51
|
Kumar RR, Kumar A, Chuang CH, Shaikh MO. Recent Advances and Emerging Trends in Cancer Biomarker Detection Technologies. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Rajkumar Rakesh Kumar
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Amit Kumar
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Muhammad Omar Shaikh
- Sustainability Science and Management, Tunghai University, Taichung 407224, Taiwan
| |
Collapse
|
52
|
Das S, Devireddy R, Gartia MR. Surface Plasmon Resonance (SPR) Sensor for Cancer Biomarker Detection. BIOSENSORS 2023; 13:396. [PMID: 36979608 PMCID: PMC10046379 DOI: 10.3390/bios13030396] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
A biomarker is a physiological observable marker that acts as a stand-in and, in the best-case scenario, forecasts a clinically significant outcome. Diagnostic biomarkers are more convenient and cost-effective than directly measuring the ultimate clinical outcome. Cancer is among the most prominent global health problems and a major cause of morbidity and death globally. Therefore, cancer biomarker assays that are trustworthy, consistent, precise, and verified are desperately needed. Biomarker-based tumor detection holds a lot of promise for improving disease knowledge at the molecular scale and early detection and surveillance. In contrast to conventional approaches, surface plasmon resonance (SPR) allows for the quick and less invasive screening of a variety of circulating indicators, such as circulating tumor DNA (ctDNA), microRNA (miRNA), circulating tumor cells (CTCs), lipids, and proteins. With several advantages, the SPR technique is a particularly beneficial choice for the point-of-care identification of biomarkers. As a result, it enables the timely detection of tumor markers, which could be used to track cancer development and suppress the relapse of malignant tumors. This review emphasizes advancements in SPR biosensing technologies for cancer detection.
Collapse
|
53
|
Kowalczyk A, Nisiewicz MK, Bamburowicz-Klimkowska M, Kasprzak A, Ruzycka-Ayoush M, Koszytkowska-Stawińska M, Nowicka AM. Effective voltammetric tool for simultaneous detection of MMP-1, MMP-2, and MMP-9; important non-small cell lung cancer biomarkers. Biosens Bioelectron 2023; 229:115212. [PMID: 36958204 DOI: 10.1016/j.bios.2023.115212] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Simultaneous detection of multiple biomarkers can allow to reduce the costs of medical diagnostics, and thus improve the accuracy and effectiveness of disease diagnosis and prognosis. Here, for the first time, we present a low-cost, simple, and rapid method for simultaneous detection of three matrix metalloproteinases (MMP-1, MMP-2, and MMP-9) that play important roles in the progression of lung cancer. The sensor matrix was constructed using a G2 polyamidoamine dendrimer (PAMAM) containing amino, carboxyl, and sulfhydryl groups. The recognition process was based on specific enzymatic cleavage of the Gly-Ile peptide bond by MMP-1, Gly-Leu bond by MMP-2, and Gly-Met bond by MMP-9, and monitoring was done by square wave voltammetry. The activity of metalloproteinases was detected based on the change of current signals of redox receptors (dipeptides labeled with electroactive compounds) covalently anchored onto the electrode surface. The conditions of the biosensor construction, including the concentration of receptors on the sensor surface and the time of interaction of the receptor with the analyte, were carefully optimized. Under optimal conditions, the linear response of the developed method ranged from 1.0⋅10-8 to 1.0 mg⋅L-1, and the limit of detection for MMP-1, MMP-2, and MMP-9 was 0.35, 0.62, and 1.10 fg⋅mL-1, respectively. The constructed biosensor enabled us to efficiently profile the levels of active forms of MMP-1, MMP-2, and MMP-9 in tissue samples (plasma and lung and tumor extracts). Thus, the developed biosensor can aid in the early detection and diagnosis of lung cancer.
Collapse
Affiliation(s)
- Agata Kowalczyk
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland
| | - Monika K Nisiewicz
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland; Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, PL 00-664, Warsaw, Poland
| | - Magdalena Bamburowicz-Klimkowska
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland; Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, PL 02-097, Warsaw, Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, PL 00-664, Warsaw, Poland
| | - Monika Ruzycka-Ayoush
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland; Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, PL 02-097, Warsaw, Poland
| | | | - Anna M Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland.
| |
Collapse
|
54
|
Sanko V, Kuralay F. Label-Free Electrochemical Biosensor Platforms for Cancer Diagnosis: Recent Achievements and Challenges. BIOSENSORS 2023; 13:bios13030333. [PMID: 36979545 PMCID: PMC10046346 DOI: 10.3390/bios13030333] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 05/31/2023]
Abstract
With its fatal effects, cancer is still one of the most important diseases of today's world. The underlying fact behind this scenario is most probably due to its late diagnosis. That is why the necessity for the detection of different cancer types is obvious. Cancer studies including cancer diagnosis and therapy have been one of the most laborious tasks. Since its early detection significantly affects the following therapy steps, cancer diagnosis is very important. Despite researchers' best efforts, the accurate and rapid diagnosis of cancer is still challenging and difficult to investigate. It is known that electrochemical techniques have been successfully adapted into the cancer diagnosis field. Electrochemical sensor platforms that are brought together with the excellent selectivity of biosensing elements, such as nucleic acids, aptamers or antibodies, have put forth very successful outputs. One of the remarkable achievements of these biomolecule-attached sensors is their lack of need for additional labeling steps, which bring extra burdens such as interference effects or demanding modification protocols. In this review, we aim to outline label-free cancer diagnosis platforms that use electrochemical methods to acquire signals. The classification of the sensing platforms is generally presented according to their recognition element, and the most recent achievements by using these attractive sensing substrates are described in detail. In addition, the current challenges are discussed.
Collapse
Affiliation(s)
- Vildan Sanko
- Department of Chemistry, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Filiz Kuralay
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
55
|
Bordeianu G, Filip N, Cernomaz A, Veliceasa B, Hurjui LL, Pinzariu AC, Pertea M, Clim A, Marinca MV, Serban IL. The Usefulness of Nanotechnology in Improving the Prognosis of Lung Cancer. Biomedicines 2023; 11:biomedicines11030705. [PMID: 36979684 PMCID: PMC10045176 DOI: 10.3390/biomedicines11030705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Lung cancer remains a major public health problem both in terms of incidence and specific mortality despite recent developments in terms of prevention, such as smoking reduction policies and clinical management advances. Better lung cancer prognosis could be achieved by early and accurate diagnosis and improved therapeutic interventions. Nanotechnology is a dynamic and fast-developing field; various medical applications have been developed and deployed, and more exist as proofs of concepts or experimental models. We aim to summarize current knowledge relevant to the use of nanotechnology in lung cancer management. Starting from the chemical structure-based classification of nanoparticles, we identify and review various practical implementations roughly organized as diagnostic or therapeutic in scope, ranging from innovative contrast agents to targeted drug carriers. Available data are presented starting with standards of practice and moving to highly experimental methods and proofs of concept; particularities, advantages, limits and future directions are explored, focusing on the potential impact on lung cancer clinical prognosis.
Collapse
Affiliation(s)
- Gabriela Bordeianu
- Department of Morpho-Functional Sciences (II), Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Nina Filip
- Department of Morpho-Functional Sciences (II), Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (N.F.); (A.C.)
| | - Andrei Cernomaz
- III-rd Medical Department, Discipline of Pneumology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (N.F.); (A.C.)
| | - Bogdan Veliceasa
- Department of Orthopedics and Traumatology, Surgical Science (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alin Constantin Pinzariu
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihaela Pertea
- Department of Plastic Surgery and Reconstructive Microsurgery, “Sf. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Andreea Clim
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihai Vasile Marinca
- III-rd Medical Department, Discipline of Oncology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
56
|
Nano-Enabled Strategies for the Treatment of Lung Cancer: Potential Bottlenecks and Future Perspectives. Biomedicines 2023; 11:biomedicines11020473. [PMID: 36831009 PMCID: PMC9952953 DOI: 10.3390/biomedicines11020473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
On a global scale, lung cancer is acknowledged to be the major driver of cancer death attributable to treatment challenges and poor prognosis. Classical cancer treatment regimens, such as chemotherapy or radiotherapy, can be used to treat lung cancer, but the appended adverse effects limit them. Because of the numerous side effects associated with these treatment modalities, it is crucial to strive to develop novel and better strategies for managing lung cancer. Attributes such as enhanced bioavailability, better in vivo stability, intestinal absorption pattern, solubility, prolonged and targeted distribution, and the superior therapeutic effectiveness of numerous anticancer drugs have all been boosted with the emergence of nano-based therapeutic systems. Lipid-based polymeric and inorganic nano-formulations are now being explored for the targeted delivery of chemotherapeutics for lung cancer treatment. Nano-based approaches are pioneering the route for primary and metastatic lung cancer diagnosis and treatment. The implementation and development of innovative nanocarriers for drug administration, particularly for developing cancer therapies, is an intriguing and challenging task in the scientific domain. The current article provides an overview of the delivery methods, such as passive and active targeting for chemotherapeutics to treat lung cancer. Combinatorial drug therapy and techniques to overcome drug resistance in lung cancer cells, as potential ways to increase treatment effectiveness, are also discussed. In addition, the clinical studies of the potential therapies at different stages and the associated challenges are also presented. A summary of patent literature has also been included to keep readers aware of the new and innovative nanotechnology-based ways to treat lung cancer.
