51
|
Sarkar A, Kim EY, Jang T, Hongdusit A, Kim H, Choi JM, Fox JM. Microbially Guided Discovery and Biosynthesis of Biologically Active Natural Products. ACS Synth Biol 2021; 10:1505-1519. [PMID: 33988973 DOI: 10.1021/acssynbio.1c00074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The design of small molecules that inhibit disease-relevant proteins represents a longstanding challenge of medicinal chemistry. Here, we describe an approach for encoding this challenge-the inhibition of a human drug target-into a microbial host and using it to guide the discovery and biosynthesis of targeted, biologically active natural products. This approach identified two previously unknown terpenoid inhibitors of protein tyrosine phosphatase 1B (PTP1B), an elusive therapeutic target for the treatment of diabetes and cancer. Both inhibitors appear to target an allosteric site, which confers selectivity, and can inhibit PTP1B in living cells. A screen of 24 uncharacterized terpene synthases from a pool of 4464 genes uncovered additional hits, demonstrating a scalable discovery approach, and the incorporation of different PTPs into the microbial host yielded alternative PTP-specific detection systems. Findings illustrate the potential for using microbes to discover and build natural products that exhibit precisely defined biochemical activities yet possess unanticipated structures and/or binding sites.
Collapse
Affiliation(s)
- Ankur Sarkar
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Edward Y. Kim
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Taehwan Jang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Akarawin Hongdusit
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Hyungjun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeong-Mo Choi
- Department of Chemistry, Pusan National University, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jerome M. Fox
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| |
Collapse
|
52
|
Rodríguez JM, Allende-Ballestero C, Cornelissen JJLM, Castón JR. Nanotechnological Applications Based on Bacterial Encapsulins. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1467. [PMID: 34206092 PMCID: PMC8229669 DOI: 10.3390/nano11061467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Encapsulins are proteinaceous nanocontainers, constructed by a single species of shell protein that self-assemble into 20-40 nm icosahedral particles. Encapsulins are structurally similar to the capsids of viruses of the HK97-like lineage, to which they are evolutionarily related. Nearly all these nanocontainers encase a single oligomeric protein that defines the physiological role of the complex, although a few encapsulate several activities within a single particle. Encapsulins are abundant in bacteria and archaea, in which they participate in regulation of oxidative stress, detoxification, and homeostasis of key chemical elements. These nanocontainers are physically robust, contain numerous pores that permit metabolite flux through the shell, and are very tolerant of genetic manipulation. There are natural mechanisms for efficient functionalization of the outer and inner shell surfaces, and for the in vivo and in vitro internalization of heterologous proteins. These characteristics render encapsulin an excellent platform for the development of biotechnological applications. Here we provide an overview of current knowledge of encapsulin systems, summarize the remarkable toolbox developed by researchers in this field, and discuss recent advances in the biomedical and bioengineering applications of encapsulins.
Collapse
Affiliation(s)
- Javier M. Rodríguez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (J.M.R.); (C.A.-B.)
| | - Carolina Allende-Ballestero
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (J.M.R.); (C.A.-B.)
| | - Jeroen J. L. M. Cornelissen
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands;
| | - José R. Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (J.M.R.); (C.A.-B.)
- Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, Campus Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
53
|
Buijs Y, Zhang SD, Jørgensen KM, Isbrandt T, Larsen TO, Gram L. Enhancement of antibiotic production by co-cultivation of two antibiotic producing marine Vibrionaceae strains. FEMS Microbiol Ecol 2021; 97:6164864. [PMID: 33693627 DOI: 10.1093/femsec/fiab041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/05/2021] [Indexed: 01/07/2023] Open
Abstract
Deciphering the cues that stimulate microorganisms to produce their full secondary metabolic potential promises to speed up the discovery of novel drugs. Ecology-relevant conditions, including carbon-source(s) and microbial interactions, are important effectors of secondary metabolite production. Vice versa secondary metabolites are important mediators in microbial interactions, although their exact natural functions are not always completely understood. In this study, we investigated the effects of microbial interactions and in-culture produced antibiotics on the production of secondary metabolites by Vibrio coralliilyticus and Photobacterium galatheae, two co-occurring marine Vibrionaceae. In co-culture, production of andrimid by V. coralliilyticus and holomycin by P. galatheae, were, compared to monocultures, increased 4.3 and 2.7 fold, respectively. Co-cultures with the antibiotic deficient mutant strains (andrimid- and holomycin-) did not reveal a significant role for the competitor's antibiotic as stimulator of own secondary metabolite production. Furthermore, we observed that V. coralliilyticus detoxifies holomycin by sulphur-methylation. Results presented here indicate that ecological competition in Vibrionaceae is mediated by, and a cue for, antibiotic secondary metabolite production.
Collapse
Affiliation(s)
- Yannick Buijs
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Sheng-Da Zhang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Karen Marie Jørgensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Thomas Isbrandt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| |
Collapse
|
54
|
The Nonribosomal Peptide Valinomycin: From Discovery to Bioactivity and Biosynthesis. Microorganisms 2021; 9:microorganisms9040780. [PMID: 33917912 PMCID: PMC8068249 DOI: 10.3390/microorganisms9040780] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
Valinomycin is a nonribosomal peptide that was discovered from Streptomyces in 1955. Over the past more than six decades, it has received continuous attention due to its special chemical structure and broad biological activities. Although many research papers have been published on valinomycin, there has not yet been a comprehensive review that summarizes the diverse studies ranging from structural characterization, biogenesis, and bioactivity to the identification of biosynthetic gene clusters and heterologous biosynthesis. In this review, we aim to provide an overview of valinomycin to address this gap, covering from 1955 to 2020. First, we introduce the chemical structure of valinomycin together with its chemical properties. Then, we summarize the broad spectrum of bioactivities of valinomycin. Finally, we describe the valinomycin biosynthetic gene cluster and reconstituted biosynthesis of valinomycin. With that, we discuss possible opportunities for the future research and development of valinomycin.
Collapse
|
55
|
de Sousa BL, Azevedo AC, Oliveira IMF, Bento CBP, Santana MF, Bazzolli DMS, Mantovani HC. PCR screening reveals abundance of bovicin-like bacteriocins among ruminal Streptococcus spp. isolated from beef and dairy cattle. J Appl Microbiol 2021; 131:1695-1709. [PMID: 33714234 DOI: 10.1111/jam.15069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 01/07/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022]
Abstract
AIMS To investigate the inhibitory activity and the distribution of biosynthetic genes encoding bovicin-like bacteriocins among ruminal Streptococcus isolated from beef and dairy cattle. METHODS AND RESULTS Most isolates were classified as Streptococcus equinus and Streptococcus lutetiensis based on 16S rRNA sequencing. The antimicrobial activity of 150 ruminal streptococci isolated from beef and dairy cattle were tested by deferred inhibition assays and their genetic diversity was characterized by BOX-PCR. The frequency of biosynthetic genes associated with the biosynthesis of bovicin-like bacteriocins (bovicin HC5 and bovicin 255) was investigated by PCR screening. Approximately 33% of the ruminal streptococci isolated from Nellore heifers showed inhibitory activity in vitro with the majority harbouring genes for bacteriocin biosynthesis. In contrast, streptococci from Holstein cows showed limited inhibitory activity and a lower frequency of bacteriocin biosynthetic genes. CONCLUSIONS Streptococcus from the rumen of beef and dairy cattle exhibit remarkable differences in inhibitory activity and distribution of genes associated with the biosynthesis of prototypical bovicins (bovicin HC5 and bovicin 255). SIGNIFICANCE AND IMPACT OF THE STUDY Our findings demonstrate that bovicin HC5 is distributed among ruminal streptococci from different breeds of cattle. The high degree of conservation of the bovicin HC5 structural gene among strains of ruminal streptococci suggests that random genetic drift is not a dominant force in the evolution of this bacteriocin.
Collapse
Affiliation(s)
- B L de Sousa
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Brazil.,Departamento de Química, Universidade Federal de Viçosa, Viçosa, Brazil
| | - A C Azevedo
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - I M F Oliveira
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - C B P Bento
- Departamento de Microbiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Unaí, Brazil
| | - M F Santana
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - D M S Bazzolli
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - H C Mantovani
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
56
|
Kum E, İnce E. Genome-guided investigation of secondary metabolites produced by a potential new strain Streptomyces BA2 isolated from an endemic plant rhizosphere in Turkey. Arch Microbiol 2021; 203:2431-2438. [PMID: 33666690 DOI: 10.1007/s00203-021-02210-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/16/2020] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
Terrestrial actinomycetes are the important sources of secondary metabolites that serve as a major source of drugs. Recent advances in genome mining have revealed that Streptomyces genomes have a wide range of undiscovered secondary metabolite biosynthetic gene clusters. In the present study, genome mining was employed to discover biosynthetic potential of plant-associated strain Streptomyces BA2. Based on 16S rRNA gene sequencing, this strain was found to be closely related to Streptomyces durmitorensis, Streptomyces alboniger, and Streptomyces kanamyceticus with similarity of 99.71%, 99.64%, and 99.56%, respectively. The genome of BA2 contained 10.043.478 base pairs with G + C content of 69.92%. The annotation results revealed the presence of 9.056 protein coding genes, 88 tRNA and 18 rRNA genes. The dDDH and ANI values of genome sequences between strain BA2 and closely related type strains were considerably lower than the recommended threshold values. A total of 33 secondary metabolite biosynthetic gene clusters responsible for the biosynthesis of known and/or novel secondary metabolites, including non-ribosomal peptides, polyketides, terpenes, siderophores, bacteriocins, ectoines, and lassopeptides were identified. Metabolic profiling of Streptomyces sp. BA2 grown in three different culture media was determined by a non-targeted LC-MS/MS approach coupled with spectral networking. Significant bioactive natural products such as actinomycin D, desferrioxamine E, malyngamide K, and bouillonamide B were detected. Malyngamide K and bouillonamide B, known as marine cyanobacterial-derived compounds, were first reported from a Streptomyces strain in this study. Our study demonstrated the potentially novel strain Streptomyces sp. BA2 as a valuable source of new bioactive secondary metabolites.
Collapse
Affiliation(s)
- Ekrem Kum
- Institute of Natural and Applied Science, Dicle University, Diyarbakır, Turkey
| | - Ebru İnce
- Department of Biology, Faculty of Science, Dicle University, Diyarbakır, Turkey.
| |
Collapse
|
57
|
Abt K, Castelo-Branco R, Leão PN. Biosynthesis of Chlorinated Lactylates in Sphaerospermopsis sp. LEGE 00249. JOURNAL OF NATURAL PRODUCTS 2021; 84:278-286. [PMID: 33444023 PMCID: PMC7923214 DOI: 10.1021/acs.jnatprod.0c00950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 05/14/2023]
Abstract
Lactylates are an important group of molecules in the food and cosmetic industries. A series of natural halogenated 1-lactylates, chlorosphaerolactylates (1-4), were recently reported from Sphaerospermopsis sp. LEGE 00249. Here, we identify the cly biosynthetic gene cluster, containing all the necessary functionalities for the biosynthesis of the natural lactylates, based on in silico analyses. Using a combination of stable isotope incorporation experiments and bioinformatic analysis, we propose that dodecanoic acid and pyruvate are the key building blocks in the biosynthesis of 1-4. We additionally report minor analogues of these molecules with varying alkyl chains. This work paves the way to accessing industrially relevant lactylates through pathway engineering.
