51
|
Fermon L, Burel A, Ostyn E, Dréano S, Bondon A, Chevance S, Pinel-Marie ML. Mechanism of action of sprG1-encoded type I toxins in Staphylococcus aureus: from membrane alterations to mesosome-like structures formation and bacterial lysis. Front Microbiol 2023; 14:1275849. [PMID: 37854335 PMCID: PMC10579593 DOI: 10.3389/fmicb.2023.1275849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023] Open
Abstract
sprG1/SprF1 is a type I toxin-antitoxin system located on Staphylococcus aureus prophage. It has previously been shown that the two toxins, SprG131 and SprG144, encoded by the sprG1 gene, are two membrane-associated peptides structured in a single α-helix. Overexpression of these two peptides leads to growth inhibition and even S. aureus death. In this study, we investigated the involvement of each peptide in this toxicity, the sequence requirements necessary for SprG131 toxicity, and the mechanism of action of these two peptides. Our findings show that both peptides, when expressed individually, are able to stop growth, with higher toxicity observed for SprG131. The combination of a hydrophobic domain and a charged domain located only at the C-terminus is necessary for this toxicity, likely to retain the orientation of the transmembrane domain. A net cationic charge for SprG131 is not essential to induce a growth defect in S. aureus. Furthermore, we established a chronology of toxic events following overexpression to gain insights into the mode of action of SprG144 and SprG131. We demonstrated that mesosome-like structures are already formed when membrane is depolarized, about 20 min after peptides induction. This membrane depolarization occurs concomitantly with a depletion of intracellular ATP, leading to S. aureus growth arrest. Moreover, we hypothesized that SprG144 and SprG131 do not form large pores in the S. aureus membrane, as ATP is not excreted into the extracellular medium, and membrane permeabilization is delayed relative to membrane depolarization. The next challenge is to identify the conditions under which SprG144 and SprG131 are naturally expressed, and to uncover their potential roles during staphylococcal growth, colonization, and infection.
Collapse
Affiliation(s)
- Laurence Fermon
- Univ Rennes, INSERM, BRM – UMR_S 1230, Rennes, France
- Univ Rennes, CNRS, ISCR – UMR 6226, Rennes, France
| | - Agnès Burel
- Univ Rennes, CNRS, INSERM, BIOSIT – UAR 3480, US_S 018, Rennes, France
| | - Emeline Ostyn
- Univ Rennes, INSERM, BRM – UMR_S 1230, Rennes, France
| | | | | | | | | |
Collapse
|
52
|
Ogunsile A, Songnaka N, Sawatdee S, Lertcanawanichakul M, Krobthong S, Yingchutrakul Y, Uchiyama J, Atipairin A. Anti-methicillin-resistant Staphylococcus aureus and antibiofilm activity of new peptides produced by a Brevibacillus strain. PeerJ 2023; 11:e16143. [PMID: 37810790 PMCID: PMC10552749 DOI: 10.7717/peerj.16143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) is listed as a highly prioritized pathogen by the World Health Organization (WHO) to search for effective antimicrobial agents. Previously, we isolated a soil Brevibacillus sp. strain SPR19 from a botanical garden, which showed anti-MRSA activity. However, the active substances were still unknown. Methods The cell-free supernatant of this bacterium was subjected to salt precipitation, cation exchange, and reversed-phase chromatography. The antimicrobial activity of pure substances was determined by broth microdilution assay. The peptide sequences and secondary structures were characterized by tandem mass spectroscopy and circular dichroism (CD), respectively. The most active anti-MRSA peptide underwent a stability study, and its mechanism was determined through scanning electron microscopy, cell permeability assay, time-killing kinetics, and biofilm inhibition and eradication. Hemolysis was used to evaluate the peptide toxicity. Results The pure substances (BrSPR19-P1 to BrSPR19-P5) were identified as new peptides. Their minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) against S. aureus and MRSA isolates ranged from 2.00 to 32.00 and 2.00 to 64.00 µg/mL, respectively. The sequence analysis of anti-MRSA peptides revealed a length ranging from 12 to 16 residues accompanied by an amphipathic structure. The physicochemical properties of peptides were predicted such as pI (4.25 to 10.18), net charge at pH 7.4 (-3 to +4), and hydrophobicity (0.12 to 0.96). The CD spectra revealed that all peptides in the water mainly contained random coil structures. The increased proportion of α-helix structure was observed in P2-P5 when incubated with SDS. P2 (NH2-MFLVVKVLKYVV-COOH) showed the highest antimicrobial activity and high stability under stressed conditions such as temperatures up to 100 °C, solution of pH 3 to 10, and proteolytic enzymes. P2 disrupted the cell membrane and caused bacteriolysis, in which its action was dependent on the incubation time and peptide concentration. Antibiofilm activity of P2 was determined by which the half-maximal inhibition of biofilm formation was observed at 2.92 and 4.84 µg/mL for S. aureus TISTR 517 and MRSA isolate 2468, respectively. Biofilm eradication of tested pathogens was found at the P2 concentration of 128 µg/mL. Furthermore, P2 hemolytic activity was less than 10% at concentrations up to 64 µg/mL, which reflected the hemolysis index thresholds of 32. Conclusion Five novel anti-MRSA peptides were identified from SPR19. P2 was the most active peptide and was demonstrated to cause membrane disruption and cell lysis. The P2 activity was dependent on the peptide concentration and exposure time. This peptide had antibiofilm activity against tested pathogens and was compatible with human erythrocytes, supporting its potential use as an anti-MRSA agent in this post-antibiotic era.
Collapse
Affiliation(s)
- Abiodun Ogunsile
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
| | - Nuttapon Songnaka
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
- Drug and Cosmetic Excellence Center, Walailak University, Nakhon Si Thammarat, Thailand
| | - Somchai Sawatdee
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
- Drug and Cosmetic Excellence Center, Walailak University, Nakhon Si Thammarat, Thailand
| | | | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Jumpei Uchiyama
- Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Apichart Atipairin
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
- Drug and Cosmetic Excellence Center, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
53
|
Moosazadeh Moghaddam M, Fazel P, Fallah A, Sedighian H, Kachuei R, Behzadi E, Imani Fooladi AA. Host and Pathogen-Directed Therapies against Microbial Infections Using Exosome- and Antimicrobial Peptide-derived Stem Cells with a Special look at Pulmonary Infections and Sepsis. Stem Cell Rev Rep 2023; 19:2166-2191. [PMID: 37495772 DOI: 10.1007/s12015-023-10594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Microbial diseases are a great threat to global health and cause considerable mortality and extensive economic losses each year. The medications for treating this group of diseases (antibiotics, antiviral, antifungal drugs, etc.) directly attack the pathogenic agents by recognizing the target molecules. However, it is necessary to note that excessive use of any of these drugs can lead to an increase in microbial resistance and infectious diseases. New therapeutic methods have been studied recently using emerging drugs such as mesenchymal stem cell-derived exosomes (MSC-Exos) and antimicrobial peptides (AMPs), which act based on two completely different strategies against pathogens including Host-Directed Therapy (HDT) and Pathogen-Directed Therapy (PDT), respectively. In the PDT approach, AMPs interact directly with pathogens to interrupt their intrusion, survival, and proliferation. These drugs interact directly with the cell membrane or intracellular components of pathogens and cause the death of pathogens or inhibit their replication. The mechanism of action of MSC-Exos in HDT is based on immunomodulation and regulation, promotion of tissue regeneration, and reduced host toxicity. This review studies the potential of mesenchymal stem cell-derived exosomes/ATPs therapeutic properties against microbial infectious diseases especially pulmonary infections and sepsis.
Collapse
Affiliation(s)
- Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Parvindokht Fazel
- Department of Microbiology, Fars Science and Research Branch, Islamic Azad University, Shiraz, Iran
| | - Arezoo Fallah
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- Academy of Medical Sciences of the I.R. of Iran, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
54
|
Chen L, Zhang L, Xie Y, Wang Y, Tian X, Fang W, Xue X, Wang L. Confronting antifungal resistance, tolerance, and persistence: Advances in drug target discovery and delivery systems. Adv Drug Deliv Rev 2023; 200:115007. [PMID: 37437715 DOI: 10.1016/j.addr.2023.115007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Human pathogenic fungi pose a serious threat to human health and safety. Unfortunately, the limited number of antifungal options is exacerbated by the continuous emergence of drug-resistant variants, leading to frequent drug treatment failures. Recent studies have also highlighted the clinical importance of other modes of fungal survival of antifungal treatment, including drug tolerance and persistence, pointing to the complexity of the fungal response to antifungal drugs. A lack of understanding of the fungal drug response has hampered the identification of new targets, the development of alternative antifungal strategies and the design of appropriate delivery systems. In this review we summarize recent advances in the study of antifungal resistance, tolerance and persistence, with an emphasis on promising drug targets and drug delivery systems that may yield important insights into the development of new or improved antifungal therapies against fungal infections.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lanyue Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuyan Xie
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yiting Wang
- College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Xiuyun Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenxia Fang
- Institute of Biological Science and Technology, Guangxi Academy of Sciences, Nanning, 530007, Guangxi, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University; Peking University Ninth School of Clinical Medicine, Beijing 100038, China; Department of Respiratory and Critical Care, Weifang Medical College, 261053, Weifang, Shandong, China.