Collapse
|
57
|
Liu L, Chang Y, Ji X, Chen J, Zhang M, Yang S. Surface-tethered electrochemical biosensor for telomerase detection by integration of homogeneous extension and hybridization reactions. Talanta 2023; 253:123597. [PMID: 35710468 DOI: 10.1016/j.talanta.2022.123597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/02/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022]
Abstract
The general electrochemical biosensors for telomerase detection require the immobilization of primers on the electrode surface for telomeric extension and hybridization reactions. However, immobilization of primers may suffer from the challenges of hindrance effect and configuration freedom, thus reducing the extension and hybridization efficiency. Herein, we developed a sensitive electrochemical biosensor for telomerase detection by integration of homogeneous extension and hybridization reactions and surface-tethered detection. In the presence of telomerase, the biotinylated primer (bio-primer) was efficiently elongated with telomeric repeats of (TTAGGG)n at the 3' end in solution. Then, the extension product (bio-DNA) was hybridized with the signal probe DNA modified on the surface of ferrocene (Fc)-capped gold nanoparticle (AuNP). The bio-DNA/DNA/Fc-AuNP hybrids were then tethered by streptavidin-modified electrodes through the specific avidin-biotin interactions, thus producing strong electrochemical signals from the oxidation of Fc tags. The biosensor was successfully used to determine telomerase in HeLa cells and monitor the inhibition efficiency of inhibitor. A wide linear range for the detection of telomerase extracted from HeLa cells was attained. This method has great potential in clinical diagnosis and anti-cancer drug development, and should be beneficial for the fabrication of novel biosensors by integration of homogeneous catalysis and hybridization reactions.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China.
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China; School of Chemistry and Materials Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xingyue Ji
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China
| | - Jiayu Chen
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China
| | - Mengyu Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China
| | - Suling Yang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China.
| |
Collapse
|
58
|
Shankar S, Kumar Y, Chauhan D, Tiwari P, Sharma N, Chandra R, Kumar S. Nanodot Zirconium Trisulfide based Highly Efficient Biosensor for Early Diagnosis of Lung Cancer. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
59
|
Recent strategies for electrochemical sensing detection of miRNAs in lung cancer. Anal Biochem 2023; 661:114986. [PMID: 36384188 DOI: 10.1016/j.ab.2022.114986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022]
Abstract
MicroRNAs (miRNAs) associated with lung cancer are diversifying. MiR-21, Let-7, and miR-141 are common diagnostic targets. Some new lung cancer miRNAs, such as miR-25, miR-145, and miR-126, have received increasing attention. Although various techniques are available for the analysis of lung cancer miRNAs, electrochemistry has been recognized for its high sensitivity, low cost, and rapid response. However, how to realize the signal amplification is one of the most important contents in the design of electrochemical biosensors. Herein, we mainly introduce the amplification strategy based on enzyme-free amplification and signal conversion, including non-linear HCR, catalytic hairpin assembly (CHA), electrochemiluminescence (ECL), and Faraday cage. Furthermore, new progress has emerged in the fields of nanomaterials, low oxidation potential, and simultaneous detection of multiple targets. Finally, we summarize some new challenges that electrochemical techniques may encounter in the future, such as improving single-base discrimination ability, shortening electrochemical detection time, and providing real body fluid samples assay.
Collapse
|
60
|
Mohammadpour-Haratbar A, Boraei SBA, Zare Y, Rhee KY, Park SJ. Graphene-Based Electrochemical Biosensors for Breast Cancer Detection. BIOSENSORS 2023; 13:bios13010080. [PMID: 36671915 PMCID: PMC9855997 DOI: 10.3390/bios13010080] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 06/04/2023]
Abstract
Breast cancer (BC) is the most common cancer in women, which is also the second most public cancer worldwide. When detected early, BC can be treated more easily and prevented from spreading beyond the breast. In recent years, various BC biosensor strategies have been studied, including optical, electrical, electrochemical, and mechanical biosensors. In particular, the high sensitivity and short detection time of electrochemical biosensors make them suitable for the recognition of BC biomarkers. Moreover, the sensitivity of the electrochemical biosensor can be increased by incorporating nanomaterials. In this respect, the outstanding mechanical and electrical performances of graphene have led to an increasingly intense study of graphene-based materials for BC electrochemical biosensors. Hence, the present review examines the latest advances in graphene-based electrochemical biosensors for BC biosensing. For each biosensor, the detection limit (LOD), linear range (LR), and diagnosis technique are analyzed. This is followed by a discussion of the prospects and current challenges, along with potential strategies for enhancing the performance of electrochemical biosensors.
Collapse
Affiliation(s)
- Ali Mohammadpour-Haratbar
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1715424313, Iran
| | - Seyyed Behnam Abdollahi Boraei
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1715424313, Iran
| | - Yasser Zare
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1715424313, Iran
| | - Kyong Yop Rhee
- Department of Mechanical Engineering (BK21 Four), College of Engineering, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
61
|
Saha S, Sachdev M, Mitra SK. Recent advances in label-free optical, electrochemical, and electronic biosensors for glioma biomarkers. BIOMICROFLUIDICS 2023; 17:011502. [PMID: 36844882 PMCID: PMC9949901 DOI: 10.1063/5.0135525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Gliomas are the most commonly occurring primary brain tumor with poor prognosis and high mortality rate. Currently, the diagnostic and monitoring options for glioma mainly revolve around imaging techniques, which often provide limited information and require supervisory expertise. Liquid biopsy is a great alternative or complementary monitoring protocol that can be implemented along with other standard diagnosis protocols. However, standard detection schemes for sampling and monitoring biomarkers in different biological fluids lack the necessary sensitivity and ability for real-time analysis. Lately, biosensor-based diagnostic and monitoring technology has attracted significant attention due to several advantageous features, including high sensitivity and specificity, high-throughput analysis, minimally invasive, and multiplexing ability. In this review article, we have focused our attention on glioma and presented a literature survey summarizing the diagnostic, prognostic, and predictive biomarkers associated with glioma. Further, we discussed different biosensory approaches reported to date for the detection of specific glioma biomarkers. Current biosensors demonstrate high sensitivity and specificity, which can be used for point-of-care devices or liquid biopsies. However, for real clinical applications, these biosensors lack high-throughput and multiplexed analysis, which can be achieved via integration with microfluidic systems. We shared our perspective on the current state-of-the-art different biosensor-based diagnostic and monitoring technologies reported and the future research scopes. To the best of our knowledge, this is the first review focusing on biosensors for glioma detection, and it is anticipated that the review will offer a new pathway for the development of such biosensors and related diagnostic platforms.
Collapse
Affiliation(s)
| | - Manoj Sachdev
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Sushanta K. Mitra
- Micro and Nanoscale Transport Laboratory, Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
62
|
Wang R, Zhang Q, Chen M. Artemisinin‐isatin hybrids tethered via ethylene linker and their anti‐lung cancer activity. Arch Pharm (Weinheim) 2022; 356:e2200563. [PMID: 36572639 DOI: 10.1002/ardp.202200563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/28/2022]
Abstract
The synthesized 11 artemisinin-isatin hybrids 5a-c and 6a-h tethered via ethylene linker were assessed for their in vitro antiproliferative activity against A549 and H1299 nonsmall-cell lung cancer cell lines as well as their cytotoxicity towards BEAS-2B human normal lung epithelial cells. The preliminary results showed that hybrids 5a-c and 6a-h did not show any cytotoxicity (IC50 : >100 µM) on BEAS-2B cells, and also possessed potential activity (IC50 : 6.99-76.49 µM) against A549 and H1299 lung cancer cell lines. The representative hybrid 6c (IC50 : 6.99 and 7.57 µM) was far more potent than artemisinin (IC50 : >100 µM) and dihydroartemisinin (IC50 : >100 µM), and was slightly less active than doxorubicin (IC50 : 4.14 and 2.77 µM). Moreover, hybrid 6c also exhibited an excellent safety profile and good selectivity with SI values of >13.21. Therefore, hybrid 6c could serve as a promising candidate for further in vivo evaluations.
Collapse
Affiliation(s)
- Ruo Wang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianru Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Chen
- Shengli Clinical College of Fujian Medical University, Fuzhou, China
- Department of Pharmacy, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
63
|
Li C, Che B, Deng L. Electrochemical Biosensors Based on Carbon Nanomaterials for Diagnosis of Human Respiratory Diseases. BIOSENSORS 2022; 13:12. [PMID: 36671847 PMCID: PMC9855565 DOI: 10.3390/bios13010012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
In recent years, respiratory diseases have increasingly become a global concern, largely due to the outbreak of Coronavirus Disease 2019 (COVID-19). This inevitably causes great attention to be given to the development of highly efficient and minimal or non-invasive methods for the diagnosis of respiratory diseases. And electrochemical biosensors based on carbon nanomaterials show great potential in fulfilling the requirement, not only because of the superior performance of electrochemical analysis, but also given the excellent properties of the carbon nanomaterials. In this paper, we review the most recent advances in research, development and applications of electrochemical biosensors based on the use of carbon nanomaterials for diagnosis of human respiratory diseases in the last 10 years. We first briefly introduce the characteristics of several common human respiratory diseases, including influenza, COVID-19, pulmonary fibrosis, tuberculosis and lung cancer. Then, we describe the working principles and fabrication of various electrochemical biosensors based on carbon nanomaterials used for diagnosis of these respiratory diseases. Finally, we summarize the advantages, challenges, and future perspectives for the currently available electrochemical biosensors based on carbon nanomaterials for detecting human respiratory diseases.