Collapse
Affiliation(s)
- Kathleen Abt
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
- Institute
of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Raquel Castelo-Branco
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Pedro N. Leão
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
58
|
Contreras-Castro L, MartÍnez-GarcÍa S, Cancino-Diaz JC, Maldonado LA, HernÁndez-Guerrero CJ, MartÍnez-DÍaz SF, GonzÁlez-Acosta BÁ, Quintana ET. Marine Sediment Recovered Salinispora sp. Inhibits the Growth of Emerging Bacterial Pathogens and other Multi-Drug-Resistant Bacteria. Pol J Microbiol 2021; 69:321-330. [PMID: 33574861 PMCID: PMC7810121 DOI: 10.33073/pjm-2020-035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 11/05/2022] Open
Abstract
Marine obligate actinobacteria produce a wide variety of secondary metabolites with biological activity, notably those with antibiotic activity urgently needed against multi-drug-resistant bacteria. Seventy-five marine actinobacteria were isolated from a marine sediment sample collected in Punta Arena de La Ventana, Baja California Sur, Mexico. The 16S rRNA gene identification, Multi Locus Sequence Analysis, and the marine salt requirement for growth assigned seventy-one isolates as members of the genus Salinispora, grouped apart but related to the main Salinispora arenicola species clade. The ability of salinisporae to inhibit bacterial growth of Staphylococcus epidermidis, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacer baumannii, Pseudomonas aeruginosa, and Enterobacter spp. was evaluated by cross-streaking plate and supernatant inhibition tests. Ten supernatants inhibited the growth of eight strains of S. epidermidis from patients suffering from ocular infections, two out of the eight showed growth inhibition on ten S. epidermidis strains from prosthetic joint infections. Also, it inhibited the growth of the remaining six multi-drug-resistant bacteria tested. These results showed that some Salinispora strains could produce antibacterial compounds to combat bacteria of clinical importance and prove that studying different geographical sites uncovers untapped microorganisms with metabolic potential.
Collapse
Affiliation(s)
- Luis Contreras-Castro
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| | - Sergio MartÍnez-GarcÍa
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| | - Juan C Cancino-Diaz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| | - Luis A Maldonado
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Claudia J HernÁndez-Guerrero
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, 23096, La Paz, Baja California Sur, México
| | - Sergio F MartÍnez-DÍaz
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, 23096, La Paz, Baja California Sur, México
| | - BÁrbara GonzÁlez-Acosta
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, 23096, La Paz, Baja California Sur, México
| | - Erika T Quintana
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| |
Collapse
|
59
|
Li QJ, Tang PF, Zhou X, Lu WJ, Xu WJ, Luo J, Kong LY. Elodeoidins A–H, acylphloroglucinol meroterpenoids possessing diverse rearranged skeletons from Hypericum elodeoides. Org Chem Front 2021. [DOI: 10.1039/d0qo01118e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Inspired by the biosynthetic fragment (9), the first example of rearranged dimethylated acylphloroglucinol and monoterpene adducts, elodeoidins A–H (1–8) representing four skeletons and two rearranged pathways were authenticated from H. elodeoides.
Collapse
Affiliation(s)
- Qi-Ji Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Peng-Fei Tang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Xin Zhou
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Wei-Jia Lu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Wen-Jun Xu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| |
Collapse
|
60
|
Buijs Y, Isbrandt T, Zhang SD, Larsen TO, Gram L. The Antibiotic Andrimid Produced by Vibrio coralliilyticus Increases Expression of Biosynthetic Gene Clusters and Antibiotic Production in Photobacterium galatheae. Front Microbiol 2020; 11:622055. [PMID: 33424823 PMCID: PMC7793655 DOI: 10.3389/fmicb.2020.622055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/30/2020] [Indexed: 01/12/2023] Open
Abstract
The development and spread of multidrug resistant pathogens have reinforced the urgency to find novel natural products with antibiotic activity. In bacteria, orphan biosynthetic gene clusters (BGCs) far outnumber the BGCs for which chemistry is known, possibly because they are transcriptionally silent under laboratory conditions. A strategy to trigger the production of this biosynthetic potential is to challenge the microorganism with low concentrations of antibiotics, and by using a Burkholderia genetic reporter strain (Seyedsayamdost, Proc Natl Acad Sci 111:7266-7271), we found BGC unsilencing activity for the antimicrobial andrimid, produced by the marine bacterium Vibrio coralliilyticus. Next, we challenged another marine Vibrionaceae, Photobacterium galatheae, carrier of seven orphan BGCs with sub-inhibitory concentrations of andrimid. A combined approach of transcriptional and chemical measurements of andrimid-treated P. galatheae cultures revealed a 10-fold upregulation of an orphan BGC and, amongst others, a 1.6-2.2-fold upregulation of the gene encoding the core enzyme for biosynthesis of holomycin. Also, addition of andrimid caused an increase, based on UV-Vis peak area, of 4-fold in production of the antibiotic holomycin. Transcriptional measurements of stress response related genes in P. galatheae showed a co-occurrence of increased transcript levels of rpoS (general stress response) and andrimid induced holomycin overproduction, while in trimethoprim treated cultures attenuation of holomycin production coincided with a transcriptional increase of recA (SOS stress response). This study shows that using antimicrobial compounds as activators of secondary metabolism can be a useful strategy in eliciting biosynthetic gene clusters and facilitate natural product discovery. Potentially, such interactions could also have ecological relevant implications.
Collapse
Affiliation(s)
| | | | | | | | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
61
|
Paulsen SS, Isbrandt T, Kirkegaard M, Buijs Y, Strube ML, Sonnenschein EC, Larsen TO, Gram L. Production of the antimicrobial compound tetrabromopyrrole and the Pseudomonas quinolone system precursor, 2-heptyl-4-quinolone, by a novel marine species Pseudoalteromonas galatheae sp. nov. Sci Rep 2020; 10:21630. [PMID: 33303891 PMCID: PMC7730127 DOI: 10.1038/s41598-020-78439-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 11/25/2020] [Indexed: 01/23/2023] Open
Abstract
Novel antimicrobials are urgently needed due to the rapid spread of antibiotic resistant bacteria. In a genome-wide analysis of Pseudoalteromonas strains, one strain (S4498) was noticed due to its potent antibiotic activity. It did not produce the yellow antimicrobial pigment bromoalterochromide, which was produced by several related type strains with which it shared less than 95% average nucleotide identity. Also, it produced a sweet-smelling volatile not observed from other strains. Mining the genome of strain S4498 using the secondary metabolite prediction tool antiSMASH led to eight biosynthetic gene clusters with no homology to known compounds, and synteny analyses revealed that the yellow pigment bromoalterochromide was likely lost during evolution. Metabolome profiling of strain S4498 using HPLC-HRMS analyses revealed marked differences to the type strains. In particular, a series of quinolones known as pseudanes were identified and verified by NMR. The characteristic odor of the strain was linked to the pseudanes. The highly halogenated compound tetrabromopyrrole was detected as the major antibacterial component by bioassay-guided fractionation. Taken together, the polyphasic analysis demonstrates that strain S4498 belongs to a novel species within the genus Pseudoalteromonas, and we propose the name Pseudoalteromonas galatheae sp. nov. (type strain S4498T = NCIMB 15250T = LMG 31599T).
Collapse
Affiliation(s)
- Sara Skøtt Paulsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| | - Thomas Isbrandt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| | - Markus Kirkegaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| | - Yannick Buijs
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| | - Eva C Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| | - Thomas O Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
62
|
Higuchi-Takeuchi M, Miyamoto T, Foong CP, Goto M, Morisaki K, Numata K. Peptide-Mediated Gene Transfer into Marine Purple Photosynthetic Bacteria. Int J Mol Sci 2020; 21:ijms21228625. [PMID: 33207642 PMCID: PMC7697693 DOI: 10.3390/ijms21228625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 11/22/2022] Open
Abstract
Use of photosynthetic organisms is one of the sustainable ways to produce high-value products. Marine purple photosynthetic bacteria are one of the research focuses as microbial production hosts. Genetic transformation is indispensable as a biotechnology technique. However, only conjugation has been determined to be an applicable method for the transformation of marine purple photosynthetic bacteria so far. In this study, for the first time, a dual peptide-based transformation method combining cell penetrating peptide (CPP), cationic peptide and Tat-derived peptide (dTat-Sar-EED) (containing D-amino acids of Tat and endosomal escape domain (EED) connected by sarcosine linkers) successfully delivered plasmid DNA into Rhodovulum sulfidophilum, a marine purple photosynthetic bacterium. The plasmid delivery efficiency was greatly improved by dTat-Sar-EED. The concentrations of dTat-Sar-EED, cell growth stage and recovery duration affected the efficiency of plasmid DNA delivery. The delivery was inhibited at 4 °C and by A22, which is an inhibitor of the actin homolog MreB. This suggests that the plasmid DNA delivery occurred via MreB-mediated energy dependent process. Additionally, this peptide-mediated delivery method was also applicable for E. coli cells. Thus, a wide range of bacteria could be genetically transformed by using this novel peptide-based transformation method.
Collapse
Affiliation(s)
- Mieko Higuchi-Takeuchi
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan; (T.M.); (M.G.); (K.M.)
- Correspondence: (M.H.-T.); (K.N.)
| | - Takaaki Miyamoto
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan; (T.M.); (M.G.); (K.M.)
| | - Choon Pin Foong
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan;
| | - Mami Goto
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan; (T.M.); (M.G.); (K.M.)
| | - Kumiko Morisaki
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan; (T.M.); (M.G.); (K.M.)
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan; (T.M.); (M.G.); (K.M.)
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan;
- Correspondence: (M.H.-T.); (K.N.)
| |
Collapse
|
63
|
Hagee D, Abu Hardan A, Botero J, Arnone JT. Genomic clustering within functionally related gene families in Ascomycota fungi. Comput Struct Biotechnol J 2020; 18:3267-3277. [PMID: 33209211 PMCID: PMC7653285 DOI: 10.1016/j.csbj.2020.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/17/2022] Open
Abstract
Multiple mechanisms collaborate for proper regulation of gene expression. One layer of this regulation is through the clustering of functionally related genes at discrete loci throughout the genome. This phenomenon occurs extensively throughout Ascomycota fungi and is an organizing principle for many gene families whose proteins participate in diverse molecular functions throughout the cell. Members of this phylum include organisms that serve as model systems and those of interest medically, pharmaceutically, and for industrial and biotechnological applications. In this review, we discuss the prevalence of functional clustering through a broad range of organisms within the phylum. Position effects on transcription, genomic locations of clusters, transcriptional regulation of clusters, and selective pressures contributing to the formation and maintenance of clusters are addressed, as are common methods to identify and characterize clusters.