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
55
|
Yang S, Xing Y, Gao J, Jin R, Lin R, Weng W, Xie Y, Aweya JJ. Lacticaseibacillus paracasei fermentation broth identified peptide, Y2Fr, and its antibacterial activity on Vibrio parahaemolyticus. Microb Pathog 2023; 182:106260. [PMID: 37467812 DOI: 10.1016/j.micpath.2023.106260] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Although Vibrio parahaemolyticus infections cause severe diseases of large yellow croaker (Larimichthys crocea), using antibiotics and other chemical agents to treat these infections could result in antimicrobial resistance, environmental pollution, and other associated problems. This study identified seven peptides from Lacticaseibacillus paracasei fermentation broth using ultra-high-performance liquid chromatography-mass spectrometry and screened antimicrobial peptide Y2Fr (VEIKNGLLKLNGKPLLIR) through its net charge, hydrophobicity and predicted secondary structure. Antibacterial activity analysis revealed that Y2Fr had a minimum inhibitory concentration (MIC) of 125 μg/mL, minimum bactericidal concentration (MBC) of 250 μg/mL against V. parahaemolyticus and a time-kill of 3 h. In a bacterial membrane environment, the secondary structure of peptide Y2Fr changed from a random coil to a β-sheet to enhance its membrane permeability and binding to bacteria DNA to exert its antibacterial effect. Further molecular docking analysis revealed that peptide Y2Fr could bind to the membrane protein KKI11460.1 and DNA polymerase A0A0L8TVA4 of V. parahaemolyticus through hydrogen bonds. Meanwhile, treatment of Y2Fr with mammalian red blood cells and plasma revealed that it was noncytotoxic, nonhemolytic, and stable under physiological conditions. Thus, peptide Y2Fr has great potential use in treating and preventing infections caused by V. parahaemolyticus or similar bacteria in aquatic animals.
Collapse
Affiliation(s)
- Shen Yang
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Yufan Xing
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Jialong Gao
- College of Food Science & Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Ritian Jin
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Rong Lin
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Yuanhong Xie
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Jude Juventus Aweya
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| |
Collapse
|
56
|
Yu L, Yang M, Jiang D, Jin H, Jin Z, Chu X, Zhao M, Wu S, Zhang F, Hu X. Antibacterial peptides from Monochamus alternatus induced oxidative stress and reproductive defects in pine wood nematode through the ERK/MAPK signaling pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105511. [PMID: 37532327 DOI: 10.1016/j.pestbp.2023.105511] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023]
Abstract
Pine wilt disease is a devastating disease of pine caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus. Long-term use of chemical nematicides leads to the development of resistance in nematodes and harms the environment. Evaluations for green environmental protection agents, identified the antibacterial peptide, MaltDef1, from Monochamus alternatus which had nematicidal effect. We studied its nematicidal activity and action against PWN. In this study, the antibacterial peptide S-defensin was synthesized from M. alternatus. The results showed that S-defensin caused mortality to the PWN, causing shrinkage, pore, cell membrane dissolution and muscle atrophy. In addition, PWN reproduction was also affected by S-defensin; it decreased in a concentration dependent manner with increasing treatment concentration. By contrast, reactive oxygen species (ROS) in vivo increased in a concentration-dependent manner. We applied transcriptome to analyze the changes in gene expressions in S-defensin treated PWN, and found that the most significantly enriched pathway was the ERK/MAPK signaling pathway. RNAi was used to validate the functions of four differential genes (Let-23, Let-60, Mek-2 and Lin-1) in this pathway. The results showed that knockdown of these genes significantly decreased the survival rate and reproductive yield of, and also increased ROS in PWN. The antibacterial peptide S-defensin had a significant inhibitory effect on the survival and reproduction of PWN, shown by cell membrane damage and intracellular biological oxidative stress via regulating the ERK/MAPK signaling pathway. This indicates that S-defensin has a target in B. xylophilus, against which new green target pesticides can be developed.
Collapse
Affiliation(s)
- Lu Yu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meijiao Yang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Di Jiang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haole Jin
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zehong Jin
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Chu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingzhen Zhao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Songqing Wu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feiping Zhang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xia Hu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
57
|
Lee H, Kim B, Kim M, Yoo S, Lee J, Hwang E, Kim Y. Characterization of the Antimicrobial Activities of Trichoplusia ni Cecropin A as a High-Potency Therapeutic against Colistin-Resistant Escherichia coli. Pharmaceutics 2023; 15:1752. [PMID: 37376200 DOI: 10.3390/pharmaceutics15061752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The spread of colistin-resistant bacteria is a serious threat to public health. As an alternative to traditional antibiotics, antimicrobial peptides (AMPs) show promise against multidrug resistance. In this study, we investigated the activity of the insect AMP Tricoplusia ni cecropin A (T. ni cecropin) against colistin-resistant bacteria. T. ni cecropin exhibited significant antibacterial and antibiofilm activities against colistin-resistant Escherichia coli (ColREC) with low cytotoxicity against mammalian cells in vitro. Results of permeabilization of the ColREC outer membrane as monitored through 1-N-phenylnaphthylamine uptake, scanning electron microscopy, lipopolysaccharide (LPS) neutralization, and LPS-binding interaction revealed that T. ni cecropin manifested antibacterial activity by targeting the outer membrane of E. coli with strong interaction with LPS. T. ni cecropin specifically targeted toll-like receptor 4 (TLR4) and showed anti-inflammatory activities with a significant reduction of inflammatory cytokines in macrophages stimulated with either LPS or ColREC via blockade of TLR4-mediated inflammatory signaling. Moreover, T. ni cecropin exhibited anti-septic effects in an LPS-induced endotoxemia mouse model, confirming its LPS-neutralizing activity, immunosuppressive effect, and recovery of organ damage in vivo. These findings demonstrate that T. ni cecropin exerts strong antimicrobial activities against ColREC and could serve as a foundation for the development of AMP therapeutics.
Collapse
Affiliation(s)
- Hyeju Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Byeongkwon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Minju Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Seoyeong Yoo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jinkyeong Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Eunha Hwang
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
58
|
Menk JJ, Matuhara YE, Sebestyen-França H, Henrique-Silva F, Ferro M, Rodrigues RS, Santos-Júnior CD. Antimicrobial Peptide Arsenal Predicted from the Venom Gland Transcriptome of the Tropical Trap-Jaw Ant Odontomachus chelifer. Toxins (Basel) 2023; 15:toxins15050345. [PMID: 37235379 DOI: 10.3390/toxins15050345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
With about 13,000 known species, ants are the most abundant venomous insects. Their venom consists of polypeptides, enzymes, alkaloids, biogenic amines, formic acid, and hydrocarbons. In this study, we investigated, using in silico techniques, the peptides composing a putative antimicrobial arsenal from the venom gland of the neotropical trap-jaw ant Odontomachus chelifer. Focusing on transcripts from the body and venom gland of this insect, it was possible to determine the gland secretome, which contained about 1022 peptides with putative signal peptides. The majority of these peptides (75.5%) were unknown, not matching any reference database, motivating us to extract functional insights via machine learning-based techniques. With several complementary methodologies, we investigated the existence of antimicrobial peptides (AMPs) in the venom gland of O. chelifer, finding 112 non-redundant candidates. Candidate AMPs were predicted to be more globular and hemolytic than the remaining peptides in the secretome. There is evidence of transcription for 97% of AMP candidates across the same ant genus, with one of them also verified as translated, thus supporting our findings. Most of these potential antimicrobial sequences (94.8%) matched transcripts from the ant's body, indicating their role not solely as venom toxins.
Collapse
Affiliation(s)
- Josilene J Menk
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), Rodovia Washington Luis, Km 235, São Carlos 13565-905, SP, Brazil
| | - Yan E Matuhara
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), Rodovia Washington Luis, Km 235, São Carlos 13565-905, SP, Brazil
| | - Henrique Sebestyen-França
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), Rodovia Washington Luis, Km 235, São Carlos 13565-905, SP, Brazil
| | - Flávio Henrique-Silva
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), Rodovia Washington Luis, Km 235, São Carlos 13565-905, SP, Brazil
| | - Milene Ferro
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 01049-010, SP, Brazil
| | - Renata S Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uber-lândia (UFU), Uberlândia 38400-902, MG, Brazil
| | - Célio D Santos-Júnior
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), Rodovia Washington Luis, Km 235, São Carlos 13565-905, SP, Brazil
- Big Data Biology Laboratory, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| |
Collapse
|
59
|
Dai J, Jin R, Gao J, Aweya JJ, Lin R, Li G, Yang S. Antibacterial Activity and Mechanism of Peptide PV-Q5 against Vibrio parahaemolyticus and Escherichia coli, Derived from Salt-Fermented Penaeus vannamei. Foods 2023; 12:foods12091804. [PMID: 37174342 PMCID: PMC10178611 DOI: 10.3390/foods12091804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The increasing threat posed by antibiotic-resistant pathogens has prompted a shift to the use of naturally-derived antimicrobial peptides (AMPs) in place of chemical preservatives in controlling foodborne pathogens. In this study, ten peptides were identified from salt-fermented shrimps (Penaeus vannamei) using ultra-performance liquid chromatography-mass spectrometry. One of the peptides, designated PV-Q5 (QVRNFPRGSAASPSALASPR), with most features of an AMP, was further explored and found to possess strong antibacterial activity against Vibrio parahaemolyticus and Escherichia coli, with a minimum inhibitory concentration of 31.25 μg/mL. Moreover, PV-Q5 increased bacterial cell membrane permeability and ruptured bacteria cell membranes, as revealed by transmission electron microscopy. Circular dichroism analysis showed that the conformation of PV-Q5 was a random coil in phosphate-buffered saline and α-helical in sodium dodecyl sulfate, which is conducive for interaction with bacteria cell membranes. These findings indicated that PV-Q5 could find potential use in food preservation to control foodborne pathogenic bacteria.