Collapse
|
64
|
Wang C, Oda M, Hayashi Y, Kitasaka T, Itoh H, Honma H, Takebatake H, Mori M, Natori H, Mori K. Anatomy aware-based 2.5D bronchoscope tracking for image-guided bronchoscopic navigation. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2022. [DOI: 10.1080/21681163.2022.2152728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cheng Wang
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Masahiro Oda
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
- Information and Communications, Nagoya University, Nagoya, Japan
| | - Yuichiro Hayashi
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Takayuki Kitasaka
- School of Information Science, Aichi Institute of Technology, Toyota, Japan
| | - Hayato Itoh
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Hirotoshi Honma
- Medical Examination Department, Seamen’s Insurance Hokkaido Healthcare Center, Sapporo, Japan
| | - Hirotsugu Takebatake
- Department of Respiratory Medicine, Sapporo Minami-Sanjo Hospital, Sapporo, Japan
| | - Masaki Mori
- Department of Respiratory Medicine, Sapporo-Kosei General Hospital, Sapporo, Japan
| | - Hiroshi Natori
- Department of Internal Medicine, Keiwakai Nishioka Hospital, Sapporo, Japan
| | - Kensaku Mori
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
- Information Technology Center, Nagoya University, Nagoya, Japan
- Research Center for Medical Bigdata, National Institute of Informatics, Tokyo, Japan
| |
Collapse
|
65
|
Current Update on Biomarkers for Detection of Cancer: Comprehensive Analysis. Vaccines (Basel) 2022; 10:vaccines10122138. [PMID: 36560548 PMCID: PMC9787556 DOI: 10.3390/vaccines10122138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Early and effective diagnosis of cancer is decisive for its proper management. In this context biomarker-based cancer diagnosis is budding as one of the promising ways for early detection, disease progression monitoring, and effective cancer therapy. Integration of Biosensing devices with different metallic/nonmetallic nanoparticles offers amplification and multiplexing capabilities for simultaneous detection of cancer biomarkers (CB's). This study provides a comprehensive analysis of the most recent designs and fabrication methodologies designed for developing electrochemical biosensors (EB) for early detection of cancers. The role of biomarkers in cancer therapeutics is also discussed.
Collapse
|
66
|
Filik H, Avan AA, Altaş Puntar N, Özyürek M, Çakıcı M, Güngör ZB, Kucur M, Kamış H. Electrochemical immunosensor for individual and simultaneous determination of Cytokeratin fragment antigen 21-1 and Neuron-specific enolase using carbon dots-decorated multiwalled carbon nanotube electrode. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
67
|
Gashimova EM, Temerdashev AZ, Porkhanov VA, Polyakov IS, Perunov DV. Comparative Analysis of Pre- and Post-Surgery Exhaled Breath Profiles of Volatile Organic Compounds of Patients with Lung Cancer and Benign Tumors. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822120036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
68
|
Jiang L, Chen P, Zha L, Liu J, Sun D, Dai C, Li Y, Miao Y, Ouyang R. Enhanced catalytic amplification of mesoporous bismuth-gold nano-electrocatalyst triggering efficient capture of tumor marker. Colloids Surf B Biointerfaces 2022; 220:112924. [DOI: 10.1016/j.colsurfb.2022.112924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
|
69
|
Saad HM, Tourky GF, Al-kuraishy HM, Al-Gareeb AI, Khattab AM, Elmasry SA, Alsayegh AA, Hakami ZH, Alsulimani A, Sabatier JM, Eid MW, Shaheen HM, Mohammed AA, Batiha GES, De Waard M. The Potential Role of MUC16 (CA125) Biomarker in Lung Cancer: A Magic Biomarker but with Adversity. Diagnostics (Basel) 2022; 12:2985. [PMID: 36552994 PMCID: PMC9777200 DOI: 10.3390/diagnostics12122985] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Lung cancer is the second most commonly diagnosed cancer in the world. In terms of the diagnosis of lung cancer, combination carcinoembryonic antigen (CEA) and cancer antigen 125 (CA125) detection had higher sensitivity, specificity, and diagnostic odds ratios than CEA detection alone. Most individuals with elevated serum CA125 levels had lung cancer that was either in stage 3 or stage 4. Serum CA125 levels were similarly elevated in lung cancer patients who also had pleural effusions or ascites. Furthermore, there is strong evidence that human lung cancer produces CA125 in vitro, which suggests that other clinical illnesses outside of ovarian cancer could also be responsible for the rise of CA125. MUC16 (CA125) is a natural killer cell inhibitor. As a screening test for lung and ovarian cancer diagnosis and prognosis in the early stages, CA125 has been widely used as a marker in three different clinical settings. MUC16 mRNA levels in lung cancer are increased regardless of gender. As well, increased expression of mutated MUC16 enhances lung cancer cells proliferation and growth. Additionally, the CA125 serum level is thought to be a key indicator for lung cancer metastasis to the liver. Further, CA125 could be a useful biomarker in other cancer types diagnoses like ovarian, breast, and pancreatic cancers. One of the important limitations of CA125 as a first step in such a screening technique is that up to 20% of ovarian tumors lack antigen expression. Each of the 10 possible serum markers was expressed in 29-100% of ovarian tumors with minimal or no CA125 expression. Therefore, there is a controversy regarding CA125 in the diagnosis and prognosis of lung cancer and other cancer types. In this state, preclinical and clinical studies are warranted to elucidate the clinical benefit of CA125 in the diagnosis and prognosis of lung cancer.
Collapse
Affiliation(s)
- Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh 51744, Matrouh, Egypt
| | - Ghada F. Tourky
- Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology, Internal Medicine, College of Medicine, Al-Mustansiriyiah University, Baghdad P.O. Box 14132, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology, Internal Medicine, College of Medicine, Al-Mustansiriyiah University, Baghdad P.O. Box 14132, Iraq
| | - Ahmed M. Khattab
- Pharmacy College, Al-Azhar University, Cairo 11884, Cairo, Egypt
| | - Sohaila A. Elmasry
- Faculty of Science, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Abdulrahman A. Alsayegh
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan 82817, Saudi Arabia
| | - Zaki H. Hakami
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, MS, CT (ASCP), PhD, Jazan 45142, Saudi Arabia
| | - Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, MS, CT (ASCP), PhD, Jazan 45142, Saudi Arabia
| | - Jean-Marc Sabatier
- Aix-Marseille Université, Institut de Neurophysiopathologie (INP), CNRS UMR 7051, Faculté des Sciences Médicales et Paramédicales, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Marwa W. Eid
- Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Hazem M. Shaheen
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Ali A. Mohammed
- Consultant Respiratory & General Physician, The Chest Clinic, Barts Health NHS Trust Whipps Cross University Hospital, London E11 1NR, UK
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120 Saint-Egrève, France
- L’institut du Thorax, INSERM, CNRS, UNIV NANTES, 44007 Nantes, France
- Université de Nice Sophia-Antipolis, LabEx «Ion Channels, Science & Therapeutics», 06560 Valbonne, France
| |
Collapse
|
70
|
Recent Advances in Electrochemical and Optical Biosensors for Cancer Biomarker Detection. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
71
|
Afshari N, Al-Gazally ME, Rasulova I, Jalil AT, Matinfar S, Momeninejad M. Sensitive bioanalytical methods for telomerase activity detection: a cancer biomarker. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4174-4184. [PMID: 36254582 DOI: 10.1039/d2ay01315k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Telomerase is an enzyme that protects the length of telomeres by adding guanine-rich repetitive sequences. In tumors, gametes, and stem cells, telomerase activity is exerted. Telomerase activity can be a cancer biomarker for therapeutic and diagnosis approaches. So, a number of studies concentrating on the discovery of telomerase activity were reported. Bioanalytical devices, in comparison with other tests, have numerous advantages including low expense, simplicity, and excellent sensitivity and specificity. In this article we reviewed recent studies on the subject of various bioanalytical methods based on different nanomaterials. Optical, electrochemical, and quartz crystal microbalance (QCM) are prominent analytical techniques that are mentioned in this paper.
Collapse
Affiliation(s)
- Nasim Afshari
- Department of Microbiology, Islamic Azad University Science & Research Branch, Tehran, Iran
| | | | - Iroda Rasulova
- "Kasmed" Private Medical Centre, Tashkent, Uzbekistan
- School of Medicine, Akfa University, Tashkent, Uzbekistan
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Solmaz Matinfar
- Department of Microbiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Momeninejad
- Department of Social Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
72
|
He J, Zhou L, Huang G, Shen J, Chen W, Wang C, Kim A, Zhang Z, Cheng W, Dai S, Ding F, Chen P. Enhanced Label-Free Nanoplasmonic Cytokine Detection in SARS-CoV-2 Induced Inflammation Using Rationally Designed Peptide Aptamer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48464-48475. [PMID: 36281943 PMCID: PMC9627400 DOI: 10.1021/acsami.2c14748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/13/2022] [Indexed: 06/12/2023]
Abstract
Rapid and precise serum cytokine quantification provides immense clinical significance in monitoring the immune status of patients in rapidly evolving infectious/inflammatory disorders, examplified by the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. However, real-time information on predictive cytokine biomarkers to guide targetable immune pathways in pathogenic inflammation is critically lacking, because of the insufficient detection range and detection limit in current label-free cytokine immunoassays. In this work, we report a highly sensitive localized surface plasmon resonance imaging (LSPRi) immunoassay for label-free Interleukin 6 (IL-6) detection utilizing rationally designed peptide aptamers as the capture interface. Benefiting from its characteristically smaller dimension and direct functionalization on the sensing surface via Au-S bonding, the peptide-aptamer-based LSPRi immunoassay achieved enhanced label-free serum IL-6 detection with a record-breaking limit of detection down to 4.6 pg/mL, and a wide dynamic range of ∼6 orders of magnitude (values from 4.6 to 1 × 106 pg/mL were observed). The immunoassay was validated in vitro for label-free analysis of SARS-CoV-2 induced inflammation, and further applied in rapid quantification of serum IL-6 profiles in COVID-19 patients. Our peptide aptamer LSPRi immunoassay demonstrates great potency in label-free cytokine detection with unprecedented sensing capability to provide accurate and timely interpretation of the inflammatory status and disease progression, and determination of prognosis.
