51
|
Yang J, Yan Y, Yin X, Liu X, Reshetov IV, Karalkin PA, Li Q, Huang RL. Bioengineering and vascularization strategies for islet organoids: advancing toward diabetes therapy. Metabolism 2024; 152:155786. [PMID: 38211697 DOI: 10.1016/j.metabol.2024.155786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Diabetes presents a pressing healthcare crisis, necessitating innovative solutions. Organoid technologies have rapidly advanced, leading to the emergence of bioengineering islet organoids as an unlimited source of insulin-producing cells for treating insulin-dependent diabetes. This advancement surpasses the need for cadaveric islet transplantation. However, clinical translation of this approach faces two major limitations: immature endocrine function and the absence of a perfusable vasculature compared to primary human islets. In this review, we summarize the latest developments in bioengineering functional islet organoids in vitro and promoting vascularization of organoid grafts before and after transplantation. We highlight the crucial roles of the vasculature in ensuring long-term survival, maturation, and functionality of islet organoids. Additionally, we discuss key considerations that must be addressed before clinical translation of islet organoid-based therapy, including functional immaturity, undesired heterogeneity, and potential tumorigenic risks.
Collapse
Affiliation(s)
- Jing Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China
| | - Yuxin Yan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China
| | - Xiya Yin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China; Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, China
| | - Xiangqi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China
| | - Igor V Reshetov
- Institute of Cluster Oncology, Sechenov First Moscow State Medical University, 127473 Moscow, Russia
| | - Pavel A Karalkin
- Institute of Cluster Oncology, Sechenov First Moscow State Medical University, 127473 Moscow, Russia
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China.
| | - Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China.
| |
Collapse
|
52
|
Abstract
Recent years witnessed advancements in diabetes technologies and therapeutics. People with type 1 diabetes have more options to control their blood glucose, prevent hypoglycemia, and spend more time with their loved ones. Newer diabetes technologies and therapeutics improve the quality of life and boost the confidence of people with type 1 diabetes. In parallel to changes in the diabetes technology field, stem cell research has been evolving. Gene editing and production of β cells from stem cells are ongoing. The current focus of cure studies is how to increase the survival of cells produced with stem cells. New adjunctive therapies are under development.
Collapse
Affiliation(s)
- Halis Kaan Akturk
- Barbara Davis Center for Diabetes, University of Colorado, 1775 Aurora Court, Room 1319, Aurora, CO 80045, USA.
| | - Alexis M McKee
- Division of Endocrinology, Metabolism & Lipid Research, Washington University in St. Louis School of Medicine, St Louis, MO, USA
| |
Collapse
|
53
|
Sethia N, Rao JS, Khashim Z, Schornack AMR, Etheridge ML, Peterson QP, Finger EB, Bischof JC, Dutcher CS. On Chip Sorting of Stem Cell-Derived β Cell Clusters Using Traveling Surface Acoustic Waves. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:3453-3462. [PMID: 38318799 PMCID: PMC10883307 DOI: 10.1021/acs.langmuir.3c02934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/05/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
There is a critical need for sorting complex materials, such as pancreatic islets of Langerhans, exocrine acinar tissues, and embryoid bodies. These materials are cell clusters, which have highly heterogeneous physical properties (such as size, shape, morphology, and deformability). Selecting such materials on the basis of specific properties can improve clinical outcomes and help advance biomedical research. In this work, we focused on sorting one such complex material, human stem cell-derived β cell clusters (SC-β cell clusters), by size. For this purpose, we developed a microfluidic device in which an image detection system was coupled to an actuation mechanism based on traveling surface acoustic waves (TSAWs). SC-β cell clusters of varying size (∼100-500 μm in diameter) were passed through the sorting device. Inside the device, the size of each cluster was estimated from their bright-field images. After size identification, larger clusters, relative to the cutoff size for separation, were selectively actuated using TSAW pulses. As a result of this selective actuation, smaller and larger clusters exited the device from different outlets. At the current sample dilutions, the experimental sorting efficiency ranged between 78% and 90% for a separation cutoff size of 250 μm, yielding sorting throughputs of up to 0.2 SC-β cell clusters/s using our proof-of-concept design. The biocompatibility of this sorting technique was also established, as no difference in SC-β cell cluster viability due to TSAW pulse usage was found. We conclude the proof-of-concept sorting work by discussing a few ways to optimize sorting of SC-β cell clusters for potentially higher sorting efficiency and throughput. This sorting technique can potentially help in achieving a better distribution of islets for clinical islet transplantation (a potential cure for type 1 diabetes). Additionally, the use of this technique for sorting islets can help in characterizing islet biophysical properties by size and selecting suitable islets for improved islet cryopreservation.