Collapse
Affiliation(s)
- Danielle Hagee
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - Ahmad Abu Hardan
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - Juan Botero
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - James T. Arnone
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| |
Collapse
|
64
|
Isolation and Antibacterial Activity of Indole Alkaloids from Pseudomonas aeruginosa UWI-1. Molecules 2020; 25:molecules25163744. [PMID: 32824432 PMCID: PMC7464872 DOI: 10.3390/molecules25163744] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 02/02/2023] Open
Abstract
In this study, we report the first isolation of three antibiotic indole alkaloid compounds from a Pseudomonad bacterium, Pseudomonas aeruginosa UWI-1. The bacterium was batch fermented in a modified Luria Broth medium and compounds were solvent extracted and isolated by bioassay-guided fractionation. The three compounds were identified as (1) tris(1H-indol-3-yl) methylium, (2) bis(indol-3-yl) phenylmethane, and (3) indolo (2, 1b) quinazoline-6, 12 dione. A combination of 1D and 2D NMR, high-resolution mass spectrometry data and comparison from related data from the literature was used to determine the chemical structures of the compounds. Compounds 1–3 were evaluated in vitro for their antimicrobial activities against a wide range of microorganisms using the broth microdilution technique. Compounds 1 and 2 displayed antibacterial activity against only Gram-positive pathogens, although 1 had significantly lower minimum inhibitory concentration (MIC) values than 2. Compound 3 displayed potent broad-spectrum antimicrobial activity against a range of Gram positive and negative bacteria. Several genes identified from the genome of P. aeruginosa UWI-1 were postulated to contribute to the biosynthesis of these compounds and we attempted to outline a possible route for bacterial synthesis. This study demonstrated the extended metabolic capability of Pseudomonas aeruginosa in synthesizing new chemotypes of bioactive compounds.
Collapse
|
65
|
Chu J, Koirala B, Forelli N, Vila-Farres X, Ternei MA, Ali T, Colosimo DA, Brady SF. Synthetic-Bioinformatic Natural Product Antibiotics with Diverse Modes of Action. J Am Chem Soc 2020; 142:14158-14168. [PMID: 32697091 DOI: 10.1021/jacs.0c04376] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bacterial natural products have inspired the development of numerous antibiotics in use today. As resistance to existing antibiotics has become more prevalent, new antibiotic lead structures and activities are desperately needed. An increasing number of natural product biosynthetic gene clusters, to which no known molecules can be assigned, are found in genome and metagenome sequencing data. Here we access structural information encoded in this underexploited resource using a synthetic-bioinformatic natural product (syn-BNP) approach, which relies on bioinformatic algorithms followed by chemical synthesis to predict and then produce small molecules inspired by biosynthetic gene clusters. In total, 157 syn-BNP cyclic peptides inspired by 96 nonribosomal peptide synthetase gene clusters were synthesized and screened for antibacterial activity. This yielded nine antibiotics with activities against ESKAPE pathogens as well as Mycobacterium tuberculosis. Not only are antibiotic-resistant pathogens susceptible to many of these syn-BNP antibiotics, but they were also unable to develop resistance to these antibiotics in laboratory experiments. Characterized modes of action for these antibiotics include cell lysis, membrane depolarization, inhibition of cell wall biosynthesis, and ClpP protease dysregulation. Increasingly refined syn-BNP-based explorations of biosynthetic gene clusters should allow for more rapid identification of evolutionarily inspired bioactive small molecules, in particular antibiotics with diverse mechanism of actions that could help confront the imminent crisis of antimicrobial resistance.
Collapse
Affiliation(s)
- John Chu
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Bimal Koirala
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Nicholas Forelli
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Xavier Vila-Farres
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Melinda A Ternei
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Thahmina Ali
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Dominic A Colosimo
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Sean F Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| |
Collapse
|
66
|
van Bergeijk DA, Terlouw BR, Medema MH, van Wezel GP. Ecology and genomics of Actinobacteria: new concepts for natural product discovery. Nat Rev Microbiol 2020; 18:546-558. [DOI: 10.1038/s41579-020-0379-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2020] [Indexed: 01/09/2023]
|
67
|
Palaniappan K, Chen IMA, Chu K, Ratner A, Seshadri R, Kyrpides NC, Ivanova NN, Mouncey NJ. IMG-ABC v.5.0: an update to the IMG/Atlas of Biosynthetic Gene Clusters Knowledgebase. Nucleic Acids Res 2020; 48:D422-D430. [PMID: 31665416 DOI: 10.1093/nar/gkz932] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 01/14/2023] Open
Abstract
Microbial secondary metabolism is a reservoir of bioactive compounds of immense biotechnological and biomedical potential. The biosynthetic machinery responsible for the production of these secondary metabolites (SMs) (also called natural products) is often encoded by collocated groups of genes called biosynthetic gene clusters (BGCs). High-throughput genome sequencing of both isolates and metagenomic samples combined with the development of specialized computational workflows is enabling systematic identification of BGCs and the discovery of novel SMs. In order to advance exploration of microbial secondary metabolism and its diversity, we developed the largest publicly available database of predicted BGCs combined with experimentally verified BGCs, the Integrated Microbial Genomes Atlas of Biosynthetic gene Clusters (IMG-ABC) (https://img.jgi.doe.gov/abc-public). Here we describe the first major content update of the IMG-ABC knowledgebase, since its initial release in 2015, refreshing the BGC prediction pipeline with the latest version of antiSMASH (v5) as well as presenting the data in the context of underlying environmental metadata sourced from GOLD (https://gold.jgi.doe.gov/). This update has greatly improved the quality and expanded the types of predicted BGCs compared to the previous version.
Collapse
Affiliation(s)
- Krishnaveni Palaniappan
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - I-Min A Chen
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ken Chu
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Ratner
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rekha Seshadri
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Natalia N Ivanova
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nigel J Mouncey
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
68
|
May DS, Crnkovic CM, Krunic A, Wilson TA, Fuchs JR, Orjala JE. 15N Stable Isotope Labeling and Comparative Metabolomics Facilitates Genome Mining in Cultured Cyanobacteria. ACS Chem Biol 2020; 15:758-765. [PMID: 32083834 DOI: 10.1021/acschembio.9b00993] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As genome mining becomes a more widely used approach to identify bacterial natural products, the challenge of matching biosynthetic gene clusters to their cognate secondary metabolites has become more apparent. Bioinformatic platforms such as AntiSMASH have made great progress in predicting chemical structures from genetic information, however the predicted structures are often incomplete. This complicates identifying the predicted compounds by mass spectrometry. Secondary metabolites produced by cyanobacteria represent a unique opportunity for bridging this gap. Cultured cyanobacteria incorporate inorganic nitrogen provided in chemically defined media into all nitrogen-containing secondary metabolites. Thus, stable isotope labeling with 15N labeled nitrate and subsequent comparative metabolomics can be used to match biosynthetic gene clusters to their cognate compounds in cell extracts. Analysis of the sequenced genome of Nostoc sp. UIC 10630 identified six biosynthetic gene clusters predicted to encode the production of a secondary metabolite with at least one nitrogen atom. Comparative metabolomic analysis of the 15N labeled and unlabeled cell extracts revealed four nitrogen containing compounds that contained the same number of nitrogen atoms as were predicted in the biosynthetic gene clusters. Two of the four compounds were new secondary metabolites, and their structures were elucidated by NMR, HRESIMS, and MS/MS.
Collapse
Affiliation(s)
- Daniel S. May
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Camila M. Crnkovic
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Federal District 70040-020, Brazil
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo 05508-000, Brazil
| | - Aleksej Krunic
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Tyler A. Wilson
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - James R. Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jimmy E. Orjala
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
69
|
Waterworth SC, Flórez LV, Rees ER, Hertweck C, Kaltenpoth M, Kwan JC. Horizontal Gene Transfer to a Defensive Symbiont with a Reduced Genome in a Multipartite Beetle Microbiome. mBio 2020; 11:e02430-19. [PMID: 32098813 PMCID: PMC7042692 DOI: 10.1128/mbio.02430-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
Symbiotic mutualisms of bacteria and animals are ubiquitous in nature, running a continuum from facultative to obligate from the perspectives of both partners. The loss of functions required for living independently but not within a host gives rise to reduced genomes in many symbionts. Although the phenomenon of genome reduction can be explained by existing evolutionary models, the initiation of the process is not well understood. Here, we describe the microbiome associated with the eggs of the beetle Lagria villosa, consisting of multiple bacterial symbionts related to Burkholderia gladioli, including a reduced-genome symbiont thought to be the exclusive producer of the defensive compound lagriamide. We show that the putative lagriamide-producing symbiont is the only member of the microbiome undergoing genome reduction and that it has already lost the majority of its primary metabolism and DNA repair pathways. The key step preceding genome reduction in the symbiont was likely the horizontal acquisition of the putative lagriamide lga biosynthetic gene cluster. Unexpectedly, we uncovered evidence of additional horizontal transfers to the symbiont's genome while genome reduction was occurring and despite a current lack of genes needed for homologous recombination. These gene gains may have given the genome-reduced symbiont a selective advantage in the microbiome, especially given the maintenance of the large lga gene cluster despite ongoing genome reduction.IMPORTANCE Associations between microorganisms and an animal, plant, or fungal host can result in increased dependence over time. This process is due partly to the bacterium not needing to produce nutrients that the host provides, leading to loss of genes that it would need to live independently and to a consequent reduction in genome size. It is often thought that genome reduction is aided by genetic isolation-bacteria that live in monocultures in special host organs, or inside host cells, have less access to other bacterial species from which they can obtain genes. Here, we describe exposure of a genome-reduced beetle symbiont to a community of related bacteria with nonreduced genomes. We show that the symbiont has acquired genes from other bacteria despite going through genome reduction, suggesting that isolation has not yet played a major role in this case of genome reduction, with horizontal gene gains still offering a potential route for adaptation.
Collapse
Affiliation(s)
- Samantha C Waterworth
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Laura V Flórez
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenburg University, Mainz, Germany
| | - Evan R Rees
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology, Jena, Germany
- Department of Natural Product Chemistry, Friedrich Schiller University, Jena, Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenburg University, Mainz, Germany
| | - Jason C Kwan
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
70
|
Abstract
To avoid an antibiotic resistance crisis, we need to develop antibiotics at a pace that matches the rate of evolution of resistance. However, the complex functions performed by antibiotics-combining, e.g., penetration of membranes, counteraction of resistance mechanisms, and interaction with molecular targets-have proven hard to achieve with current methods for drug development, including target-based screening and rational design. Here, we argue that we can meet the evolution of resistance in the clinic with evolution of antibiotics in the laboratory. On the basis of the results of experimental evolution studies of microbes in general and antibiotic production in Actinobacteria in particular, we propose methodology for evolving antibiotics to circumvent mechanisms of resistance. This exploits the ability of evolution to find solutions to complex problems without a need for design. We review evolutionary theory critical to this approach and argue that it is feasible and has important advantages over current methods for antibiotic discovery.
Collapse
|
71
|
Chevrette MG, Gutiérrez-García K, Selem-Mojica N, Aguilar-Martínez C, Yañez-Olvera A, Ramos-Aboites HE, Hoskisson PA, Barona-Gómez F. Evolutionary dynamics of natural product biosynthesis in bacteria. Nat Prod Rep 2019; 37:566-599. [PMID: 31822877 DOI: 10.1039/c9np00048h] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2008 up to 2019The forces of biochemical adaptive evolution operate at the level of genes, manifesting in complex phenotypes and the global biodiversity of proteins and metabolites. While evolutionary histories have been deciphered for some other complex traits, the origins of natural product biosynthesis largely remain a mystery. This fundamental knowledge gap is surprising given the many decades of research probing the genetic, chemical, and biophysical mechanisms of bacterial natural product biosynthesis. Recently, evolutionary thinking has begun to permeate this otherwise mechanistically dominated field. Natural products are now sometimes referred to as 'specialized' rather than 'secondary' metabolites, reinforcing the importance of their biological and ecological functions. Here, we review known evolutionary mechanisms underlying the overwhelming chemical diversity of bacterial secondary metabolism, focusing on enzyme promiscuity and the evolution of enzymatic domains that enable metabolic traits. We discuss the mechanisms that drive the assembly of natural product biosynthetic gene clusters and propose formal definitions for 'specialized' and 'secondary' metabolism. We further explore how biosynthetic gene clusters evolve to synthesize related molecular species, and in turn how the biological and ecological roles that emerge from metabolic diversity are acted on by selection. Finally, we reconcile chemical, functional, and genetic data into an evolutionary model, the dynamic chemical matrix evolutionary hypothesis, in which the relationships between chemical distance, biomolecular activity, and relative fitness shape adaptive landscapes.