Collapse
Affiliation(s)
- Jiacheng He
- Materials Research and Education Center, Auburn University, Auburn, Alabama36849, United States
| | - Lang Zhou
- Materials Research and Education Center, Auburn University, Auburn, Alabama36849, United States
| | - Gangtong Huang
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina29634, United States
| | - Jialiang Shen
- Materials Research and Education Center, Auburn University, Auburn, Alabama36849, United States
| | - Wu Chen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama36849, United States
| | - Chuanyu Wang
- Materials Research and Education Center, Auburn University, Auburn, Alabama36849, United States
| | - Albert Kim
- Center for Medicine, Health, and Society, Vanderbilt University, Nashville, Tennessee37235, United States
| | - Zhuoyu Zhang
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York11201, United States
- Department of Biomedical Engineering, New York University, Brooklyn, New York11201, United States
| | - Weiqiang Cheng
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York11201, United States
- Department of Biomedical Engineering, New York University, Brooklyn, New York11201, United States
| | - Siyuan Dai
- Materials Research and Education Center, Auburn University, Auburn, Alabama36849, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina29634, United States
| | - Pengyu Chen
- Materials Research and Education Center, Auburn University, Auburn, Alabama36849, United States
| |
Collapse
|
73
|
Hartati YW, Irkham I, Zulqaidah S, Syafira RS, Kurnia I, Noviyanti AR, Topkaya SN. Recent advances in hydroxyapatite-based electrochemical biosensors: Applications and future perspectives. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
74
|
Cao D, Lin H, Liu Z, Gu Y, Hua W, Cao X, Qian Y, Xu H, Zhu X. Serum-based surface-enhanced Raman spectroscopy combined with PCA-RCKNCN for rapid and accurate identification of lung cancer. Anal Chim Acta 2022; 1236:340574. [DOI: 10.1016/j.aca.2022.340574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/15/2022] [Accepted: 10/29/2022] [Indexed: 11/05/2022]
|
75
|
Khan H, Shah MR, Barek J, Malik MI. Cancer biomarkers and their biosensors: A comprehensive review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
76
|
Martins G, Gogola JL, Budni LH, Papi MA, Bom MA, Budel ML, de Souza EM, Müller-Santos M, Beirão BC, Banks CE, Marcolino-Junior LH, Bergamini MF. Novel approach based on GQD-PHB as anchoring platform for the development of SARS-CoV-2 electrochemical immunosensor. Anal Chim Acta 2022; 1232:340442. [PMID: 36257733 PMCID: PMC9529294 DOI: 10.1016/j.aca.2022.340442] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/30/2022] [Accepted: 09/22/2022] [Indexed: 11/01/2022]
Abstract
In the present work, we report an innovative approach for immunosensors construction. The experimental strategy is based on the anchoring of biological material at screen-printed carbon electrode (SPE) modified with electrodeposited Graphene Quantum Dots (GQD) and polyhydroxybutyric acid (PHB). It was used as functional substract basis for the recognition site receptor-binding domain (RBD) from coronavirus spike protein (SARS-CoV-2), for the detection of Anti-S antibodies (AbS). SEM images and EDS spectra suggest an interaction of the protein with GQD-PHB sites at the electrode surface. Differential pulse voltametric (DPV) measurements were performed before and after incubation, in presence of the target, shown a decrease in voltametric signal of an electrochemical probe ([Fe(CN)6]3/4-). Using the optimal experimental conditions, analytical curves were performed in PBS and human serum spiked with AbS showing a slight matrix effect and a relationship between voltametric signal and AbS concentration in the range of 100 ng mL-1 and 10 μg mL-1. The selectivity of the proposed sensor was tested against yellow fever antibodies (YF) and the selective layer on the electrode surface did not interact with these unspecific antibodies. Eight samples of blood serum were analyzed and 87.5% of these total investigated provided adequate results. In addition, the present approach showed better results against traditional EDC/NHS reaction with enhancements in time and the possibility to develop an immunosensor in a single drop, since the proteins can be anchored prior to the electrode modification step.
Collapse
Affiliation(s)
- Gustavo Martins
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990, Curitiba, PR, Brazil
| | - Jeferson L. Gogola
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990, Curitiba, PR, Brazil
| | - Lucas H. Budni
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990, Curitiba, PR, Brazil
| | - Maurício A. Papi
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990, Curitiba, PR, Brazil
| | - Maritza A.T. Bom
- Núcleo de Fixação de Nitrogênio (NFIX), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), CP: 19046, CEP: 81531-980, Curitiba, PR, Brazil
| | - Maria L.T. Budel
- Núcleo de Fixação de Nitrogênio (NFIX), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), CP: 19046, CEP: 81531-980, Curitiba, PR, Brazil
| | - Emanuel M. de Souza
- Núcleo de Fixação de Nitrogênio (NFIX), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), CP: 19046, CEP: 81531-980, Curitiba, PR, Brazil
| | - Marcelo Müller-Santos
- Núcleo de Fixação de Nitrogênio (NFIX), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), CP: 19046, CEP: 81531-980, Curitiba, PR, Brazil
| | - Breno C.B. Beirão
- Laboratório de Imunologia Comparada, Departamento de Patologia Básica, Universidade Federal do Paraná (UFPR), CEP: 81531-980, Curitiba, PR, Brazil
| | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, United Kingdom
| | - Luiz H. Marcolino-Junior
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990, Curitiba, PR, Brazil
| | - Márcio F. Bergamini
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990, Curitiba, PR, Brazil,Corresponding author
| |
Collapse
|
77
|
Li M, Jiang F, Xue L, Peng C, Shi Z, Zhang Z, Li J, Pan Y, Wang X, Feng C, Qiao D, Chen Z, Luo Q, Chen X. Recent Progress in Biosensors for Detection of Tumor Biomarkers. Molecules 2022; 27:7327. [PMID: 36364157 PMCID: PMC9658374 DOI: 10.3390/molecules27217327] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 10/07/2023] Open
Abstract
Cancer is a leading cause of death worldwide, with an increasing mortality rate over the past years. The early detection of cancer contributes to early diagnosis and subsequent treatment. How to detect early cancer has become one of the hot research directions of cancer. Tumor biomarkers, biochemical parameters for reflecting cancer occurrence and progression have caused much attention in cancer early detection. Due to high sensitivity, convenience and low cost, biosensors have been largely developed to detect tumor biomarkers. This review describes the application of various biosensors in detecting tumor markers. Firstly, several typical tumor makers, such as neuron-specific enolase (NSE), carcinoembryonic antigen (CEA), prostate-specific antigen (PSA), squamous cell carcinoma antigen (SCCA), carbohydrate, antigen19-9 (CA19-9) and tumor suppressor p53 (TP53), which may be helpful for early cancer detection in the clinic, are briefly described. Then, various biosensors, mainly focusing on electrochemical biosensors, optical biosensors, photoelectrochemical biosensors, piezoelectric biosensors and aptamer sensors, are discussed. Specifically, the operation principles of biosensors, nanomaterials used in biosensors and the application of biosensors in tumor marker detection have been comprehensively reviewed and provided. Lastly, the challenges and prospects for developing effective biosensors for early cancer diagnosis are discussed.
Collapse
Affiliation(s)
- Mantong Li
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Feng Jiang
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Liangyi Xue
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cheng Peng
- Guangzhou Institute of Food Inspection, Guangzhou 510080, China
| | - Zhengzheng Shi
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zheng Zhang
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jia Li
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yupeng Pan
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xinya Wang
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunqiong Feng
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Dongfang Qiao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhenzhong Chen
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qizhi Luo
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xuncai Chen
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
78
|
Ayerdurai V, Lach P, Lis-Cieplak A, Cieplak M, Kutner W, Sharma PS. An advantageous application of molecularly imprinted polymers in food processing and quality control. Crit Rev Food Sci Nutr 2022; 64:3407-3440. [PMID: 36300633 DOI: 10.1080/10408398.2022.2132208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the global market era, food product control is very challenging. It is impossible to track and control all production and delivery chains not only for regular customers but also for the State Sanitary Inspections. Certified laboratories currently use accurate food safety and quality inspection methods. However, these methods are very laborious and costly. The present review highlights the need to develop fast, robust, and cost-effective analytical assays to determine food contamination. Application of the molecularly imprinted polymers (MIPs) as selective recognition units for chemosensors' fabrication was herein explored. MIPs enable fast and inexpensive electrochemical and optical transduction, significantly improving detectability, sensitivity, and selectivity. MIPs compromise durability of synthetic materials with a high affinity to target analytes and selectivity of molecular recognition. Imprinted molecular cavities, present in MIPs structure, are complementary to the target analyte molecules in terms of size, shape, and location of recognizing sites. They perfectly mimic natural molecular recognition. The present review article critically covers MIPs' applications in selective assays for a wide range of food products. Moreover, numerous potential applications of MIPs in the food industry, including sample pretreatment before analysis, removal of contaminants, or extraction of high-value ingredients, are discussed.
