51
|
Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration. Nat Commun 2016; 7:10526. [PMID: 26830436 PMCID: PMC4740445 DOI: 10.1038/ncomms10526] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/22/2015] [Indexed: 12/17/2022] Open
Abstract
The suture mesenchyme serves as a growth centre for calvarial morphogenesis and has been postulated to act as the niche for skeletal stem cells. Aberrant gene regulation causes suture dysmorphogenesis resulting in craniosynostosis, one of the most common craniofacial deformities. Owing to various limitations, especially the lack of suture stem cell isolation, reconstruction of large craniofacial bone defects remains highly challenging. Here we provide the first evidence for an Axin2-expressing stem cell population with long-term self-renewing, clonal expanding and differentiating abilities during calvarial development and homeostastic maintenance. These cells, which reside in the suture midline, contribute directly to injury repair and skeletal regeneration in a cell autonomous fashion. Our findings demonstrate their true identity as skeletal stem cells with innate capacities to replace the damaged skeleton in cell-based therapy, and permit further elucidation of the stem cell-mediated craniofacial skeletogenesis, leading to revealing the complex nature of congenital disease and regenerative medicine.
Collapse
|
52
|
Alvarez R, Lee HL, Hong C, Wang CY. Single CD271 marker isolates mesenchymal stem cells from human dental pulp. Int J Oral Sci 2015; 7:205-12. [PMID: 26674422 PMCID: PMC5153594 DOI: 10.1038/ijos.2015.29] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2015] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a promising tool in regenerative medicine due to their capacity to differentiate into multiple lineages. In addition to MSCs isolated from bone marrow (BMSCs), adult MSCs are isolated from craniofacial tissues including dental pulp tissues (DPs) using various stem cell surface markers. However, there has been a lack of consensus on a set of surface makers that are reproducibly effective at isolating putative multipotent dental mesenchymal stem cells (DMSCs). In this study, we used different combinations of surface markers (CD51/CD140α, CD271, and STRO-1/CD146) to isolate homogeneous populations of DMSCs from heterogeneous dental pulp cells (DPCs) obtained from DP and compared their capacity to undergo multilineage differentiation. Fluorescence-activated cell sorting revealed that 27.3% of DPCs were CD51+/CD140α+, 10.6% were CD271+, and 0.3% were STRO-1+/CD146+. Under odontogenic conditions, all three subsets of isolated DMSCs exhibited differentiation capacity into odontogenic lineages. Among these isolated subsets of DMSCs, CD271+ DMSCs demonstrated the greatest odontogenic potential. While all three combinations of surface markers in this study successfully isolated DMSCs from DPCs, the single CD271 marker presents the most effective stem cell surface marker for identification of DMSCs with high odontogenic potential. Isolated CD271+ DMSCs could potentially be utilized for future clinical applications in dentistry and regenerative medicine.
Collapse
Affiliation(s)
- Ruth Alvarez
- Division of Oral Biology and Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, USA
| | - Hye-Lim Lee
- Division of Oral Biology and Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, USA
| | - Christine Hong
- Section of Orthodontics, School of Dentistry, University of California at Los Angeles, Los Angeles, USA
| | - Cun-Yu Wang
- Division of Oral Biology and Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, USA.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California at Los Angeles, Los Angeles, USA
| |
Collapse
|
53
|
Inhibition of Ape1 Redox Activity Promotes Odonto/osteogenic Differentiation of Dental Papilla Cells. Sci Rep 2015; 5:17483. [PMID: 26639148 PMCID: PMC4671010 DOI: 10.1038/srep17483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/29/2015] [Indexed: 02/05/2023] Open
Abstract
Dentinogenesis is the formation of dentin, a substance that forms the majority of teeth, and this process is performed by odontoblasts. Dental papilla cells (DPCs), as the progenitor cells of odontoblasts, undergo the odontogenic differentiation regulated by multiple cytokines and paracrine signal molecules. Ape1 is a perfect paradigm of the function complexity of a biological macromolecule with two major functional regions for DNA repair and redox regulation, respectively. To date, it remains unclear whether Ape1 can regulate the dentinogenesis in DPCs. In the present study, we firstly examed the spatio-temporal expression of Ape1 during tooth germ developmental process, and found the Ape1 expression was initially high and then gradually reduced along with the tooth development. Secondly, the osteo/odontogenic differentiation capacity of DPCs was up-regulated when treated with either Ape1-shRNA or E3330 (a specific inhibitor of the Ape1 redox function), respectively. Moreover, we found that the canonical Wnt signaling pathway was activated in this process, and E3330 reinforced-osteo/odontogenic differentiation capacity was suppressed by Dickkopf1 (DKK1), a potent antagonist of canonical Wnt signaling pathway. Taken together, we for the first time showed that inhibition of Ape1 redox regulation could promote the osteo/odontogenic differentiation capacity of DPCs via canonical Wnt signaling pathway.
Collapse
|
54
|
Odontogenic epithelial stem cells: hidden sources. J Transl Med 2015; 95:1344-52. [PMID: 26367485 DOI: 10.1038/labinvest.2015.108] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/22/2015] [Accepted: 05/29/2015] [Indexed: 12/12/2022] Open
Abstract
The ultimate goal of dental stem cell research is to construct a bioengineered tooth. Tooth formation occurs based on the well-organized reciprocal interaction of epithelial and mesenchymal cells. The dental mesenchymal stem cells are the best explored, but because the human odontogenic epithelium is lost after the completion of enamel formation, studies on these cells are scarce. The successful creation of a bioengineered tooth is achievable only when the odontogenic epithelium is reconstructed to produce a replica of natural enamel. This article discusses the untapped sources of odontogenic epithelial stem cells in humans, such as those present in the active dental lamina in postnatal life, in remnants of dental lamina (the gubernaculum cord), in the epithelial cell rests of Malassez, and in reduced enamel epithelium. The possible uses of these stem cells in regenerative medicine, not just for enamel formation, are discussed.
Collapse
|
55
|
Jiang N, Guo W, Chen M, Zheng Y, Zhou J, Kim SG, Embree MC, Songhee Song K, Marao HF, Mao JJ. Periodontal Ligament and Alveolar Bone in Health and Adaptation: Tooth Movement. FRONTIERS OF ORAL BIOLOGY 2015; 18:1-8. [PMID: 26599112 DOI: 10.1159/000351894] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The periodontal ligament (PDL) and alveolar bone are two critical tissues for understanding orthodontic tooth movement. The current literature is replete with descriptive studies of multiple cell types and their matrices in the PDL and alveolar bone, but is deficient with how stem/progenitor cells differentiate into PDL and alveolar bone cells. Can one type of orthodontic force with a specific magnitude and frequency activate osteoblasts, whereas another force type activates osteoclasts? This chapter will discuss the biology of not only mature cells and their matrices in the periodontal ligament and alveolar bone, but also stem/progenitor cells that differentiate into fibroblasts, osteoblasts and osteoclasts. Key advances in tooth movement rely on further understanding of osteoblast and fibroblast differentiation from mesenchymal stem/progenitor cells, and osteoclastogenesis from the hematopoietic/monocyte lineage.