Collapse
Affiliation(s)
- Jingyi Dai
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, 43 Yindou Road, Xiamen 361021, China
| | - Ritian Jin
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, 43 Yindou Road, Xiamen 361021, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jude Juventus Aweya
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, 43 Yindou Road, Xiamen 361021, China
| | - Rong Lin
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, 43 Yindou Road, Xiamen 361021, China
| | - Guiling Li
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, 43 Yindou Road, Xiamen 361021, China
| | - Shen Yang
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, 43 Yindou Road, Xiamen 361021, China
| |
Collapse
|
60
|
Ding J, Zeng S, Wang Y, Yin X, Zhang B, Zhang B, Xu S, Zhang Y, Zheng J, Fan J, Wang M. Metal coordinating-induced self-assembly of cyclic lipopeptides into high-performance antimicrobial supramolecules. Food Chem 2023; 422:136203. [PMID: 37121207 DOI: 10.1016/j.foodchem.2023.136203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/10/2022] [Accepted: 04/17/2023] [Indexed: 05/02/2023]
Abstract
This study designed a green hydrothermally-chelating approach to generate robust antimicrobial complexes via metal-coordinated supramolecular self-assembly of cyclic lipopeptides (CLs). The metal ion (Ca2+ and Zn2+)-coordinated CL (Ca/CL or Zn/CL complex; 1 mg/mL) demonstrated potent antibacterial activity against fungi (A. niger) and bacteria (E. coli and S. aureus) respectively, and in particular, completely suppressed the microbial resistance. Further physicochemical and spectal analysis showed that this coordination approach led to CL with enhanced hydrophobic and intermolecular electrostatic interactions, forming β-sheet-rich secondary structures allowing the complexes easily contact with and destroy the membrane of microorganisms. Practical application experiments validated that the Ca/CL and Zn/CL complexes strongly avoided table grape and fresh tomato from the contamination of pathogen. The findings of this study laid foundation for the utilization of metal ions to improve the biological activity of natural antimicrobial peptides.
Collapse
Affiliation(s)
- Jinglin Ding
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Shufan Zeng
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Yueqing Wang
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyu Yin
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Bo Zhang
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Bolin Zhang
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Shandong Xu
- College of Science, Beijing Forestry University, Beijing 100083, China
| | - Yanyan Zhang
- Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China
| | - Jiangfu Zheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Junfeng Fan
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Mengze Wang
- School of Food & Wine, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
61
|
Bournez C, Riool M, de Boer L, Cordfunke RA, de Best L, van Leeuwen R, Drijfhout JW, Zaat SAJ, van Westen GJP. CalcAMP: A New Machine Learning Model for the Accurate Prediction of Antimicrobial Activity of Peptides. Antibiotics (Basel) 2023; 12:antibiotics12040725. [PMID: 37107088 PMCID: PMC10135148 DOI: 10.3390/antibiotics12040725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
To combat infection by microorganisms host organisms possess a primary arsenal via the innate immune system. Among them are defense peptides with the ability to target a wide range of pathogenic organisms, including bacteria, viruses, parasites, and fungi. Here, we present the development of a novel machine learning model capable of predicting the activity of antimicrobial peptides (AMPs), CalcAMP. AMPs, in particular short ones (<35 amino acids), can become an effective solution to face the multi-drug resistance issue arising worldwide. Whereas finding potent AMPs through classical wet-lab techniques is still a long and expensive process, a machine learning model can be useful to help researchers to rapidly identify whether peptides present potential or not. Our prediction model is based on a new data set constructed from the available public data on AMPs and experimental antimicrobial activities. CalcAMP can predict activity against both Gram-positive and Gram-negative bacteria. Different features either concerning general physicochemical properties or sequence composition have been assessed to retrieve higher prediction accuracy. CalcAMP can be used as an promising prediction asset to identify short AMPs among given peptide sequences.
Collapse
Affiliation(s)
- Colin Bournez
- Computational Drug Discovery, Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Martijn Riool
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Leonie de Boer
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Robert A Cordfunke
- Department Immunology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Leonie de Best
- Madam Therapeutics B.V., Pivot Park Life Sciences Community, Kloosterstraat 9, 5349 AB Oss, The Netherlands
| | - Remko van Leeuwen
- Madam Therapeutics B.V., Pivot Park Life Sciences Community, Kloosterstraat 9, 5349 AB Oss, The Netherlands
| | - Jan Wouter Drijfhout
- Department Immunology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Sebastian A J Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Gerard J P van Westen
- Computational Drug Discovery, Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
62
|
Li S, Wang Y, Zhou J, Wang J, Zhang M, Chen H. Structural Characterization, Cytotoxicity, and the Antifungal Mechanism of a Novel Peptide Extracted from Garlic (Allium sativa L.). Molecules 2023; 28:molecules28073098. [PMID: 37049861 PMCID: PMC10095746 DOI: 10.3390/molecules28073098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Garlic (Allium sativa L.) is a traditional plant with antimicrobial activity. This study aimed to discover new antifungal peptides from garlic, identify their structure, and explore the antimicrobial mechanism. Peptides were separated by chromatography and identified by MALDI-TOF analysis. Structure and conformation were characterized by CD spectrum and NMR analysis. Mechanism studies were conducted by SEM, membrane depolarization, and transcriptomic analysis. The cytotoxicity to mammalian cells as well as drug resistance development ability were also evaluated. A novel antifungal peptide named NpRS with nine amino acids (RSLNLLMFR) was obtained. It was a kind of cationic peptide with a α-helix as the dominant conformation. NOESY correlation revealed a cyclization in the molecule. The peptide significantly inhibited the growth of Candida albicans. The mechanism study indicated that membrane destruction and the interference of ribosome-related pathways might be the main mechanisms of antifungal effects. In addition, the resistance gene CDR1 for azole was down-regulated and the drug resistance was hardly developed in 21 days by the serial passage study. The present study identified a novel antifungal garlic peptide with low toxicity and provided new mechanism information for the peptide at the gene expression level to counter drug resistance.
Collapse
Affiliation(s)
- Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jingna Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Min Zhang
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin 300384, China
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
63
|
Huang Z, Dong W, Fan J, Tian Y, Huang A, Wang X. Tandem mass tag-based proteomics technology provides insights into multi-targeted mechanism of peptide MOp2 from Moringa oleifera seeds against Staphylococcus aureus. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
64
|
Epinecidin-1, a marine antifungal peptide, inhibits Botrytis cinerea and delays gray mold in postharvest peaches. Food Chem 2023; 403:134419. [DOI: 10.1016/j.foodchem.2022.134419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/25/2022] [Accepted: 09/25/2022] [Indexed: 11/22/2022]
|
65
|
Li R, Wu J, He F, Xu Q, Yin K, Li S, Li W, Wei A, Zhang L, Zhang XH, Zhang B. Rational design, synthesis, antifungal evaluation and docking studies of antifungal peptide CGA-N12 analogues based on the target CtKRE9. Bioorg Chem 2023; 132:106355. [PMID: 36669359 DOI: 10.1016/j.bioorg.2023.106355] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/02/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Candida tropicalis is a major non-albicans species that causes invasive candidiasis. CGA-N12, an anti-Candida peptide found by our group, disrupted cell wall architecture by inhibiting the activity of the protein killer-resistant 9 (KRE9), a β-1,6-glucan synthase specific to Candida spp. and plants. Herein, a set of CGA-N12 analogues were rationally designed based on the interaction networks between CGA-N12 and C. tropicalis KRE9 (CtKRE9). Seven CGA-N12 analogues with significantly improved antifungal activity against C. tropicalis were screened by reducing the docking energy of CGA-N12 and CtKRE9 and increasing the number of positive charges on CGA-N12 based on a stable three-dimensional model of CtKRE9. CGA-N12 and its analogues exhibited antifungal activity against C. tropicalis and its persist cells; they also inhibited biofilm formation and eradicated preformed biofilms. Compared with fluconazole, they displayed higher activities against the growth of persister cells and more effective preformed biofilm eradication. Among them, CGA-N12-0801, CGA-N12-0902 and CGA-N12-1002 displayed much higher activity and anti-proteinase digestion stability than CGA-N12. Specifically, CGA-N12-0801 was the optimal analogue, with a minimum inhibitory concentration of 3.46 μg/mL and a therapeutic index of 158.07. The results of electronic microscopy observations and KRE9 activity inhibition assays showed that CGA-N12 and its analogues killed C. tropicalis by disrupting the architecture of the cell wall and the integrity of the cell membrane. In conclusion, for the first time, we provide a simple and reliable method for the rational design of antimicrobial peptides and ideal candidates for treating Candida infections that not effectively eliminated by azole drugs.
Collapse
Affiliation(s)
- Ruifang Li
- College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 450001 Zhengzhou, Henan, PR China.
| | - Jiasha Wu
- College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Fuyang He
- School of Artificial Intelligence and Big Data, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Qingpeng Xu
- College of Information Science and Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Kedong Yin
- College of Information Science and Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Shang Li
- College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Weitong Li
- College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Ao Wei
- College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Lan Zhang
- College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Xin-Hui Zhang
- College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Beibei Zhang
- College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 450001 Zhengzhou, Henan, PR China.
| |
Collapse
|
66
|
He Q, Yang Z, Zou Z, Qian M, Wang X, Zhang X, Yin Z, Wang J, Ye X, Liu D, Guo M. Combating Escherichia coli O157:H7 with Functionalized Chickpea-Derived Antimicrobial Peptides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205301. [PMID: 36563134 PMCID: PMC9951321 DOI: 10.1002/advs.202205301] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The rapid dissemination of antibiotic resistance accelerates the desire for new antibacterial agents. Here, a class of antimicrobial peptides (AMPs) is designed by modifying the structural parameters of a natural chickpea-derived AMP-Leg2, termed "functionalized chickpea-derived Leg2 antimicrobial peptides" (FCLAPs). Among the FCLAPs, KTA and KTR show superior antibacterial efficacy against the foodborne pathogen Escherichia coli (E. coli) O157:H7 (with MICs in the range of 2.5-4.7 µmol L-1 ) and demonstrate satisfactory feasibility in alleviating E. coli O157:H7-induced intestinal infection. Additionally, the low cytotoxicity along with insusceptibility to antimicrobial resistance increases the potential of FCLAPs as appealing antimicrobials. Combining the multi-omics profiling andpeptide-membrane interaction assays, a unique dual-targeting mode of action is characterized. To specify the antibacterial mechanism, microscopical observations, membrane-related physicochemical properties studies, and mass spectrometry assays are further performed. Data indicate that KTA and KTR induce membrane damage by initially targeting the lipopolysaccharide (LPS), thus promoting the peptides to traverse the outer membrane. Subsequently, the peptides intercalate into the peptidoglycan (PGN) layer, blocking its synthesis, and causing a collapse of membrane structure. These findings altogether imply the great potential of KTA and KTR as promising antibacterial candidates in combating the growing threat of E. coli O157:H7.