Collapse
Affiliation(s)
- Nikhil Sethia
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph Sushil Rao
- Division
of Solid Organ Transplantation, Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Schulze
Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zenith Khashim
- Department
of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Anna Marie R. Schornack
- Department
of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Michael L. Etheridge
- Department
of Mechanical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Quinn P. Peterson
- Department
of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Center for
Regenerative Biotherapeutics, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Erik B. Finger
- Division
of Solid Organ Transplantation, Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John C. Bischof
- Department
of Mechanical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Cari S. Dutcher
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department
of Mechanical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
54
|
Schmidt MD, Ishahak M, Augsornworawat P, Millman JR. Comparative and integrative single cell analysis reveals new insights into the transcriptional immaturity of stem cell-derived β cells. BMC Genomics 2024; 25:105. [PMID: 38267908 PMCID: PMC10807170 DOI: 10.1186/s12864-024-10013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024] Open
Abstract
Diabetes cell replacement therapy has the potential to be transformed by human pluripotent stem cell-derived β cells (SC-β cells). However, the precise identity of SC-β cells in relationship to primary fetal and adult β-cells remains unclear. Here, we used single-cell sequencing datasets to characterize the transcriptional identity of islets from in vitro differentiation, fetal islets, and adult islets. Our analysis revealed that SC-β cells share a core β-cell transcriptional identity with human adult and fetal β-cells, however SC-β cells possess a unique transcriptional profile characterized by the persistent expression and activation of progenitor and neural-biased gene networks. These networks are present in SC-β cells, irrespective of the derivation protocol used. Notably, fetal β-cells also exhibit this neural signature at the transcriptional level. Our findings offer insights into the transcriptional identity of SC-β cells and underscore the need for further investigation of the role of neural transcriptional networks in their development.
Collapse
Affiliation(s)
- Mason D Schmidt
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Matthew Ishahak
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Punn Augsornworawat
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO, 63130, USA
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Jeffrey R Millman
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO, 63110, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO, 63130, USA.
| |
Collapse
|
55
|
D'Addio F, Assi E, Maestroni A, Rossi G, Usuelli V, Petrazzuolo A, Nardini M, Loretelli C, Ben Nasr M, Fiorina P. TMEM219 regulates the transcription factor expression and proliferation of beta cells. Front Endocrinol (Lausanne) 2024; 15:1306127. [PMID: 38318298 PMCID: PMC10839017 DOI: 10.3389/fendo.2024.1306127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Pancreatic beta cells replenishment is considered the next therapeutic option for type 1 diabetes; while stimulating endogenous beta cells proliferation is the "holy grail" for those patients with exhausted beta cell mass. Here we are demonstrating that the pro-apoptotic receptor TMEM219 is expressed in fetal pancreas, in beta cell precursors and in in vitro embryonic-derived endocrine progenitors. TMEM219 signaling negatively regulates beta cells at early stages and induces Caspase 8-mediated cell death. Pharmacological blockade of TMEM219 further rescued beta cell precursor and proliferation markers, and decreased cell death, both in islets and in in vitro-derived endocrine progenitors, allowing for beta cell preservation. While addressing the upstream controlling TMEM219 expression, we determined the TMEM219 miRNet; indeed, one of those miRNAs, miR-129-2, is highly expressed in human islets, particularly in patients at risk or with established type 1 diabetes. miR-129-2 mimic downregulated TMEM219 expression in islets, in in vitro embryonic-derived endocrine progenitors and in highly proliferating insulinoma-derived cells. Moreover, miR-129-2 inhibitor induced a TMEM219 overexpression in insulinoma-derived cells, which restored cell proliferation and functional markers, thus acting as endogenous regulator of TMEM219 expression. The TMEM219 upstream regulator miR129-2 controls the fate of beta cell precursors and may unleash their regenerative potentials to replenish beta cells in type 1 diabetes.