Collapse
|
56
|
Zhou C, Yang G, Chen M, He L, Xiang L, Ricupero C, Mao JJ, Ling J. Lhx6 and Lhx8: cell fate regulators and beyond. FASEB J 2015; 29:4083-91. [PMID: 26148970 PMCID: PMC4566936 DOI: 10.1096/fj.14-267500] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 06/22/2015] [Indexed: 12/11/2022]
Abstract
As transcription factors of the lines (LIN)-11/Islet (Isl)-1/mitosis entry checkpoint (MEC)-3 (LIM)-homeobox subfamily, LIM homeobox (Lhx)6 and -8 are remarkably conserved and involved in the morphogenesis of multiple organ systems. Lhx6 and -8 play overlapping and distinctive roles, but in general act as cell fate mediators and in turn are regulated by several transcriptional factors, such as sonic hedgehog, fibroblast growth factors, and wingless-int (Wnt)/β-catenin. In this review, we first summarize Lhx6 and -8 distributions in development and then explore how Lhx6 and -8 act as transcription factors and coregulators of cell lineage specification. Known Lhx6 and -8 functions and targets are outlined in neurogenesis, craniofacial development, and germ cell differentiation. The underlying mechanisms of Lhx6 and -8 in regulating cell fate remain elusive. Whether Lhx6 and -8 affect functions in tissues and organs other than neural, craniofacial, oocytes, and germ cells is largely unexplored. Taken together, Lhx6 and -8 are important regulators of cell lineage specification and may act as one of the pivotal mediators of stem cell fate. Undoubtedly, future investigations of Lhx6 and -8 biology will continue to yield fascinating insights into tissue development and homeostasis, in addition to their putative roles in tissue regeneration and ageing.
Collapse
Affiliation(s)
- Chen Zhou
- *Center for Craniofacial Regeneration, Columbia University Medical Center, New York, New York, USA; Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Guodong Yang
- *Center for Craniofacial Regeneration, Columbia University Medical Center, New York, New York, USA; Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Mo Chen
- *Center for Craniofacial Regeneration, Columbia University Medical Center, New York, New York, USA; Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ling He
- *Center for Craniofacial Regeneration, Columbia University Medical Center, New York, New York, USA; Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lusai Xiang
- *Center for Craniofacial Regeneration, Columbia University Medical Center, New York, New York, USA; Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Christopher Ricupero
- *Center for Craniofacial Regeneration, Columbia University Medical Center, New York, New York, USA; Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jeremy J Mao
- *Center for Craniofacial Regeneration, Columbia University Medical Center, New York, New York, USA; Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Junqi Ling
- *Center for Craniofacial Regeneration, Columbia University Medical Center, New York, New York, USA; Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
57
|
Baudry A, Launay JM, Goldberg M, Schneider B, Kellermann O. [Activated platelets help to repair teeth through recruitment of pulpal stem cells]. Med Sci (Paris) 2015; 31:607-9. [PMID: 26152162 DOI: 10.1051/medsci/20153106011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Anne Baudry
- Université Paris Descartes, Inserm UMR-S 1124, Sorbonne Paris Cité, centre universitaire des Saints-Pères, 45, rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Jean-Marie Launay
- AP-HP, service de biochimie, Inserm UMR-S 942, Paris, France - Pharma Research Department, Hoffmann La Roche, Bâle, Suisse
| | - Michel Goldberg
- Université Paris Descartes, Inserm UMR-S 1124, Sorbonne Paris Cité, centre universitaire des Saints-Pères, 45, rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Benoit Schneider
- Université Paris Descartes, Inserm UMR-S 1124, Sorbonne Paris Cité, centre universitaire des Saints-Pères, 45, rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Odile Kellermann
- Université Paris Descartes, Inserm UMR-S 1124, Sorbonne Paris Cité, centre universitaire des Saints-Pères, 45, rue des Saints-Pères, 75270 Paris Cedex 06, France
| |
Collapse
|
58
|
Wen X, Liu L, Deng M, Liu R, Zhang L, Nie X. In vitro cementoblast-like differentiation of postmigratory neural crest-derived p75(+) stem cells with dental follicle cell conditioned medium. Exp Cell Res 2015; 337:76-86. [PMID: 26165934 DOI: 10.1016/j.yexcr.2015.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/28/2015] [Accepted: 07/06/2015] [Indexed: 12/17/2022]
Abstract
Cranial neural crest-derived cells (CNCCs) play important role in epithelial-mesenchymal interactions during tooth morphogenesis. However, the heterogeneity of CNCCs and their tendency to spontaneously differentiate along smooth muscle or osteoblast lineages in vitro limit further understanding of their biological properties. We studied the differentiation properties of isolated rat embryonic postmigratory CNCCs, expressing p75 neurotrophin receptor (p75NTR). These p75NTR positive (p75(+)) CNCCs, isolated using fluorescence activated cell sorter, exhibited fibroblast-like morphology and characteristics of mesenchymal stem cells. Incubation of p75(+) CNCCs in dental follicle cell conditioned medium (DFCCM) combined with dentin non-collagenous proteins (dNCPs), altered their morphological features to cementoblast-like appearance. These cells also showed low proliferative activity, high ALP activity and significantly increased calcified nodule formation. Markers related to mineralization or specific to cementoblast lineage were highly expressed in dNCPs/DFCCM-treated p75(+) cells, suggesting their differentiation along cementoblast-like lineage. p75(+) stem cells selected from postmigratory CNCCs represent a pure stem cell population and could be used as a stem cell model for in vitro studies due to their intrinsic ability to differentiate to neuronal cells and transform from neuroectoderm to ectomesenchyme. They can provide a potential stem cell resource for tooth engineering studies and help to further investigate mechanisms of epithelial-mesenchymal interactions in tooth morphogenesis.
Collapse
Affiliation(s)
- Xiujie Wen
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Third Military Medical University, 10 Daping Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Luchuan Liu
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Third Military Medical University, 10 Daping Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Manjing Deng
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Third Military Medical University, 10 Daping Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Rui Liu
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Third Military Medical University, 10 Daping Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Li Zhang
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Third Military Medical University, 10 Daping Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Xin Nie
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Third Military Medical University, 10 Daping Changjiang Branch Road, Yuzhong District, Chongqing 400042, China.
| |
Collapse
|
59
|
Fawzy El-Sayed KM, Jakusz K, Jochens A, Dörfer C, Schwendicke F. Stem Cell Transplantation for Pulpal Regeneration: A Systematic Review. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:451-60. [PMID: 25919657 DOI: 10.1089/ten.teb.2014.0675] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
For treating pulpal pathological conditions, pulpal regeneration through transplanted stem/progenitor cells might be an alternative to conventional root canal treatment. A number of animal studies demonstrated beneficial effects of stem/progenitor cell transplantation for pulp-dentin complex regeneration, that is, pulpal tissue, neural, vascular, and dentinal regeneration. We systematically reviewed animal studies investigating stem/progenitor cell-mediated pulp-dentin complex regeneration. Studies quantitatively comparing pulp-dentin complex regeneration after transplantation of stem/progenitor cells versus no stem/progenitor cell transplantation controls in intraoral in vivo teeth animal models were analyzed. The following outcomes were investigated: regenerated pulp area per root canal total area, capillaries per total surface, regenerated dentinal area per total defect area, and nerves per total surface. PubMed and EMBASE were screened for studies published until July 2014. Cross-referencing and hand searching were used to identify further articles. Standardized mean differences (SMD) and 95% confidence intervals (95% CI) were calculated using random-effects meta-analysis. To assess possible bias, SYRCLE's risk of bias tool for animal studies was used. From 1364 screened articles, five studies (representing 64 animals) were included in the quantitative analysis. Risk of bias of all studies was high. Stem/progenitor cell-transplanted pulps showed significantly larger regenerated pulp area per root canal total area (SMD [95% CI]: 2.28 [0.35-4.21]) and regenerated dentin area per root canal total area (SMD: 6.91 [5.39-8.43]) compared with no stem/progenitor cell transplantation controls. Only one study reported on capillaries per or nerves per total surface and found both significantly increased in stem/progenitor cell-transplanted pulps compared with controls. Stem/progenitor cell transplantation seems to enhance pulp-dentin complex regeneration in animal models. Due to limited data quantity and quality, current evidence levels are insufficient for further conclusions.
