51
|
Shomali N, Gharibi T, Vahedi G, Mohammed RN, Mohammadi H, Salimifard S, Marofi F. Mesenchymal stem cells as carrier of the therapeutic agent in the gene therapy of blood disorders. J Cell Physiol 2019; 235:4120-4134. [PMID: 31691976 DOI: 10.1002/jcp.29324] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022]
Abstract
Nonhematopoietic stem cells as a delivery platform of therapeutic useful genes have attracted widespread attention in recent years, owing to gained a long lifespan, easy separation, high proliferation, and high transfection capacity. Mesenchymal stem/stromal cells (MSCs) are the choice of the cells for gene and cell therapy due to high self-renewal capacity, high migration rate to the site of the tumor, and with immune suppressive and anti-inflammatory properties. Hence, it has a high potential of safety genetic modification of MSCs for antitumor gene expression and has paved the way for the clinical application of these cells to target the therapy of cancers and other diseases. The aim of gene therapy is targeted treatment of cancers and diseases through recovery, change, or enhancement cell performance to the sustained secretion of useful therapeutic proteins and induction expression of the functional gene in intended tissue. Recent developments in the vectors designing leading to the increase and durability of expression and improvement of the safety of the vectors that overcome a lot of problems, such as durability of expression and the host immune response. Nowadays, gene therapy approach is used by MSCs as a delivery vehicle in the preclinical and the clinical trials for the secretion of erythropoietin, recombinant antibodies, coagulation factors, cytokines, as well as angiogenic inhibitors in many blood disorders like anemia, hemophilia, and malignancies. In this study, we critically discuss the status of gene therapy by MSCs as a delivery vehicle for the treatment of blood disorders. Finally, the results of clinical trial studies are assessed, highlighting promising advantages of this emerging technology in the clinical setting.
Collapse
Affiliation(s)
- Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Vahedi
- Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Rebar N Mohammed
- Bone Marrow Transplant Center, Hiwa Cancer Hospital, Suleimanyah, Iraq.,Department of Microbiology, College of Veterinary Medicine, University of Sulaimani, Suleimanyah, Iraq
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Sevda Salimifard
- Department of Hematology and Blood Transfusion, School of Allied Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
52
|
Li P, Fu X, Zhang L, Li S. CRISPR/Cas-based screening of a gene activation library in Saccharomyces cerevisiae identifies a crucial role of OLE1 in thermotolerance. Microb Biotechnol 2019; 12:1154-1163. [PMID: 30394685 PMCID: PMC6801138 DOI: 10.1111/1751-7915.13333] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 11/30/2022] Open
Abstract
CRISPR/Cas-based (clustered regularly interspaced short palindromic repeats/CRISPR-associated) screening has been proved to be an efficient method to study functional genomics from yeast to human. In this study, we report the development of a focused CRISPR/Cas-based gene activation library in Saccharomyces cerevisiae and its application in gene identification based on functional screening towards improved thermotolerance. The gene activation library was subjected to screening at 42°C, and the same library cultured at 30°C was set as a control group. After five successive subcultures, five clones were randomly picked from the libraries cultured at 30 and 42°C, respectively. The five clones selected at 30°C contain the specificity sequences of five different single guide RNAs, whereas all the five clones selected at 42°C contain the specificity sequence of one sgRNA that targets the promoter region of OLE1. A crucial role of OLE1 in thermotolerance was identified: the overexpression of OLE1 increased fatty acid unsaturation, and thereby helped counter lipid peroxidation caused by heat stress, rendering the yeast thermotolerant. This study described the application of CRISPR/Cas-based gene activation screening with an example of thermotolerant yeast screening, demonstrating that this method can be used to identify functional genes in yeast.
Collapse
Affiliation(s)
- Pengsong Li
- MOST‐USDA Joint Research Center for BiofuelsBeijing Engineering Research Center for BiofuelsInstitute of New Energy TechnologyTsinghua UniversityBeijing100084China
| | - Xiaofen Fu
- MOST‐USDA Joint Research Center for BiofuelsBeijing Engineering Research Center for BiofuelsInstitute of New Energy TechnologyTsinghua UniversityBeijing100084China
| | - Lei Zhang
- MOST‐USDA Joint Research Center for BiofuelsBeijing Engineering Research Center for BiofuelsInstitute of New Energy TechnologyTsinghua UniversityBeijing100084China
| | - Shizhong Li
- MOST‐USDA Joint Research Center for BiofuelsBeijing Engineering Research Center for BiofuelsInstitute of New Energy TechnologyTsinghua UniversityBeijing100084China
| |
Collapse
|
53
|
Abstract
DNA outperforms most conventional storage media in terms of information retention time, physical density, and volumetric coding capacity. Advances in synthesis and sequencing technologies have enabled implementations of large synthetic DNA databases with impressive storage capacity and reliable data recovery. Several robust DNA storage architectures featuring random access, error correction, and content rewritability have been constructed with the potential for scalability and cost reduction. We survey these recent achievements and discuss alternative routes for overcoming the hurdles of engineering practical DNA storage systems. We also review recent exciting work on in vivo DNA memory including intracellular recorders constructed by programmable genome editing tools. Besides information storage, DNA could serve as a versatile molecular computing substrate. We highlight several state-of-the-art DNA computing techniques such as strand displacement, localized hybridization chain reactions, and enzymatic reaction networks. We summarize how these simple primitives have facilitated rational designs and implementations of in vitro DNA reaction networks that emulate digital/analog circuits, artificial neural networks, or nonlinear dynamic systems. We envision these modular primitives could be strategically adapted for sophisticated database operations and massively parallel computations on DNA databases. We also highlight in vivo DNA computing modules such as CRISPR logic gates for building scalable genetic circuits in living cells. To conclude, we discuss various implications and challenges of DNA-based storage and computing, and we particularly encourage innovative work on bridging these two areas of research to further explore molecular parallelism and near-data processing. Such integrated molecular systems could lead to far-reaching applications in biocomputing, security, and medicine.