Collapse
Affiliation(s)
- Marc G Chevrette
- Wisconsin Institute for Discovery, Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Fewer DP, Metsä‐Ketelä M. A pharmaceutical model for the molecular evolution of microbial natural products. FEBS J 2019; 287:1429-1449. [DOI: 10.1111/febs.15129] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/11/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022]
Affiliation(s)
- David P. Fewer
- Department of Microbiology University of Helsinki Finland
| | | |
Collapse
|
73
|
Wang G, Zhao Z, Ke J, Engel Y, Shi YM, Robinson D, Bingol K, Zhang Z, Bowen B, Louie K, Wang B, Evans R, Miyamoto Y, Cheng K, Kosina S, De Raad M, Silva L, Luhrs A, Lubbe A, Hoyt DW, Francavilla C, Otani H, Deutsch S, Washton NM, Rubin EM, Mouncey NJ, Visel A, Northen T, Cheng JF, Bode HB, Yoshikuni Y. CRAGE enables rapid activation of biosynthetic gene clusters in undomesticated bacteria. Nat Microbiol 2019; 4:2498-2510. [PMID: 31611640 DOI: 10.1038/s41564-019-0573-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
Abstract
It is generally believed that exchange of secondary metabolite biosynthetic gene clusters (BGCs) among closely related bacteria is an important driver of BGC evolution and diversification. Applying this idea may help researchers efficiently connect many BGCs to their products and characterize the products' roles in various environments. However, existing genetic tools support only a small fraction of these efforts. Here, we present the development of chassis-independent recombinase-assisted genome engineering (CRAGE), which enables single-step integration of large, complex BGC constructs directly into the chromosomes of diverse bacteria with high accuracy and efficiency. To demonstrate the efficacy of CRAGE, we expressed three known and six previously identified but experimentally elusive non-ribosomal peptide synthetase (NRPS) and NRPS-polyketide synthase (PKS) hybrid BGCs from Photorhabdus luminescens in 25 diverse γ-Proteobacteria species. Successful activation of six BGCs identified 22 products for which diversity and yield were greater when the BGCs were expressed in strains closely related to the native strain than when they were expressed in either native or more distantly related strains. Activation of these BGCs demonstrates the feasibility of exploiting their underlying catalytic activity and plasticity, and provides evidence that systematic approaches based on CRAGE will be useful for discovering and identifying previously uncharacterized metabolites.
Collapse
Affiliation(s)
- Gaoyan Wang
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Zhiying Zhao
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Jing Ke
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Yvonne Engel
- Molecular Biotechnology, Department of Biosciences and Buchmann Institute for Molecular Life Sciences, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Yi-Ming Shi
- Molecular Biotechnology, Department of Biosciences and Buchmann Institute for Molecular Life Sciences, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - David Robinson
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Kerem Bingol
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Zheyun Zhang
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Benjamin Bowen
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katherine Louie
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Bing Wang
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Robert Evans
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Yu Miyamoto
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Kelly Cheng
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Suzanne Kosina
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Markus De Raad
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Leslie Silva
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | | | | | - David W Hoyt
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Hiroshi Otani
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Samuel Deutsch
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nancy M Washton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Edward M Rubin
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Nigel J Mouncey
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Axel Visel
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Trent Northen
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jan-Fang Cheng
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Helge B Bode
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA. .,LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany.
| | - Yasuo Yoshikuni
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA. .,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, IL, USA. .,Global Institution for Collaborative Research and Education, Hokkaido University, Hokkaido, Japan.
| |
Collapse
|
74
|
Convergent biosynthetic transformations to a bacterial specialized metabolite. Nat Chem Biol 2019; 15:1043-1048. [DOI: 10.1038/s41589-019-0331-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/26/2019] [Indexed: 12/29/2022]
|
75
|
Kautsar SA, Suarez Duran HG, Blin K, Osbourn A, Medema MH. plantiSMASH: automated identification, annotation and expression analysis of plant biosynthetic gene clusters. Nucleic Acids Res 2019; 45:W55-W63. [PMID: 28453650 PMCID: PMC5570173 DOI: 10.1093/nar/gkx305] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/12/2017] [Indexed: 12/18/2022] Open
Abstract
Plant specialized metabolites are chemically highly diverse, play key roles in host-microbe interactions, have important nutritional value in crops and are frequently applied as medicines. It has recently become clear that plant biosynthetic pathway-encoding genes are sometimes densely clustered in specific genomic loci: biosynthetic gene clusters (BGCs). Here, we introduce plantiSMASH, a versatile online analysis platform that automates the identification of candidate plant BGCs. Moreover, it allows integration of transcriptomic data to prioritize candidate BGCs based on the coexpression patterns of predicted biosynthetic enzyme-coding genes, and facilitates comparative genomic analysis to study the evolutionary conservation of each cluster. Applied on 48 high-quality plant genomes, plantiSMASH identifies a rich diversity of candidate plant BGCs. These results will guide further experimental exploration of the nature and dynamics of gene clustering in plant metabolism. Moreover, spurred by the continuing decrease in costs of plant genome sequencing, they will allow genome mining technologies to be applied to plant natural product discovery. The plantiSMASH web server, precalculated results and source code are freely available from http://plantismash.secondarymetabolites.org.
Collapse
Affiliation(s)
- Satria A Kautsar
- Bioinformatics Group, Wageningen University, 6708 PB Wageningen, The Netherlands.,Teknik Informatika, Universitas Lampung, Jln. Sumantri Brojonegoro No. 01, Lampung 35141, Indonesia
| | | | - Kai Blin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
76
|
Zheng Y, Saitou A, Wang CM, Toyoda A, Minakuchi Y, Sekiguchi Y, Ueda K, Takano H, Sakai Y, Abe K, Yokota A, Yabe S. Genome Features and Secondary Metabolites Biosynthetic Potential of the Class Ktedonobacteria. Front Microbiol 2019; 10:893. [PMID: 31080444 PMCID: PMC6497799 DOI: 10.3389/fmicb.2019.00893] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/08/2019] [Indexed: 12/30/2022] Open
Abstract
The prevalence of antibiotic resistance and the decrease in novel antibiotic discovery in recent years necessitates the identification of potentially novel microbial resources to produce natural products. Ktedonobacteria, a class of deeply branched bacterial lineage in the ancient phylum Chloroflexi, are ubiquitous in terrestrial environments and characterized by their large genome size and complex life cycle. These characteristics indicate Ktedonobacteria as a potential active producer of bioactive compounds. In this study, we observed the existence of a putative "megaplasmid," multiple copies of ribosomal RNA operons, and high ratio of hypothetical proteins with unknown functions in the class Ktedonobacteria. Furthermore, a total of 104 antiSMASH-predicted putative biosynthetic gene clusters (BGCs) for secondary metabolites with high novelty and diversity were identified in nine Ktedonobacteria genomes. Our investigation of domain composition and organization of the non-ribosomal peptide synthetase and polyketide synthase BGCs further supports the concept that class Ktedonobacteria may produce compounds structurally different from known natural products. Furthermore, screening of bioactive compounds from representative Ktedonobacteria strains resulted in the identification of broad antimicrobial activities against both Gram-positive and Gram-negative tested bacterial strains. Based on these findings, we propose the ancient, ubiquitous, and spore-forming Ktedonobacteria as a versatile and promising microbial resource for natural product discovery.
Collapse
Affiliation(s)
- Yu Zheng
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ayana Saitou
- Faculty of Agriculture, Tohoku University, Sendai, Japan
| | - Chiung-Mei Wang
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Yohei Minakuchi
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Yuji Sekiguchi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Kenji Ueda
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Hideaki Takano
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Yasuteru Sakai
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Keietsu Abe
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Akira Yokota
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shuhei Yabe
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Hazaka Plant Research Center, Kennan Eisei Kogyo Co., Ltd., Miyagi, Japan
| |
Collapse
|
77
|
Hardy CD, Butler A. Ambiguity of NRPS Structure Predictions: Four Bidentate Chelating Groups in the Siderophore Pacifibactin. JOURNAL OF NATURAL PRODUCTS 2019; 82:990-997. [PMID: 30869895 DOI: 10.1021/acs.jnatprod.8b01073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Identified through a bioinformatics approach, a nonribosomal peptide synthetase gene cluster in Alcanivorax pacificus encodes the biosynthesis of the new siderophore pacifibactin. The structure of pacifibactin differs markedly from the bioinformatic prediction and contains four bidentate metal chelation sites, atypical for siderophores. Genome mining and structural characterization of pacifibactin is reported herein, as well as characterization of pacifibactin variants accessible due to a lack of adenylation domain fidelity during biosynthesis. A spectrophotometric titration of pacifibactin with Fe(III) and 13C NMR spectroscopy of the Ga(III)-pacifibactin complex establish 1:1 metal:pacifibactin coordination and reveal which of the bidentate binding groups are coordinated to the metal. The photoreaction of Fe(III)-pacifibactin, resulting from Fe(III) coordination of the β-hydroxyaspartic acid ligands, is reported.
Collapse
Affiliation(s)
- Clifford D Hardy
- Department of Chemistry & Biochemistry , University of California Santa Barbara , Santa Barbara , California 93106-9510 , United States
| | - Alison Butler
- Department of Chemistry & Biochemistry , University of California Santa Barbara , Santa Barbara , California 93106-9510 , United States
| |
Collapse
|
78
|
Ziko L, Saqr AHA, Ouf A, Gimpel M, Aziz RK, Neubauer P, Siam R. Antibacterial and anticancer activities of orphan biosynthetic gene clusters from Atlantis II Red Sea brine pool. Microb Cell Fact 2019; 18:56. [PMID: 30885206 PMCID: PMC6423787 DOI: 10.1186/s12934-019-1103-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/06/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cancer and infectious diseases are problematic because of continuous emergence of drug resistance. One way to address this enormous global health threat is bioprospecting the unlikeliest environments, such as extreme marine niches, which have tremendous biodiversity that is barely explored. One such environment is the Red Sea brine pool, Atlantis II Deep (ATII). Here, we functionally screened a fosmid library of metagenomic DNA isolated from the ATII lower convective layer (LCL) for antibacterial and anticancer activities. RESULTS Selected clones, 14-7E and 10-2G, displayed antibacterial effects on the marine strain Bacillus sp. Cc6. Moreover, whole cell lysates from 14-7E and 10-2G exhibited decreased cell viability against MCF-7 (39.1% ± 6.6, 42% ± 8.1 at 50% v/v) and U2OS cells (35.7% ± 1.9, 79.9% ± 5.9 at 50% v/v), respectively. By sequencing the insert DNA from 14-7E and 10-2G, we identified two putative orphan biosynthetic gene clusters. Both clusters harbored putative ATP-binding cassette (ABC) transporter permeases and S-adenosylmethionine-related genes. Interestingly, the biosynthetic gene cluster identified on 14-7E is of archaeal origin and harbors a putative transcription factor. Several identified genes may be responsible for the observed antibacterial and anticancer activities. The 14-7E biosynthetic gene cluster may be encoding enzymes producing a specialized metabolite (effect of detected genes involved in C-C bond formation and glycosylation). The bioactivity may also be due to predicted subtilases encoded by this cluster. The 10-2G cluster harbored putative glycosyltransferase and non-ribosomal peptide synthase genes; thus the observed activity of this clone could be caused by a bioactive peptide. CONCLUSIONS The ATII LCL prokaryotic metagenome hosts putative orphan biosynthetic gene clusters that confer antibiotic and anticancer effects. Further biochemical studies should characterize the detected bioactive components, and the potential use of 14-7E metabolite for antibiosis and 10-2G metabolite as a selective anti-breast cancer drug.