Collapse
Affiliation(s)
- Karim M Fawzy El-Sayed
- 1 Clinic for Conservative Dentistry and Periodontology, Christian-Albrechts-Universität Kiel , Kiel, Germany .,2 Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University , Giza, Egypt
| | - Kimberley Jakusz
- 3 Department of Operative and Preventive Dentistry, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Arne Jochens
- 4 Institute for Medical Informatics and Statistics, Christian-Albrechts-Universität Kiel , Kiel, Germany
| | - Christof Dörfer
- 1 Clinic for Conservative Dentistry and Periodontology, Christian-Albrechts-Universität Kiel , Kiel, Germany
| | - Falk Schwendicke
- 3 Department of Operative and Preventive Dentistry, Charité-Universitätsmedizin Berlin , Berlin, Germany
| |
Collapse
|
60
|
Yang J, Ye L, Hui TQ, Yang DM, Huang DM, Zhou XD, Mao JJ, Wang CL. Bone morphogenetic protein 2-induced human dental pulp cell differentiation involves p38 mitogen-activated protein kinase-activated canonical WNT pathway. Int J Oral Sci 2015; 7:95-102. [PMID: 26047580 PMCID: PMC4817555 DOI: 10.1038/ijos.2015.7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2015] [Indexed: 02/08/2023] Open
Abstract
Both bone morphogenetic protein 2 (BMP2) and the wingless-type MMTV integration site (WNT)/β-catenin signalling pathway play important roles in odontoblast differentiation and dentinogenesis. Cross-talk between BMP2 and WNT/β-catenin in osteoblast differentiation and bone formation has been identified. However, the roles and mechanisms of the canonical WNT pathway in the regulation of BMP2 in dental pulp injury and repair remain largely unknown. Here, we demonstrate that BMP2 promotes the differentiation of human dental pulp cells (HDPCs) by activating WNT/β-catenin signalling, which is further mediated by p38 mitogen-activated protein kinase (MAPK) in vitro. BMP2 stimulation upregulated the expression of β-catenin in HDPCs, which was abolished by SB203580 but not by Noggin or LDN193189. Furthermore, BMP2 enhanced cell differentiation, which was not fully inhibited by Noggin or LDN193189. Instead, SB203580 partially blocked BMP2-induced β-catenin expression and cell differentiation. Taken together, these data suggest a possible mechanism by which the elevation of β-catenin resulting from BMP2 stimulation is mediated by the p38 MAPK pathway, which sheds light on the molecular mechanisms of BMP2-mediated pulp reparative dentin formation.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tian-Qian Hui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dong-Mei Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ding-Ming Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xue-Dong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jeremy J Mao
- Center for Craniofacial Regeneration (CCR), Columbia University Medical Center, New York, USA
| | - Cheng-Lin Wang
- 1] State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China [2] Center for Craniofacial Regeneration (CCR), Columbia University Medical Center, New York, USA
| |
Collapse
|
61
|
Zhou C, Yang G, Chen M, Wang C, He L, Xiang L, Chen D, Ling J, Mao JJ. Lhx8 mediated Wnt and TGFβ pathways in tooth development and regeneration. Biomaterials 2015; 63:35-46. [PMID: 26081866 DOI: 10.1016/j.biomaterials.2015.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 12/11/2022]
Abstract
LIM homeobox 8 (Lhx8) is a highly conserved transcriptional factor with recently illustrated roles in cholinergic and GABAergic differentiation, and is expressed in neural crest derived craniofacial tissues during development. However, Lhx8 functions and signaling pathways are largely elusive. Here we showed that Lhx8 regulates dental mesenchyme differentiation and function via Wnt and TGFβ pathways. Lhx8 expression was restricted to dental mesenchyme from E11.5 to a peak at E14.5, and absent in dental epithelium. By reconstituting dental epithelium and mesenchyme in an E16.5 tooth organ, Lhx8 knockdown accelerated dental mesenchyme differentiation; conversely, Lhx8 overexpression attenuated dentin formation. Lhx8 overexpressed adult human dental pulp stem/progenitor cells in β-tricalcium phosphate cubes attenuated mineralized matrix production in vivo. Gene profiling revealed that postnatal dental pulp stem/progenitor cells upon Lhx8 overexpression modified matrix related gene expression including Dspp, Cola1 and osteocalcin. Lhx8 transcriptionally activated Wnt and TGFβ pathways, and its attenuation upregulated multiple dentinogenesis genes. Together, Lhx8 regulates dentin development and regeneration by fine-turning Wnt and TGFβ signaling.
Collapse
Affiliation(s)
- Chen Zhou
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou 510055, China; Center for Craniofacial Regeneration, Columbia University Medical Center, 630 W. 168 St. - PH7E - CDM, New York, NY 10032, USA
| | - Guodong Yang
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou 510055, China
| | - Mo Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou 510055, China
| | - Chenglin Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou 510055, China
| | - Ling He
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou 510055, China; Center for Craniofacial Regeneration, Columbia University Medical Center, 630 W. 168 St. - PH7E - CDM, New York, NY 10032, USA
| | - Lusai Xiang
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou 510055, China; Center for Craniofacial Regeneration, Columbia University Medical Center, 630 W. 168 St. - PH7E - CDM, New York, NY 10032, USA
| | - Danying Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou 510055, China
| | - Junqi Ling
- Center for Craniofacial Regeneration, Columbia University Medical Center, 630 W. 168 St. - PH7E - CDM, New York, NY 10032, USA.
| | - Jeremy J Mao
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou 510055, China.
| |
Collapse
|
62
|
Baudry A, Alleaume-Butaux A, Dimitrova-Nakov S, Goldberg M, Schneider B, Launay JM, Kellermann O. Essential Roles of Dopamine and Serotonin in Tooth Repair: Functional Interplay Between Odontogenic Stem Cells and Platelets. Stem Cells 2015; 33:2586-95. [PMID: 25865138 DOI: 10.1002/stem.2037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/06/2015] [Accepted: 03/28/2015] [Indexed: 12/11/2022]
Abstract
Characterizing stem cell intrinsic functions is an ongoing challenge for cell therapies. Here, we report that two independent A4 and H8 stem cell lines isolated from mouse molar pulp display the overall functions of bioaminergic cells. Both clones produce neurotrophins and synthesize, catabolize, store, and transport serotonin (5-hydroxytryptamine [5-HT]) and dopamine (DA). They express 5-HT1D,2B,7 and D1,3 autoreceptors, which render pulpal stem cells competent to respond to circulating 5-HT and DA. We show that injury-activated platelets are the source of systemic 5-HT and DA necessary for dental repair since natural dentin reparation is impaired in two rat models with monoamine storage-deficient blood platelets. Moreover, selective inhibition of either D1, D3, 5-HT2B, or 5-HT7 receptor within the pulp of wild-type rat molars after lesion alters the reparative process. Altogether our data argue that 5-HT and DA coreleased by pulp injury-activated platelets are critical for stem cell-mediated dental repair through 5-HT and DA receptor signalings.