Collapse
Affiliation(s)
| | - Patrycja Lach
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Maciej Cieplak
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| | | |
Collapse
|
79
|
Zhang Z, Chen Q, Huang C, Rao D, Sang C, Zhu S, Gu L, Xie C, Tang Z, Xu X. Transcription factor Nrf2 binds to circRNAPIBF1 to regulate SOD2 in lung adenocarcinoma progression. Mol Carcinog 2022; 61:1161-1176. [PMID: 36193777 DOI: 10.1002/mc.23468] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022]
Abstract
Emerging evidence indicates that circular RNAs (circRNAs) play important roles in disease development, especially in cancers. Analysis of circRNA expression microarrays from the Gene Expression Omnibus database revealed that circPIBF1 was highly upregulated in lung adenocarcinoma (LUAD). The main aim of this study was to probe the function of circPIBF1 in pyroptosis of LUAD cells and the signal transduction pathways involved. CircPIBF1 was significantly overexpressed in LUAD and was related to the dismal prognosis of patients with LUAD. CircPIBF1 could bind to nuclear factor erythroid 2-related factor 2 (Nrf2), which further promoted the expression of superoxide dismutase 2 (SOD2). In addition, Nrf2 was also observed to recruit histone acetyltransferase E1A binding protein p300 (EP300) to enhance H3K27ac modification of SOD2, thus modulating the Nrf2-Keap1 signaling pathway. Moreover, we found that knockdown of circPIBF1 significantly suppressed the expression of SOD2 in cells and LUAD cell growth, while enhanced the expression of pyroptosis-related factors, which were further reversed by overexpression of SOD2 or EP300. Collectively, our findings suggest a direct involvement of circPIBF1 in pyroptosis-related LUAD carcinogenesis and implicate a role of Nrf2/EP300/SOD2 signaling in this process.
Collapse
Affiliation(s)
- Zuxiong Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, P.R. China.,Department of Thoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China.,Ganzhou Key Lab of Brain Injury & Brain Protection, Ganzhou, Jiangxi, P.R. China
| | - Qianshun Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, P.R. China.,Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, P.R. China
| | - Chen Huang
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, P.R. China
| | - Dingyu Rao
- Department of Thoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China.,Ganzhou Key Lab of Brain Injury & Brain Protection, Ganzhou, Jiangxi, P.R. China
| | - Chengpeng Sang
- Department of Thoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China.,Ganzhou Key Lab of Brain Injury & Brain Protection, Ganzhou, Jiangxi, P.R. China
| | - Shenyu Zhu
- Department of Thoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China.,Ganzhou Key Lab of Brain Injury & Brain Protection, Ganzhou, Jiangxi, P.R. China
| | - Liang Gu
- Department of Thoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China.,Ganzhou Key Lab of Brain Injury & Brain Protection, Ganzhou, Jiangxi, P.R. China
| | - Chunfa Xie
- Department of Thoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China.,Ganzhou Key Lab of Brain Injury & Brain Protection, Ganzhou, Jiangxi, P.R. China
| | - Zhixian Tang
- Department of Thoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China.,Ganzhou Key Lab of Brain Injury & Brain Protection, Ganzhou, Jiangxi, P.R. China
| | - Xunyu Xu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, P.R. China.,Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, P.R. China
| |
Collapse
|
80
|
Tincu B, Burinaru T, Enciu AM, Preda P, Chiriac E, Marculescu C, Avram M, Avram A. Vertical Graphene-Based Biosensor for Tumor Cell Dielectric Signature Evaluation. MICROMACHINES 2022; 13:mi13101671. [PMID: 36296024 PMCID: PMC9610743 DOI: 10.3390/mi13101671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/13/2022] [Accepted: 10/02/2022] [Indexed: 06/10/2023]
Abstract
The selective and rapid detection of tumor cells is of critical consequence for the theragnostic field of tumorigenesis; conventional methods, such as histopathological diagnostic methods, often require a long analysis time, excessive analytical costs, complex operations, qualified personnel and deliver many false-positive results. We are considering a new approach of an electrochemical biosensor based on graphene, which is evidenced to be a revolutionary nanomaterial enabling the specific and selective capture of tumor cells. In this paper, we report a biosensor fabricated by growing vertically aligned graphene nanosheets on the conductive surface of interdigitated electrodes which is functionalized with anti-EpCAM antibodies. The dielectric signature of the three types of tumor cells is determined by correlating the values from the Nyquist and Bode diagram: charge transfer resistance, electrical double layer capacity, Debye length, characteristic relaxation times of mobile charges, diffusion/adsorption coefficients, and variation in the electrical permittivity complex and of the phase shift with frequency. These characteristics are strongly dependent on the type of membrane molecules and the electromagnetic resonance frequency. We were able to use the fabricated sensor to differentiate between three types of tumor cell lines, HT-29, SW403 and MCF-7, by dielectric signature. The proposed evaluation method showed the permittivity at 1 MHz to be 3.63 nF for SW403 cells, 4.97 nF for HT 29 cells and 6.9 nF for MCF-7 cells.
Collapse
Affiliation(s)
- Bianca Tincu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
- Faculty of Applied Chemistry and Material Science, University “Politehnica” of Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania
| | - Tiberiu Burinaru
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
- University of Agronomic Sciences and Veterinary Medicine, 59 Mărăști, 011464 Bucharest, Romania
| | - Ana-Maria Enciu
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, 99–101 Splaiul Independenţei, 050096 Bucharest, Romania
- Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, 050474 Bucharest, Romania
| | - Petruta Preda
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
| | - Eugen Chiriac
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
- Faculty of Applied Chemistry and Material Science, University “Politehnica” of Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania
| | - Catalin Marculescu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
| | - Marioara Avram
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
| | - Andrei Avram
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
| |
Collapse
|
81
|
Zhang X, Jiang K, Jiang S, Zhao F, Chen P, Huang P, Lin J. In Vivo Near-Infrared Fluorescence/Ratiometric Photoacoustic Duplex Imaging of Lung Cancer-Specific hNQO1. Anal Chem 2022; 94:13770-13776. [PMID: 36173742 DOI: 10.1021/acs.analchem.2c02153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Overexpressing human NAD(P)H:quinone oxidoreductase 1 (hNQO1) in lung cancer tissues is deemed to be an attractive biomarker, which is directly connected to cancerous pathological processes. Monitoring of hNQO1 activity is crucial to early diagnosis and prognosis of lung cancer. In this study, an activatable hemi-cyanine dye-based probe (denoted as the LET-10 probe) was synthesized for near-infrared fluorescence (NIRF) and ratiometric photoacoustic (RPA) imaging of hNQO1. LET-10 can realize the NIRF and PA signal opening in the presence of hNQO1. Taking the octabutoxy naphthalocyanine in the LET-10 probe as a built-in reference signal, the LET-10 probe further demonstrated a double-signal self-calibration process for RPA imaging. Finally, the LET-10 probe was successfully applied for NIRF/RPA duplex imaging in the hNQO1-positive A549 lung cancer model, which suggests that the LET-10 probe is a promising tool for in vivo hNQO1 detection, especially for lung cancer diagnosis.
Collapse
Affiliation(s)
- Xinming Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kejia Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Shanshan Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Feng Zhao
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Penghang Chen
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| |
Collapse
|
82
|
Zhang G, Zheng H, Wang L. miR‑491‑3p functions as a tumor suppressor in non‑small cell lung cancer by targeting fibroblast growth factor 5. Oncol Rep 2022; 48:164. [PMID: 35866594 PMCID: PMC9350999 DOI: 10.3892/or.2022.8379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
The present study aimed to identify the function of miR-491-3p in regulating non-small cell lung cancer (NSCLC). Tumor tissues and adjacent normal tissues were collected from 43 patients with NSCLC. A549 and H1299 cells were transfected with microRNA (miR)-491-3p mimic, mimic negative control (NC), miR-491-3p inhibitor, inhibitor NC, pcDNA3.1-FGF5 vector and control vector. Cell counting kit-8 assay and Edu experiments were performed to assess cell viability and proliferation. Matrigel experiment, wound healing assay and flow cytometric analysis were performed to explore cell invasion, migration and apoptosis, respectively. A dual-luciferase reporter experiment was performed to identify the relationship between miR-491-3p and fibroblast growth factor 5 (FGF5). In vivo study was conducted by using nude mice. The miR-491-3p and FGF5 protein expression levels were investigated using reverse transcription-quantitative polymerase chain reaction and western blot analysis. In NSCLC tumor tissues, miR-491-3p was downregulated and FGF5 was upregulated (P<0.01). Low miR-491-3p expression and high FGF5 mRNA expression was associated with poor outcomes in patients, including advanced TNM stage and lymph node metastasis (P<0.05). upregulation of miR-491-3p suppressed viability, proliferation, invasion and migration of NSCLC cells; however, it promoted apoptosis (P<0.01). FGF5 was a target gene for miR-491-3p. miR-491-3p directly inhibited FGF5 expression. upregulation of FGF5 significantly reversed the inhibitory effects of miR-491-3p on malignant phenotypes of NSCLC cells (P<0.01). miR-491-3p overexpression suppressed the in vivo growth of NSCLC. Thus, it was identified that miR-491-3p functions as a tumor suppressor in NSCLC by directly targeting FGF5.