Collapse
Affiliation(s)
- Laila Ziko
- Graduate Program of Biotechnology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Cairo, 11835, Egypt
| | - Al-Hussein A Saqr
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, SSE (Parcel 7), Second Floor, Office: Room 2194, AUC Avenue, New Cairo, Cairo, 11835, Egypt
| | - Amged Ouf
- Graduate Program of Biotechnology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Cairo, 11835, Egypt
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, SSE (Parcel 7), Second Floor, Office: Room 2194, AUC Avenue, New Cairo, Cairo, 11835, Egypt
| | - Matthias Gimpel
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstrasse 76, ACK24, 13355, Berlin, Germany
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstrasse 76, ACK24, 13355, Berlin, Germany
| | - Rania Siam
- Graduate Program of Biotechnology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Cairo, 11835, Egypt.
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, SSE (Parcel 7), Second Floor, Office: Room 2194, AUC Avenue, New Cairo, Cairo, 11835, Egypt.
| |
Collapse
|
79
|
Bauermeister A, Pereira F, Grilo IR, Godinho CC, Paulino M, Almeida V, Gobbo‐Neto L, Prieto‐Davó A, Sobral RG, Lopes NP, Gaudêncio SP. Intra‐clade metabolomic profiling of MAR4
Streptomyces
from the Macaronesia Atlantic region reveals a source of anti‐biofilm metabolites. Environ Microbiol 2019; 21:1099-1112. [DOI: 10.1111/1462-2920.14529] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Anelize Bauermeister
- NPPNS‐Núcleo de Pesquisa em Produtos Naturais e Sintéticos, Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São Paulo, Avenida do Café, Monte Alegre 14040‐903 Ribeirão Preto São Paulo Brazil
| | - Florbela Pereira
- LAQV‐REQUIMTE, Departamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa 2829‐516 Caparica Portugal
| | - Inês R. Grilo
- UCIBIO‐REQUIMTE, Laboratório de Microbiologia Molecular de Bactérias Patogénicas, Departamento de Ciências da Vida, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa 2829‐516 Caparica Portugal
| | - Camila C. Godinho
- NPPNS‐Núcleo de Pesquisa em Produtos Naturais e Sintéticos, Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São Paulo, Avenida do Café, Monte Alegre 14040‐903 Ribeirão Preto São Paulo Brazil
| | - Marisa Paulino
- UCIBIO‐REQUIMTE, Laboratório de Biotecnologia Azul e Biomedicina, Departamento de QuímicaFaculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa 2829‐516 Caparica Portugal
| | - Vanessa Almeida
- UCIBIO‐REQUIMTE, Laboratório de Biotecnologia Azul e Biomedicina, Departamento de QuímicaFaculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa 2829‐516 Caparica Portugal
| | - Leonardo Gobbo‐Neto
- NPPNS‐Núcleo de Pesquisa em Produtos Naturais e Sintéticos, Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São Paulo, Avenida do Café, Monte Alegre 14040‐903 Ribeirão Preto São Paulo Brazil
| | - Alejandra Prieto‐Davó
- Laboratorio de Ecología Microbiana y Productos Naturales MarinosUnidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México Sisal Yucatán Mexico
| | - Rita G. Sobral
- UCIBIO‐REQUIMTE, Laboratório de Microbiologia Molecular de Bactérias Patogénicas, Departamento de Ciências da Vida, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa 2829‐516 Caparica Portugal
| | - Norberto P. Lopes
- NPPNS‐Núcleo de Pesquisa em Produtos Naturais e Sintéticos, Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São Paulo, Avenida do Café, Monte Alegre 14040‐903 Ribeirão Preto São Paulo Brazil
| | - Susana P. Gaudêncio
- LAQV‐REQUIMTE, Departamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa 2829‐516 Caparica Portugal
- UCIBIO‐REQUIMTE, Laboratório de Biotecnologia Azul e Biomedicina, Departamento de QuímicaFaculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa 2829‐516 Caparica Portugal
| |
Collapse
|
80
|
Buijs Y, Bech PK, Vazquez-Albacete D, Bentzon-Tilia M, Sonnenschein EC, Gram L, Zhang SD. Marine Proteobacteria as a source of natural products: advances in molecular tools and strategies. Nat Prod Rep 2019; 36:1333-1350. [DOI: 10.1039/c9np00020h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review covers the recent advances in molecular tools and strategies for studies and use of natural products from marine Proteobacteria.
Collapse
Affiliation(s)
- Yannick Buijs
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Pernille Kjersgaard Bech
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Dario Vazquez-Albacete
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Mikkel Bentzon-Tilia
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Eva C. Sonnenschein
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Sheng-Da Zhang
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| |
Collapse
|
81
|
García-Salcedo R, Álvarez-Álvarez R, Olano C, Cañedo L, Braña AF, Méndez C, de la Calle F, Salas JA. Characterization of the Jomthonic Acids Biosynthesis Pathway and Isolation of Novel Analogues in Streptomyces caniferus GUA-06-05-006A. Mar Drugs 2018; 16:md16080259. [PMID: 30065171 PMCID: PMC6117699 DOI: 10.3390/md16080259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 12/20/2022] Open
Abstract
Jomthonic acids (JAs) are a group of natural products (NPs) with adipogenic activity. Structurally, JAs are formed by a modified β-methylphenylalanine residue, whose biosynthesis involves a methyltransferase that in Streptomyces hygroscopicus has been identified as MppJ. Up to date, three JA members (A–C) and a few other natural products containing β-methylphenylalanine have been discovered from soil-derived microorganisms. Herein, we report the identification of a gene (jomM) coding for a putative methyltransferase highly identical to MppJ in the chromosome of the marine actinobacteria Streptomyces caniferus GUA-06-05-006A. In its 5’ region, jomM clusters with two polyketide synthases (PKS) (jomP1, jomP2), a nonribosomal peptide synthetase (NRPS) (jomN) and a thioesterase gene (jomT), possibly conforming a single transcriptional unit. Insertion of a strong constitutive promoter upstream of jomP1 led to the detection of JA A, along with at least two novel JA family members (D and E). Independent inactivation of jomP1, jomN and jomM abolished production of JA A, JA D and JA E, indicating the involvement of these genes in JA biosynthesis. Heterologous expression of the JA biosynthesis cluster in Streptomyces coelicolor M1152 and in Streptomyces albus J1074 led to the production of JA A, B, C and F. We propose a pathway for JAs biosynthesis based on the findings here described.
Collapse
Affiliation(s)
- Raúl García-Salcedo
- Department of Functional Biology and University Institute of Oncology of Principado de Asturias (U.I.O.P.A), University of Oviedo, 33006 Oviedo (Asturias), Spain.
- Institute for Health Research of Principado de Asturias (IHRPA), 33006 Oviedo (Asturias), Spain.
- Drug Discovery Area, PharmaMar S.A. Avda. de los Reyes 1, 28770 Colmenar Viejo (Madrid), Spain.
| | - Rubén Álvarez-Álvarez
- Department of Functional Biology and University Institute of Oncology of Principado de Asturias (U.I.O.P.A), University of Oviedo, 33006 Oviedo (Asturias), Spain.
- Institute for Health Research of Principado de Asturias (IHRPA), 33006 Oviedo (Asturias), Spain.
| | - Carlos Olano
- Department of Functional Biology and University Institute of Oncology of Principado de Asturias (U.I.O.P.A), University of Oviedo, 33006 Oviedo (Asturias), Spain.
- Institute for Health Research of Principado de Asturias (IHRPA), 33006 Oviedo (Asturias), Spain.
| | - Librada Cañedo
- Drug Discovery Area, PharmaMar S.A. Avda. de los Reyes 1, 28770 Colmenar Viejo (Madrid), Spain.
| | - Alfredo F Braña
- Department of Functional Biology and University Institute of Oncology of Principado de Asturias (U.I.O.P.A), University of Oviedo, 33006 Oviedo (Asturias), Spain.
- Institute for Health Research of Principado de Asturias (IHRPA), 33006 Oviedo (Asturias), Spain.
| | - Carmen Méndez
- Department of Functional Biology and University Institute of Oncology of Principado de Asturias (U.I.O.P.A), University of Oviedo, 33006 Oviedo (Asturias), Spain.
- Institute for Health Research of Principado de Asturias (IHRPA), 33006 Oviedo (Asturias), Spain.
| | - Fernando de la Calle
- Drug Discovery Area, PharmaMar S.A. Avda. de los Reyes 1, 28770 Colmenar Viejo (Madrid), Spain.
| | - José A Salas
- Institute for Health Research of Principado de Asturias (IHRPA), 33006 Oviedo (Asturias), Spain.
| |
Collapse
|
82
|
Quintero M, Velásquez A, Jutinico LM, Jiménez-Vergara E, Blandón LM, Martinez K, Lee HS, Gómez-León J. Bioprospecting from marine coastal sediments of Colombian Caribbean: screening and study of antimicrobial activity. J Appl Microbiol 2018; 125:753-765. [PMID: 29791769 DOI: 10.1111/jam.13926] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/25/2018] [Accepted: 05/12/2018] [Indexed: 11/28/2022]
Abstract
AIMS To isolate micro-organisms associated with marine coastal sediments of Colombian Caribbean Sea and for evaluating its antimicrobial activity in order to identify the most active strains. METHODS AND RESULTS One hundred and four strains were isolated from sediment samples of the Colombian Caribbean Sea. First at all, an antimicrobial activity screening was made using agar well diffusion method against the pathogens: Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Candida albicans, Candida tropicalis and Pseudomonas aeruginosa. Seventeen strains showed strong antimicrobial activity and were identified as members of the Streptomyces, Micrococcus and Bacillus genera. Organic extracts were produced by liquid-liquid extraction and HPLC profiles of the most active extracts were obtained. Then, the antimicrobial activity of the extracts was evaluated with the broth microdilution test, finding antimicrobial activities superior to 90% against S. aureus MRSA and C. albicans. HPLC profiles indicated the presence of different antimicrobial compounds. CONCLUSION This study demonstrates that the microorganisms isolated from the Colombian Caribbean Sea are possible sources of antimicrobial compounds against pathogenic strains. SIGNIFICANCE AND IMPACT OF STUDY These results contribute to the knowledge of the biotechnological potential of the Colombian biodiversity for the development of pharmaceutical products that can counteract the increasing problem of pathogen resistance.