Collapse
Affiliation(s)
- Anne Baudry
- INSERM UMR-S 1124, Cellules Souches, Signalisation et Prions, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, Paris, France
| | - Aurélie Alleaume-Butaux
- INSERM UMR-S 1124, Cellules Souches, Signalisation et Prions, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, Paris, France
| | - Sasha Dimitrova-Nakov
- INSERM UMR-S 1124, Cellules Souches, Signalisation et Prions, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, Paris, France
| | - Michel Goldberg
- INSERM UMR-S 1124, Cellules Souches, Signalisation et Prions, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, Paris, France
| | - Benoît Schneider
- INSERM UMR-S 1124, Cellules Souches, Signalisation et Prions, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, Paris, France
| | - Jean-Marie Launay
- AP-HP, Service de Biochimie, Hôpital Lariboisière, Paris, France.,INSERM U942, Hôpital Lariboisière, Paris, France.,Pharma Research Department, F. Hoffmann-La-Roche, Ltd, Basel, Switzerland
| | - Odile Kellermann
- INSERM UMR-S 1124, Cellules Souches, Signalisation et Prions, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, Paris, France
| |
Collapse
|
63
|
Zheng Y, Chen M, He L, Marão HF, Sun DM, Zhou J, Kim SG, Song S, Wang SL, Mao JJ. Mesenchymal dental pulp cells attenuate dentin resorption in homeostasis. J Dent Res 2015; 94:821-7. [PMID: 25762594 DOI: 10.1177/0022034515575347] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dentin in permanent teeth rarely undergoes resorption in development, homeostasis, or aging, in contrast to bone that undergoes periodic resorption/remodeling. The authors hypothesized that cells in the mesenchymal compartment of dental pulp attenuate osteoclastogenesis. Mononucleated and adherent cells from donor-matched rat dental pulp (dental pulp cells [DPCs]) and alveolar bone (alveolar bone cells [ABCs]) were isolated and separately cocultured with primary rat splenocytes. Primary splenocytes readily aggregated and formed osteoclast-like cells in chemically defined osteoclastogenesis medium with 20 ng/mL of macrophage colony-stimulating factor (M-CSF) and 50 ng/mL of receptor activator of nuclear factor κB ligand (RANKL). Strikingly, DPCs attenuated osteoclastogenesis when cocultured with primary splenocytes, whereas ABCs slightly but significantly promoted osteoclastogenesis. DPCs yielded ~20-fold lower RANKL expression but >2-fold higher osteoprotegerin (OPG) expression than donor-matched ABCs, yielding a RANKL/OPG ratio of 41:1 (ABCs:DPCs). Vitamin D3 significantly promoted RANKL expression in ABCs and OPG in DPCs. In vivo, rat maxillary incisors were atraumatically extracted (without any tooth fractures), followed by retrograde pulpectomy to remove DPCs and immediate replantation into the extraction sockets to allow repopulation of the surgically treated root canal with periodontal and alveolar bone-derived cells. After 8 wk, multiple dentin/root resorption lacunae were present in root dentin with robust RANKL and OPG expression. There were areas of dentin resoprtion alternating with areas of osteodentin formation in root dentin surface in the observed 8 wk. These findings suggest that DPCs of the mesenchymal compartment have an innate ability to attenuate osteoclastogenesis and that this innate ability may be responsible for the absence of dentin resorption in homeostasis. Mesenchymal attenuation of dentin resorption may have implications in internal resorption in the root canal, pulp/dentin regeneration, and root resorption in orthodontic tooth movement.
Collapse
Affiliation(s)
- Y Zheng
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA Department of Endodontics, Capital Medical University School of Stomatology, Beijing, China
| | - M Chen
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
| | - L He
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
| | - H F Marão
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
| | - D M Sun
- Department of Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - J Zhou
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
| | - S G Kim
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
| | - S Song
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
| | - S L Wang
- Department of Endodontics, Capital Medical University School of Stomatology, Beijing, China
| | - J J Mao
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
| |
Collapse
|
64
|
Syed-Picard FN, Du Y, Lathrop KL, Mann MM, Funderburgh ML, Funderburgh JL. Dental pulp stem cells: a new cellular resource for corneal stromal regeneration. Stem Cells Transl Med 2015; 4:276-85. [PMID: 25713466 PMCID: PMC4339846 DOI: 10.5966/sctm.2014-0115] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 12/23/2014] [Indexed: 12/13/2022] Open
Abstract
Corneal blindness afflicts millions of individuals worldwide and is currently treated by grafting with cadaveric tissues; however, there are worldwide donor tissue shortages, and many allogeneic grafts are eventually rejected. Autologous stem cells present a prospect for personalized regenerative medicine and an alternative to cadaveric tissue grafts. Dental pulp contains a population of adult stem cells and, similar to corneal stroma, develops embryonically from the cranial neural crest. We report that adult dental pulp cells (DPCs) isolated from third molars have the capability to differentiate into keratocytes, cells of the corneal stoma. After inducing differentiation in vitro, DPCs expressed molecules characteristic of keratocytes, keratocan, and keratan sulfate proteoglycans at both the gene and the protein levels. DPCs cultured on aligned nanofiber substrates generated tissue-engineered, corneal stromal-like constructs, recapitulating the tightly packed, aligned, parallel fibrillar collagen of native stromal tissue. After injection in vivo into mouse corneal stroma, human DPCs produced corneal stromal extracellular matrix containing human type I collagen and keratocan and did not affect corneal transparency or induce immunological rejection. These findings demonstrate a potential for the clinical application of DPCs in cellular or tissue engineering therapies for corneal stromal blindness.
Collapse
Affiliation(s)
- Fatima N Syed-Picard
- Departments of Ophthalmology and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| | - Yiqin Du
- Departments of Ophthalmology and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| | - Kira L Lathrop
- Departments of Ophthalmology and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| | - Mary M Mann
- Departments of Ophthalmology and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| | - Martha L Funderburgh
- Departments of Ophthalmology and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| | - James L Funderburgh
- Departments of Ophthalmology and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
65
|
Chen Y, Yu Y, Chen L, Ye L, Cui J, Sun Q, Li K, Li Z, Liu L. Human Umbilical Cord Mesenchymal Stem Cells: A New Therapeutic Option for Tooth Regeneration. Stem Cells Int 2015; 2015:549432. [PMID: 26136785 PMCID: PMC4468342 DOI: 10.1155/2015/549432] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 01/19/2015] [Indexed: 02/07/2023] Open
Abstract
Tooth regeneration is considered to be an optimistic approach to replace current treatments for tooth loss. It is important to determine the most suitable seed cells for tooth regeneration. Recently, human umbilical cord mesenchymal stem cells (hUCMSCs) have been regarded as a promising candidate for tissue regeneration. However, it has not been reported whether hUCMSCs can be employed in tooth regeneration. Here, we report that hUCMSCs can be induced into odontoblast-like cells in vitro and in vivo. Induced hUCMSCs expressed dentin-related proteins including dentin sialoprotein (DSP) and dentin matrix protein-1 (DMP-1), and their gene expression levels were similar to those in native pulp tissue cells. Moreover, DSP- and DMP-1-positive calcifications were observed after implantation of hUCMSCs in vivo. These findings reveal that hUCMSCs have an odontogenic differentiation potency to differentiate to odontoblast-like cells with characteristic deposition of dentin-like matrix in vivo. This study clearly demonstrates hUCMSCs as an alternative therapeutic cell source for tooth regeneration.