Collapse
|
54
|
Cunningham-Bryant D, Sun J, Fernandez B, Zalatan JG. CRISPR-Cas-Mediated Chemical Control of Transcriptional Dynamics in Yeast. Chembiochem 2019; 20:1519-1523. [PMID: 30710419 PMCID: PMC6570556 DOI: 10.1002/cbic.201800823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Indexed: 11/07/2022]
Abstract
Synthetic CRISPR-Cas transcription factors enable the construction of complex gene-expression programs, and chemically inducible systems allow precise control over the expression dynamics. To provide additional modes of regulatory control, we have constructed a chemically inducible CRISPR activation (CRISPRa) system in yeast that is mediated by recruitment to MS2-functionalized guide RNAs. We use reporter gene assays to systematically map the dose dependence, time dependence, and reversibility of the system. Because the recruitment function is encoded at the level of the guide RNA, it is straightforward to target multiple genes and independently regulate expression dynamics at individual targets. This approach provides a new method to engineer sophisticated, multigene programs with precise control over the dynamics of gene expression.
Collapse
Affiliation(s)
| | - Jingwen Sun
- Department of Chemistry, University of Washington, 36 Bagley Hall, Seattle, WA, 98195, USA
| | - Brianna Fernandez
- Department of Chemistry, University of Washington, 36 Bagley Hall, Seattle, WA, 98195, USA
| | - Jesse G Zalatan
- Department of Chemistry, University of Washington, 36 Bagley Hall, Seattle, WA, 98195, USA
| |
Collapse
|
55
|
Qi F, Tan B, Ma F, Zhu B, Zhang L, Liu X, Li H, Yang J, Cheng B. A Synthetic Light-switchable System based on CRISPR Cas13a Regulates the Expression of LncRNA MALAT1 and Affects the Malignant Phenotype of Bladder Cancer Cells. Int J Biol Sci 2019; 15:1630-1636. [PMID: 31360106 PMCID: PMC6643210 DOI: 10.7150/ijbs.33772] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/10/2019] [Indexed: 12/19/2022] Open
Abstract
DNA sequences drive their various functions through post-transcriptional processes, using mRNA or lncRNA (long non-coding RNA), and this accommodates the gene network by using various RNA types. However, the tools necessary to regulate RNA molecules are few. Likewise, RNA knockdown techniques that can be artificially controlled have not been extensively explored. Here, we investigated a novel light-inducible synthetic system based on CRISPR-Cas13a that can be used for RNA knockdown and binding in cancer cells. Based on the techniques of synthetic molecular biology, we constructed a light sensor, which efficiently induced Cas13a protein expression after blue light illumination. We also chose a lncRNA, Metastasis-associated Lung Adenocarcinoma Transcript 1 (MALAT1), as the functional target and detected it in bladder cancer 5637 and T24 cells in order to demonstrate the application of our synthetic system. Fluorescence reporter assays and real-time quantitative PCR (qRT-PCR) were used to detect the expression of the target gene. Phenotypic experiments were also used to test the effects of our synthetic system in bladder cancers. The results showed that our synthetic light-switchable system could inhibit the expression of MALAT1, and the fluorescence activity of enhanced green fluorescent protein. Our novel system provides a new technique to study RNA functions in gene networks and for precise tumor treatments.
Collapse
Affiliation(s)
- Fuming Qi
- Urology and Andrology Department, Shengli OilFiled Central Hospital, Dongying, 257034, Shandong, China
| | - Bo Tan
- Urology and Andrology Department, Shengli OilFiled Central Hospital, Dongying, 257034, Shandong, China
| | - Fujun Ma
- Urology and Andrology Department, Shengli OilFiled Central Hospital, Dongying, 257034, Shandong, China
| | - Bo Zhu
- Urology and Andrology Department, Shengli OilFiled Central Hospital, Dongying, 257034, Shandong, China
| | - Li Zhang
- Burn and Plastic surgery Department, Shengli OilFiled Central Hospital, Dongying, 257034, Shandong, China
| | - Xiaoyun Liu
- Urology and Andrology Department, Shengli OilFiled Central Hospital, Dongying, 257034, Shandong, China
| | - Honglei Li
- Medical Department, Shengli OilFiled Central Hospital, Dongying, 257034, Shandong, China
| | - Jinhui Yang
- Urology and Andrology Department, Shengli OilFiled Central Hospital, Dongying, 257034, Shandong, China
| | - Bo Cheng
- Urology and Andrology Department, Shengli OilFiled Central Hospital, Dongying, 257034, Shandong, China
| |
Collapse
|
56
|
Xia PF, Ling H, Foo JL, Chang MW. Synthetic genetic circuits for programmable biological functionalities. Biotechnol Adv 2019; 37:107393. [PMID: 31051208 DOI: 10.1016/j.biotechadv.2019.04.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/09/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023]
Abstract
Living organisms evolve complex genetic networks to interact with the environment. Due to the rapid development of synthetic biology, various modularized genetic parts and units have been identified from these networks. They have been employed to construct synthetic genetic circuits, including toggle switches, oscillators, feedback loops and Boolean logic gates. Building on these circuits, complex genetic machines with capabilities in programmable decision-making could be created. Consequently, these accomplishments have led to novel applications, such as dynamic and autonomous modulation of metabolic networks, directed evolution of biological units, remote and targeted diagnostics and therapies, as well as biological containment methods to prevent release of engineered microorganisms and genetic materials. Herein, we outline the principles in genetic circuit design that have initiated a new chapter in transforming concepts to realistic applications. The features of modularized building blocks and circuit architecture that facilitate realization of circuits for a variety of novel applications are discussed. Furthermore, recent advances and challenges in employing genetic circuits to impart microorganisms with distinct and programmable functionalities are highlighted. We envision that this review gives new insights into the design of synthetic genetic circuits and offers a guideline for the implementation of different circuits in various aspects of biotechnology and bioengineering.