Collapse
Affiliation(s)
- Qiao He
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Zhehao Yang
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Zhipeng Zou
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Mengyan Qian
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Xiaolei Wang
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Xinhui Zhang
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional FoodsJiangxi Agricultural UniversityNanchangJiangxi Province330045P. R. China
| | - Jinhai Wang
- Department of Colorectal SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Xingqian Ye
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
- Fuli Institute of Food ScienceZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Donghong Liu
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
- Fuli Institute of Food ScienceZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Mingming Guo
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
- Fuli Institute of Food ScienceZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| |
Collapse
|
67
|
Arulrajah B, Qoms MS, Muhialdin BJ, Zarei M, Hussin ASM, Hasan H, Chau DM, Ramasamy R, Saari N. Antifungal efficacy of kenaf seed peptides mixture in cheese, safety assessment and unravelling its action mechanism against food spoilage fungi. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
68
|
Shen C, Liang H, Guo Z, Zhang M. Members of the histone-derived antimicrobial peptide family from the pearl oyster Pinctada fucata martensii: Inhibition of bacterial growth. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108439. [PMID: 36423807 DOI: 10.1016/j.fsi.2022.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Because it is difficult to isolate standard antimicrobial peptides (AMPs) using traditional biochemical approaches, we designed, synthesized, and evaluated a series of structurally altered histone-derived AMPs (HDAPs) from the pearl oyster Pinctada fucata martensii using molecular cloning approaches. Four histone-homolog genes (PmH2A, PmH2B, PmH3, and PmH4-1) were identified, of which PmH2A and PmH2B had yet to be described. PmH2A and PmH2B were therefore cloned using Rapid Amplification of cDNA Ends (RACE) and characterized. Constitutive PmH2A and PmH2B mRNA expression was detected in all six pearl oyster tissues tested, with comparatively greater transcript abundance in the gonads. Because α-helical content, hydrophilicity index, and the presence of a proline hinge may be the three important factors influencing the antimicrobial efficacy of HDAPs, we synthesized a series of eight N- and C-terminally truncated or amino acid-substituted synthetic candidate HDAP analogs derived from PmH2A, PmH2B, PmH3, and PmH4-1. Only the PmH2A- and PmH4-derived AMPs inhibited bacterial growth. The PmH2A-derived AMPs were α-helical proteins, while the PmH4-derived AMPs were extended strand/random coil proteins. Our results suggested that having an α-helical structure was particularly important for the antibacterial efficacy of the PmH2A-derived peptides; amphipathic structures (hydrophilic index, 0.3 to -0.3) may enhance the antimicrobial function of both the PmH2A- and PmH4-derived peptides. The high antibacterial efficacy of one of the HDAP analogs studied, PmH2A-AMP (5-13) [KLLK]3, indicated that this protein may represent a promising candidate for the treatment of bacterial infections in aquaculture mollusk species. This first study of HDAPs from the pearl oyster P. f. martensii provides new insights into the design and function of highly effective antimicrobial peptides.
Collapse
Affiliation(s)
- Chenghao Shen
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China
| | - Haiying Liang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, Guangdong, 524088, PR China.
| | - Zhijie Guo
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China
| | - Meizhen Zhang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China
| |
Collapse
|
69
|
Sabri M, El Handi K, Valentini F, De Stradis A, Achbani EH, Benkirane R, Elbeaino T. Exploring Antimicrobial Peptides Efficacy against Fire Blight ( Erwinia amylovora). PLANTS (BASEL, SWITZERLAND) 2022; 12:113. [PMID: 36616240 PMCID: PMC9824012 DOI: 10.3390/plants12010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Antimicrobial peptides (AMPs) are a various group of molecules found in a wide range of organisms and act as a defense mechanism against different kinds of infectious pathogens (bacteria, viruses, and fungi, etc.). This study explored the antibacterial activity of nine candidates reported in the literature for their effect on human and animal bacteria, (i.e., Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa) against Erwinia amylovora (E. amylovora), the causal agent of fire blight disease on pome fruits. The antibacterial activity of these peptides against E. amylovora was evaluated in vitro using viable-quantitative PCR (v-qPCR), fluorescence microscopy (FM), optical density (OD), and transmission electron microscopy (TEM), while the in vivo control efficacy was evaluated in treating experimental fire blight on pear fruits. With a view to their safe and ecofriendly field use in the future, the study also used animal and plant eukaryotic cells to evaluate the possible toxicity of these AMPs. Results in vitro showed that KL29 was the most potent peptide in inhibiting E. amylovora cell proliferation. In addition, the results of v-qPCR, FM, and TEM showed that KL29 has a bifunctional mechanism of action (lytic and non-lytic) when used at different concentrations against E. amylovora. KL29 reduced fire blight symptoms by 85% when applied experimentally in vivo. Furthermore, it had no impact on animal or plant cells, thus demonstrating its potential for safe use as an antibacterial agent. This study sheds light on a new and potent antibacterial peptide for E. amylovora and its modes of action, which could be exploited to develop sustainable treatments for fire blight.
Collapse
Affiliation(s)
- Miloud Sabri
- Productions Végétales, Animales et Agro-Industrie, Faculté des Sciences, Ibn Tofail University, Kenitra 14000, Morocco
- Laboratory of Phyto-Bacteriology and Biocontrol, Plant Protection Unit-National Institute of Agronomic Research INRA, Meknès 50000, Morocco
- Istituto Agronomico Mediterraneo di Bari (CIHEAM-IAMB), Via Ceglie 9, 70010 Valenzano, BA, Italy
| | - Kaoutar El Handi
- Laboratory of Phyto-Bacteriology and Biocontrol, Plant Protection Unit-National Institute of Agronomic Research INRA, Meknès 50000, Morocco
- Istituto Agronomico Mediterraneo di Bari (CIHEAM-IAMB), Via Ceglie 9, 70010 Valenzano, BA, Italy
| | - Franco Valentini
- Istituto Agronomico Mediterraneo di Bari (CIHEAM-IAMB), Via Ceglie 9, 70010 Valenzano, BA, Italy
| | - Angelo De Stradis
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), University of Bari, Via Amendola 165/A, 70126 Bari, BA, Italy
| | - El Hassan Achbani
- Laboratory of Phyto-Bacteriology and Biocontrol, Plant Protection Unit-National Institute of Agronomic Research INRA, Meknès 50000, Morocco
| | - Rachid Benkirane
- Productions Végétales, Animales et Agro-Industrie, Faculté des Sciences, Ibn Tofail University, Kenitra 14000, Morocco
| | - Toufic Elbeaino
- Istituto Agronomico Mediterraneo di Bari (CIHEAM-IAMB), Via Ceglie 9, 70010 Valenzano, BA, Italy
| |
Collapse
|
70
|
Zhao J, Ge G, Huang Y, Hou Y, Hu SQ. Butelase 1-Mediated Enzymatic Cyclization of Antimicrobial Peptides: Improvements on Stability and Bioactivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15869-15878. [PMID: 36471508 DOI: 10.1021/acs.jafc.2c06588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Antimicrobial peptides (AMPs) have broad-spectrum antibacterial properties and safety as food preservatives, whereas the stability and antibacterial activity require improvement. Here, the "head-to-tail" cyclization of linear AMP GKE was catalyzed by butelase 1, which resulted in an improved pronouncedly antibacterial effect. Cell morphology and propidium iodide uptake revealed that the increased membrane permeability was one of the bacteriostatic mechanisms of GKE and could be enhanced after cyclization. As cyclic GKE (cGKE) exhibited more stability than the linear counterpart under the microorganism culture environment, the increase in effective bacteriostatic concentration should be a reason for the superior antibacterial effect. Moreover, cGKE exhibited the ordered secondary structure, while GKE possessed a similar structure only in sodium dodecyl sulfate micelles. The structure was also beneficial to improve the antibacterial activity caused by the increased affinity of cGKE to the membranes. Overall, butelase 1-mediated cyclization is a promising strategy for enhancing the antibacterial activity of linear AMPs.
Collapse
Affiliation(s)
- Jinsong Zhao
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ge Ge
- Beijing Food Safety Monitoring and Risk Assessment Center, Beijing 100094, China
| | - Yanbo Huang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Song-Qing Hu
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
71
|
Shen BY, Wang MM, Xu SM, Gao C, Wang M, Li S, Ampomah-Wireko M, Chen SC, Yan DC, Qin S, Zhang E. Antibacterial efficacy evaluation and mechanism probe of small lysine chalcone peptide mimics. Eur J Med Chem 2022; 244:114885. [DOI: 10.1016/j.ejmech.2022.114885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 11/04/2022]
|
72
|
Efficacy of natural antimicrobial peptides versus peptidomimetic analogues: a systematic review. Future Med Chem 2022; 14:1899-1921. [PMID: 36421051 DOI: 10.4155/fmc-2022-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aims: This systematic review was carried out to determine whether synthetic peptidomimetics exhibit significant advantages over antimicrobial peptides in terms of in vitro potency. Structural features - molecular weight, charge and length - were examined for correlations with activity. Methods: Original research articles reporting minimum inhibitory concentration values against Escherichia coli, indexed until 31 December 2020, were searched in PubMed/ScienceDirect/Google Scholar and evaluated using mixed-effects models. Results: In vitro antimicrobial activity of peptidomimetics resembled that of antimicrobial peptides. Net charge significantly affected minimum inhibitory concentration values (p < 0.001) with a trend of 4.6% decrease for increments in charge by +1. Conclusion: AMPs and antibacterial peptidomimetics exhibit similar potencies, providing an opportunity to exploit the advantageous stability and bioavailability typically associated with peptidomimetics.