Collapse
Affiliation(s)
- Francesca D'Addio
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Emma Assi
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
| | - Anna Maestroni
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
| | - Giada Rossi
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
| | - Vera Usuelli
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
| | - Adriana Petrazzuolo
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
| | - Marta Nardini
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
- Nephrology Division, Boston Children's Hospital and Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Cristian Loretelli
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
| | - Moufida Ben Nasr
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
- Nephrology Division, Boston Children's Hospital and Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Paolo Fiorina
- International Center for Type 1 Diabetes (T1D), Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences (DIBIC), Università di Milano, Milan, Italy
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
- Nephrology Division, Boston Children's Hospital and Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
56
|
Sturgill D, Wang L, Arda HE. PancrESS - a meta-analysis resource for understanding cell-type specific expression in the human pancreas. BMC Genomics 2024; 25:76. [PMID: 38238687 PMCID: PMC10797729 DOI: 10.1186/s12864-024-09964-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND The human pancreas is composed of specialized cell types producing hormones and enzymes critical to human health. These specialized functions are the result of cell type-specific transcriptional programs which manifest in cell-specific gene expression. Understanding these programs is essential to developing therapies for pancreatic disorders. Transcription in the human pancreas has been widely studied by single-cell RNA technologies, however the diversity of protocols and analysis methods hinders their interpretability in the aggregate. RESULTS In this work, we perform a meta-analysis of pancreatic single-cell RNA sequencing data. We present a database for reference transcriptome abundances and cell-type specificity metrics. This database facilitates the identification and definition of marker genes within the pancreas. Additionally, we introduce a versatile tool which is freely available as an R package, and should permit integration into existing workflows. Our tool accepts count data files generated by widely-used single-cell gene expression platforms in their original format, eliminating an additional pre-formatting step. Although we designed it to calculate expression specificity of pancreas cell types, our tool is agnostic to the biological source of count data, extending its applicability to other biological systems. CONCLUSIONS Our findings enhance the current understanding of expression specificity within the pancreas, surpassing previous work in terms of scope and detail. Furthermore, our database and tool enable researchers to perform similar calculations in diverse biological systems, expanding the applicability of marker gene identification and facilitating comparative analyses.