Collapse
Affiliation(s)
- Peng-Fei Xia
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Hua Ling
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Jee Loon Foo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| | - Matthew Wook Chang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
57
|
Chen K, Wang Y, Zhang R, Zhang H, Gao C. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:667-697. [PMID: 30835493 DOI: 10.1146/annurev-arplant-050718-100049] [Citation(s) in RCA: 658] [Impact Index Per Article: 109.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Enhanced agricultural production through innovative breeding technology is urgently needed to increase access to nutritious foods worldwide. Recent advances in CRISPR/Cas genome editing enable efficient targeted modification in most crops, thus promising to accelerate crop improvement. Here, we review advances in CRISPR/Cas9 and its variants and examine their applications in plant genome editing and related manipulations. We highlight base-editing tools that enable targeted nucleotide substitutions and describe the various delivery systems, particularly DNA-free methods, that have linked genome editing with crop breeding. We summarize the applications of genome editing for trait improvement, development of techniques for fine-tuning gene regulation, strategies for breeding virus resistance, and the use of high-throughput mutant libraries. We outline future perspectives for genome editing in plant synthetic biology and domestication, advances in delivery systems, editing specificity, homology-directed repair, and gene drives. Finally, we discuss the challenges and opportunities for precision plant breeding and its bright future in agriculture.
Collapse
Affiliation(s)
- Kunling Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
| | - Yanpeng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
| | - Rui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
| | - Huawei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
- University of Chinese Academy of Sciences, Beijing, China 100864
| |
Collapse
|
58
|
Safe CRISPR: Challenges and Possible Solutions. Trends Biotechnol 2019; 37:389-401. [DOI: 10.1016/j.tibtech.2018.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 12/26/2022]
|
59
|
2017 NIH-wide workshop report on "The Human Microbiome: Emerging Themes at the Horizon of the 21st Century". MICROBIOME 2019; 7:32. [PMID: 30808401 PMCID: PMC6391828 DOI: 10.1186/s40168-019-0627-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/16/2019] [Indexed: 05/31/2023]
Abstract
The National Institutes of Health (NIH) organized a three-day human microbiome research workshop, August 16-18, 2017, to highlight the accomplishments of the 10-year Human Microbiome Project program, the outcomes of the investments made by the 21 NIH Institutes and Centers which now fund this area, and the technical challenges and knowledge gaps which will need to be addressed in order for this field to advance over the next 10 years. This report summarizes the key points in the talks, round table discussions, and Joint Agency Panel from this workshop.
Collapse
|
60
|
Santos‐Moreno J, Schaerli Y. Using Synthetic Biology to Engineer Spatial Patterns. ACTA ACUST UNITED AC 2018; 3:e1800280. [DOI: 10.1002/adbi.201800280] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/14/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Javier Santos‐Moreno
- Department of Fundamental MicrobiologyUniversity of LausanneBiophore Building 1015 Lausanne Switzerland
| | - Yolanda Schaerli
- Department of Fundamental MicrobiologyUniversity of LausanneBiophore Building 1015 Lausanne Switzerland
| |
Collapse
|
61
|
Zhou Q, Zhan H, Liao X, Fang L, Liu Y, Xie H, Yang K, Gao Q, Ding M, Cai Z, Huang W, Liu Y. A revolutionary tool: CRISPR technology plays an important role in construction of intelligentized gene circuits. Cell Prolif 2018; 52:e12552. [PMID: 30520167 PMCID: PMC6496519 DOI: 10.1111/cpr.12552] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
With the development of synthetic biology, synthetic gene circuits have shown great applied potential in medicine, biology, and as commodity chemicals. An ultimate challenge in the construction of gene circuits is the lack of effective, programmable, secure and sequence-specific gene editing tools. The clustered regularly interspaced short palindromic repeat (CRISPR) system, a CRISPR-associated RNA-guided endonuclease Cas9 (CRISPR-associated protein 9)-targeted genome editing tool, has recently been applied in engineering gene circuits for its unique properties-operability, high efficiency and programmability. The traditional single-targeted therapy cannot effectively distinguish tumour cells from normal cells, and gene therapy for single targets has poor anti-tumour effects, which severely limits the application of gene therapy. Currently, the design of gene circuits using tumour-specific targets based on CRISPR/Cas systems provides a new way for precision cancer therapy. Hence, the application of intelligentized gene circuits based on CRISPR technology effectively guarantees the safety, efficiency and specificity of cancer therapy. Here, we assessed the use of synthetic gene circuits and if the CRISPR system could be used, especially artificial switch-inducible Cas9, to more effectively target and treat tumour cells. Moreover, we also discussed recent advances, prospectives and underlying challenges in CRISPR-based gene circuit development.
Collapse
Affiliation(s)
- Qun Zhou
- Department of Urology, Shenzhen Second People's Hospital, Clinical Medicine College of Anhui Medical University, Shenzhen, China.,Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Hengji Zhan
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xinhui Liao
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lan Fang
- Department of Urology, Shenzhen Second People's Hospital, Clinical Medicine College of Anhui Medical University, Shenzhen, China
| | - Yuhan Liu
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Haibiao Xie
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Kang Yang
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qunjun Gao
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Mengting Ding
- Department of Urology, Shenzhen Second People's Hospital, Clinical Medicine College of Anhui Medical University, Shenzhen, China.,Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhiming Cai
- Department of Urology, Shenzhen Second People's Hospital, Clinical Medicine College of Anhui Medical University, Shenzhen, China.,Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Weiren Huang
- Department of Urology, Shenzhen Second People's Hospital, Clinical Medicine College of Anhui Medical University, Shenzhen, China.,Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yuchen Liu
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
62
|
Liu Z, Zhang J, Jin J, Geng Z, Qi Q, Liang Q. Programming Bacteria With Light-Sensors and Applications in Synthetic Biology. Front Microbiol 2018; 9:2692. [PMID: 30467500 PMCID: PMC6236058 DOI: 10.3389/fmicb.2018.02692] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Photo-receptors are widely present in both prokaryotic and eukaryotic cells, which serves as the foundation of tuning cell behaviors with light. While practices in eukaryotic cells have been relatively established, trials in bacterial cells have only been emerging in the past few years. A number of light sensors have been engineered in bacteria cells and most of them fall into the categories of two-component and one-component systems. Such a sensor toolbox has enabled practices in controlling synthetic circuits at the level of transcription and protein activity which is a major topic in synthetic biology, according to the central dogma. Additionally, engineered light sensors and practices of tuning synthetic circuits have served as a foundation for achieving light based real-time feedback control. Here, we review programming bacteria cells with light, introducing engineered light sensors in bacteria and their applications, including tuning synthetic circuits and achieving feedback controls over microbial cell culture.