Collapse
|
73
|
Molecular Insights into the Mode of Action of Antibacterial Peptides Derived from Chicken Plasma Hydrolysates. Foods 2022; 11:foods11223564. [PMID: 36429156 PMCID: PMC9689829 DOI: 10.3390/foods11223564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/29/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
Due to the overuse and abuse of antibiotics, several antibiotic resistant bacteria have emerged. Antimicrobial peptides (AMPs) have gained attention as alternative antimicrobial agents because of their unique mode of action that impedes bacterial resistance. Two novel antibacterial peptides were isolated from Alcalase-hydrolyzed chicken plasma by size exclusion and reverse-phase chromatography. They were identified by LC-MS/MS to be VSDH and CCCPKAF, which showed effective antibacterial activity toward Bacillus cereus DMST 5040, with varied modes of action. The peptide CCCPKAF caused cell membrane disintegration, as evidenced by propidium iodide (PI) uptake. In contrast, the peptide VSDH targeted intracellular molecules, including proteins and nucleic acids, as revealed by Synchrotron-based Fourier Transform Infrared (SR-FTIR). The secondary structure of intracellular proteins increased to a β-sheet structure concomitant with a decrease in the α-helix structure when exposed to 0.5 mM VSDH. Molecular docking analysis revealed that VSDH showed high binding affinity for the active sites of the various enzymes involved in DNA synthesis. In addition, it showed good affinity for a chaperone protein (Dnak), resulting in the misfolding of intracellular proteins. Nuclear magnetic resonance (NMR) and molecular dynamics simulations also indicated that VSDH chelated well with Mg2+, which could partly contribute to its antibacterial activity.
Collapse
|
74
|
Roque-Borda CA, Bento da Silva P, Rodrigues MC, Di Filippo LD, Duarte JL, Chorilli M, Vicente EF, Garrido SS, Rogério Pavan F. Pharmaceutical nanotechnology: Antimicrobial peptides as potential new drugs against WHO list of critical, high, and medium priority bacteria. Eur J Med Chem 2022; 241:114640. [PMID: 35970075 DOI: 10.1016/j.ejmech.2022.114640] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 12/29/2022]
Abstract
Nanobiotechnology is a relatively unexplored area that has, nevertheless, shown relevant results in the fight against some diseases. Antimicrobial peptides (AMPs) are biomacromolecules with potential activity against multi/extensively drug-resistant bacteria, with a lower risk of generating bacterial resistance. They can be considered an excellent biotechnological alternative to conventional drugs. However, the application of several AMPs to biological systems is hampered by their poor stability and lifetime, inactivating them completely. Therefore, nanotechnology plays an important role in the development of new AMP-based drugs, protecting and carrying the bioactive to the target. This is the first review article on the different reported nanosystems using AMPs against bacteria listed on the WHO priority list. The current shortage of information implies a nanobiotechnological potential to obtain new drugs or repurpose drugs based on the AMP-drug synergistic effect.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, CEP 14800-903, Brazil; Universidad Católica de Santa María, Vicerrectorado de Investigación, Facultad de Ciencias Farmacéuticas Bioquímicas y Biotecnológicas, Brazil
| | - Patricia Bento da Silva
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Mosar Corrêa Rodrigues
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Leonardo Delello Di Filippo
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Jonatas L Duarte
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Eduardo Festozo Vicente
- São Paulo State University (UNESP), School of Sciences and Engineering, Tupã, São Paulo, CEP 17602-496, Brazil
| | - Saulo Santesso Garrido
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, CEP 14801-902, Brazil
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, CEP 14800-903, Brazil.
| |
Collapse
|
75
|
Parra ALC, Freitas CDT, Souza PFN, von Aderkas P, Borchers CH, Beattie GA, Silva FDA, Thornburg RW. Ornamental tobacco floral nectar is a rich source of antimicrobial peptides. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111427. [PMID: 36007629 DOI: 10.1016/j.plantsci.2022.111427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/29/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Although floral nectar is a rich source of nutrients, it is rarely infected by microorganisms. Defense molecules such as proteins have been identified in this fluid, but defense peptides have been largely overlooked. Thus, the aim of this study was to perform an extensive peptidomic analysis of the ornamental tobacco floral nectar to seek peptides involved in nectar defense. Using LC-MS/MS, 793 peptides were sequenced and characterized. After extensive bioinformatics analysis, six peptides were selected for further characterization, synthesis, and evaluation of their antimicrobial properties against phytopathogenic fungi and bacteria. All six peptides had antimicrobial activity to some extent. However, the activity varied by peptide concentration and microorganism tested. An analysis of the action mechanism revealed damage in the cell membrane induced by peptides. The results show that floral nectar is rich in peptides and that, together with proteins and hydrogen peroxide, they contribute to plant defense against microorganisms during pollination.
Collapse
Affiliation(s)
- Aura L C Parra
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA.
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Patrick von Aderkas
- University of Victoria - Genome BC Proteomics Center, University of Victoria, Victoria, BC V8P 5C2, Canada; Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada; Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Gwyn A Beattie
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Fredy D A Silva
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Robert W Thornburg
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
76
|
Antimicrobial Peptides Mediate Apoptosis by Changing Mitochondrial Membrane Permeability. Int J Mol Sci 2022; 23:ijms232112732. [PMID: 36361521 PMCID: PMC9653759 DOI: 10.3390/ijms232112732] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 01/25/2023] Open
Abstract
Changes in mitochondrial membrane permeability are closely associated with mitochondria-mediated apoptosis. Antimicrobial peptides (AMPs), which have been found to enter cells to exert physiological effects, cause damage to the mitochondria. This paper reviews the molecular mechanisms of AMP-mediated apoptosis by changing the permeability of the mitochondrial membrane through three pathways: the outer mitochondrial membrane (OMM), inner mitochondrial membrane (IMM), and mitochondrial permeability transition pore (MPTP). The roles of AMPs in inducing changes in membrane permeability and apoptosis are also discussed. Combined with recent research results, the possible application prospects of AMPs are proposed to provide a theoretical reference for the development of AMPs as therapeutic agents for human diseases.
Collapse
|
77
|
Peng C, Liu Y, Shui L, Zhao Z, Mao X, Liu Z. Mechanisms of Action of the Antimicrobial Peptide Cecropin in the Killing of Candida albicans. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101581. [PMID: 36295016 PMCID: PMC9604627 DOI: 10.3390/life12101581] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022]
Abstract
The development of drug resistance has caused fungal infections to become a global health concern. Antimicrobial peptides (AMPs) offer a viable solution to these pathogens due to their resistance to drug resistance and their diverse mechanisms of actions, which include direct killing and immunomodulatory properties. The peptide Cecropin, which is expressed by genetically engineered bacteria, has antifungal effects on Candida albicans. The minimal inhibitory concentration (MIC) and the minimal fungicidal concentration (MFC) of Candida albicans were 0.9 μg/mL and 1.8 μg/mL, respectively, detected by the micro-broth dilution method. According to the killing kinetics, the MFC of Cecropin could kill Candida albicans in 40 min. The electron microscope indicated that Cecropin could cause the cell wall to become rough and nicked, eventually killing Candida albicans. The effects of Cecropin on the cell membrane of treated C. albicans, using the 1,6-diphenyl-1,3,5-hexatriene and propidium iodide protocol, showed that they could change the permeability and fluidity, destroy it, and lead to cell necrosis. In addition, Cecropin can also induce cells to produce excessive reactive oxygen species, causing changes in the mitochondrial membrane potential. Therefore, this study provides a certain theoretical basis for the antifungal infection of new antifungal agents.
Collapse
|
78
|
Jiménez MC, Kowalski L, Souto RB, Alves IA, Viana MD, Aragón DM. New drugs against multidrug-resistant Gram-negative bacteria: a systematic review of patents. Future Microbiol 2022; 17:1393-1408. [PMID: 36169345 DOI: 10.2217/fmb-2022-0104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Antimicrobial resistance has been a threat to human health ever since the accelerated consumption of antibiotics began. Materials & methods: The present systematic review was carried out using a free and specialized online database - Espacenet - and a survey for patents of antimicrobial agents from 2010 to 2021, selecting 33 recent patents that claimed compounds with antimicrobial activity against resistant strains of Gram-negative bacteria. Results: Some different and new approaches to the development of the patented antibacterial agents were identified, such as antimicrobial peptides, nanomaterials and natural extracts. Conclusion: Some alternatives to modern antibiotics with diminished effectiveness due to antimicrobial resistance were spotted. Nevertheless, many challenges remain to establish a robust and sustainable antibacterial R&D pipeline.
Collapse
Affiliation(s)
- María C Jiménez
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Layza Kowalski
- Department of Health Sciences, Faculty of Pharmacy, Universidade Regional Integrada do Alto Uruguai e das Missões, Santo Ângelo, RS, Brazil
| | - Ricardo B Souto
- Department of Medicines, Faculty of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil
| | - Izabel A Alves
- Department of Medicines, Faculty of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil.,Program of Post-graduation in Pharmaceutical Sciences, State University of Bahia, Salvador, BA, Brazil
| | - Max Dm Viana
- Department of Medicines, Faculty of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil
| | - Diana M Aragón
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| |
Collapse
|
79
|
Sidorczuk K, Gagat P, Pietluch F, Kała J, Rafacz D, Bąkała L, Słowik J, Kolenda R, Rödiger S, Fingerhut LCHW, Cooke IR, Mackiewicz P, Burdukiewicz M. Benchmarks in antimicrobial peptide prediction are biased due to the selection of negative data. Brief Bioinform 2022; 23:6672903. [PMID: 35988923 PMCID: PMC9487607 DOI: 10.1093/bib/bbac343] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial peptides (AMPs) are a heterogeneous group of short polypeptides that target not only microorganisms but also viruses and cancer cells. Due to their lower selection for resistance compared with traditional antibiotics, AMPs have been attracting the ever-growing attention from researchers, including bioinformaticians. Machine learning represents the most cost-effective method for novel AMP discovery and consequently many computational tools for AMP prediction have been recently developed. In this article, we investigate the impact of negative data sampling on model performance and benchmarking. We generated 660 predictive models using 12 machine learning architectures, a single positive data set and 11 negative data sampling methods; the architectures and methods were defined on the basis of published AMP prediction software. Our results clearly indicate that similar training and benchmark data set, i.e. produced by the same or a similar negative data sampling method, positively affect model performance. Consequently, all the benchmark analyses that have been performed for AMP prediction models are significantly biased and, moreover, we do not know which model is the most accurate. To provide researchers with reliable information about the performance of AMP predictors, we also created a web server AMPBenchmark for fair model benchmarking. AMPBenchmark is available at http://BioGenies.info/AMPBenchmark.
