes, environmental stressors, nutrition, and disease pathogens. The bulk of available data mainly characterized the epigenetic markers in tissues/organs or in relation to traits and detection of epigenetic regulatory mechanisms underlying livestock phenotype diversity. However, available data is inadequate to support gainful exploitation of epigenetic processes for improved animal health and productivity management. Increased research effort, which is vital to elucidate how epigenetic mechanisms affect the health and productivity of livestock, is currently limited due to several factors including lack of adequate analytical tools. In this review, we (1) summarize available evidence of the impacts of epigenetic processes on livestock production and health traits, (2) discuss the application of epigenetics data in livestock production, and (3) present gaps in livestock epigenetics research. Knowledge of the epigenetic factors influencing livestock health and productivity is vital for the management and improvement of livestock productivity.
Collapse
Affiliation(s)
- Mengqi Wang
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
- Department of Animal Science, Laval University, Quebec, QC, Canada
| | - Eveline M. Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| |
Collapse
|
71
|
Westland R, Renkema KY, Knoers NV. Clinical Integration of Genome Diagnostics for Congenital Anomalies of the Kidney and Urinary Tract. Clin J Am Soc Nephrol 2021; 16:128-137. [PMID: 32312792 PMCID: PMC7792653 DOI: 10.2215/cjn.14661119] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Revolutions in genetics, epigenetics, and bioinformatics are currently changing the outline of diagnostics and clinical medicine. From a nephrologist's perspective, individuals with congenital anomalies of the kidney and urinary tract (CAKUT) are an important patient category: not only is CAKUT the predominant cause of kidney failure in children and young adults, but the strong phenotypic and genotypic heterogeneity of kidney and urinary tract malformations has hampered standardization of clinical decision making until now. However, patients with CAKUT may benefit from precision medicine, including an integrated diagnostics trajectory, genetic counseling, and personalized management to improve clinical outcomes of developmental kidney and urinary tract defects. In this review, we discuss the present understanding of the molecular etiology of CAKUT and the currently available genome diagnostic modalities in the clinical care of patients with CAKUT. Finally, we discuss how clinical integration of findings from large-scale genetic, epigenetic, and gene-environment interaction studies may improve the prognosis of all individuals with CAKUT.
Collapse
Affiliation(s)
- Rik Westland
- Department of Pediatric Nephrology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Kirsten Y. Renkema
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nine V.A.M. Knoers
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands,Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
72
|
Season-of-birth phenomenon in health and longevity: epidemiologic evidence and mechanistic considerations. J Dev Orig Health Dis 2020; 12:849-858. [PMID: 33298226 DOI: 10.1017/s2040174420001221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In many human populations, especially those living in regions with pronounced climatic differences between seasons, the most sensitive (prenatal and neonatal) developmental stages occur in contrasting conditions depending on the season of conception. The difference in prenatal and postnatal environments may be a factor significantly affecting human development and risk for later life chronic diseases. Factors potentially contributing to this kind of developmental programming include nutrition, outdoor temperature, infectious exposures, duration of sunlight, vitamin D synthesis, etc. Month of birth is commonly used as a proxy for exposures which vary seasonally around the perinatal period. Season-of-birth patterns have been identified for many chronic health outcomes. In this review, the research evidence for the seasonality of birth in adult-life disorders is provided and potential mechanisms underlying the phenomenon of early life seasonal programming of chronic disease and longevity are discussed.