Collapse
Affiliation(s)
- Zedao Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Jizhong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Jiao Jin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Zilong Geng
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
63
|
Kurata M, Wolf NK, Lahr WS, Weg MT, Kluesner MG, Lee S, Hui K, Shiraiwa M, Webber BR, Moriarity BS. Highly multiplexed genome engineering using CRISPR/Cas9 gRNA arrays. PLoS One 2018; 13:e0198714. [PMID: 30222773 PMCID: PMC6141065 DOI: 10.1371/journal.pone.0198714] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023] Open
Abstract
The CRISPR/Cas9 system is an RNA guided nuclease system that evolved as a mechanism of adaptive immunity in bacteria. This system has been adopted for numerous genome engineering applications in research and recently, therapeutics. The CRISPR/Cas9 system has been largely implemented by delivery of Cas9 as protein, RNA, or plasmid along with a chimeric crRNA-tracrRNA guide RNA (gRNA) under the expression of a pol III promoter, such as U6. Using this approach, multiplex genome engineering has been achieved by delivering several U6-gRNA plasmids targeting multiple loci. However, this approach is limited due to the efficiently of delivering multiple plasmids to a single cell at one time. To augment the capability and accessibility of multiplexed genome engineering, we developed an efficient golden gate based method to assemble gRNAs linked by optimal Csy4 ribonuclease sequences to deliver up to 10 gRNAs as a single gRNA array transcript. Here we report the optimal expression of our guide RNA array under a strong pol II promoter. This system can be implemented alongside the myriad of CRISPR applications, allowing users to model complex biological processes requiring numerous gRNAs.
Collapse
Affiliation(s)
- Morito Kurata
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Natalie K. Wolf
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States of America
| | - Walker S. Lahr
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States of America
| | - Madison T. Weg
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States of America
| | - Mitchell G. Kluesner
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States of America
| | - Samantha Lee
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
- College of Biological Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Kai Hui
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
- College of Biological Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Masano Shiraiwa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Beau R. Webber
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States of America
| | - Branden S. Moriarity
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
64
|
Brooks AK, Gaj T. Innovations in CRISPR technology. Curr Opin Biotechnol 2018; 52:95-101. [DOI: 10.1016/j.copbio.2018.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/25/2022]
|
65
|
Tarasava K, Oh EJ, Eckert CA, Gill RT. CRISPR-Enabled Tools for Engineering Microbial Genomes and Phenotypes. Biotechnol J 2018; 13:e1700586. [DOI: 10.1002/biot.201700586] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/09/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Katia Tarasava
- Chemical and Biological Engineering, University of Colorado; Boulder CO USA
- Renewable and Sustainable Energy Institute, University of Colorado; Boulder CO USA
| | - Eun Joong Oh
- Renewable and Sustainable Energy Institute, University of Colorado; Boulder CO USA
| | - Carrie A. Eckert
- Renewable and Sustainable Energy Institute, University of Colorado; Boulder CO USA
- Biosciences Center, National Renewable Energy Laboratory; Golden CO USA
| | - Ryan T. Gill
- Chemical and Biological Engineering, University of Colorado; Boulder CO USA
- Renewable and Sustainable Energy Institute, University of Colorado; Boulder CO USA
| |
Collapse
|
66
|
Abstract
Engineering synthetic gene regulatory circuits proceeds through iterative cycles of design, building, and testing. Initial circuit designs must rely on often-incomplete models of regulation established by fields of reductive inquiry—biochemistry and molecular and systems biology. As differences in designed and experimentally observed circuit behavior are inevitably encountered, investigated, and resolved, each turn of the engineering cycle can force a resynthesis in understanding of natural network function. Here, we outline research that uses the process of gene circuit engineering to advance biological discovery. Synthetic gene circuit engineering research has not only refined our understanding of cellular regulation but furnished biologists with a toolkit that can be directed at natural systems to exact precision manipulation of network structure. As we discuss, using circuit engineering to predictively reorganize, rewire, and reconstruct cellular regulation serves as the ultimate means of testing and understanding how cellular phenotype emerges from systems-level network function.
Collapse
Affiliation(s)
- Caleb J. Bashor
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;,
| | - James J. Collins
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;,
- Harvard–MIT Program in Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| |
Collapse
|
67
|
Engineering Synthetic Signaling Pathways with Programmable dCas9-Based Chimeric Receptors. Cell Rep 2018; 20:2639-2653. [PMID: 28903044 PMCID: PMC5608971 DOI: 10.1016/j.celrep.2017.08.044] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/10/2017] [Accepted: 08/11/2017] [Indexed: 11/20/2022] Open
Abstract
Synthetic receptors provide a powerful experimental tool for generation of designer cells capable of monitoring the environment, sensing specific input signals, and executing diverse custom response programs. To advance the promise of cellular engineering, we have developed a class of chimeric receptors that integrate a highly programmable and portable nuclease-deficient CRISPR/Cas9 (dCas9) signal transduction module. We demonstrate that the core dCas9 synthetic receptor (dCas9-synR) architecture can be readily adapted to various classes of native ectodomain scaffolds, linking their natural inputs with orthogonal output functions. Importantly, these receptors achieved stringent OFF/ON state transition characteristics, showed agonist-mediated dose-dependent activation, and could be programmed to couple specific disease markers with diverse, therapeutically relevant multi-gene expression circuits. The modular dCas9-synR platform developed here provides a generalizable blueprint for designing next generations of synthetic receptors, which will enable the implementation of highly complex combinatorial functions in cellular engineering.