Collapse
Affiliation(s)
| | | | | | - Jakub Kała
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Poland
| | - Dominik Rafacz
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Poland
| | - Laura Bąkała
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Poland
| | - Jadwiga Słowik
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Poland
| | - Rafał Kolenda
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom,Wrocław University of Environmental and Life Sciences, Faculty of Veterinary Medicine, Poland
| | - Stefan Rödiger
- Brandenburg University of Technology Cottbus-Senftenberg, Faculty of Natural Sciences, Germany
| | - Legana C H W Fingerhut
- Department of Molecular and Cell Biology, Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Australia
| | - Ira R Cooke
- Department of Molecular and Cell Biology, Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Australia
| | | | | |
Collapse
|
80
|
Cao X, Liao W, Wang S. Food protein-derived bioactive peptides for the management of nutrition related chronic diseases. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 101:277-307. [PMID: 35940708 DOI: 10.1016/bs.afnr.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dietary intervention via modifications of dietary pattern or supplementations of naturally derived bioactive compounds has been considered as an efficient approach in management of nutrition related chronic diseases. Food protein-derived bioactive peptide is representative of natural compounds which show the potential to prevent or mitigate nutrition related chronic diseases. In the past decades, substantial research has been conducted concentrating on the characterization, bioavailability, and activity assessment of bioactive peptides. Although various activities of bioactive peptides have been reported, the activity testes of most peptides were only conducted in cells and animal models. Some clinical trials of bioactive peptides were also reported but only limited to antihypertensive peptides, antidiabetic peptides and peptides modulating blood lipid profile. Hereby, clinical evidence of bioactive peptides in management of nutrition-related chronic diseases is summarized in this chapter, which aims at providing implications for the clinical studies of bioactive peptides in the future.
Collapse
Affiliation(s)
- Xinyi Cao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Wang Liao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, Jiangsu, China.
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
81
|
Moeinabadi-Bidgoli K, Rezaee M, Rismanchi H, Mohammadi MM, Babajani A. Mesenchymal Stem Cell-Derived Antimicrobial Peptides as Potential Anti-Neoplastic Agents: New Insight into Anticancer Mechanisms of Stem Cells and Exosomes. Front Cell Dev Biol 2022; 10:900418. [PMID: 35874827 PMCID: PMC9298847 DOI: 10.3389/fcell.2022.900418] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs), as adult multipotent cells, possess considerable regenerative and anti-neoplastic effects, from inducing apoptosis in the cancer cells to reducing multidrug resistance that bring them up as an appropriate alternative for cancer treatment. These cells can alter the behavior of cancer cells, the condition of the tumor microenvironment, and the activity of immune cells that result in tumor regression. It has been observed that during inflammatory conditions, a well-known feature of the tumor microenvironment, the MSCs produce and release some molecules called “antimicrobial peptides (AMPs)” with demonstrated anti-neoplastic effects. These peptides have remarkable targeted anticancer effects by attaching to the negatively charged membrane of neoplastic cells, disrupting the membrane, and interfering with intracellular pathways. Therefore, AMPs could be considered as a part of the wide-ranging anti-neoplastic effects of MSCs. This review focuses on the possible anti-neoplastic effects of MSCs-derived AMPs and their mechanisms. It also discusses preconditioning approaches and using exosomes to enhance AMP production and delivery from MSCs to cancer cells. Besides, the clinical administration of MSCs-derived AMPs, along with their challenges in clinical practice, were debated.
Collapse
Affiliation(s)
- Kasra Moeinabadi-Bidgoli
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Basic and Molecular Epidemiology of Gastroenterology Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Rismanchi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
82
|
Effects of High-Pressure Treatments (Ultra-High Hydrostatic Pressure and High-Pressure Homogenization) on Bighead Carp (Aristichthys nobilis) Myofibrillar Protein Native State and Its Hydrolysate. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
83
|
Antibacterial Peptide NP-6 Affects Staphylococcus aureus by Multiple Modes of Action. Int J Mol Sci 2022; 23:ijms23147812. [PMID: 35887160 PMCID: PMC9319634 DOI: 10.3390/ijms23147812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
Our previous study extracted and identified an antibacterial peptide that was named NP-6. Herein, we investigated the physicochemical properties of NP-6, and elucidated the mechanisms underlying its antimicrobial activity against Staphylococcus aureus. The results showed that the hemolysis activity of NP-6 was 2.39 ± 0.13%, lower than Nisin A (3.91 ± 0.43%) at the same concentration (512 µg/mL). Negligible cytotoxicity towards RAW264.7 cells was found when the concentration of NP-6 was lower than 512 µg/mL. In addition, it could keep most of its activity in fetal bovine serum. Moreover, transmission electron microscopy, confocal laser scanning microscopy, and flow cytometry results showed that NP-6 can destroy the integrity of the bacterial cell membrane and increase the membrane permeability. Meanwhile, NP-6 had binding activity with bacterial DNA and RNA in vitro and strongly inhibited the intracellular β-galactosidase activity of S. aureus. Our findings suggest that NP-6 could be a promising candidate against S. aureus.
Collapse
|
84
|
Hernández-Valencia CG, Hernández-Valdepeña MA, Vázquez A, Cedeño-Caero L, Pedraza-Chaverri J, Sánchez-Sánchez R, Gimeno M. Enzymatic poly(gallic acid)-grafted α-l-lysine inhibits Staphylococcus aureus and Escherichia coli strains with no cytotoxicity for human cells. BIOMATERIALS ADVANCES 2022; 138:212960. [PMID: 35913230 DOI: 10.1016/j.bioadv.2022.212960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The α-l-Lysine (LL) grafting onto the enzymatic poly(gallic acid) (PGAL) produces a helicoidal brush-like antimicrobial polymer containing outer positive-charged moieties. Best results are found with ca. 16 mol% α-LL-grafting for the inhibition of gram-positive Staphylococcus aureus and gram-negative Escherichia coli strains. Membrane permeability, confocal and scanning electron microscopy studies suggest a pore-formation and translocation mechanisms by initial electrostatic interaction of positive charged polymer at the negatively charged bacterial membranes. The attained polymer displays high concentration of hemolysis (Hc) in erythrocytes, and no lymphocyte mitochondrial activity. Interestingly, PGAL-LL is not cytotoxic on human dermal fibroblast. The antioxidant activity after the LL hybridization is also demonstrated by DPPH, ORAC, FRAP and hydroxyl radical scavenging, which enhances the preservation of human cells in addition to antimicrobial for this polymer.
Collapse
Affiliation(s)
- Carmen G Hernández-Valencia
- Facultad de Química, Departamento de Alimentos y Biotecnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Miguel A Hernández-Valdepeña
- Facultad de Química, Departamento de Alimentos y Biotecnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Alfredo Vázquez
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Luis Cedeño-Caero
- Facultad de Química, Departamento de Ingeniería Química, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Roberto Sánchez-Sánchez
- Unidad de Ingeniería de Tejidos Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Ciudad de México, Mexico; Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Instituto Tecnológico de Monterrey, Puente 222, Col. Arboledas del Sur, C.P. 14380 Ciudad de Mexico, Mexico
| | - Miquel Gimeno
- Facultad de Química, Departamento de Alimentos y Biotecnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| |
Collapse
|
85
|
Chen H, Ma L, Dai H, Fu Y, Wang H, Zhang Y. Advances in Rational Protein Engineering toward Functional Architectures and Their Applications in Food Science. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4522-4533. [PMID: 35353517 DOI: 10.1021/acs.jafc.2c00232] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein biomolecules including enzymes, cagelike proteins, and specific peptides have been continuously exploited as functional biomaterials applied in catalysis, nutrient delivery, and food preservation in food-related areas. However, natural proteins usually function well in physiological conditions, not industrial conditions, or may possess undesirable physical and chemical properties. Currently, rational protein design as a valuable technology has attracted extensive attention for the rational engineering or fabrication of ideal protein biomaterials with novel properties and functionality. This article starts with the underlying knowledge of protein folding and assembly and is followed by the introduction of the principles and strategies for rational protein design. Basic strategies for rational protein engineering involving experienced protein tailoring, computational prediction, computation redesign, and de novo protein design are summarized. Then, we focus on the recent progress of rational protein engineering or design in the application of food science, and a comprehensive summary ranging from enzyme manufacturing to cagelike protein nanocarriers engineering and antimicrobial peptides preparation is given. Overall, this review highlights the importance of rational protein engineering in food biomaterial preparation which could be beneficial for food science.
Collapse
Affiliation(s)
- Hai Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
86
|
Lai Z, Yuan X, Chen H, Zhu Y, Dong N, Shan A. Strategies employed in the design of antimicrobial peptides with enhanced proteolytic stability. Biotechnol Adv 2022; 59:107962. [PMID: 35452776 DOI: 10.1016/j.biotechadv.2022.107962] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/14/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
Abstract
Due to the alarming developing rate of multidrug-resistant bacterial pathogens, the development and modification of antimicrobial peptides (AMPs) are unprecedentedly active. Despite the fact that considerable efforts have been expended on the discovery and design strategies of AMPs, the clinical translation of peptide antibiotics remains inadequate. A large number of articles and reviews credited the limited success of AMPs to their poor stability in the biological environment, particularly their poor proteolytic stability. In the past forty years, various design strategies have been used to improve the proteolytic stability of AMPs, such as sequence modification, cyclization, peptidomimetics, and nanotechnology. Herein, we focus our discussion on the progress made in improving the proteolytic stability of AMPs and the principle, successes, and limitations of various anti-proteolytic design strategies. It is of prospective significance to extend current insights into the degradation-related inactivation of AMPs and also alleviate/overcome the problem.