Collapse
Affiliation(s)
- Gai Zhang
- Department of General Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Haijian Zheng
- Department of General Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ling Wang
- Department of General Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
83
|
Glatz RT, Ates HC, Mohsenin H, Weber W, Dincer C. Designing electrochemical microfluidic multiplexed biosensors for on-site applications. Anal Bioanal Chem 2022; 414:6531-6540. [PMID: 35794347 PMCID: PMC9411084 DOI: 10.1007/s00216-022-04210-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/01/2022]
Abstract
Clinical assessment based on a single biomarker is in many circumstances not sufficient for adequate diagnosis of a disease or for monitoring its therapy. Multiplexing, the measurement of multiple analytes from one sample and/or of the same target from different samples simultaneously, could enhance the accuracy of the diagnosis of diseases and their therapy success. Thus, there is a great and urgent demand for multiplexed biosensors allowing a low-cost, easy-to-use, and rapid on-site testing. In this work, we present a simple, flexible, and highly scalable strategy for implementing microfluidic multiplexed electrochemical biosensors (BiosensorX). Our technology is able to detect 4, 6, or 8 (different) analytes or samples simultaneously using a sequential design concept: multiple immobilization areas, where the assay components are adsorbed, followed by their individual electrochemical cells, where the amperometric signal readout takes place, within a single microfluidic channel. Here, first we compare vertical and horizontal designs of BiosensorX chips using a model assay. Owing to its easier handling and superior fluidic behavior, the vertical format is chosen as the final multiplexed chip design. Consequently, the feasibility of the BiosensorX for multiplexed on-site testing is successfully demonstrated by measuring meropenem antibiotics via an antibody-free β-lactam assay. The multiplexed biosensor platform introduced can be further extended for the simultaneous detection of other anti-infective agents and/or biomarkers (such as renal or inflammation biomarkers) as well as different (invasive and non-invasive) sample types, which would be a major step towards sepsis management and beyond.
Collapse
Affiliation(s)
- Regina T Glatz
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
- Department of Microsystems Engineering (IMTEK), Laboratory for Sensors, University of Freiburg, 79110, Freiburg, Germany
| | - H Ceren Ates
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
- Department of Microsystems Engineering (IMTEK), Laboratory for Sensors, University of Freiburg, 79110, Freiburg, Germany
| | - Hasti Mohsenin
- Faculty of Biology and Signalling Research Centers BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Wilfried Weber
- Faculty of Biology and Signalling Research Centers BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Can Dincer
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany.
- Department of Microsystems Engineering (IMTEK), Laboratory for Sensors, University of Freiburg, 79110, Freiburg, Germany.
| |
Collapse
|
84
|
Majdinasab M, Marty JL. Recent Advances in Electrochemical Aptasensors for Detection of Biomarkers. Pharmaceuticals (Basel) 2022; 15:995. [PMID: 36015143 PMCID: PMC9412480 DOI: 10.3390/ph15080995] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
The early diagnosis of diseases is of great importance for the effective treatment of patients. Biomarkers are one of the most promising medical approaches in the diagnosis of diseases and their progress and facilitate reaching this goal. Among the many methods developed in the detection of biomarkers, aptamer-based biosensors (aptasensors) have shown great promise. Aptamers are promising diagnostic molecules with high sensitivity and selectivity, low-cost synthesis, easy modification, low toxicity, and high stability. Electrochemical aptasensors with high sensitivity and accuracy have attracted considerable attention in the field of biomarker detection. In this review, we will summarize recent advances in biomarker detection using electrochemical aptasensors. The principles of detection, sensitivity, selectivity, and other important factors in aptasensor performance are investigated. Finally, advantages and challenges of the developed aptasensors are discussed.
Collapse
Affiliation(s)
- Marjan Majdinasab
- Department of Food Science & Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Jean Louis Marty
- Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France
| |
Collapse
|
85
|
Dual-signal amplified electrochemical biosensor based on eATRP and PEI for early detection of lung cancer. Bioelectrochemistry 2022; 148:108224. [PMID: 36029762 DOI: 10.1016/j.bioelechem.2022.108224] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022]
Abstract
Carcinoembryonic antigen (CEA), a lung cancer marker with high sensitivity and specificity, plays vital roles in the early diagnosis of lung cancer. In this paper, an electrochemical biosensor for highly sensitive detection of CEA was constructed, which based on dual signal amplification of electrically mediated atom transfer radical polymerization (eATRP) and polyethyleneimine (PEI) for the first time. Firstly, CEA was captured in a specific recognition manner with CEA aptamer 1 (Apt1), which self-assembled on the electrode via "Au-S" bond. After that, CEA aptamer 2-PEI (Apt2-PEI) was recognized by CEA to form an Apt-antigen-Apt sandwich structure. Next, multiple initiation sites were introduced for the eATRP reaction by the amide reaction. Finally, numerous electroactive monomers, ferrocene methacrylate (FMMA), were grafted onto the modified electrode by eATRP. Under the optimized conditions, there was a wide linear detection range of 10-3 ∼ 102 ng·mL-1, and the limit of detection (LOD) was 70.17 fg·mL-1. Compared to other reported sensors, this electrochemical biosensor used a simpler and more environmentally friendly eATRP, and the use of PEI increased the electron transfer rate. Moreover, the biosensor showed superior analytical performance in the clinical serums and has great promise for early lung cancer diagnosis applications.
Collapse
|
86
|
Wu HF, Kailasa SK. Recent advances in nanomaterials-based optical sensors for detection of various biomarkers (inorganic species, organic and biomolecules). LUMINESCENCE 2022. [PMID: 35929140 DOI: 10.1002/bio.4353] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/07/2022]
Abstract
This review briefly emphasizes the different detection approaches (electrochemical sensors, chemiluminescence, surface-enhanced Raman scattering), functional nanostructure materials (quantum dots, metal nanoparticles, metal nanoclusters, magnetic nanomaterials, metal oxide nanoparticles, polymer-based nanomaterials, and carbonaceous nanomaterials) and detection mechanisms. Further, this review emphasis on the integration of functional nanomaterials with optical spectroscopic techniques for the identification of various biomarkers (nucleic acids, glucose, uric acid, oxytocin, dopamine, ascorbic acid, bilirubin, spermine, serotonin, thiocyanate, Pb2+ , Cu2+ , Hg2+ , F- , peptides, and cancer biomarkers (mucin 1, prostate specific antigen, carcinoembryonic antigen, CA15-3, human epidermal growth factor receptor 2, C-reactive protein, and interleukin-6). Analytical characteristics of nanomaterials-based optical sensors are summarized in Tables, providing the insights of nanomaterials-based optical sensors for biomarkers detection. Finally, the opportunities and challenges of nanomaterials-based optical analytical approaches for the detection of various biomarkers (inorganic, organic, biomolecules, peptides and proteins) are discussed.
Collapse
Affiliation(s)
- Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
- International PhD Program for Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| |
Collapse
|
87
|
Aydın EB, Aydın M, Sezgintürk MK. Impedimetric Detection of Calreticulin by a Disposable Immunosensor Modified with a Single-Walled Carbon Nanotube-Conducting Polymer Nanocomposite. ACS Biomater Sci Eng 2022; 8:3773-3784. [PMID: 35920068 DOI: 10.1021/acsbiomaterials.2c00499] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A label-free impedimetric immunosensing system was constructed for ultrasensitive determination of the calreticulin (CALR) biological marker in human serum samples utilizing an electrochemical impedance spectroscopy analysis technique for the first time. The new biosensor fabrication procedure consisted of electrodeposition of single-walled carbon nanotubes (SWCNTs) incorporating polymerization of an oxiran-2-yl methyl 3-(1H-pyrrol-1-yl) propanoate monomer (Pepx) onto a low-cost and disposable indium tin oxide (ITO) electrode. The SWCNTs-PPepx nanocomposite layer was prepared onto the ITO after the one-step fabrication procedure. The fabrication procedure of the immunosensor and the characteristic biomolecular interactions between the anti-CALR and CALR were characterized by electrochemical analysis and morphological monitoring techniques. Under optimum conditions, the proposed biosensor was responsive to CALR concentrations over the detection ranges of 0.015-60 pg/mL linearly, and it had a very low detection limit (4.6 fg/mL) and a favorable sensitivity (0.43 kΩ pg-1 mL cm-2). The reliability of the biosensor system in clinical analysis was investigated by successful quantification of CALR levels in human serum. Moreover, the repeatability and reproducibility results of the biosensor were evaluated by using Dixon, Grubbs, T-test, and F-tests. Consequently, the proposed biosensor was a promising method for scientific, rapid, and successful analysis of CALR in human serum samples.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Scientific and Technological Research Center, Tekirdağ Namık Kemal University, Campus Street, Tekirdağ 59030, Turkey
| | - Muhammet Aydın
- Scientific and Technological Research Center, Tekirdağ Namık Kemal University, Campus Street, Tekirdağ 59030, Turkey
| | - Mustafa Kemal Sezgintürk
- Faculty of Engineering, Bioengineering Department, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey
| |
Collapse
|
88
|
Sohrabi H, Dezhakam E, Khataee A, Nozohouri E, Majidi MR, Mohseni N, Trofimov E, Yoon Y. Recent trends in layered double hydroxides based electrochemical and optical (bio)sensors for screening of emerging pharmaceutical compounds. ENVIRONMENTAL RESEARCH 2022; 211:113068. [PMID: 35283073 DOI: 10.1016/j.envres.2022.113068] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The rapid expansion of the human population has given rise to new environmental and biomedical concerns, contributing to different advancements in the pharmaceutical industry. In the field of analytical chemistry over the last few years, layered double hydroxides (LDHs) have drawn significant attention, owing to their extraordinary properties. Furthermore, the novel advancement of LDH-based optical and electrochemical platforms to detect different pharmaceutical materials has acquired substantial attention because of their outstanding specificity, actual-time controlling, and user-friendliness. This review aims to recapitulate advanced LDHs-based optical and electrochemical sensors and biosensors to identify and measure important pharmaceutical compounds, such as anti-depressant, anti-inflammatory, anti-viral, anti-bacterial, anti-cancer, and anti-fungal drugs. Additionally, fundamental parameters, namely interactions between sensor and analyte, design rationale, classification, selectivity, and specificity are considered. Finally, the development of high-efficiency techniques for optical and electrochemical sensors and biosensors is featured to deliver scientists and readers a complete toolbox to identify a broad scope of pharmaceutical substances. Our goals are: (i) to elucidate the characteristics and capabilities of available LDHs for the identification of pharmaceutical compounds; and (ii) to deliver instances of the feasible opportunities that the existing devices have for the developed sensing of pharmaceuticals regarding the protection of ecosystems and human health at the global level.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Ehsan Dezhakam
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080, Chelyabinsk, Russian Federation.