Collapse
|
68
|
Marangi M, Pistritto G. Innovative Therapeutic Strategies for Cystic Fibrosis: Moving Forward to CRISPR Technique. Front Pharmacol 2018; 9:396. [PMID: 29731717 PMCID: PMC5920621 DOI: 10.3389/fphar.2018.00396] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/05/2018] [Indexed: 12/23/2022] Open
Abstract
One of the most revolutionary technologies in recent years in the field of molecular biology is CRISPR-Cas9. CRISPR technology is a promising tool for gene editing that provides researchers the opportunity to easily alter DNA sequences and modify gene function. Its many potential applications include correcting genetic defects, treating and preventing the spread of diseases. Cystic fibrosis (CF) is one of the most common lethal genetic diseases caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Although CF is an old acquaintance, there is still no effective/resolutive cure. Life expectancy has improved thanks to the combination of various treatments, but it is generally below average. Recently, a significant number of additional key medications have become licensed in Europe for the CF treatment including CFTR modulators. But innovative genomically-guided therapies have begun for CF and it is predictable that this will lead to rapid improvements in CF clinical disease and survival in the next decades. In this way, CRISPR-Cas9 approach may represent a valid tool to repair the CFTR mutation and hopeful results were obtained in tissue and animal models of CF disease.
Collapse
Affiliation(s)
- Michele Marangi
- Department of Economic Strategy of Pharmaceutical Products, Italian Medicines Agency, Rome, Italy
| | - Giuseppa Pistritto
- Department of Economic Strategy of Pharmaceutical Products, Italian Medicines Agency, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
69
|
Shao S, Chang L, Sun Y, Hou Y, Fan X, Sun Y. Multiplexed sgRNA Expression Allows Versatile Single Nonrepetitive DNA Labeling and Endogenous Gene Regulation. ACS Synth Biol 2018; 7:176-186. [PMID: 28849913 DOI: 10.1021/acssynbio.7b00268] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The CRISPR/Cas9 system has made significant contributions to genome editing, gene regulation and chromatin studies in recent years. High-throughput and systematic investigations into the multiplexed biological systems require simultaneous expression and coordinated functioning of multiple sgRNAs. However, current cotransfection based sgRNA coexpression systems remain inefficient, and virus-based transfection approaches are relatively costly and labor intensive. Here we established a vector-independent method allowing multiple sgRNA expression cassettes to be assembled in series into a single plasmid. This synthetic biology-based strategy excels in its efficiency, controllability and scalability. Taking the flexibility advantage of this all-in-one sgRNA expressing system, we further explored its applications in single nonrepetitive genomic locus imaging as well as coordinated gene regulation in live cells. With its full potency, our method will facilitate the research in understanding genome structure, function and dynamics.
Collapse
Affiliation(s)
- Shipeng Shao
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University , Beijing 100871, China
| | - Lei Chang
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University , Beijing 100871, China
| | - Yuao Sun
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University , Beijing 100871, China
| | - Yingping Hou
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University , Beijing 100871, China
| | - Xiaoying Fan
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University , Beijing 100871, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University , Beijing 100871, China
| |
Collapse
|
70
|
Jagadevan S, Banerjee A, Banerjee C, Guria C, Tiwari R, Baweja M, Shukla P. Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:185. [PMID: 29988523 PMCID: PMC6026345 DOI: 10.1186/s13068-018-1181-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/20/2018] [Indexed: 05/03/2023]
Abstract
In the wake of the uprising global energy crisis, microalgae have emerged as an alternate feedstock for biofuel production. In addition, microalgae bear immense potential as bio-cell factories in terms of producing key chemicals, recombinant proteins, enzymes, lipid, hydrogen and alcohol. Abstraction of such high-value products (algal biorefinery approach) facilitates to make microalgae-based renewable energy an economically viable option. Synthetic biology is an emerging field that harmoniously blends science and engineering to help design and construct novel biological systems, with an aim to achieve rationally formulated objectives. However, resources and tools used for such nuclear manipulation, construction of synthetic gene network and genome-scale reconstruction of microalgae are limited. Herein, we present recent developments in the upcoming field of microalgae employed as a model system for synthetic biology applications and highlight the importance of genome-scale reconstruction models and kinetic models, to maximize the metabolic output by understanding the intricacies of algal growth. This review also examines the role played by microalgae as biorefineries, microalgal culture conditions and various operating parameters that need to be optimized to yield biofuel that can be economically competitive with fossil fuels.
Collapse
Affiliation(s)
- Sheeja Jagadevan
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004 India
| | - Avik Banerjee
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004 India
| | - Chiranjib Banerjee
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004 India
| | - Chandan Guria
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004 India
| | - Rameshwar Tiwari
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
- Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology, Hauz-Khas, New Delhi 110016 India
| | - Mehak Baweja
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
71
|
Mahmoudian-sani MR, Farnoosh G, Mahdavinezhad A, Saidijam M. CRISPR genome editing and its medical applications. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1406823] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Mohammad-Reza Mahmoudian-sani
- Laboratory of Molecular Biology, Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Gholamreza Farnoosh
- Nanobiotechnology Laboratory, Department of Medical Biotechnology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Mahdavinezhad
- Laboratory of Molecular Biology, Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Laboratory of Molecular Biology, Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
72
|
Zinman B, Skyler JS, Riddle MC, Ferrannini E. Diabetes Research and Care Through the Ages. Diabetes Care 2017; 40:1302-1313. [PMID: 28931706 DOI: 10.2337/dci17-0042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 02/03/2023]
Abstract
As has been well established, the Diabetes Care journal's most visible signature event is the Diabetes Care Symposium held each year during the American Diabetes Association's Scientific Sessions. Held this past year on 10 June 2017 in San Diego, California, at the 77th Scientific Sessions, this event has become one of the most attended sessions during the Scientific Sessions. Each year, in order to continue to have the symposium generate interest, we revise the format and content of this event. For this past year, our 6th annual symposium, I felt it was time to provide a comprehensive overview of our efforts in diabetes care to determine, first and foremost, how we arrived at our current state of management. I also felt the narrative needed to include the current status of management, especially with a focus toward cardiovascular disease, and finally, we wanted to ask what the future holds. Toward this goal, I asked four of the most noted experts in the world to provide their opinion on this topic. The symposium started with a very thoughtful presentation by Dr. Jay Skyler entitled "A Look Back as to How We Got Here." That was followed by two lectures on current concepts by Dr. Bernard Zinman entitled "Current Treatment Paradigms Today-How Well Are We Doing?" and by Dr. Matthew Riddle entitled "Evolving Concepts and Future Directions for Cardiovascular Outcomes Trials." The final lecture for the symposium was delivered by Dr. Ele Ferrannini and was entitled "What Does the Future Hold?" As always, a well-attended and well-received symposium is now the norm for our signature event and our efforts were rewarded by the enthusiasm of the attendees. This narrative summarizes the lectures held at the symposium.-William T. CefaluChief Scientific, Medical & Mission Officer, American Diabetes Association.