Collapse
Affiliation(s)
- Zhenheng Lai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Xiaojie Yuan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Hongyu Chen
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Yunhui Zhu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Na Dong
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
87
|
Hadj Saadoun J, Sogari G, Bernini V, Camorali C, Rossi F, Neviani E, Lazzi C. A critical review of intrinsic and extrinsic antimicrobial properties of insects. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
88
|
Inhibition Activity of Plantaricin Q7 Produced by Lactobacillus plantarum Q7 against Listeria monocytogenes and Its Biofilm. FERMENTATION 2022. [DOI: 10.3390/fermentation8020075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Plantaricin Q7 is a broad-spectrum antimicrobial peptide produced by Lactobacillus plantarum Q7. The effects of plantaricin Q7 on Listeria monocytogenes and its biofilm were investigated. The results showed that plantaricin Q7 changed the cell membrane permeability and integrity of Listeria monocytogenes significantly. The extracellular lactate dehydrogenase activity increased from 156.74 U/L to 497.62 U/L, and the K+ concentration was increased rapidly from 0.02 g/L to 0.09 g/L. Furthermore, the flagellum motility of Listeria monocytogenes reduced and the relative adhesion rate decreased about 30% after treatment with plantaricin Q7. Meanwhile, the morphology and structure of Listeria monocytogenes cell and biofilm were damaged. These findings suggested that plantaricin Q7 exhibited significant inhibitory effects on not only Listeria monocytogenes cell but also its biofilm, which might be used as a natural and effective biological preservative for food storage.
Collapse
|
89
|
Recombinant Expression and Antibacterial Properties of BmTXKS2 Venom Peptide in Fusion with GST. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10374-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
90
|
Tian T, Xie W, Liu L, Fan S, Zhang H, Qin Z, Yang C. Industrial application of antimicrobial peptides based on their biological activity and structure-activity relationship. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34955061 DOI: 10.1080/10408398.2021.2019673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Last several years, a rapid increase in drug resistance to traditional antibiotics has driven the emergence and development of antimicrobial peptides (AMPs). AMPs have also gained considerable attention from scientists due to their high potency in combatting infectious pathogens. A subset of analogues and their derivatives with specific targets have been successfully designed based on natural peptide patterns. In this review, scientific knowledge on the mechanisms of action related to biological activity and structure-activity relationship (SAR) of AMPs are summarized, and the biological applications in several important fields are critically discussed. SAR shows that the positive charge, secondary structure, special amino acid residues, hydrophobicity, and helicity of AMPs are closely related to their biological activities. The combination of nanotechnology, bioinformatics, and genetic engineering can accelerate to achieve the application of AMPs as effective, safe, economical, and nonresistant antimicrobial agents in medicine, the food and feed industries, and agriculture in coming years. Given the intense interest in AMPs, further investigations are needed in the future to evaluate the specific structure and function that make their use favorable in several industries. This review may provide a comprehensive reference for future studies on chemical modifications, mechanistic exploration, and applications of AMPs.
Collapse
Affiliation(s)
- Tiantian Tian
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Wansheng Xie
- Hainan Center for Drug and Medical Device Evaluation and Service, Hainan Provincial Drug Administration, Haikou, Hainan, China
| | - Luxuan Liu
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Siting Fan
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Heqian Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Chao Yang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China.,State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied research in Medicine and Health, University of Science and Technology, Taipa, Macao, China
| |
Collapse
|
91
|
Mendes RJ, Sario S, Luz JP, Tassi N, Teixeira C, Gomes P, Tavares F, Santos C. Evaluation of Three Antimicrobial Peptides Mixtures to Control the Phytopathogen Responsible for Fire Blight Disease. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122637. [PMID: 34961108 PMCID: PMC8705937 DOI: 10.3390/plants10122637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 05/09/2023]
Abstract
Fire blight is a severe bacterial plant disease that affects important chain-of-value fruit trees such as pear and apple trees. This disease is caused by Erwinia amylovora, a quarantine phytopathogenic bacterium, which, although highly distributed worldwide, still lacks efficient control measures. The green revolution paradigm demands sustainable agriculture practices, for which antimicrobial peptides (AMPs) have recently caught much attention. The goal of this work was to disclose the bioactivity of three peptides mixtures (BP100:RW-BP100, BP100:CA-M, and RW-BP100:CA-M), against three strains of E. amylovora representing distinct genotypes and virulence (LMG 2024, Ea 630 and Ea 680). The three AMPs' mixtures were assayed at eight different equimolar concentrations ranging from 0.25 to 6 μM (1:1). Results showed MIC and MBC values between 2.5 and 4 μM for every AMP mixture and strain. Regarding cell viability, flow cytometry and alamarBlue reduction, showed high reduction (>25%) of viable cells after 30 min of AMP exposure, depending on the peptide mixture and strain assayed. Hypersensitive response in tobacco plants showed that the most efficient AMPs mixtures and concentrations caused low to no reaction of the plant. Altogether, the AMPs mixtures studied are better treatment solutions to control fire blight disease than the same AMPs applied individually.
Collapse
Affiliation(s)
- Rafael J. Mendes
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- CIBIO—Research Centre in Biodiversity and Genetic Resources, InBIO, Associated Laboratory, Campus Agrário de Vairão, University of Porto, 4485-661 Vairão, Portugal
- Correspondence:
| | - Sara Sario
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - João Pedro Luz
- QRural, Polytechnic Institute of Castelo Branco, School of Agriculture, 6000-909 Castelo Branco, Portugal;
| | - Natália Tassi
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Cátia Teixeira
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Paula Gomes
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Fernando Tavares
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- CIBIO—Research Centre in Biodiversity and Genetic Resources, InBIO, Associated Laboratory, Campus Agrário de Vairão, University of Porto, 4485-661 Vairão, Portugal
| | - Conceição Santos
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
92
|
Abdulbagi M, Wang L, Siddig O, Di B, Li B. D-Amino Acids and D-Amino Acid-Containing Peptides: Potential Disease Biomarkers and Therapeutic Targets? Biomolecules 2021; 11:1716. [PMID: 34827714 PMCID: PMC8615943 DOI: 10.3390/biom11111716] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
In nature, amino acids are found in two forms, L and D enantiomers, except for glycine which does not have a chiral center. The change of one form to the other will lead to a change in the primary structure of proteins and hence may affect the function and biological activity of proteins. Indeed, several D-amino acid-containing peptides (DAACPs) were isolated from patients with cataracts, Alzheimer's and other diseases. Additionally, significant levels of free D-amino acids were found in several diseases, reflecting the disease conditions. Studying the molecular mechanisms of the DAACPs formation and the alteration in D-amino acids metabolism will certainly assist in understanding these diseases and finding new biomarkers and drug targets. In this review, the presence of DAACPs and free D-amino acids and their links with disease development and progress are summarized. Similarly, we highlight some recent advances in analytical techniques that led to improvement in the discovery and analysis of DAACPs and D-amino acids.
Collapse
Affiliation(s)
- Mohamed Abdulbagi
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
| | - Liya Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
| | - Orwa Siddig
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
| | - Bin Di
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
- Center Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China
- MOE Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
| | - Bo Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
- Center Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China
- MOE Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
93
|
Ning H, Cong Y, Lin H, Wang J. Development of cationic peptide chimeric lysins based on phage lysin Lysqdvp001 and their antibacterial effects against Vibrio parahaemolyticus: A preliminary study. Int J Food Microbiol 2021; 358:109396. [PMID: 34560361 DOI: 10.1016/j.ijfoodmicro.2021.109396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 01/22/2023]
Abstract
Cationic peptide chimeric lysins, Lysqdvp001-5aa, Lysqdvp001-10aa and Lysqdvp001-15aa, were designed based on lysin Lysqdvp001 from Vibrio parahaemolyticus (V. parahaemolyticus) phage qdvp001. These chimeric lysins showed equivalent peptidoglycan hydrolysis activities with Lysqdvp001 and could lyse the bacteria from the outside. The antibacterial activity as well as outer and inner membrane permeabilization of Lysqdvp001 and chimeric lysins against V. parahaemolyticus were Lysqdvp001-15aa>Lysqdvp001-10aa>Lysqdvp001-5aa>Lysqdvp001. Lysqdvp001-15aa exhibited an excellent antibacterial activity with minimum inhibition and bactericidal concentrations (MIC and MBC) of 0.2 and 0.4 mg/mL, respectively, and its antibacterial spectrum was much broader than phage qdvp001. Membrane hyperpolarization and membrane phospholipid exposure of V. parahaemolyticus were observed after Lysqdvp001-15aa treatments. Transmission electron microscope (TEM) showed Lysqdvp001-15aa destroyed structure integrity of V. parahaemolyticus. Besides, MIC and MBC of Lysqdvp001-15aa decreased V. parahaemolyticus counts in oyster by 3.20 and 4.03 log10CFU/g. Lysqdvp001-15aa at MBC eradicated about 50% of V. parahaemolyticus biofilms and inhibited over 90% of the formation of the bacterial biofilms.