Collapse
Affiliation(s)
- M Quintero
- Marine and Coastal Research Institute "José Benito Vives de Andréis"- INVEMAR, Santa Marta D.T.C.H., Colombia
| | - A Velásquez
- Marine and Coastal Research Institute "José Benito Vives de Andréis"- INVEMAR, Santa Marta D.T.C.H., Colombia
| | - L M Jutinico
- Marine and Coastal Research Institute "José Benito Vives de Andréis"- INVEMAR, Santa Marta D.T.C.H., Colombia
| | - E Jiménez-Vergara
- Marine and Coastal Research Institute "José Benito Vives de Andréis"- INVEMAR, Santa Marta D.T.C.H., Colombia
| | - L M Blandón
- Marine and Coastal Research Institute "José Benito Vives de Andréis"- INVEMAR, Santa Marta D.T.C.H., Colombia
| | - K Martinez
- Marine and Coastal Research Institute "José Benito Vives de Andréis"- INVEMAR, Santa Marta D.T.C.H., Colombia
| | - H S Lee
- Korea Institute of Ocean Science & Technology, Marine Biotechnology Research, Ansan, Korea
| | - J Gómez-León
- Marine and Coastal Research Institute "José Benito Vives de Andréis"- INVEMAR, Santa Marta D.T.C.H., Colombia
| |
Collapse
|
83
|
Adamek M, Alanjary M, Sales-Ortells H, Goodfellow M, Bull AT, Winkler A, Wibberg D, Kalinowski J, Ziemert N. Comparative genomics reveals phylogenetic distribution patterns of secondary metabolites in Amycolatopsis species. BMC Genomics 2018; 19:426. [PMID: 29859036 PMCID: PMC5984834 DOI: 10.1186/s12864-018-4809-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 05/21/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Genome mining tools have enabled us to predict biosynthetic gene clusters that might encode compounds with valuable functions for industrial and medical applications. With the continuously increasing number of genomes sequenced, we are confronted with an overwhelming number of predicted clusters. In order to guide the effective prioritization of biosynthetic gene clusters towards finding the most promising compounds, knowledge about diversity, phylogenetic relationships and distribution patterns of biosynthetic gene clusters is necessary. RESULTS Here, we provide a comprehensive analysis of the model actinobacterial genus Amycolatopsis and its potential for the production of secondary metabolites. A phylogenetic characterization, together with a pan-genome analysis showed that within this highly diverse genus, four major lineages could be distinguished which differed in their potential to produce secondary metabolites. Furthermore, we were able to distinguish gene cluster families whose distribution correlated with phylogeny, indicating that vertical gene transfer plays a major role in the evolution of secondary metabolite gene clusters. Still, the vast majority of the diverse biosynthetic gene clusters were derived from clusters unique to the genus, and also unique in comparison to a database of known compounds. Our study on the locations of biosynthetic gene clusters in the genomes of Amycolatopsis' strains showed that clusters acquired by horizontal gene transfer tend to be incorporated into non-conserved regions of the genome thereby allowing us to distinguish core and hypervariable regions in Amycolatopsis genomes. CONCLUSIONS Using a comparative genomics approach, it was possible to determine the potential of the genus Amycolatopsis to produce a huge diversity of secondary metabolites. Furthermore, the analysis demonstrates that horizontal and vertical gene transfer play an important role in the acquisition and maintenance of valuable secondary metabolites. Our results cast light on the interconnections between secondary metabolite gene clusters and provide a way to prioritize biosynthetic pathways in the search and discovery of novel compounds.
Collapse
Affiliation(s)
- Martina Adamek
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Mohammad Alanjary
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Helena Sales-Ortells
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Michael Goodfellow
- School of Biology, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU UK
| | - Alan T. Bull
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Anika Winkler
- Universität Bielefeld, Center for Biotechnology (CeBiTec), Bielefeld, Germany
| | - Daniel Wibberg
- Universität Bielefeld, Center for Biotechnology (CeBiTec), Bielefeld, Germany
| | - Jörn Kalinowski
- Universität Bielefeld, Center for Biotechnology (CeBiTec), Bielefeld, Germany
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
84
|
Sirota FL, Goh F, Low KN, Yang LK, Crasta SC, Eisenhaber B, Eisenhaber F, Kanagasundaram Y, Ng SB. Isolation and Identification of an Anthracimycin Analogue from Nocardiopsis kunsanensis, a Halophile from a Saltern, by Genomic Mining Strategy. J Genomics 2018; 6:63-73. [PMID: 29805716 PMCID: PMC5970133 DOI: 10.7150/jgen.24368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/25/2018] [Indexed: 11/23/2022] Open
Abstract
Modern medicine is unthinkable without antibiotics; yet, growing issues with microbial drug resistance require intensified search for new active compounds. Natural products generated by Actinobacteria have been a rich source of candidate antibiotics, for example anthracimycin that, so far, is only known to be produced by Streptomyces species. Based on sequence similarity with the respective biosynthetic cluster, we sifted through available microbial genome data with the goal to find alternative anthracimycin-producing organisms. In this work, we report about the prediction and experimental verification of the production of anthracimycin derivatives by Nocardiopsis kunsanensis, a non-Streptomyces actinobacterial microorganism. We discovered N. kunsanensis to predominantly produce a new anthracimycin derivative with methyl group at C-8 and none at C-2, labeled anthracimycin BII-2619, besides a minor amount of anthracimycin. It displays activity against Gram-positive bacteria with similar low level of mammalian cytotoxicity as that of anthracimycin.
Collapse
Affiliation(s)
- Fernanda L Sirota
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore
| | - Falicia Goh
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore
| | - Kia-Ngee Low
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore
| | - Lay-Kien Yang
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore
| | - Sharon C Crasta
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore.,School of Computer Engineering, Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore 637553, Republic of Singapore
| | - Yoganathan Kanagasundaram
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore
| | - Siew Bee Ng
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore
| |
Collapse
|
85
|
Hug JJ, Bader CD, Remškar M, Cirnski K, Müller R. Concepts and Methods to Access Novel Antibiotics from Actinomycetes. Antibiotics (Basel) 2018; 7:E44. [PMID: 29789481 PMCID: PMC6022970 DOI: 10.3390/antibiotics7020044] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/25/2022] Open
Abstract
Actinomycetes have been proven to be an excellent source of secondary metabolites for more than half a century. Exhibiting various bioactivities, they provide valuable approved drugs in clinical use. Most microorganisms are still untapped in terms of their capacity to produce secondary metabolites, since only a small fraction can be cultured in the laboratory. Thus, improving cultivation techniques to extend the range of secondary metabolite producers accessible under laboratory conditions is an important first step in prospecting underexplored sources for the isolation of novel antibiotics. Currently uncultured actinobacteria can be made available by bioprospecting extreme or simply habitats other than soil. Furthermore, bioinformatic analysis of genomes reveals most producers to harbour many more biosynthetic gene clusters than compounds identified from any single strain, which translates into a silent biosynthetic potential of the microbial world for the production of yet unknown natural products. This review covers discovery strategies and innovative methods recently employed to access the untapped reservoir of natural products. The focus is the order of actinomycetes although most approaches are similarly applicable to other microbes. Advanced cultivation methods, genomics- and metagenomics-based approaches, as well as modern metabolomics-inspired methods are highlighted to emphasise the interplay of different disciplines to improve access to novel natural products.
Collapse
Affiliation(s)
- Joachim J Hug
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Chantal D Bader
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Maja Remškar
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Katarina Cirnski
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Rolf Müller
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| |
Collapse
|
86
|
Rare taxa and dark microbial matter: novel bioactive actinobacteria abound in Atacama Desert soils. Antonie van Leeuwenhoek 2018; 111:1315-1332. [PMID: 29721711 DOI: 10.1007/s10482-018-1088-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/20/2018] [Indexed: 12/19/2022]
Abstract
An "in house" taxonomic approach to drug discovery led to the isolation of diverse actinobacteria from hyper-arid, extreme hyper-arid and very high altitude Atacama Desert soils. A high proportion of the isolates were assigned to novel taxa, with many showing activity in standard antimicrobial plug assays. The application of more advanced taxonomic and screening strategies showed that strains classified as novel species of Lentzea and Streptomyces synthesised new specialised metabolites thereby underpinning the premise that the extreme abiotic conditions in the Atacama Desert favour the development of a unique actinobacterial diversity which is the basis of novel chemistry. Complementary metagenomic analyses showed that the soils encompassed an astonishing degree of actinobacterial 'dark matter', while rank-abundance analyses showed them to be highly diverse habitats mainly composed of rare taxa that have not been recovered using culture-dependent methods. The implications of these pioneering studies on future bioprospecting campaigns are discussed.
Collapse
|
87
|
Liu T, Mazmouz R, Neilan BA. An In Vitro and In Vivo Study of Broad-Range Phosphopantetheinyl Transferases for Heterologous Expression of Cyanobacterial Natural Products. ACS Synth Biol 2018; 7:1143-1151. [PMID: 29562128 DOI: 10.1021/acssynbio.8b00091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphopantetheinyl transferases catalyze the post-translational modification of carrier proteins involved in both primary and secondary metabolism. The functional expression of polyketide synthases and nonribosomal peptide synthetases requires the activation of all carrier protein domains by phosphopantetheinyl transferases. Here we describe the characterization of five bacterial phosphopantetheinyl transferases by their substrate specificity and catalytic efficiency of four cyanobacterial carrier proteins. Comparative in vitro phosphopantetheinylation analysis showed Sfp possesses the highest catalytic efficiency over various carrier proteins. In vivo coexpression of phosphopantetheinyl transferases with carrier proteins revealed a broad range substrate specificity of phosphopantetheinyl transferases; all studied phosphopantetheinyl transferases were capable of converting apo- carrier proteins, sourced from diverse biosynthetic enzymes, to their active holo form. Phosphopantetheinyl transferase coexpression with the hybrid nonribosomal peptide synthetases/polyketide synthases responsible for microcystin biosynthesis confirmed that the higher in vitro activity of Sfp translated in vivo to a higher yield of production.
Collapse
Affiliation(s)
- Tianzhe Liu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Rabia Mazmouz
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Brett A. Neilan
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
88
|
Hoffmann T, Krug D, Bozkurt N, Duddela S, Jansen R, Garcia R, Gerth K, Steinmetz H, Müller R. Correlating chemical diversity with taxonomic distance for discovery of natural products in myxobacteria. Nat Commun 2018; 9:803. [PMID: 29476047 PMCID: PMC5824889 DOI: 10.1038/s41467-018-03184-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 01/24/2018] [Indexed: 01/22/2023] Open
Abstract
Some bacterial clades are important sources of novel bioactive natural products. Estimating the magnitude of chemical diversity available from such a resource is complicated by issues including cultivability, isolation bias and limited analytical data sets. Here we perform a systematic metabolite survey of ~2300 bacterial strains of the order Myxococcales, a well-established source of natural products, using mass spectrometry. Our analysis encompasses both known and previously unidentified metabolites detected under laboratory cultivation conditions, thereby enabling large-scale comparison of production profiles in relation to myxobacterial taxonomy. We find a correlation between taxonomic distance and the production of distinct secondary metabolite families, further supporting the idea that the chances of discovering novel metabolites are greater by examining strains from new genera rather than additional representatives within the same genus. In addition, we report the discovery and structure elucidation of rowithocin, a myxobacterial secondary metabolite featuring an uncommon phosphorylated polyketide scaffold. It is thought that the chances for discovery of novel natural products increase by screening rare organisms. Here the authors analyse metabolites produced by over 2300 myxobacterial strains and, indeed, find a correlation between taxonomic distance and production of distinct secondary metabolite families.