Collapse
Affiliation(s)
- David Sturgill
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Li Wang
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - H Efsun Arda
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
57
|
Xu Y, Xu T, Huang Y, Wan J, Jiang Z. Silencing hsa_circ_0032449 inhibits the pancreatic differentiation of human embryonic stem cells via the hsa_miR-195-5p/CCND1/PI3K/AKT signaling pathway. Exp Cell Res 2024; 434:113879. [PMID: 38072304 DOI: 10.1016/j.yexcr.2023.113879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Stem cell-derived β cells (SC-β cells) differentiated from stem cell-derived pancreatic progenitor (PP) cells are promising tools for enabling normal glucose control of islet transplants and have therapeutic potential for type 1 diabetes treatment. Pancreatic specification is essential for SC-β cell induction in vitro and low-quality PP cells may convert into derivatives of non-pancreatic lineages both in vivo and in vitro, impeding PP-derived β cell safety and differentiation efficiency. Circular RNA (circRNA) commonly determines the fate of stem cells by acting as competing endogenous RNA (ceRNA). Currently, the relationships between endogenous circRNA and pancreatic specification remain elusive. Herein, we used whole transcriptome sequencing analysis and functional experiments to reveal that deficiency of hsa_circ_0032449 resulted in posterior foregut-derived PP cells with a weakened the progenitor state with decreased expression of PDX1, NKX6.1 and CCND1. As differentiation processed into maturation, silencing of hsa_circ_0032449 suppressed PP cell development into functionally mature and glucose-responsive SC-β cells. These SC-β cells exhibited lower serum C-peptide levels compared with those of control groups in nude mice and had difficulties in reversing hyperglycemia in STZ-induced diabetic nude mice. Mechanistically, loss of hsa_circ_0032449 participated in PI3K-AKT signaling transduction by acting as a ceRNA to sponge miR-195-5p and by influencing the expression of the downstream target CCND1 at transcription and translation levels. Overall, our findings identified hsa_circ_0032449 as an essential PP cell-fate specification regulator, indicating a promising potential in clinical applications and basic research.
Collapse
Affiliation(s)
- Yang Xu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Tianxin Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Jian Wan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Zhaoyan Jiang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
58
|
Pollock SD, Galicia-Silva IM, Liu M, Gruskin ZL, Alvarez-Dominguez JR. Scalable Generation of 3D Pancreatic Islet Organoids from Human Pluripotent Stem Cells in Suspension Bioreactors. Methods Mol Biol 2024; 2805:51-87. [PMID: 39008174 DOI: 10.1007/978-1-0716-3854-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
We describe a scalable method for the robust generation of 3D pancreatic islet-like organoids from human pluripotent stem cells using suspension bioreactors. Our protocol involves a 6-stage, 20-day directed differentiation process, resulting in the production of 104-105 organoids. These organoids comprise α- and β-like cells that exhibit glucose-responsive insulin and glucagon secretion. We detail methods for culturing, passaging, and cryopreserving stem cells as suspended clusters and for differentiating them through specific growth media and exogenous factors added in a stepwise manner. Additionally, we address quality control measures, troubleshooting strategies, and functional assays for research applications.
Collapse
Affiliation(s)
- Samuel D Pollock
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Israeli M Galicia-Silva
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mai Liu
- Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zoe L Gruskin
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Juan R Alvarez-Dominguez
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
59
|
Abreu P, Garay BI, Nemkov T, Yamashita AMS, Perlingeiro RCR. Metabolic Changes during In Vivo Maturation of PSC-Derived Skeletal Myogenic Progenitors. Cells 2023; 13:76. [PMID: 38201280 PMCID: PMC10778145 DOI: 10.3390/cells13010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
In vitro-generated pluripotent stem cell (PSC)-derived Pax3-induced (iPax3) myogenic progenitors display an embryonic transcriptional signature, but upon engraftment, the profile of re-isolated iPax3 donor-derived satellite cells changes toward similarity with postnatal satellite cells, suggesting that engrafted PSC-derived myogenic cells remodel their transcriptional signature upon interaction within the adult muscle environment. Here, we show that engrafted myogenic progenitors also remodel their metabolic state. Assessment of oxygen consumption revealed that exposure to the adult muscle environment promotes overt changes in mitochondrial bioenergetics, as shown by the substantial suppression of energy requirements in re-isolated iPax3 donor-derived satellite cells compared to their in vitro-generated progenitors. Mass spectrometry-based metabolomic profiling further confirmed the relationship of engrafted iPax3 donor-derived cells to adult satellite cells. The fact that in vitro-generated myogenic progenitors remodel their bioenergetic signature upon in vivo exposure to the adult muscle environment may have important implications for therapeutic applications.
Collapse
Affiliation(s)
- Phablo Abreu
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (P.A.); (B.I.G.); (A.M.S.Y.)
| | - Bayardo I. Garay
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (P.A.); (B.I.G.); (A.M.S.Y.)