Collapse
Affiliation(s)
- Yuanwei Chen
- 1State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yongchun Yu
- 2Department of Stomatology, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou 510120, China
| | - Lin Chen
- 1State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lanfeng Ye
- 1State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junhui Cui
- 1State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Quan Sun
- 1State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Kaide Li
- 1State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhiyong Li
- 3Department of Oral & Maxillofacial Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- *Zhiyong Li: and
| | - Lei Liu
- 1State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- *Lei Liu:
| |
Collapse
|
66
|
Tatullo M, Marrelli M, Paduano F. The regenerative medicine in oral and maxillofacial surgery: the most important innovations in the clinical application of mesenchymal stem cells. Int J Med Sci 2015; 12:72-7. [PMID: 25552921 PMCID: PMC4278878 DOI: 10.7150/ijms.10706] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/31/2014] [Indexed: 12/19/2022] Open
Abstract
Regenerative medicine is an emerging field of biotechnology that combines various aspects of medicine, cell and molecular biology, materials science and bioengineering in order to regenerate, repair or replace tissues. The oral surgery and maxillofacial surgery have a role in the treatment of traumatic or degenerative diseases that lead to a tissue loss: frequently, to rehabilitate these minuses, you should use techniques that have been improved over time. Since 1990, we started with the use of growth factors and platelet concentrates in oral and maxillofacial surgery; in the following period we start to use biomaterials, as well as several type of scaffolds and autologous tissues. The frontier of regenerative medicine nowadays is represented by the mesenchymal stem cells (MSCs): overcoming the ethical problems thanks to the use of mesenchymal stem cells from adult patient, and with the increasingly sophisticated technology to support their manipulation, MSCs are undoubtedly the future of medicine regenerative and they are showing perspectives unimaginable just a few years ago. Most recent studies are aimed to tissues regeneration using MSCs taken from sites that are even more accessible and rich in stem cells: the oral cavity turned out to be an important source of MSCs with the advantage to be easily accessible to the surgeon, thus avoiding to increase the morbidity of the patient. The future is the regeneration of whole organs or biological systems consisting of many different tissues, starting from an initial stem cell line, perhaps using innovative scaffolds together with the nano-engineering of biological tissues.
Collapse
Affiliation(s)
- Marco Tatullo
- 1. Tecnologica Research Institute, Biomedical Section, Crotone, Italy ; 2. Calabrodental clinic, Biomaterials test unit, Crotone, Italy
| | - Massimo Marrelli
- 1. Tecnologica Research Institute, Biomedical Section, Crotone, Italy ; 2. Calabrodental clinic, Biomaterials test unit, Crotone, Italy
| | - Francesco Paduano
- 1. Tecnologica Research Institute, Biomedical Section, Crotone, Italy
| |
Collapse
|
67
|
Xiang L, Chen M, He L, Cai B, Du Y, Zhang X, Zhou C, Wang C, Mao JJ, Ling J. Wnt5a regulates dental follicle stem/progenitor cells of the periodontium. Stem Cell Res Ther 2014; 5:135. [PMID: 25510849 PMCID: PMC4446079 DOI: 10.1186/scrt525] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/18/2014] [Indexed: 12/20/2022] Open
Abstract
Introduction Dental follicle gives rise to one or several tissues of the periodontium including the periodontal ligament, cementum and/or alveolar bone. Whether Wnt5a is expressed in the postnatal periodontium or regulates dental follicle stem/progenitor cells is unknown. Methods Dental follicle stem/progenitor cells were isolated from postnatal day 1 (p1) to p11 from rat mandibular first molars. Immunolocalization mapped Wnt5a expression in the alveolar bone, periodontal ligament, and the developing ameloblast and odontoblast layers. Mononucleated and adherent cells were isolated from p7 dental follicle. Wnt5a was overexpressed in dental follicle stem/progenitor cells to study their proliferation, osteogenic differentiation and migration behavior, with subpopulations of native dental follicle stem/progenitor cells as controls, using real-time PCR (Taqman), Lenti-viral transfection, Western blotting and immunofluorescence. Results Wnt5a was expressed consistently in p1 to p11 rat peridontium. Native, p7 dental follicle stem/progenitor cells had modest ability to mineralize in the tested 14 days. Even in chemically defined osteogenesis medium, dental follicle stem/progenitor cells only showed modest mineralization. Upon addition of 300 ng/mL Wnt5a protein in osteogenesis medium, dental follicle stem/progenitor cells displayed mineralization that was still unremarkable. Chemically induced or Wnt5a-induced mineralization of dental follicle cells only occurred sparsely. Combination of Wnt5a with 100 ng/mL BMP2 finally prompted dental follicle stem/progenitor cells to produce robust mineralization with elevated expression of Runx2, alkaline phosphatase, collagen 1α1 and osteocalcin. Thus, native dental follicle stem/progenitor cells or some of their fractions may be somewhat modest in mineralization. Strikingly, Wnt5a protein significantly augmented RANKL ligand, suggesting putative regulatory roles of dental follicle stem/progenitor cells for the monocyte/osteoclast lineage and potential involvement in alveolar bone remodeling and/or resorption. P-Jnk1/2 was activated in Wnt5a overexpressed dental follicle cells; conversely, exposure to SP600125, a c-Jun N-terminal kinase (JNK) inhibitor attenuated Runx2, collagen 1α1 and osteocalcin expression either in the presence or absence of Wnt5a. Wnt5a overexpression in dental follicle stem/progenitor cells significantly reduced their proliferation rates, but robustly augmented their migration capacity. Conclusions These findings provide a glimpse of Wnt5a’s putative roles in dental follicle stem/progenitor cells and the periodontium with implications in periodontal disease, tooth eruption, dental implant bone healing and orthodontic tooth movement.
Collapse
|
68
|
Xiao L, Nasu M. From regenerative dentistry to regenerative medicine: progress, challenges, and potential applications of oral stem cells. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2014; 7:89-99. [PMID: 25506228 PMCID: PMC4260683 DOI: 10.2147/sccaa.s51009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adult mesenchymal stem cells (MSCs) and epithelial stem cells play essential roles in tissue repair and self-healing. Oral MSCs and epithelial stem cells can be isolated from adult human oral tissues, for example, teeth, periodontal ligament, and gingiva. Cocultivated adult oral epithelial stem cells and MSCs could represent some developmental events, such as epithelial invagination and tubular structure formation, signifying their potentials for tissue regeneration. Oral epithelial stem cells have been used in regenerative medicine over 1 decade. They are able to form a stratified cell sheet under three-dimensional culture conditions. Both experimental and clinical data indicate that the cell sheets can not only safely and effectively reconstruct the damaged cornea in humans, but also repair esophageal ulcer in animal models. Oral MSCs include dental pulp stem cells (DPSCs), stem cells from exfoliated deciduous teeth (SHED), stem cells from apical papilla (SCAP), periodontal ligament stem cells (PDLSCs), and mesenchymal stem cells from gingiva (GMSCs). They are widely applied in both regenerative dentistry and medicine. DPSCs, SHED, and SCAP are able to form dentin–pulp complex when being transplanted into immunodeficient animals. They have been experimentally used for the regeneration of dental pulp, neuron, bone muscle and blood vessels in animal models and have shown promising results. PDLSCs and GMSCs are demonstrated to be ideal cell sources for repairing the damaged tissues of periodontal, muscle, and tendon. Despite the abovementioned applications of oral stem cells, only a few human clinical trials are now underway to use them for the treatment of certain diseases. Since clinical use is the end goal, their true regenerative power and safety need to be further examined.