Collapse
Affiliation(s)
- Bernard Zinman
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Jay S Skyler
- Diabetes Research Institute, University of Miami, Miami, FL
| | - Matthew C Riddle
- Division of Endocrinology, Diabetes & Clinical Nutrition, Oregon Health & Science University, Portland, OR
| | - Ele Ferrannini
- CNR Institute of Clinical Physiology, and the Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
73
|
Brophy JAN, LaRue T, Dinneny JR. Understanding and engineering plant form. Semin Cell Dev Biol 2017; 79:68-77. [PMID: 28864344 DOI: 10.1016/j.semcdb.2017.08.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 11/18/2022]
Abstract
A plant's form is an important determinant of its fitness and economic value. Here, we review strategies for producing plants with altered forms. Historically, the process of changing a plant's form has been slow in agriculture, requiring iterative rounds of growth and selection. We discuss modern techniques for identifying genes involved in the development of plant form and tools that will be needed to effectively design and engineer plants with altered forms. Synthetic genetic circuits are highlighted for their potential to generate novel plant forms. We emphasize understanding development as a prerequisite to engineering and discuss the potential role of computer models in translating knowledge about single genes or pathways into a more comprehensive understanding of development.
Collapse
Affiliation(s)
- Jennifer A N Brophy
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA 94305, USA
| | - Therese LaRue
- Stanford University, Department of Biology, Stanford, CA 94305, USA
| | - José R Dinneny
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA 94305, USA.
| |
Collapse
|
74
|
Gutiérrez M, Gregorio-Godoy P, Pérez del Pulgar G, Muñoz LE, Sáez S, Rodríguez-Patón A. A New Improved and Extended Version of the Multicell Bacterial Simulator gro. ACS Synth Biol 2017; 6:1496-1508. [PMID: 28438021 DOI: 10.1021/acssynbio.7b00003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
gro is a cell programming language developed in Klavins Lab for simulating colony growth and cell-cell communication. It is used as a synthetic biology prototyping tool for simulating multicellular biocircuits and microbial consortia. In this work, we present several extensions made to gro that improve the performance of the simulator, make it easier to use, and provide new functionalities. The new version of gro is between 1 and 2 orders of magnitude faster than the original version. It is able to grow microbial colonies with up to 105 cells in less than 10 min. A new library, CellEngine, accelerates the resolution of spatial physical interactions between growing and dividing cells by implementing a new shoving algorithm. A genetic library, CellPro, based on Probabilistic Timed Automata, simulates gene expression dynamics using simplified and easy to compute digital proteins. We also propose a more convenient language specification layer, ProSpec, based on the idea that proteins drive cell behavior. CellNutrient, another library, implements Monod-based growth and nutrient uptake functionalities. The intercellular signaling management was improved and extended in a library called CellSignals. Finally, bacterial conjugation, another local cell-cell communication process, was added to the simulator. To show the versatility and potential outreach of this version of gro, we provide studies and novel examples ranging from synthetic biology to evolutionary microbiology. We believe that the upgrades implemented for gro have made it into a powerful and fast prototyping tool capable of simulating a large variety of systems and synthetic biology designs.
Collapse
Affiliation(s)
- Martín Gutiérrez
- Departamento
de Inteligencia Artificial, ETSIINF, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Escuela
de Informática y Telecomunicaciones, Universidad Diego Portales, 8370190 Santiago, Chile
| | - Paula Gregorio-Godoy
- Departamento
de Inteligencia Artificial, ETSIINF, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Guillermo Pérez del Pulgar
- Departamento
de Inteligencia Artificial, ETSIINF, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Luis E. Muñoz
- Departamento
de Inteligencia Artificial, ETSIINF, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Sandra Sáez
- Departamento
de Inteligencia Artificial, ETSIINF, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Alfonso Rodríguez-Patón
- Departamento
de Inteligencia Artificial, ETSIINF, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
75
|
Application of the gene editing tool, CRISPR-Cas9, for treating neurodegenerative diseases. Neurochem Int 2017; 112:187-196. [PMID: 28732771 DOI: 10.1016/j.neuint.2017.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/12/2017] [Accepted: 07/16/2017] [Indexed: 12/26/2022]
Abstract
Increased accumulation of transcribed protein from the damaged DNA and reduced DNA repair capability contributes to numerous neurological diseases for which effective treatments are lacking. Gene editing techniques provide new hope for replacing defective genes and DNA associated with neurological diseases. With advancements in using such editing tools as zinc finger nucleases (ZFNs), meganucleases, and transcription activator-like effector nucleases (TALENs), etc., scientists are able to design DNA-binding proteins, which can make precise double-strand breaks (DSBs) at the target DNA. Recent developments with the CRISPR-Cas9 gene-editing technology has proven to be more precise and efficient when compared to most other gene-editing techniques. Two methods, non-homologous end joining (NHEJ) and homology-direct repair (HDR), are used in CRISPR-Cas9 system to efficiently excise the defective genes and incorporate exogenous DNA at the target site. In this review article, we provide an overview of the CRISPR-Cas9 methodology, including its molecular mechanism, with a focus on how in this gene-editing tool can be used to counteract certain genetic defects associated with neurological diseases. Detailed understanding of this new tool could help researchers design specific gene editing strategies to repair genetic disorders in selective neurological diseases.
Collapse
|
76
|
Mehrotra R, Renganaath K, Kanodia H, Loake GJ, Mehrotra S. Towards combinatorial transcriptional engineering. Biotechnol Adv 2017; 35:390-405. [PMID: 28300614 DOI: 10.1016/j.biotechadv.2017.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/22/2017] [Accepted: 03/09/2017] [Indexed: 01/31/2023]
Abstract
The modular nature of the transcriptional unit makes it possible to design robust modules with predictable input-output characteristics using a ‘parts- off a shelf’ approach. Customized regulatory circuits composed of multiple such transcriptional units have immense scope for application in diverse fields of basic and applied research. Synthetic transcriptional engineering seeks to construct such genetic cascades. Here, we discuss the three principle strands of transcriptional engineering: promoter and transcriptional factor engineering, and programming inducibilty into synthetic modules. In this context, we review the scope and limitations of some recent technologies that seek to achieve these ends. Our discussion emphasizes a requirement for rational combinatorial engineering principles and the promise this approach holds for the future development of this field.