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Aline M. S. Yamashita
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (P.A.); (B.I.G.); (A.M.S.Y.)
| | - Rita C. R. Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (P.A.); (B.I.G.); (A.M.S.Y.)
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
60
|
Pollock SD, Galicia-Silva IM, Liu M, Gruskin ZL, Alvarez-Dominguez JR. Scalable generation of 3D pancreatic islet organoids from human pluripotent stem cells in suspension bioreactors. STAR Protoc 2023; 4:102580. [PMID: 37738117 PMCID: PMC10519857 DOI: 10.1016/j.xpro.2023.102580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/24/2023] [Accepted: 08/28/2023] [Indexed: 09/24/2023] Open
Abstract
Here, we present a protocol for producing 3D pancreatic-like organoids from human pluripotent stem cells in suspension bioreactors. We describe scalable techniques for generating 10,000-100,000 organoids that further mature in 4-5 weeks into α- and β-like cells with glucose-responsive insulin and glucagon release. We detail procedures for culturing, passaging, and cryopreserving stem cells as suspended clusters and specify growth media and differentiation factors for differentiation. Finally, we discuss functional assays for research applications. For complete details on the use and execution of this protocol, please refer to Alvarez-Dominguez et al.1.
Collapse
Affiliation(s)
- Samuel D Pollock
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Israeli M Galicia-Silva
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mai Liu
- Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zoe L Gruskin
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Juan R Alvarez-Dominguez
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
61
|
Zheng Y, Yang W, Gao W, Zhang X, Wu Z, Wang M. A Bioartificial Pancreas with "Immune Stealth" and Continuous Oxygen Supply for Islet Transplantation. Macromol Rapid Commun 2023; 44:e2300383. [PMID: 37673078 DOI: 10.1002/marc.202300383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Transplantation of microencapsulated islet cells remains a promising strategy for the normalization of glucose metabolism control in type 1 diabetes mellitus. However, vigorous host immunologic rejection, fibrotic overgrowth around the microcapsules, and poor oxygen supply often lead to graft failure. Herein, a bioartificial pancreas is constructed, which incorporates the "stealth effect" based on polyethylene glycol copolymers and the high oxygen-carrying performance of fluorinated nanoparticles. Polycationic poly(l-lysine)-grafted-poly(ethylene glycol) is successfully coated on the surface of alginate microcapsules through electrostatic interaction, which can not only resist fibrinogen adhesion and avoid excessive fibrosis around the microcapsules but also isolate the host immune system from attacking, achieving a "stealth effect" of microencapsulated islet cells. Furthermore, the coloading of fluoride-based O2 nanocarriers gives them enhanced oxygen-carrying and continuous oxygen supply capabilities, thereby effectively prolonging the survival of islet cells. The intracapsular islet cells still display similar cell viability and almost normal insulin secretion function even in long-term culture under hypoxic conditions. Collectively, here a new approach is opened for microencapsulated islets to efficiently evade host immune attack and improve oxygen supply and a promising strategy is provided for islet transplantation in type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Yin Zheng
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China
- Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong, 250012, China
| | - Wenyi Yang
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China
- Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong, 250012, China
| | - Weisong Gao
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China
- Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong, 250012, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhongming Wu
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China
- Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong, 250012, China
| | - Mo Wang
- Vascular Surgury, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| |
Collapse
|
62
|
Stabler CL, Russ HA. Regulatory approval of islet transplantation for treatment of type 1 diabetes: Implications and what is on the horizon. Mol Ther 2023; 31:3107-3108. [PMID: 37865099 PMCID: PMC10638039 DOI: 10.1016/j.ymthe.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/23/2023] Open
Affiliation(s)
- Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA; Diabetes Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Holger A Russ