Collapse
Affiliation(s)
- Li Xiao
- Department of Pharmacology, The Nippon Dental University, Tokyo, Japan
| | - Masanori Nasu
- Research Center, The Nippon Dental University, Tokyo, Japan
| |
Collapse
|
69
|
Shan T, Zhou C, Yang R, Yan F, Zhang P, Fu Y, Jiang H. Lithium chloride promotes the odontoblast differentiation of hair follicle neural crest cells by activating Wnt/β-catenin signaling. Cell Biol Int 2014; 39:35-43. [PMID: 25044369 DOI: 10.1002/cbin.10340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 06/09/2014] [Indexed: 12/14/2022]
Abstract
The Wnt/β-catenin signalling pathway contributes to the maintenance of pluripotency and partial reprogramming of stem cells. Postnatal neural crest cells (NCCs) can differentiate into odontoblast-like cells due to their multi-potential property, but further endeavors need to be made to promote odontogenic differentiation of hair follicle neural crest cells (hfNCCs). This study investigated whether the Wnt pathway activator lithium chloride (LiCl) promotes odontoblast differentiation of hfNCCs. Change of proliferation, β-catenin and pluripotency markers of hfNCCs were examined after treatment with LiCl. An in vitro odontoblast differentiation model of hfNCCs was built using dental cell conditioned media (DC-CM). The effects of LiCl on odontoblast differentiation of hfNCCs showed that proliferation and expression of β-catenin in the cytosolic and nuclear compartments were increased in the LiCl-treated hfNCCs, and the pluripotency marks, Oct4, Klf4, Sox2 and Nanog, were more highly expressed in the LiCl-treated group than in the control group. The odontoblast markers such as DSP, DMP1 and Runx2, could be detected in hfNCCs induced by DC-CM, but in LiCl -treated group all three markers had stronger expression. Expression of β-catenin in the nuclear of LiCl-treated hfNCCs induced by DC-CM was higher than in the other groups. The data indicate that the Wnt pathway activator LiCl can promote proliferation and odontoblast differentiation of hfNCCs, and chemical approaches are of benefit in obtaining more desirable seed cell types for cell-based therapies.
Collapse
Affiliation(s)
- Tengfei Shan
- Institute of Stomatology, School of Stomatology, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China; Department of Oral and Maxillofacial Surgery, Zhongda Hospital, Medical College, Southeast University, 87 Hunan Road, Nanjing, 210009, Jiangsu Province, China
| | | | | | | | | | | | | |
Collapse
|
70
|
Häkkinen L, Larjava H, Fournier BPJ. Distinct phenotype and therapeutic potential of gingival fibroblasts. Cytotherapy 2014; 16:1171-86. [PMID: 24934304 DOI: 10.1016/j.jcyt.2014.04.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 03/13/2014] [Accepted: 04/04/2014] [Indexed: 01/15/2023]
Abstract
Gingiva of the oral mucosa provides a practical source to isolate fibroblasts for therapeutic purposes because the tissue is easily accessible, tissue discards are common during routine clinical procedures and wound healing after biopsy is fast and results in complete wound regeneration with very little morbidity or scarring. In addition, gingival fibroblasts have unique traits, including neural crest origin, distinct gene expression and synthetic properties and potent immunomodulatory functions. These characteristics may provide advantages for certain therapeutic approaches over other more commonly used cells, including skin fibroblasts, both in intraoral and extra-oral sites. However, identity and phenotype of gingival fibroblasts, like other fibroblasts, are still not completely understood. Gingival fibroblasts are phenotypically heterogeneous, and these…fibroblast subpopulations may play different roles in tissue maintenance, regeneration and pathologies. The purpose of this review is to summarize what is currently known about gingival fibroblasts, their distinct potential for tissue regeneration and their potential therapeutic uses in the future.
Collapse
Affiliation(s)
- Lari Häkkinen
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada.
| | - Hannu Larjava
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Benjamin P J Fournier
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada; Paris Diderot University, Dental School, Rotschild Hospital, AP-HP, Paris, France; UMRS872, Team 5, Molecular Oral Physiopathology, CRC Les Cordeliers, Paris, 75006, INSERM UMRS872, Pierre et Marie Curie University, Paris Descartes University, Paris, France
| |
Collapse
|
71
|
Osathanon T, Chuenjitkuntaworn B, Nowwarote N, Supaphol P, Sastravaha P, Subbalekha K, Pavasant P. The responses of human adipose-derived mesenchymal stem cells on polycaprolactone-based scaffolds: an in vitro study. Tissue Eng Regen Med 2014. [DOI: 10.1007/s13770-014-0015-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
72
|
Nur Akmal M, Intan Zari Z, Rohaya M, Sahidan S, Zaidah Z, Shahrul Hi Z. Isolation and Characterization of Dental Pulp Stem Cells from Murine Incisors. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/jbs.2014.327.331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
73
|
Sasai Y. Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell 2014; 12:520-30. [PMID: 23642363 DOI: 10.1016/j.stem.2013.04.009] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The behavior of stem cells, when they work collectively, can be much more sophisticated than one might expect from their individual programming. This Perspective covers recent discoveries about the dynamic patterning and structural self-formation of complex organ buds in 3D stem cell culture, including the generation of various neuroectodermal and endodermal tissues. For some tissues, epithelial-mesenchymal interactions can also be manipulated in coculture to guide organogenesis. This new area of stem cell research-the spatiotemporal control of dynamic cellular interactions-will open a new avenue for next-generation regenerative medicine.
Collapse
Affiliation(s)
- Yoshiki Sasai
- Neurogenesis and Organogenesis Group, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan.
| |
Collapse
|
74
|
Zhao H, Feng J, Seidel K, Shi S, Klein O, Sharpe P, Chai Y. Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell 2014; 14:160-73. [PMID: 24506883 PMCID: PMC3951379 DOI: 10.1016/j.stem.2013.12.013] [Citation(s) in RCA: 326] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/24/2013] [Accepted: 12/19/2013] [Indexed: 12/24/2022]
Abstract
Mesenchymal stem cells (MSCs) are typically defined by their in vitro characteristics, and as a consequence the in vivo identity of MSCs and their niches are poorly understood. To address this issue, we used lineage tracing in a mouse incisor model and identified the neurovascular bundle (NVB) as an MSC niche. We found that NVB sensory nerves secrete Shh protein, which activates Gli1 expression in periarterial cells that contribute to all mesenchymal derivatives. These periarterial cells do not express classical MSC markers used to define MSCs in vitro. In contrast, NG2(+) pericytes represent an MSC subpopulation derived from Gli1+ cells; they express classical MSC markers and contribute little to homeostasis but are actively involved in injury repair. Likewise, incisor Gli1(+) cells, but not NG2(+) cells, exhibit typical MSC characteristics in vitro. Collectively, we demonstrate that MSCs originate from periarterial cells and are regulated by Shh secretion from an NVB.