Collapse
Affiliation(s)
- Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani 333031, Rajasthan, India.
| | - Kaushik Renganaath
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani 333031, Rajasthan, India
| | - Harsh Kanodia
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani 333031, Rajasthan, India
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, United Kingdom
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani 333031, Rajasthan, India
| |
Collapse
|
77
|
Gerace D, Martiniello-Wilks R, Nassif NT, Lal S, Steptoe R, Simpson AM. CRISPR-targeted genome editing of mesenchymal stem cell-derived therapies for type 1 diabetes: a path to clinical success? Stem Cell Res Ther 2017; 8:62. [PMID: 28279194 PMCID: PMC5345178 DOI: 10.1186/s13287-017-0511-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Due to their ease of isolation, differentiation capabilities, and immunomodulatory properties, the therapeutic potential of mesenchymal stem cells (MSCs) has been assessed in numerous pre-clinical and clinical settings. Currently, whole pancreas or islet transplantation is the only cure for people with type 1 diabetes (T1D) and, due to the autoimmune nature of the disease, MSCs have been utilised either natively or transdifferentiated into insulin-producing cells (IPCs) as an alternative treatment. However, the initial success in pre-clinical animal models has not translated into successful clinical outcomes. Thus, this review will summarise the current state of MSC-derived therapies for the treatment of T1D in both the pre-clinical and clinical setting, in particular their use as an immunomodulatory therapy and targets for the generation of IPCs via gene modification. In this review, we highlight the limitations of current clinical trials of MSCs for the treatment of T1D, and suggest the novel clustered regularly interspaced short palindromic repeat (CRISPR) gene-editing technology and improved clinical trial design as strategies to translate pre-clinical success to the clinical setting.
Collapse
Affiliation(s)
- Dario Gerace
- The School of Life Sciences, Chronic Disease Solutions Team and the Centre for Health Technologies, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Rosetta Martiniello-Wilks
- The School of Life Sciences, Chronic Disease Solutions Team and the Centre for Health Technologies, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.,Translational Cancer Research Group, University of Technology Sydney, Sydney, Australia
| | - Najah Therese Nassif
- The School of Life Sciences, Chronic Disease Solutions Team and the Centre for Health Technologies, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Sara Lal
- The School of Life Sciences, Chronic Disease Solutions Team and the Centre for Health Technologies, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.,Neuroscience Research Unit, University of Technology Sydney, Sydney, Australia
| | - Raymond Steptoe
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Ann Margaret Simpson
- The School of Life Sciences, Chronic Disease Solutions Team and the Centre for Health Technologies, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
78
|
Ferry QRV, Lyutova R, Fulga TA. Rational design of inducible CRISPR guide RNAs for de novo assembly of transcriptional programs. Nat Commun 2017; 8:14633. [PMID: 28256578 PMCID: PMC5339017 DOI: 10.1038/ncomms14633] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
CRISPR-based transcription regulators (CRISPR-TRs) have transformed the current synthetic biology landscape by allowing specific activation or repression of any target gene. Here we report a modular and versatile framework enabling rapid implementation of inducible CRISPR-TRs in mammalian cells. This strategy relies on the design of a spacer-blocking hairpin (SBH) structure at the 5' end of the single guide RNA (sgRNA), which abrogates the function of CRISPR-transcriptional activators. By replacing the SBH loop with ligand-controlled RNA-cleaving units, we demonstrate conditional activation of quiescent sgRNAs programmed to respond to genetically encoded or externally delivered triggers. We use this system to couple multiple synthetic and endogenous target genes with specific inducers, and assemble gene regulatory modules demonstrating parallel and orthogonal transcriptional programs. We anticipate that this 'plug and play' approach will be a valuable addition to the synthetic biology toolkit, facilitating the understanding of natural gene circuits and the design of cell-based therapeutic strategies.
Collapse
Affiliation(s)
- Quentin R. V. Ferry
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Radostina Lyutova
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Tudor A. Fulga
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
79
|
Xie H, Liao X, Chen Z, Fang Y, He A, Zhong Y, Gao Q, Xiao H, Li J, Huang W, Liu Y. LncRNA MALAT1 Inhibits Apoptosis and Promotes Invasion by Antagonizing miR-125b in Bladder Cancer Cells. J Cancer 2017; 8:3803-3811. [PMID: 29151968 PMCID: PMC5688934 DOI: 10.7150/jca.21228] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/18/2017] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidences suggest that longnon-coding RNAs (lncRNAs) play functional roles in development of different cancers, including cancer initiation and progression. Metastasis associated lung adenocarcinoma transcript 1(MALAT1) is a well-known lncRNA which was previously shown to be a direct target of miR-125b in bladder cancer (BCa) and to promote cancer progression and invasion. However, little is known whether MALAT1 can also target miR-125b. In the present study, using CRISPR-based technologies and qRT-PCR, we show that MALAT1 is capable of suppressing mature miR-125b and increasing the expression of its target genes (Bcl-2 and MMP-13), but has no effect on pri-miR-125b and pre-miR-125b. We observe that the biotin-labeled MALAT1-RNA probe is able to pull down Ago2 and miR-125b and that the negative regulation of miR-125b by MALAT1 is dependent on Ago2. Importantly, the results of flow cytometry assay and transwell assay reveal that the MALAT1-mediated cancer progression is in part due to specific suppression of miR-125b and activation of its two target genes. All together, these data suggest that the "MALAT1-miR-125b-Bcl-2 / MMP-13" axis plays an important role in the progression of BCa, thereby may provide a potential therapeutic strategy for the treatment of human BCa.