Collapse
Affiliation(s)
- Thomas Hoffmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124, Braunschweig, Germany
| | - Daniel Krug
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124, Braunschweig, Germany
| | - Nisa Bozkurt
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Srikanth Duddela
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Rolf Jansen
- Helmholtz Centre for Infection Research (HZI), Department of Microbial Drugs, 38124, Braunschweig, Germany
| | - Ronald Garcia
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124, Braunschweig, Germany
| | - Klaus Gerth
- Helmholtz Centre for Infection Research (HZI), Department of Microbial Drugs, 38124, Braunschweig, Germany
| | - Heinrich Steinmetz
- Helmholtz Centre for Infection Research (HZI), Department of Microbial Drugs, 38124, Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124, Braunschweig, Germany.
| |
Collapse
|
89
|
Hoffmann M, Auerbach D, Panter F, Hoffmann T, Dorrestein PC, Müller R. Homospermidine Lipids: A Compound Class Specifically Formed during Fruiting Body Formation of Myxococcus xanthus DK1622. ACS Chem Biol 2018; 13:273-280. [PMID: 29185703 DOI: 10.1021/acschembio.7b00816] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The fascinating ability of myxobacteria to form multicellular spore filled fruiting bodies under starvation conditions was widely studied as a model for cooperative microbial behavior. The potential of a life cycle induced change of secondary metabolism, as a means to discover novel natural products, remains largely underexplored. We therefore studied the model organism Myxococcus xanthus DK1622 under submersed and solid cultivation conditions to find putatively life-cycle related compounds by applying statistical analysis on analytical data. Utilizing the advantageous characteristics of LC-MS, LC-MS/MS, and MALDI-MSI allowed the identification of compounds unambiguously associated with myxobacterial fruiting bodies. Our screening effort resulted in the purification and structure elucidation of a novel compound, the homospermidine lipid, from cultures that had undergone the fruiting process. A combination of molecular networking and targeted LC-MS/MS in conjunction with our in-house metabolomics database subsequently revealed alternative producers of the respective compound as well as a number of compounds belonging to the same structural class. Three further members of this compound class were isolated from an alternative producer and structurally elucidated by NMR. Insights into the biosynthesis of this novel compound class was gained by feeding of isotopically labeled substrates and in silico analysis.
Collapse
Affiliation(s)
- Michael Hoffmann
- Department
of Microbial Natural Products (MINS), Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) and Institute for Pharmaceutical Biotechnology, Saarland University, 66123 Saarbrücken, Germany
| | - David Auerbach
- Department
of Microbial Natural Products (MINS), Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) and Institute for Pharmaceutical Biotechnology, Saarland University, 66123 Saarbrücken, Germany
| | - Fabian Panter
- Department
of Microbial Natural Products (MINS), Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) and Institute for Pharmaceutical Biotechnology, Saarland University, 66123 Saarbrücken, Germany
| | - Thomas Hoffmann
- Department
of Microbial Natural Products (MINS), Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) and Institute for Pharmaceutical Biotechnology, Saarland University, 66123 Saarbrücken, Germany
- Collaborative Mass Spectrometry Innovation Center, Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San
Diego, California 92093, United States
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San
Diego, California 92093, United States
| | - Rolf Müller
- Department
of Microbial Natural Products (MINS), Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) and Institute for Pharmaceutical Biotechnology, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
90
|
Abstract
Covering: 2016. Previous review: Nat. Prod. Rep., 2017, 34, 235-294This review covers the literature published in 2016 for marine natural products (MNPs), with 757 citations (643 for the period January to December 2016) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1277 in 432 papers for 2016), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
91
|
Carro L, Nouioui I, Sangal V, Meier-Kolthoff JP, Trujillo ME, Montero-Calasanz MDC, Sahin N, Smith DL, Kim KE, Peluso P, Deshpande S, Woyke T, Shapiro N, Kyrpides NC, Klenk HP, Göker M, Goodfellow M. Genome-based classification of micromonosporae with a focus on their biotechnological and ecological potential. Sci Rep 2018; 8:525. [PMID: 29323202 PMCID: PMC5765111 DOI: 10.1038/s41598-017-17392-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022] Open
Abstract
There is a need to clarify relationships within the actinobacterial genus Micromonospora, the type genus of the family Micromonosporaceae, given its biotechnological and ecological importance. Here, draft genomes of 40 Micromonospora type strains and two non-type strains are made available through the Genomic Encyclopedia of Bacteria and Archaea project and used to generate a phylogenomic tree which showed they could be assigned to well supported phyletic lines that were not evident in corresponding trees based on single and concatenated sequences of conserved genes. DNA G+C ratios derived from genome sequences showed that corresponding data from species descriptions were imprecise. Emended descriptions include precise base composition data and approximate genome sizes of the type strains. antiSMASH analyses of the draft genomes show that micromonosporae have a previously unrealised potential to synthesize novel specialized metabolites. Close to one thousand biosynthetic gene clusters were detected, including NRPS, PKS, terpenes and siderophores clusters that were discontinuously distributed thereby opening up the prospect of prioritising gifted strains for natural product discovery. The distribution of key stress related genes provide an insight into how micromonosporae adapt to key environmental variables. Genes associated with plant interactions highlight the potential use of micromonosporae in agriculture and biotechnology.
Collapse
Affiliation(s)
- Lorena Carro
- School of Biology, Newcastle University, Newcastle upon Tyne, UK.
| | - Imen Nouioui
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| | - Vartul Sangal
- Department of Biomedical Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Jan P Meier-Kolthoff
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Braunschweig, Germany
| | - Martha E Trujillo
- Departamento de Microbiologia y Genetica, Lab 214, Universidad de Salamanca, Salamanca, Spain
| | | | - Nevzat Sahin
- Department of Biology, Faculty of Art and Science, Ondokuz Mayis University, Kurupelit-Samsun, Turkey
| | - Darren Lee Smith
- Department of Biomedical Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Kristi E Kim
- Pacific Biosciences, 1380 Willow Rd, Menlo Park, California, USA
| | - Paul Peluso
- Pacific Biosciences, 1380 Willow Rd, Menlo Park, California, USA
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Nicole Shapiro
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | - Hans-Peter Klenk
- School of Biology, Newcastle University, Newcastle upon Tyne, UK.
| | - Markus Göker
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Braunschweig, Germany
| | | |
Collapse
|
92
|
Joynt R, Seipke RF. A phylogenetic and evolutionary analysis of antimycin biosynthesis. MICROBIOLOGY-SGM 2017; 164:28-39. [PMID: 29111964 PMCID: PMC5883857 DOI: 10.1099/mic.0.000572] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Streptomyces species and other Actinobacteria are ubiquitous in diverse environments worldwide and are the source of, or inspiration for, the majority of antibiotics. The genomic era has enhanced biosynthetic understanding of these valuable chemical entities and has also provided a window into the diversity and distribution of natural product biosynthetic gene clusters. Antimycin is an inhibitor of mitochondrial cytochrome c reductase and more recently was shown to inhibit Bcl-2/Bcl-XL-related anti-apoptotic proteins commonly overproduced by cancerous cells. Here we identify 73 putative antimycin biosynthetic gene clusters (BGCs) in publicly available genome sequences of Actinobacteria and classify them based on the presence or absence of cluster-situated genes antP and antQ, which encode a kynureninase and a phosphopantetheinyl transferase (PPTase), respectively. The majority of BGCs possess either both antP and antQ (L-form) or neither (S-form), while a minority of them lack either antP or antQ (IQ- or IP-form, respectively). We also evaluate the biogeographical distribution and phylogenetic relationships of antimycin producers and BGCs. We show that antimycin BGCs occur on five of the seven continents and are frequently isolated from plants and other higher organisms. We also provide evidence for two distinct phylogenetic clades of antimycin producers and gene clusters, which delineate S-form from L- and I-form BGCs. Finally, our findings suggest that the ancestral antimycin producer harboured an L-form gene cluster which was primarily propagated by vertical transmission and subsequently diversified into S-, IQ- and IP-form biosynthetic pathways.
Collapse
Affiliation(s)
- Rebecca Joynt
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Ryan F Seipke
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
93
|
Davis AM, Plowright AT, Valeur E. Directing evolution: the next revolution in drug discovery? Nat Rev Drug Discov 2017; 16:681-698. [PMID: 28935911 DOI: 10.1038/nrd.2017.146] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The strong biological rationale to pursue challenging drug targets such as protein-protein interactions has stimulated the development of novel screening strategies, such as DNA-encoded libraries, to allow broader areas of chemical space to be searched. There has also been renewed interest in screening natural products, which are the result of evolutionary selection for a function, such as interference with a key signalling pathway of a competing organism. However, recent advances in several areas, such as understanding of the biosynthetic pathways for natural products, synthetic biology and the development of biosensors to detect target molecules, are now providing new opportunities to directly harness evolutionary pressure to identify and optimize compounds with desired bioactivities. Here, we describe innovations in the key components of such strategies and highlight pioneering examples that indicate the potential of the directed-evolution concept. We also discuss the scientific gaps and challenges that remain to be addressed to realize this potential more broadly in drug discovery.
Collapse
Affiliation(s)
- Andrew M Davis
- AstraZeneca R&D Gothenburg, Pepparedsleden 1, Mölndal, 43150, Sweden
| | - Alleyn T Plowright
- Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Eric Valeur
- AstraZeneca R&D Gothenburg, Pepparedsleden 1, Mölndal, 43150, Sweden
| |
Collapse
|
94
|
Bruns H, Crüsemann M, Letzel AC, Alanjary M, McInerney JO, Jensen PR, Schulz S, Moore BS, Ziemert N. Function-related replacement of bacterial siderophore pathways. ISME JOURNAL 2017; 12:320-329. [PMID: 28809850 PMCID: PMC5776446 DOI: 10.1038/ismej.2017.137] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/13/2017] [Accepted: 07/14/2017] [Indexed: 01/16/2023]
Abstract
Bacterial genomes are rife with orphan biosynthetic gene clusters (BGCs) associated with secondary metabolism of unrealized natural product molecules. Often up to a tenth of the genome is predicted to code for the biosynthesis of diverse metabolites with mostly unknown structures and functions. This phenomenal diversity of BGCs coupled with their high rates of horizontal transfer raise questions about whether they are really active and beneficial, whether they are neutral and confer no advantage, or whether they are carried in genomes because they are parasitic or addictive. We previously reported that Salinispora bacteria broadly use the desferrioxamine family of siderophores for iron acquisition. Herein we describe a new and unrelated group of peptidic siderophores called salinichelins from a restricted number of Salinispora strains in which the desferrioxamine biosynthesis genes have been lost. We have reconstructed the evolutionary history of these two different siderophore families and show that the acquisition and retention of the new salinichelin siderophores co-occurs with the loss of the more ancient desferrioxamine pathway. This identical event occurred at least three times independently during the evolution of the genus. We surmise that certain BGCs may be extraneous because of their functional redundancy and demonstrate that the relative evolutionary pace of natural pathway replacement shows high selective pressure against retention of functionally superfluous gene clusters.