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Diabetes Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
63
|
Cota P, Saber L, Taskin D, Jing C, Bastidas-Ponce A, Vanheusden M, Shahryari A, Sterr M, Burtscher I, Bakhti M, Lickert H. NEUROD2 function is dispensable for human pancreatic β cell specification. Front Endocrinol (Lausanne) 2023; 14:1286590. [PMID: 37955006 PMCID: PMC10634430 DOI: 10.3389/fendo.2023.1286590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction The molecular programs regulating human pancreatic endocrine cell induction and fate allocation are not well deciphered. Here, we investigated the spatiotemporal expression pattern and the function of the neurogenic differentiation factor 2 (NEUROD2) during human endocrinogenesis. Methods Using Crispr-Cas9 gene editing, we generated a reporter knock-in transcription factor (TF) knock-out human inducible pluripotent stem cell (iPSC) line in which the open reading frame of both NEUROD2 alleles are replaced by a nuclear histone 2B-Venus reporter (NEUROD2nVenus/nVenus). Results We identified a transient expression of NEUROD2 mRNA and its nuclear Venus reporter activity at the stage of human endocrine progenitor formation in an iPSC differentiation model. This expression profile is similar to what was previously reported in mice, uncovering an evolutionarily conserved gene expression pattern of NEUROD2 during endocrinogenesis. In vitro differentiation of the generated homozygous NEUROD2nVenus/nVenus iPSC line towards human endocrine lineages uncovered no significant impact upon the loss of NEUROD2 on endocrine cell induction. Moreover, analysis of endocrine cell specification revealed no striking changes in the generation of insulin-producing b cells and glucagon-secreting a cells upon lack of NEUROD2. Discussion Overall, our results suggest that NEUROD2 is expendable for human b cell formation in vitro.
Collapse
Affiliation(s)
- Perla Cota
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Lama Saber
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Damla Taskin
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
| | - Changying Jing
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Munich Medical Research School (MMRS), Ludwig Maximilian University (LMU), Munich, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Matthew Vanheusden
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
| | - Alireza Shahryari
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
64
|
Bele S, Wokasch AS, Gannon M. Epigenetic modulation of cell fate during pancreas development. TRENDS IN DEVELOPMENTAL BIOLOGY 2023; 16:1-27. [PMID: 38873037 PMCID: PMC11173269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Epigenetic modifications to DNA and its associated proteins affect cell plasticity and cell fate restrictions throughout embryonic development. Development of the vertebrate pancreas is characterized by initial is an over-lapping expression of a set of transcriptional regulators in a defined region of the posterior foregut endoderm that collectively promote pancreas progenitor specification and proliferation. As development progresses, these transcription factors segregate into distinct pancreatic lineages, with some being maintained in specific subsets of terminally differentiated pancreas cell types throughout adulthood. Here we describe the progressive stages and cell fate restrictions that occur during pancreas development and the relevant known epigenetic regulatory events that drive the dynamic expression patterns of transcription factors that regulate pancreas development. In addition, we highlight how changes in epigenetic marks can affect susceptibility to pancreas diseases (such as diabetes), adult pancreas cell plasticity, and the ability to derive replacement insulin-producing β cells for the treatment of diabetes.
Collapse
Affiliation(s)
- Shilpak Bele
- Department of Medicine, Vanderbilt University Medical Center, 2213 Garland Avenue, Nashville, TN, 37232, USA
| | - Anthony S. Wokasch
- Department of Cell and Developmental Biology, Vanderbilt University, 2213 Garland Avenue, Nashville, TN, 37232, USA
| | - Maureen Gannon
- Department of Medicine, Vanderbilt University Medical Center, 2213 Garland Avenue, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, 2213 Garland Avenue, Nashville, TN, 37232, USA
- Department of Veterans Affairs Tennessee Valley Authority, Research Division, 1310 24 Avenue South, Nashville, TN, 37212, USA
- Department of Molecular Physiology and Biophysics, 2213 Garland Avenue, Nashville, TN, 37232, USA
| |
Collapse
|