Collapse
Affiliation(s)
- Haibiao Xie
- Key Laboratory of Medical Reprogramming Technology, Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, Guangdong Province, China
- Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Xinhui Liao
- Key Laboratory of Medical Reprogramming Technology, Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, Guangdong Province, China
- Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, Guangdong Province, China
| | - Zhicong Chen
- Key Laboratory of Medical Reprogramming Technology, Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, Guangdong Province, China
- Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yuan Fang
- Key Laboratory of Medical Reprogramming Technology, Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, Guangdong Province, China
| | - Anbang He
- Key Laboratory of Medical Reprogramming Technology, Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, Guangdong Province, China
| | - Yucheng Zhong
- Key Laboratory of Medical Reprogramming Technology, Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, Guangdong Province, China
| | - Qunjun Gao
- Key Laboratory of Medical Reprogramming Technology, Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, Guangdong Province, China
| | - Huizhong Xiao
- Key Laboratory of Medical Reprogramming Technology, Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, Guangdong Province, China
| | - Jianfa Li
- Key Laboratory of Medical Reprogramming Technology, Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, Guangdong Province, China
- Shantou University Medical College, Shantou 515041, Guangdong Province, China
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Peking University, Shenzhen 518036, China
- ✉ Corresponding authors: Jianfa Li, ; Weiren Huang, ; Yuchen Liu,
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming Technology, Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, Guangdong Province, China
- ✉ Corresponding authors: Jianfa Li, ; Weiren Huang, ; Yuchen Liu,
| | - Yuchen Liu
- Key Laboratory of Medical Reprogramming Technology, Department of Urology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, Guangdong Province, China
- Shantou University Medical College, Shantou 515041, Guangdong Province, China
- ✉ Corresponding authors: Jianfa Li, ; Weiren Huang, ; Yuchen Liu,
| |
Collapse
|
80
|
Kim EJ, Kang KH, Ju JH. CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells. Korean J Intern Med 2017; 32:42-61. [PMID: 28049282 PMCID: PMC5214730 DOI: 10.3904/kjim.2016.198] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/10/2016] [Indexed: 12/13/2022] Open
Abstract
Recent advances in genome editing with programmable nucleases have opened up new avenues for multiple applications, from basic research to clinical therapy. The ease of use of the technology-and particularly clustered regularly interspaced short palindromic repeats (CRISPR)-will allow us to improve our understanding of genomic variation in disease processes via cellular and animal models. Here, we highlight the progress made in correcting gene mutations in monogenic hereditary disorders and discuss various CRISPR-associated applications, such as cancer research, synthetic biology, and gene therapy using induced pluripotent stem cells. The challenges, ethical issues, and future prospects of CRISPR-based systems for human research are also discussed.
Collapse
Affiliation(s)
- Eun Ji Kim
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Ki Ho Kang
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Ji Hyeon Ju
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
- Correspondence to Ji Hyeon Ju, M.D. Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-6893 Fax: +82-2-3476-2274 E-mail:
| |
Collapse
|
81
|
Gao Y, Xiong X, Wong S, Charles EJ, Lim WA, Qi LS. Complex transcriptional modulation with orthogonal and inducible dCas9 regulators. Nat Methods 2016; 13:1043-1049. [PMID: 27776111 DOI: 10.1038/nmeth.4042] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/03/2016] [Indexed: 12/19/2022]
Abstract
The ability to dynamically manipulate the transcriptome is important for studying how gene networks direct cellular functions and how network perturbations cause disease. Nuclease-dead CRISPR-dCas9 transcriptional regulators, while offering an approach for controlling individual gene expression, remain incapable of dynamically coordinating complex transcriptional events. Here, we describe a flexible dCas9-based platform for chemical-inducible complex gene regulation. From a screen of chemical- and light-inducible dimerization systems, we identified two potent chemical inducers that mediate efficient gene activation and repression in mammalian cells. We combined these inducers with orthogonal dCas9 regulators to independently control expression of different genes within the same cell. Using this platform, we further devised AND, OR, NAND, and NOR dCas9 logic operators and a diametric regulator that activates gene expression with one inducer and represses with another. This work provides a robust CRISPR-dCas9-based platform for enacting complex transcription programs that is suitable for large-scale transcriptome engineering.
Collapse
Affiliation(s)
- Yuchen Gao
- Department of Bioengineering, Stanford University, Stanford, California, USA.,Cancer Biology Program, Stanford University, Stanford, California, USA
| | - Xin Xiong
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA
| | - Spencer Wong
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA
| | - Emeric J Charles
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Wendell A Lim
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA.,Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, California, USA.,California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, California, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, California, USA.,Department of Chemical and Systems Biology, Stanford University, Stanford, California, USA.,ChEM-H, Stanford University, Stanford, California, USA
| |
Collapse
|
82
|
Peterson A. CRISPR: express delivery to any DNA address. Oral Dis 2016; 23:5-11. [PMID: 27040868 DOI: 10.1111/odi.12487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 12/26/2022]
Abstract
The sudden emergence and worldwide adoption of CRISPR gene-editing technology confronts humanity with unprecedented opportunities and choices. CRISPR's transformative impact on our future understanding of biology, along with its potential to unleash control over the most fundamental of biological processes, is predictable by already achieved applications. Although its origin, composition, and function were revealed only recently, close to 3000 CRISPR-based publications have appeared including insightful and diversely focused reviews referenced here. Adding further to scientific and public awareness, a recent symposium addressed the ethical implications of interfacing CRISPR technology and human biology. However, the magnitude of CRISPR's rapidly emerging power mandates its broadest assessment. Only with the participation of a diverse and informed community can the most effective and humanity-positive CRISPR applications be defined. This brief review is aimed at those with little previous exposure to the CRISPR revolution. The molecules that constitute CRISPR's core components and their functional organization are described along with how the mechanism has been harnessed to edit genome structure and modulate gene function. Additionally, a glimpse into CRISPR's potential to unleash genetic changes with far-reaching consequences is presented.
Collapse
Affiliation(s)
- A Peterson
- Laboratory of Developmental Biology, Departments of Oncology, Human Genetics, Neurology & Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
83
|
Ma KC, Perli SD, Lu TK. Foundations and Emerging Paradigms for Computing in Living Cells. J Mol Biol 2016; 428:893-915. [DOI: 10.1016/j.jmb.2016.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/13/2016] [Accepted: 02/15/2016] [Indexed: 01/11/2023]
|