Collapse
Affiliation(s)
- Hu Zhao
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| | - Kerstin Seidel
- Department of Orofacial Sciences and Pediatrics, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Songtao Shi
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| | - Ophir Klein
- Department of Orofacial Sciences and Pediatrics, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Paul Sharpe
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, Kings College London, London TN3 9TF, UK
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA.
| |
Collapse
|
75
|
Lee CH, Hajibandeh J, Suzuki T, Fan A, Shang P, Mao JJ. Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex. Tissue Eng Part A 2014; 20:1342-51. [PMID: 24295512 DOI: 10.1089/ten.tea.2013.0386] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tooth-supporting periodontium forms a complex with multiple tissues, including cementum, periodontal ligament (PDL), and alveolar bone. In this study, we developed multiphase region-specific microscaffolds with spatiotemporal delivery of bioactive cues for integrated periodontium regeneration. Polycarprolactione-hydroxylapatite (90:10 wt%) scaffolds were fabricated using three-dimensional printing seamlessly in three phases: 100-μm microchannels in Phase A designed for cementum/dentin interface, 600-μm microchannels in Phase B designed for the PDL, and 300-μm microchannels in Phase C designed for alveolar bone. Recombinant human amelogenin, connective tissue growth factor, and bone morphogenetic protein-2 were spatially delivered and time-released in Phases A, B, and C, respectively. Upon 4-week in vitro incubation separately with dental pulp stem/progenitor cells (DPSCs), PDL stem/progenitor cells (PDLSCs), or alveolar bone stem/progenitor cells (ABSCs), distinctive tissue phenotypes were formed with collagen I-rich fibers especially by PDLSCs and mineralized tissues by DPSCs, PDLSCs, and ABSCs. DPSC-seeded multiphase scaffolds upon in vivo implantation yielded aligned PDL-like collagen fibers that inserted into bone sialoprotein-positive bone-like tissue and putative cementum matrix protein 1-positive/dentin sialophosphoprotein-positive dentin/cementum tissues. These findings illustrate a strategy for the regeneration of multiphase periodontal tissues by spatiotemporal delivery of multiple proteins. A single stem/progenitor cell population appears to differentiate into putative dentin/cementum, PDL, and alveolar bone complex by scaffold's biophysical properties and spatially released bioactive cues.
Collapse
Affiliation(s)
- Chang H Lee
- Center for Craniofacial Regeneration (CCR), Columbia University Medical Center , New York, New York
| | | | | | | | | | | |
Collapse
|
76
|
Jiang N, Zhou J, Chen M, Schiff MD, Lee CH, Kong K, Embree MC, Zhou Y, Mao JJ. Postnatal epithelium and mesenchyme stem/progenitor cells in bioengineered amelogenesis and dentinogenesis. Biomaterials 2014; 35:2172-80. [PMID: 24345734 PMCID: PMC4112409 DOI: 10.1016/j.biomaterials.2013.11.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 11/21/2013] [Indexed: 01/07/2023]
Abstract
Rodent incisors provide a classic model for studying epithelial-mesenchymal interactions in development. However, postnatal stem/progenitor cells in rodent incisors have not been exploited for tooth regeneration. Here, we characterized postnatal rat incisor epithelium and mesenchyme stem/progenitor cells and found that they formed enamel- and dentin-like tissues in vivo. Epithelium and mesenchyme cells were harvested separately from the apical region of postnatal 4-5 day rat incisors. Epithelial and mesenchymal phenotypes were confirmed by immunocytochemistry, CFU assay and/or multi-lineage differentiation. CK14+, Sox2+ and Lgr5+ epithelium stem cells from the cervical loop enhanced amelogenin and ameloblastin expression upon BMP4 or FGF3 stimulation, signifying their differentiation towards ameloblast-like cells, whereas mesenchyme stem/progenitor cells upon BMP4, BMP7 and Wnt3a treatment robustly expressed Dspp, a hallmark of odontoblastic differentiation. We then control-released microencapsulated BMP4, BMP7 and Wnt3a in transplants of epithelium and mesenchyme stem/progenitor cells in the renal capsule of athymic mice in vivo. Enamel and dentin-like tissues were generated in two integrated layers with specific expression of amelogenin and ameloblastin in the newly formed, de novo enamel-like tissue, and DSP in dentin-like tissue. These findings suggest that postnatal epithelium and mesenchyme stem/progenitor cells can be primed towards bioengineered tooth regeneration.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Orthodontics, Peking University School & Hospital of Stomatology, 22 Zhongguancun Nandajie, Haidian District, Beijing 100081, P.R. China
- Columbia University Medical Center, Center for Craniofacial Regeneration (CCR), 630 W. 168 St. – PH7E, New York, NY 10032, USA
| | - Jian Zhou
- Columbia University Medical Center, Center for Craniofacial Regeneration (CCR), 630 W. 168 St. – PH7E, New York, NY 10032, USA
| | - Mo Chen
- Columbia University Medical Center, Center for Craniofacial Regeneration (CCR), 630 W. 168 St. – PH7E, New York, NY 10032, USA
| | - Michael D. Schiff
- Columbia University Medical Center, Center for Craniofacial Regeneration (CCR), 630 W. 168 St. – PH7E, New York, NY 10032, USA
| | - Chang H. Lee
- Columbia University Medical Center, Center for Craniofacial Regeneration (CCR), 630 W. 168 St. – PH7E, New York, NY 10032, USA
| | - Kimi Kong
- Columbia University Medical Center, Center for Craniofacial Regeneration (CCR), 630 W. 168 St. – PH7E, New York, NY 10032, USA
| | - Mildred C. Embree
- Columbia University Medical Center, Center for Craniofacial Regeneration (CCR), 630 W. 168 St. – PH7E, New York, NY 10032, USA
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School & Hospital of Stomatology, 22 Zhongguancun Nandajie, Haidian District, Beijing 100081, P.R. China
| | - Jeremy J. Mao
- Columbia University Medical Center, Center for Craniofacial Regeneration (CCR), 630 W. 168 St. – PH7E, New York, NY 10032, USA
| |
Collapse
|
77
|
Marrelli M, Paduano F, Tatullo M. Cells isolated from human periapical cysts express mesenchymal stem cell-like properties. Int J Biol Sci 2013; 9:1070-8. [PMID: 24250252 PMCID: PMC3831120 DOI: 10.7150/ijbs.6662] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 11/05/2013] [Indexed: 12/24/2022] Open
Abstract
We provide a detailed description of mesenchymal stem cells (MSCs) isolated from human periapical cysts, which we have termed hPCy-MSCs. These cells have a fibroblast-like shape and adhere to tissue culture plastic surfaces. hPCy-MSCs possess high proliferative potential and self-renewal capacity properties. We characterised the immunophenotype of hPCy-MSCs (CD73(+), CD90(+), CD105(+), CD13(+), CD29(+), CD44(+), CD45(-), STRO-1(+), CD146(+)) by flow cytometry and immunofluorescence. hPCy-MSCs possess the potential to differentiate into osteoblast- and adipocyte-like cells in vitro. Multi-potentiality was evaluated with culture-specific staining and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis for osteo/odontogenic and adipogenic markers. This is the first report to indicate that human periapical cysts contain cells with MSC-like properties. Taken together, our findings indicate that human periapical cysts could be a rich source of MSCs.
Collapse
Affiliation(s)
- Massimo Marrelli
- 1. Unit of Maxillofacial Surgery, Calabrodental, Crotone, Italy; ; 2. Tecnologica Research Institute, Biomedical Section, Crotone, Italy
| | | | | |
Collapse
|
78
|
Fournier BPJ, Larjava H, Häkkinen L. Gingiva as a source of stem cells with therapeutic potential. Stem Cells Dev 2013; 22:3157-77. [PMID: 23944935 DOI: 10.1089/scd.2013.0015] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Postnatal connective tissues contain phenotypically heterogeneous cells populations that include distinct fibroblast subpopulations, pericytes, myofibroblasts, fibrocytes, and tissue-specific mesenchymal stem cells (MSCs). These cells play key roles in tissue development, maintenance, and repair and contribute to various pathologies. Depending on the origin of tissue, connective tissue cells, including MSCs, have different phenotypes. Understanding the identity and specific functions of these distinct tissue-specific cell populations may allow researchers to develop better treatment modalities for tissue regeneration and find novel approaches to prevent pathological conditions. Interestingly, MSCs from adult oral mucosal gingiva possess distinct characteristics, including neural crest origin, multipotent differentiation capacity, fetal-like phenotype, and potent immunomodulatory properties. These characteristics and an easy, relatively noninvasive access to gingival tissue, and fast tissue regeneration after tissue biopsy make gingiva an attractive target for cell isolation for therapeutic purposes aiming to promote tissue regeneration and fast, scar-free wound healing. The purpose of this review is to discuss the identity, phenotypical heterogeneity, and function of gingival MSCs and summarize what is currently known about their properties, role in scar-free healing, and their future therapeutic potential.