Collapse
Affiliation(s)
- Houqi Ning
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Yu Cong
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Jingxue Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China.
| |
Collapse
|
94
|
Hong D, Wu J, Xiao X, Li X, Xu D, Du C. Antimicrobial Peptides-Loaded Hydroxyapatite Microsphere With Different Hierarchical Structures for Enhanced Drug Loading, Sustained Release and Antibacterial Activity. Front Chem 2021; 9:747665. [PMID: 34722458 PMCID: PMC8551960 DOI: 10.3389/fchem.2021.747665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) have great potential for clinical treatment of bacterial infection due to the broad-spectrum and highly effective antibacterial activity. However, the easy degradation and inactivation in vivo has been a major obstacle for their application and an effective delivery system is demanding. The surface physicochemical properties of the carrier, including surface potential, surface polarity, pore structure and morphology, have exerted great effects on the adsorption and release behavior of AMPs. This study investigated the influence of micro/nano carriers with different hierarchical structures on the loading, release and biological behavior of AMPs. Three types of AMPs-loaded hydroxyapatite microspheres (HA/AMPs MSs) with different hierarchical structures (needle-like, rod-like, and flake-like) were developed, which was investigated by the surface morphology, chemical composition and surface potential in detail. The different hierarchical structures of hydroxyapatite microspheres (HA MSs) had noticeable impact on the loading and release behavior of AMPs, and the flake-like HA MSs with hierarchical structure showed the highest loading efficiency and long-lasting release over 9 days. Meanwhile, the stability of AMPs released from HA MSs was effectively maintained. Moreover, the antibacterial test indicated that the flake-like HA/AMPs MSs showed more sustained antibacterial properties among three composites. In view of the excellent biocompatibility and osteogenic property, high loading efficiency and the long-term release properties of HA MSs with hierarchical structure, the HA/AMPs MSs have a great potential in bone tissue engineering.
Collapse
Affiliation(s)
- Dandan Hong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Jingjing Wu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Xuemin Xiao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Xueyang Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Dong Xu
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chang Du
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
95
|
Santos‐Filho NA, Righetto GM, Pereira MR, Piccoli JP, Almeida LMT, Leal TC, Camargo ILBC, Cilli EM. Effect of C‐terminal and N‐terminal dimerization and alanine scanning on antibacterial activity of the analogs of the peptide
p‐BthTX‐I. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
96
|
Cross ER, Coulter SM, Pentlavalli S, Laverty G. Unravelling the antimicrobial activity of peptide hydrogel systems: current and future perspectives. SOFT MATTER 2021; 17:8001-8021. [PMID: 34525154 PMCID: PMC8442837 DOI: 10.1039/d1sm00839k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/19/2021] [Indexed: 05/05/2023]
Abstract
The use of hydrogels has garnered significant interest as biomaterial and drug delivery platforms for anti-infective applications. For decades antimicrobial peptides have been heralded as a much needed new class of antimicrobial drugs. Self-assembling peptide hydrogels with inherent antimicrobial ability have recently come to the fore. However, their fundamental antimicrobial properties, selectivity and mechanism of action are relatively undefined. This review attempts to establish a link between antimicrobial efficacy; the self-assembly process; peptide-membrane interactions and mechanical properties by studying several reported peptide systems: β-hairpin/β-loop peptides; multidomain peptides; amphiphilic surfactant-like peptides and ultrashort/low molecular weight peptides. We also explore their role in the formation of amyloid plaques and the potential for an infection etiology in diseases such as Alzheimer's. We look briefly at innovative methods of gel characterization. These may provide useful tools for future studies within this increasingly important field.
Collapse
Affiliation(s)
- Emily R Cross
- Biofunctional Nanomaterials Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, N. Ireland, BT9 7BL, UK.
| | - Sophie M Coulter
- Biofunctional Nanomaterials Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, N. Ireland, BT9 7BL, UK.
| | - Sreekanth Pentlavalli
- Biofunctional Nanomaterials Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, N. Ireland, BT9 7BL, UK.
| | - Garry Laverty
- Biofunctional Nanomaterials Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, N. Ireland, BT9 7BL, UK.
| |
Collapse
|
97
|
Yang S, Yuan Z, Aweya JJ, Huang S, Deng S, Shi L, Zheng M, Zhang Y, Liu G. Low-intensity ultrasound enhances the antimicrobial activity of neutral peptide TGH2 against Escherichia coli. ULTRASONICS SONOCHEMISTRY 2021; 77:105676. [PMID: 34315058 PMCID: PMC8326391 DOI: 10.1016/j.ultsonch.2021.105676] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/27/2021] [Accepted: 07/17/2021] [Indexed: 05/12/2023]
Abstract
In recent years, foodborne diseases caused by Escherichia coli are a major threat to the food industry and consumers. Antimicrobial peptides (AMPs) and ultrasound both have good inhibitory effects on E. coli. In this work, the mechanism of action and synergistic effect of an in silico predicted AMP, designated as TGH2 (AEFLREKLGDKCTDRHV), from the C-terminal sequence of Tegillarca granosa hemoglobin, combined with low-intensity ultrasound was explored. The minimal inhibitory concentration (MIC) of TGH2 on E. coli decreased by 4-fold to 31.25 μg/mL under 0.3 W/cm2 ultrasound treatment, while the time kill curve analysis showed that low-intensity ultrasound combined with peptide TGH2 had an enhanced synergistic bactericidal effect after 0.5 h. The permeability on E. coli cell membrane increased progressively during combined treatment with peptide TGH2 and low-intensity ultrasound, resulting in the leakage of intracellular solutes, as shown by transmission electron microscopy (TEM). Structural analysis using circular dichroism (CD) revealed that peptide TGH2 has an α-helical structure, showing a slight untwisting effect under 0.3 W/cm2 ultrasound treatment for 0.5 h. The findings here provide new insight into the potential application of ultrasound and AMPs combination in food preservation.
Collapse
Affiliation(s)
- Shen Yang
- College of Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China
| | - Zijin Yuan
- College of Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China
| | - Jude Juventus Aweya
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong 515063, China
| | - Shiying Huang
- College of Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China
| | - Linfan Shi
- College of Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China
| | - Mingjing Zheng
- College of Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China
| | - Yueling Zhang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong 515063, China.
| | - Guangming Liu
- College of Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China.
| |
Collapse
|
98
|
Schistocins: Novel antimicrobial peptides encrypted in the Schistosoma mansoni Kunitz Inhibitor SmKI-1. Biochim Biophys Acta Gen Subj 2021; 1865:129989. [PMID: 34389467 DOI: 10.1016/j.bbagen.2021.129989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Here we describe a new class of cryptides (peptides encrypted within a larger protein) with antimicrobial properties, named schistocins, derived from SmKI-1, a key protein in Shistosoma mansoni survival. This is a multi-functional protein with biotechnological potential usage as a therapeutic molecule in inflammatory diseases and to control schistosomiasis. METHODS We used our algorithm enCrypted, to perform an in silico proteolysis of SmKI-1 and a screening for potential antimicrobial activity. The selected peptides were chemically synthesized, tested in vitro and evaluated by both structural (CD, NMR) and biophysical (ITC) studies to access their structure-function relationship. RESULTS EnCrypted was capable of predicting AMPs in SmKI-1. Our biophysical analyses described a membrane-induced conformational change from random coil-to-α-helix and a peptide-membrane equilibrium for all schistocins. Our structural data allowed us to suggest a well-known mode of peptide-membrane interaction in which electrostatic attraction between the cationic peptides and anionic membranes results in the bilayer disordering. Moreover, the NMR exchange H/D data with the higher entropic contribution observed for the peptide-membrane interaction showed that shistocins have different orientations upon the membrane. CONCLUSIONS This work demonstrate the robustness for using the physicochemical features of predicted peptides in the identification of new bioactive cryptides besides the relevance of combining these analyses with biophysical methods to understand the peptide-membrane affinity and improve further algorithms. GENERAL SIGNIFICANCE Bioprospecting cryptides can be conducted through data mining of protein databases demonstrating the success of our strategy. The peptides-based agents derived from SmKI-1 might have high impact for system-biology and biotechnology.
Collapse
|
99
|
Nonin-Lecomte S, Fermon L, Felden B, Pinel-Marie ML. Bacterial Type I Toxins: Folding and Membrane Interactions. Toxins (Basel) 2021; 13:toxins13070490. [PMID: 34357962 PMCID: PMC8309996 DOI: 10.3390/toxins13070490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial type I toxin-antitoxin systems are two-component genetic modules that encode a stable toxic protein whose ectopic overexpression can lead to growth arrest or cell death, and an unstable RNA antitoxin that inhibits toxin translation during growth. These systems are widely spread among bacterial species. Type I antitoxins are cis- or trans-encoded antisense small RNAs that interact with toxin-encoding mRNAs by pairing, thereby inhibiting toxin mRNA translation and/or inducing its degradation. Under environmental stress conditions, the up-regulation of the toxin and/or the antitoxin degradation by specific RNases promote toxin translation. Most type I toxins are small hydrophobic peptides with a predicted α-helical transmembrane domain that induces membrane depolarization and/or permeabilization followed by a decrease of intracellular ATP, leading to plasmid maintenance, growth adaptation to environmental stresses, or persister cell formation. In this review, we describe the current state of the art on the folding and the membrane interactions of these membrane-associated type I toxins from either Gram-negative or Gram-positive bacteria and establish a chronology of their toxic effects on the bacterial cell. This review also includes novel structural results obtained by NMR concerning the sprG1-encoded membrane peptides that belong to the sprG1/SprF1 type I TA system expressed in Staphylococcus aureus and discusses the putative membrane interactions allowing the lysis of competing bacteria and host cells.
Collapse
Affiliation(s)
| | - Laurence Fermon
- BRM (Bacterial Regulatory RNAs and Medicine), Inserm, UMR_S 1230, Université de Rennes 1, 35000 Rennes, France; (L.F.); (B.F.)
| | - Brice Felden
- BRM (Bacterial Regulatory RNAs and Medicine), Inserm, UMR_S 1230, Université de Rennes 1, 35000 Rennes, France; (L.F.); (B.F.)
| | - Marie-Laure Pinel-Marie
- BRM (Bacterial Regulatory RNAs and Medicine), Inserm, UMR_S 1230, Université de Rennes 1, 35000 Rennes, France; (L.F.); (B.F.)
- Correspondence:
| |
Collapse
|
100
|
Natural antimicrobial-coated supports as filter aids for the microbiological stabilisation of drinks. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|