Collapse
|
73
|
Khan P, Siddiqui JA, Maurya SK, Lakshmanan I, Jain M, Ganti AK, Salgia R, Batra SK, Nasser MW. Epigenetic landscape of small cell lung cancer: small image of a giant recalcitrant disease. Semin Cancer Biol 2020; 83:57-76. [PMID: 33220460 PMCID: PMC8218609 DOI: 10.1016/j.semcancer.2020.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Small cell lung cancer (SCLC) is a particular subtype of lung cancer with high mortality. Recent advances in understanding SCLC genomics and breakthroughs of immunotherapy have substantially expanded existing knowledge and treatment modalities. However, challenges associated with SCLC remain enigmatic and elusive. Most of the conventional drug discovery approaches targeting altered signaling pathways in SCLC end up in the 'grave-yard of drug discovery', which mandates exploring novel approaches beyond inhibiting cell signaling pathways. Epigenetic modifications have long been documented as the key contributors to the tumorigenesis of almost all types of cancer, including SCLC. The last decade witnessed an exponential increase in our understanding of epigenetic modifications for SCLC. The present review highlights the central role of epigenetic regulations in acquiring neoplastic phenotype, metastasis, aggressiveness, resistance to chemotherapy, and immunotherapeutic approaches of SCLC. Different types of epigenetic modifications (DNA/histone methylation or acetylation) that can serve as predictive biomarkers for prognostication, treatment stratification, neuroendocrine lineage determination, and development of potential SCLC therapies are also discussed. We also review the utility of epigenetic targets/epidrugs in combination with first-line chemotherapy and immunotherapy that are currently under investigation in preclinical and clinical studies. Altogether, the information presents the inclusive landscape of SCLC epigenetics and epidrugs that will help to improve SCLC outcomes.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Apar Kishor Ganti
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Division of Oncology-Hematology, Department of Internal Medicine, VA-Nebraska Western Iowa Health Care System, Omaha, NE, 68105, USA; Division of Oncology-Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte 91010, CA, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
74
|
Spinocerebellar ataxia type 23 (SCA23): a review. J Neurol 2020; 268:4630-4645. [PMID: 33175256 DOI: 10.1007/s00415-020-10297-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023]
Abstract
Spinocerebellar ataxias (SCAs), formerly known as autosomal dominant cerebellar ataxias (ADCAs), are a group of hereditary heterogeneous neurodegenerative diseases. Gait, progressive ataxia, dysarthria, and eye movement disorder are common symptoms of spinocerebellar ataxias. Other symptoms include peripheral neuropathy, cognitive impairment, psychosis, and seizures. Patients may lose their lives due to out of coordinated respiration and/or swallowing. Neurological signs cover pyramidal or extrapyramidal signs, spasm, ophthalmoplegia, hyperactive deep tendon reflexes, and so on. Different subtypes of SCAs present various clinical features. Spinocerebellar ataxia type 23 (SCA23), one subtype of the SCA family, is characterized by mutant prodynorphin (PDYN) gene. Based on literatures, this review details a series of SCA23, to improve a whole understanding of clinicians and point out the potential research direction of this dysfunction, including a history, pathophysiological mechanism, diagnosis and differential diagnosis, epigenetics, penetrance and prevalence, genetic counseling, treatment and prognosis.
Collapse
|
75
|
|
76
|
Bar-Sadeh B, Rudnizky S, Pnueli L, Bentley GR, Stöger R, Kaplan A, Melamed P. Unravelling the role of epigenetics in reproductive adaptations to early-life environment. Nat Rev Endocrinol 2020; 16:519-533. [PMID: 32620937 DOI: 10.1038/s41574-020-0370-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2020] [Indexed: 11/08/2022]
Abstract
Reproductive function adjusts in response to environmental conditions in order to optimize success. In humans, this plasticity includes age of pubertal onset, hormone levels and age at menopause. These reproductive characteristics vary across populations with distinct lifestyles and following specific childhood events, and point to a role for the early-life environment in shaping adult reproductive trajectories. Epigenetic mechanisms respond to external signals, exert long-term effects on gene expression and have been shown in animal and cellular studies to regulate normal reproductive function, strongly implicating their role in these adaptations. Moreover, human cohort data have revealed differential DNA methylation signatures in proxy tissues that are associated with reproductive phenotypic variation, although the cause-effect relationships are difficult to discern, calling for additional complementary approaches to establish functionality. In this Review, we summarize how adult reproductive function can be shaped by childhood events. We discuss why the influence of the childhood environment on adult reproductive function is an important consideration in understanding how reproduction is regulated and necessitates consideration by clinicians treating women with diverse life histories. The resolution of the molecular mechanisms responsible for human reproductive plasticity could also lead to new approaches for intervention by targeting these epigenetic modifications.
Collapse
Affiliation(s)
- Ben Bar-Sadeh
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sergei Rudnizky
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lilach Pnueli
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Reinhard Stöger
- Department of Biological Sciences, University of Nottingham, Nottingham, UK
| | - Ariel Kaplan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
77
|
Aagaard KM. Mode of delivery and pondering potential sources of the neonatal microbiome. EBioMedicine 2019; 51:102554. [PMID: 31901572 PMCID: PMC6940648 DOI: 10.1016/j.ebiom.2019.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Kjersti M Aagaard
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, 1 Baylor Plaza, Houston, TX 77401, United States; Center for Microbiome and Metagenomics Research, 1 Baylor Plaza, Houston, TX 77401, United States; Molecular & Human Genetics, 1 Baylor Plaza, Houston, TX 77401, United States; Molecular & Cell Biology at Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77401, United States.
| |
Collapse
|