Collapse
Affiliation(s)
- Benjamin P J Fournier
- 1 Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia , Vancouver, Canada
| | | | | |
Collapse
|
79
|
Cai J, Zhang Y, Liu P, Chen S, Wu X, Sun Y, Li A, Huang K, Luo R, Wang L, Liu Y, Zhou T, Wei S, Pan G, Pei D. Generation of tooth-like structures from integration-free human urine induced pluripotent stem cells. CELL REGENERATION 2013; 2:6. [PMID: 25408878 PMCID: PMC4230506 DOI: 10.1186/2045-9769-2-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/08/2013] [Indexed: 02/06/2023]
Abstract
Background Tooth is vital not only for a good smile, but also good health. Yet, we lose tooth regularly due to accidents or diseases. An ideal solution to this problem is to regenerate tooth with patients’ own cells. Here we describe the generation of tooth-like structures from integration-free human urine induced pluripotent stem cells (ifhU-iPSCs). Results We first differentiated ifhU-iPSCs to epithelial sheets, which were then recombined with E14.5 mouse dental mesenchymes. Tooth-like structures were recovered from these recombinants in 3 weeks with success rate up to 30% for 8 different iPSC lines, comparable to H1 hESC. We further detected that ifhU-iPSC derived epithelial sheets differentiated into enamel-secreting ameloblasts in the tooth-like structures, possessing physical properties such as elastic modulus and hardness found in the regular human tooth. Conclusion Our results demonstrate that ifhU-iPSCs can be used to regenerate patient specific dental tissues or even tooth for further drug screening or regenerative therapies. Electronic supplementary material The online version of this article (doi:10.1186/2045-9769-2-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinglei Cai
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell Biology and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530 P.R.China
| | - Yanmei Zhang
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell Biology and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530 P.R.China
| | - Pengfei Liu
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell Biology and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530 P.R.China ; Department of Regeneration Medicine, School of Pharmaceutical, Jilin University, Changchun, P.R. China
| | - Shubin Chen
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell Biology and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530 P.R.China
| | - Xuan Wu
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell Biology and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530 P.R.China ; Department of Regeneration Medicine, School of Pharmaceutical, Jilin University, Changchun, P.R. China
| | - Yuhua Sun
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing, P.R. China
| | - Ang Li
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, P.R. China
| | - Ke Huang
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell Biology and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530 P.R.China
| | - Rongping Luo
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell Biology and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530 P.R.China
| | - Lihui Wang
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell Biology and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530 P.R.China
| | - Ying Liu
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell Biology and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530 P.R.China ; The Shenzhen Key Lab of Gene and Antibody Therapy, Center for Biotech & Biomedicine and Division of Life Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, P.R. China
| | - Ting Zhou
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell Biology and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530 P.R.China
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing, P.R. China ; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, P.R. China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell Biology and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530 P.R.China
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell Biology and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530 P.R.China
| |
Collapse
|
80
|
Feng R, Lengner C. Application of Stem Cell Technology in Dental Regenerative Medicine. Adv Wound Care (New Rochelle) 2013; 2:296-305. [PMID: 24527351 DOI: 10.1089/wound.2012.0375] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Indexed: 12/19/2022] Open
Abstract
SIGNIFICANCE In this review, we summarize the current literature regarding the isolation and characterization of dental tissue-derived stem cells and address the potential of these cell types for use in regenerative cell transplantation therapy. RECENT ADVANCES Looking forward, platforms for the delivery of stem cells via scaffolds and the use of growth factors and cytokines for enhancing dental stem cell self-renewal and differentiation are discussed. CRITICAL ISSUES We aim to understand the developmental origins of dental tissues in an effort to elucidate the molecular pathways governing the genesis of somatic dental stem cells. The advantages and disadvantages of several dental stem cells are discussed, including the developmental stage and specific locations from which these cells can be purified. In particular, stem cells from human exfoliated deciduous teeth may act as a very practical and easily accessibly reservoir for autologous stem cells and hold the most value in stem cell therapy. Dental pulp stem cells and periodontal ligament stem cells should also be considered for their triple lineage differentiation ability and relative ease of isolation. Further, we address the potentials and limitations of induced pluripotent stem cells as a cell source in dental regenerative. FUTURE DIRECTIONS From an economical and a practical standpoint, dental stem cell therapy would be most easily applied in the prevention of periodontal ligament detachment and bone atrophy, as well as in the regeneration of dentin-pulp complex. In contrast, cell-based tooth replacement due to decay or other oral pathology seems, at the current time, an untenable approach.
Collapse
Affiliation(s)
- Ruoxue Feng
- School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chistopher Lengner
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
81
|
Kim SG, Zheng Y, Zhou J, Chen M, Embree MC, Song K, Jiang N, Mao JJ. Dentin and dental pulp regeneration by the patient's endogenous cells. ACTA ACUST UNITED AC 2013; 28:106-117. [PMID: 24976816 DOI: 10.1111/etp.12037] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The goal of regenerative endodontics is to restore the functions of the dental pulp-dentin complex. Two approaches are being applied toward dental pulp-dentin regeneration: cell transplantation and cell homing. The majority of previous approaches are based on cell transplantation by delivering ex vivo cultivated cells toward dental pulp or dentin regeneration. Many hurdles limit the clinical translation of cell transplantation such as the difficulty of acquiring and isolating viable cells, uncertainty of what cells or what fractions of cells to use, excessive cost of cell manipulation and transportation, and the risk of immune rejection, pathogen transmission, and tumorigenesis in associated with ex vivo cell manipulation. In contrast, cell homing relies on induced chemotaxis of endogenous cells and therefore circumvents many of the difficulties that are associated with cell transplantation. An array of proteins, peptides, and chemical compounds that are yet to be identified may orchestrate endogenous cells to regenerate dental pulp-dentin complex. Both cell transplantation and cell homing are scientifically valid approaches; however, cell homing offers a number of advantages that are compatible with the development of clinical therapies for dental pulp-dentin regeneration.
Collapse
|
82
|
Hargreaves KM, Diogenes A, Teixeira FB. Treatment options: biological basis of regenerative endodontic procedures. J Endod 2013; 39:S30-43. [PMID: 23439043 PMCID: PMC3589799 DOI: 10.1016/j.joen.2012.11.025] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/12/2012] [Accepted: 11/12/2012] [Indexed: 12/14/2022]
Abstract
Dental trauma occurs frequently in children and often can lead to pulpal necrosis. The occurrence of pulpal necrosis in the permanent but immature tooth represents a challenging clinical situation because the thin and often short roots increase the risk of subsequent fracture. Current approaches for treating the traumatized immature tooth with pulpal necrosis do not reliably achieve the desired clinical outcomes, consisting of healing of apical periodontitis, promotion of continued root development, and restoration of the functional competence of pulpal tissue. An optimal approach for treating the immature permanent tooth with a necrotic pulp would be to regenerate functional pulpal tissue. This review summarizes the current literature supporting a biological rationale for considering regenerative endodontic treatment procedures in treating the immature permanent tooth with pulp necrosis.
Collapse
Affiliation(s)
- Kenneth M Hargreaves
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA.
| | | | | |
Collapse
|