| | - Ehsan Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Nazanin Mohseni
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Evgeny Trofimov
- Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080, Chelyabinsk, Russian Federation
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea.
| |
Collapse
|
89
|
Guo Z, Hui Y, Kong F, Lin X. Finding Lung-Cancer-Related lncRNAs Based on Laplacian Regularized Least Squares With Unbalanced Bi-Random Walk. Front Genet 2022; 13:933009. [PMID: 35938010 PMCID: PMC9355720 DOI: 10.3389/fgene.2022.933009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths. Thus, it is important to find its biomarkers. Furthermore, there is an increasing number of studies reporting that long noncoding RNAs (lncRNAs) demonstrate dense linkages with multiple human complex diseases. Inferring new lncRNA-disease associations help to identify potential biomarkers for lung cancer and further understand its pathogenesis, design new drugs, and formulate individualized therapeutic options for lung cancer patients. This study developed a computational method (LDA-RLSURW) by integrating Laplacian regularized least squares and unbalanced bi-random walk to discover possible lncRNA biomarkers for lung cancer. First, the lncRNA and disease similarities were computed. Second, unbalanced bi-random walk was, respectively, applied to the lncRNA and disease networks to score associations between diseases and lncRNAs. Third, Laplacian regularized least squares were further used to compute the association probability between each lncRNA-disease pair based on the computed random walk scores. LDA-RLSURW was compared using 10 classical LDA prediction methods, and the best AUC value of 0.9027 on the lncRNADisease database was obtained. We found the top 30 lncRNAs associated with lung cancers and inferred that lncRNAs TUG1, PTENP1, and UCA1 may be biomarkers of lung neoplasms, non-small–cell lung cancer, and LUAD, respectively.
Collapse
|
90
|
Rahmati Z, Roushani M. SARS-CoV-2 virus label-free electrochemical nanohybrid MIP-aptasensor based on Ni 3(BTC) 2 MOF as a high-performance surface substrate. Mikrochim Acta 2022; 189:287. [PMID: 35852630 PMCID: PMC9295095 DOI: 10.1007/s00604-022-05357-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/24/2022] [Indexed: 12/29/2022]
Abstract
A dual recognition biosensor was developed via introducing aptamer strings and molecular imprinting polymer (MIP) for the selective detection of intact SARS-CoV-2 virus based on screen printed carbon electrode (SPCE) modified with nickel-benzene tricarboxylic acid-metal–organic framework (Ni3(BTC)2 MOF) synthesized by in situ growth method, SARS-CoV-2 S protein-specific amino-aptamer and electropolymerization of dopamine (ePDA). The proposed biosensor showed an excellent linear relationship between charge transfer resistance (Rct) and increase in virus concentration in the range 10 to 108 plaque-forming units/mL (PFU/mL) with a low detection limit of 3.3 ± 0.04 PFU/mL and response time of 20 min. Compared with single-element sensors (aptamer or MIP), it showed higher selectivity for the SARS-CoV-2 virus and facilitated detection in real samples.
Collapse
Affiliation(s)
- Zeinab Rahmati
- Department of Chemistry, Faculty of Sciences, Ilam University, P.O. Box 69315-516, Ilam, Iran
| | - Mahmoud Roushani
- Department of Chemistry, Faculty of Sciences, Ilam University, P.O. Box 69315-516, Ilam, Iran.
| |
Collapse
|
91
|
Zhang M, Feng Y, Qu C, Meng M, Li W, Ye M, Li S, Li S, Ma Y, Wu N, Jia S. Comparison of the somatic mutations between circulating tumor DNA and tissue DNA in Chinese patients with non-small cell lung cancer. Int J Biol Markers 2022; 37:386-394. [PMID: 35791673 DOI: 10.1177/03936155221099036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Non-invasive liquid biopsies of circulating tumor DNA (ctDNA) is a rapidly growing field in the research of non-small cell lung cancer (NSCLC). In this study, factors affecting the concordance of mutations in paired plasma and tissue and the detection rate of ctDNA in real-world Chinese patients with NSCLC were identified. METHODS Peripheral blood and paired formalin-fixed paraffin-embedded tumor tissue samples from 125 NSCLC patients were collected and analyzed by sequencing 15 genes. Serological biomarkers were tested by immunoassay. RESULTS The overall concordance between tumor and plasma samples and the detection rate of somatic mutations in ctDNA was 69.2% and 78.4%, respectively. The concordance and detection rate raised with clinical stage were stage I: 14.3%, 14.3%; stage II: 53.3%, 60.0%; stage III: 71.4%, 78.1%; stage IV: 74.1%, 85.2%. With increased tumor diameter, the concordance and detection rate raised from 33.33% to 71.64% and 33.33% to 80.8%, respectively. For patients with partial response, stable disease, progressive disease, and who were treatment-naïve, the concordance and detection rates were 0.0%, 62.7%, 75.2, 73.6%, and 16.7%, 61.9%, 83.3%, 86.5%, respectively. Serological markers: CEA, CA125, NSE, and CYFRA21-1 were significantly higher for patients with detectable somatic alterations in ctDNA than in those who were ctDNA negative (17.08 ng/mL vs. 3.95 ng/mL, 21.63 U/mL vs. 18.27 U/mL, 17.68 U/mL vs. 14.14 U/mL, and 6.55 U/mL vs. 3.81 U/mL, respectively). CONCLUSION Advanced-stage, treatment naïve or poor therapy outcome, and large tumor size were associated with a high concordance and detection rate. Patients with detectable mutations in ctDNA had a higher level of carcinoembryonic antigen, CA125, NSE, and CYFRA21-1.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Molecular Diagnostics, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 12519Peking University Cancer Hospital and Institute, Beijing, China
| | - Yi Feng
- Department of Molecular Diagnostics, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 12519Peking University Cancer Hospital and Institute, Beijing, China
| | - Changda Qu
- Department of Molecular Diagnostics, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 12519Peking University Cancer Hospital and Institute, Beijing, China
| | - Meizhu Meng
- Department of Molecular Diagnostics, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 12519Peking University Cancer Hospital and Institute, Beijing, China
| | - Wenmei Li
- Department of Molecular Diagnostics, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 12519Peking University Cancer Hospital and Institute, Beijing, China
| | - Meiying Ye
- Department of Molecular Diagnostics, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 12519Peking University Cancer Hospital and Institute, Beijing, China
| | - Sisi Li
- Department of Molecular Diagnostics, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 12519Peking University Cancer Hospital and Institute, Beijing, China
| | - Shaolei Li
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 12519Peking University Cancer Hospital and Institute, Beijing, China
| | - Yuanyuan Ma
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 12519Peking University Cancer Hospital and Institute, Beijing, China
| | - Nan Wu
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 12519Peking University Cancer Hospital and Institute, Beijing, China
| | - Shuqin Jia
- Department of Molecular Diagnostics, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 12519Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
92
|
Gashimova EM, Temerdashev AZ, Porkhanov VA, Polyakov IS, Perunov DV. Volatile Organic Compounds in Exhaled Breath as Biomarkers of Lung Cancer: Advances and Potential Problems. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s106193482207005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
93
|
Sohrabi H, Bolandi N, Hemmati A, Eyvazi S, Ghasemzadeh S, Baradaran B, Oroojalian F, Reza Majidi M, de la Guardia M, Mokhtarzadeh A. State-of-the-art cancer biomarker detection by portable (Bio) sensing technology: A critical review. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107248] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
94
|
Mo JL, Liu JS, Xiao Q, Hong WX, Yin JY, Chen J, Liu ZQ. Association of variations in the Fanconi anemia complementation group and prognosis in Non-small cell lung cancer patients with Platinum-based chemotherapy. Gene 2022; 825:146398. [PMID: 35306114 DOI: 10.1016/j.gene.2022.146398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/08/2022] [Accepted: 03/04/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE To explore the associations between FANC (FANCA, FANCC, FANCE, FANCF, and FANCJ) single nucleotide polymorphisms (SNPs) and prognosis of non-small cell lung cancer (NSCLC) patients with platinum-based chemotherapy. METHODS According to the inclusion criteria, we selected 395 DNA samples from NSCLC patients for genotyping and combined with clinical data for Cox regression analysis and stratification analyses to assess relationships between overall survival (OS) and progression free survival (PFS) with SNPs genotypes. RESULTS The results revealed that patients with FANCE rs6907678 TT genotype have a longer OS than TC and CC genotype (Additive model: P = 0.004, HR = 1.696, 95% CI = 1.186-2.425). In stratification analyses, Longer PFS is found in female, age ≤ 55 years old and non-smoking patients with FANCE rs6907678 TT genotype, and patients with TT genotypes were significantly had longer OS in male, age >55 years old, non-smoking, squamous cell carcinoma and stage IV stratification. CONCLUSION Our data demonstrates that patients with FANCE rs6907678 TT genotype are contributed to better prognosis. FANCE rs6907678 may be used as a clinical biomarker for predicting the prognosis of NSCLC patients with platinum-based chemotherapy.
Collapse
Affiliation(s)
- Jun-Luan Mo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China
| | - Jia-Si Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China
| | - Qi Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China
| | - Wen-Xu Hong
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China; Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China
| | - Juan Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China; Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China.
| |
Collapse
|
95
|
Fang W, Ma Z, Lv X, Liu J, Pei W, Geng Z. Flexible terahertz metamaterial biosensor for label-free sensing of serum tumor marker modified on a non-metal area. OPTICS EXPRESS 2022; 30:16630-16643. [PMID: 36221501 DOI: 10.1364/oe.454647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/15/2022] [Indexed: 06/16/2023]
Abstract
Terahertz (THz) metamaterials for rapid label-free sensing show application potential for the detection of cancer biomarkers. A novel flexible THz metamaterial biosensor based on a low refraction index parylene-C substrate is proposed. The biomarkers are modified on non-metal areas by a three-step modification method that simplifies the modification steps and improves the modified effectivity. Simulation results for non-metal modification illustrate that a bulk refractive index sensitivity of 325 GHz/RIU is achieved, which is larger than that obtained for the traditional metal modification (147 GHz/RIU). Meanwhile, several fluorescence experiments proved the uniform modification effect and selective adsorption capacity of the non-metal modification method. The concentration of the carcinoembryonic antigen (CEA) biomarkers for breast cancer patients tested using this THz biosensor is found to be consistent with results obtained from traditional clinical tests. The limit of detection reaches 2.97 ng/mL. These findings demonstrate that the flexible THz metamaterial biosensor can be extensively used for the rapid detection of cancer biomarkers in the future.
Collapse
|
96
|
A ratiometric electrochemical DNA-biosensor for detection of miR-141. Mikrochim Acta 2022; 189:213. [PMID: 35513513 DOI: 10.1007/s00604-022-05301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
Abstract
A sensitive biosensor for the detection of miR-141 has been constructed. The DNA-biosensor is prepared by first immobilizing the thiolated methylene blue-labeled hairpin capture probe (MB-HCP) on two-layer nanocomposite film graphene oxide-chitosan@ polyvinylpyrrolidone-gold nanourchin modified glassy carbon electrode. We used the hematoxylin as an electrochemical auxiliary indicator in the second stage to recognize DNA hybridization via the square wave voltammetry (SWV) responses that record the accumulated hematoxylin on electrode surfaces. The morphology and chemical composition of nanocomposite was characterized using TEM, FE-SEM, and FT-IR techniques. The preparation stages of the DNA-biosensor were screened by electrochemical impedance spectroscopy and cyclic voltammetry. The proposed DNA-biosensor can distinguish miR-141 from a non-complementary and mismatch sequence. A detection limit of 0.94 fM and a linear range of 2.0 -5.0 × 105 fM were obtained using SWV for miR-141 detection. The working potential for methylene blue and hematoxylin was -0.28 and + 0.15 V vs. Ag/AgCl, respectively. The developed biosensor can be successfully used in the early detection of non-small cell lung cancer (NSCLC) by directly measuring miR-141 in human plasma samples. This novel DNA-biosensor is of promise in early sensitive clinical diagnosis of cancers with miR-141 as its biomarker.
Collapse
|
97
|
Auxiliary Diagnosis of Lung Cancer with Magnetic Resonance Imaging Data under Deep Learning. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1994082. [PMID: 35572829 PMCID: PMC9095378 DOI: 10.1155/2022/1994082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022]
Abstract
This study was aimed at two image segmentation methods of three-dimensional (3D) U-shaped network (U-Net) and multilevel boundary sensing residual U-shaped network (RUNet) and their application values on the auxiliary diagnosis of lung cancer. In this study, on the basis of the 3D U-Net segmentation method, the multilevel boundary sensing RUNet was worked out after optimization. 92 patients with lung cancer were selected, and their clinical data were counted; meanwhile, the lung nodule detection was performed to obtain the segmentation effect under 3D U-Net. The accuracy of 3D U-Net and multilevel boundary sensing RUNet was compared on lung magnetic resonance imaging (MRI) after lung nodule segmentation. Patients with benign lung tumors were taken as controls; the blood immune biochemical indicators progastrin-releasing peptide (pro-CRP), carcinoembryonic antigen (CEA), and neuron-specific enolase (NSE) in patients with malignant lung tumors were analyzed. It was found that the accuracy, sensitivity, and specificity were all greater than 90% under the algorithm-based MRI of benign and malignant tumor patients. Based on the imaging signs for the MRI image of lung nodules, the segmentation effect of the RUNet was clearer than that of the 3D U-Net. In addition, serum levels of pro-CRP, NSE, and CAE in patients with benign lung tumors were 28.9 pg/mL, 12.5 ng/mL, and 10.8 ng/mL, respectively, which were lower than 175.6 pg/mL, 33.6 ng/mL, and 31.9 ng/mL in patients with malignant lung tumors significantly (P < 0.05). Thus, the RUNet image segmentation method was better than the 3D U-Net. The pro-CRP, CEA, and NSE could be used as diagnostic indicators for malignant lung tumors.
Collapse
|
98
|
Electrochemical Biosensors for Soluble Epidermal Growth Factor Receptor Detection. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
99
|
Anand U, Chandel AKS, Oleksak P, Mishra A, Krejcar O, Raval IH, Dey A, Kuca K. Recent advances in the potential applications of luminescence-based, SPR-based, and carbon-based biosensors. Appl Microbiol Biotechnol 2022; 106:2827-2853. [PMID: 35384450 PMCID: PMC8984675 DOI: 10.1007/s00253-022-11901-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/20/2022]
Abstract
Abstract The need for biosensors has evolved in the detection of molecules, diseases, and pollution from various sources. This requirement has headed to the development of accurate and powerful equipment for analysis using biological sensing component as a biosensor. Biosensors have the advantage of rapid detection that can beat the conventional methods for the detection of the same molecules. Bio-chemiluminescence-based sensors are very sensitive during use in biological immune assay systems. Optical biosensors are emerging with time as they have the advantage that they act with a change in the refractive index. Carbon nanotube-based sensors are another area that has an important role in the biosensor field. Bioluminescence gives much higher quantum yields than classical chemiluminescence. Electro-generated bioluminescence has the advantage of miniature size and can produce a high signal-to-noise ratio and the controlled emission. Recent advances in biological techniques and instrumentation involving fluorescence tag to nanomaterials have increased the sensitivity limit of biosensors. Integrated approaches provided a better perspective for developing specific and sensitive biosensors with high regenerative potentials. This paper mainly focuses on sensors that are important for the detection of multiple molecules related to clinical and environmental applications. Key points • The review focusses on the applications of luminescence-based, surface plasmon resonance-based, carbon nanotube-based, and graphene-based biosensors • Potential clinical, environmental, agricultural, and food industry applications/uses of biosensors have been critically reviewed • The current limitations in this field are discussed, as well as the prospects for future advancement
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Arvind K Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Amarnath Mishra
- Faculty of Science and Technology, Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Ondrej Krejcar
- Center for Basic and Applied Science, Faculty of Informatics and Management, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Ishan H Raval
- Council of Scientific and Industrial Research - Central Salt and Marine Chemicals Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
- Center for Basic and Applied Science, Faculty of Informatics and Management, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
- Biomedical Research Center, University Hospital Hradec Kralove, 50005, Hradec Kralove, Czech Republic.
| |
Collapse
|
100
|
Rahmati Z, Roushani M, Hosseini H, Choobin H. Label-free electrochemical aptasensor for rapid detection of SARS-CoV-2 spike glycoprotein based on the composite of Cu(OH) 2 nanorods arrays as a high-performance surface substrate. Bioelectrochemistry 2022; 146:108106. [PMID: 35339949 PMCID: PMC8940256 DOI: 10.1016/j.bioelechem.2022.108106] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
The development of advanced electrode materials and the combination of aptamer with them have improved dramatically the performance of aptasensors. Herein, a new architecture based on copper hydroxide nanorods (Cu(OH)2 NRs) are directly grown on the surface of screen printed carbon electrode (SPCE) using a two-step in situ, very simple and fast strategy and was used as a high-performance substrate for immobilization of aptamer strings, as well as an electrochemical probe to development a label-free electrochemical aptasensor for SARS-CoV-2 spike glycoprotein measurement. The Cu(OH)2 NRs was characterized using X-ray Diffraction (XRD) and electron microscopy (FESEM). In the presence of SARS-CoV-2 spike glycoprotein, a decrease in Cu(OH)2 NRs-associated peak current was observed that can be owing to the target-aptamer complexes formation and thus blocking the electron transfer of Cu(OH)2 NRs on the surface of electrode. This strategy exhibited wide dynamic range in of 0.1 fg mL−1 to 1.2 µg mL−1 and with a high sensitivity of 1974.43 μA mM−1 cm−2 and low detection limit of 0.03 ± 0.01 fg mL−1 of SARS-CoV-2 spike glycoprotein deprived of any cross-reactivity in the presence of possible interference species. In addition, the good reproducibility, repeatability, high stability and excellent feasibility in real samples of saliva and viral transport medium (VTM) were found from the provided aptasensor. Also, the aptasensor efficiency was evaluated by real samples of sick and healthy individuals and compared with the standard polymerase chain reaction (PCR) method and acceptable results were observed.
Collapse
Affiliation(s)
- Zeinab Rahmati
- Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, P.O. BOX. 69315-516, Iran
| | - Mahmoud Roushani
- Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, P.O. BOX. 69315-516, Iran.
| | - Hadi Hosseini
- Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, P.O. BOX. 69315-516, Iran
| | - Hamzeh Choobin
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|