Collapse
Affiliation(s)
- Hilke Bruns
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany.,Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Max Crüsemann
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Anne-Catrin Letzel
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Mohammad Alanjary
- German Center for Infection Biology (DZIF), Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - James O McInerney
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, Health and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Nadine Ziemert
- German Center for Infection Biology (DZIF), Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| |
Collapse
|
95
|
Letzel AC, Li J, Amos GCA, Millán-Aguiñaga N, Ginigini J, Abdelmohsen UR, Gaudêncio SP, Ziemert N, Moore BS, Jensen PR. Genomic insights into specialized metabolism in the marine actinomycete Salinispora. Environ Microbiol 2017; 19:3660-3673. [PMID: 28752948 DOI: 10.1111/1462-2920.13867] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 11/28/2022]
Abstract
Comparative genomics is providing new opportunities to address the diversity and distributions of genes encoding the biosynthesis of specialized metabolites. An analysis of 119 genome sequences representing three closely related species of the marine actinomycete genus Salinispora reveals extraordinary biosynthetic diversity in the form of 176 distinct biosynthetic gene clusters (BGCs) of which only 24 have been linked to their products. Remarkably, more than half of the BGCs were observed in only one or two strains, suggesting they were acquired relatively recently in the evolutionary history of the genus. These acquired gene clusters are concentrated in specific genomic islands, which represent hot spots for BGC acquisition. While most BGCs are stable in terms of their chromosomal position, others migrated to different locations or were exchanged with unrelated gene clusters suggesting a plug and play type model of evolution that provides a mechanism to test the relative fitness effects of specialized metabolites. Transcriptome analyses were used to address the relationships between BGC abundance, chromosomal position and product discovery. The results indicate that recently acquired BGCs can be functional and that complex evolutionary processes shape the micro-diversity of specialized metabolism observed in closely related environmental bacteria.
Collapse
Affiliation(s)
- Anne-Catrin Letzel
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Jing Li
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Gregory C A Amos
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Natalie Millán-Aguiñaga
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California 22800, Mexico
| | - Joape Ginigini
- Institute of Applied Sciences, Faculty of Science, Technology and Environment, University of the South Pacific, Laucala Campus, Private Mail Bag, Suva, Fiji
| | - Usama R Abdelmohsen
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Germany.,Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Susana P Gaudêncio
- Department of Chemistry, REQUIMTE, LAQV and UCIBIO, Faculty of Science and Technology, Universidade NOVA de Lisboa, Caparica 2529-516, Portugal
| | - Nadine Ziemert
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Interfaculty Institute of Microbiology and Infection Medicine Tuübingen, University of Tuübingen, Auf der Morgenstelle 28, Tuübingen 72076, Germany
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of 9500 Gilman Dr, La Jolla, CA 92093, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
96
|
Ceniceros A, Dijkhuizen L, Petrusma M, Medema MH. Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus. BMC Genomics 2017; 18:593. [PMID: 28793878 PMCID: PMC5550956 DOI: 10.1186/s12864-017-3966-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/27/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Bacteria of the genus Rhodococcus are well known for their ability to degrade a large range of organic compounds. Some rhodococci are free-living, saprophytic bacteria; others are animal and plant pathogens. Recently, several studies have shown that their genomes encode putative pathways for the synthesis of a large number of specialized metabolites that are likely to be involved in microbe-microbe and host-microbe interactions. To systematically explore the specialized metabolic potential of this genus, we here performed a comprehensive analysis of the biosynthetic coding capacity across publicly available rhododoccal genomes, and compared these with those of several Mycobacterium strains as well as that of their mutual close relative Amycolicicoccus subflavus. RESULTS Comparative genomic analysis shows that most predicted biosynthetic gene cluster families in these strains are clade-specific and lack any homology with gene clusters encoding the production of known natural products. Interestingly, many of these clusters appear to encode the biosynthesis of lipopeptides, which may play key roles in the diverse environments were rhodococci thrive, by acting as biosurfactants, pathogenicity factors or antimicrobials. We also identified several gene cluster families that are universally shared among all three genera, which therefore may have a more 'primary' role in their physiology. Inactivation of these clusters by mutagenesis might help to generate weaker strains that can be used as live vaccines. CONCLUSIONS The genus Rhodococcus thus provides an interesting target for natural product discovery, in view of its large and mostly uncharacterized biosynthetic repertoire, its relatively fast growth and the availability of effective genetic tools for its genomic modification.
Collapse
Affiliation(s)
- Ana Ceniceros
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands.
| | - Mirjan Petrusma
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands.
| |
Collapse
|
97
|
Zhang B, Tian W, Wang S, Yan X, Jia X, Pierens GK, Chen W, Ma H, Deng Z, Qu X. Activation of Natural Products Biosynthetic Pathways via a Protein Modification Level Regulation. ACS Chem Biol 2017; 12:1732-1736. [PMID: 28562006 DOI: 10.1021/acschembio.7b00225] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Natural products are critical for drug discovery and development; however their discovery is challenged by the wide inactivation or silence of microbial biosynthetic pathways. Currently strategies targeting this problem are mainly concentrated on chromosome dissembling, transcription, and translation-stage regulations as well as chemical stimulation. In this study, we developed a novel approach to awake cryptic/silenced microbial biosynthetic pathways through augmentation of the conserved protein modification step-phosphopantetheinylation of carrier proteins. Overexpression of phosphopantetheinyl transferase (Pptase) genes into 33 Actinomycetes achieved a significantly high activation ratio at which 23 (70%) strains produced new metabolites. Genetic and biochemical studies on the mode-of-action revealed that exogenous PPtases triggered the activation of carrier proteins and subsequent production of metabolites. With this approach we successfully identified five oviedomycin and halichomycin-like compounds from two strains. This study provides a novel approach to efficiently activate cryptic/silenced biosynthetic pathways which will be useful for natural products discovery.
Collapse
Affiliation(s)
- Benyin Zhang
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry
of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China, 430072
- State
Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Wenya Tian
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry
of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China, 430072
| | - Shuwen Wang
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry
of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China, 430072
| | - Xiaoli Yan
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry
of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China, 430072
| | - Xinying Jia
- Centre
for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Gregory K. Pierens
- Centre
for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Wenqing Chen
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry
of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China, 430072
| | - Hongmin Ma
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry
of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China, 430072
| | - Zixin Deng
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry
of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China, 430072
| | - Xudong Qu
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry
of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China, 430072
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, Jiangsu, China
| |
Collapse
|
98
|
Hagel JM, Facchini PJ. Tying the knot: occurrence and possible significance of gene fusions in plant metabolism and beyond. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4029-4043. [PMID: 28521055 DOI: 10.1093/jxb/erx152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Gene fusions have recently attracted attention especially in the field of plant specialized metabolism. The occurrence of a gene fusion, in which originally separate gene products are combined into a single polypeptide, often corresponds to the functional association of individual components within a single metabolic pathway. Examples include gene fusions implicated in benzylisoquinoline alkaloid (BIA), terpenoid, and amino acid biosynthetic pathways, in which distinct domains within a fusion catalyze consecutive, yet independent reactions. Both genomic and transcriptional mechanisms result in the fusion of gene products, which can include partial or complete domain repeats and extensive domain shuffling as evident in the BIA biosynthetic enzyme norcoclaurine synthase. Artificial gene fusions are commonly deployed in attempts to engineer new or improved pathways in plants or microorganisms, based on the premise that fusions are advantageous. However, a survey of functionally characterized fusions in microbial systems shows that the functional impact of fused gene products is not straightforward. For example, whereas enzyme fusions might facilitate the metabolic channeling of unstable intermediates, this channeling can also occur between tightly associated independent enzymes. The frequent occurrence of both fused and unfused enzymes in plant and microbial metabolism adds additional complexity, in terms of both pathway functionality and evolution.
Collapse
Affiliation(s)
- Jillian M Hagel
- Department of Biological Sciences, University of Calgary, 2500 University Dr N.W., Alberta T2N 1N4, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, 2500 University Dr N.W., Alberta T2N 1N4, Canada
| |
Collapse
|
99
|
Millán-Aguiñaga N, Chavarria KL, Ugalde JA, Letzel AC, Rouse GW, Jensen PR. Phylogenomic Insight into Salinispora (Bacteria, Actinobacteria) Species Designations. Sci Rep 2017; 7:3564. [PMID: 28620214 PMCID: PMC5472633 DOI: 10.1038/s41598-017-02845-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/18/2017] [Indexed: 11/12/2022] Open
Abstract
Bacteria represent the most genetically diverse kingdom of life. While great progress has been made in describing this diversity, it remains difficult to identify the phylogenetic and ecological characteristics that delineate groups of bacteria that possess species-like properties. One major challenge associated with species delineations is that not all shared genes have the same evolutionary history, and thus the choice of loci can have a major impact on phylogenetic reconstruction. Sequencing the genomes of large numbers of closely related strains provides new opportunities to distinguish ancestral from acquired alleles and assess the effects of recombination on phylogenetic inference. Here we analyzed the genomes of 119 strains of the marine actinomycete genus Salinispora, which is currently comprised of three named species that share 99% 16S rRNA gene sequence identity. While 63% of the core genome showed evidence of recombination, this had no effect on species-level phylogenomic resolution. Recombination did however blur intra-species relationships and biogeographic resolution. The genome-wide average nucleotide identity provided a new perspective on Salinispora diversity, revealing as many as seven new species. Patterns of orthologous group distributions reveal a genetic basis to delineation the candidate taxa and insight into the levels of genetic cohesion associated with bacterial species.
Collapse
Affiliation(s)
- Natalie Millán-Aguiñaga
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States.,Universidad Autónoma de Baja California. Facultad de Ciencias Marinas, Ensenada, Baja California, Mexico
| | - Krystle L Chavarria
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States
| | - Juan A Ugalde
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States.,Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias Biológicas, Universidad Andrés Bella, Santiago, Chile
| | - Anne-Catrin Letzel
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States
| | - Greg W Rouse
- Marine Biology Research Division Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States. .,Marine Biology Research Division Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States.
| |
Collapse
|
100
|
Abstract
With the advent of very rapid and cheap genome analyses and the linkage of these plus microbial metabolomics to potential compound structures came the realization that there was an immense sea of novel agents to be mined and tested. In addition, it is now recognized that there is significant microbial involvement in many natural products isolated from “nominally non-microbial sources”. This short review covers the current screening methods that have evolved and one might even be tempted to say “devolved” in light of the realization that target-based screens had problems when the products entered clinical testing, with off-target effects being the major ones. Modern systems include, but are not limited to, screening in cell lines utilizing very modern techniques (a high content screen) that are designed to show interactions within cells when treated with an “agent”. The underlying principle(s) used in such systems dated back to unpublished attempts in the very early 1980s by the pharmaceutical industry to show toxic interactions within animal cells by using automated light microscopy. Though somewhat successful, the technology was not adequate for any significant commercialization. Somewhat later, mammalian cell lines that were “genetically modified” to alter signal transduction cascades, either up or down, and frequently linked to luciferase readouts, were then employed in a 96-well format. In the case of microbes, specific resistance parameters were induced in isogenic cell lines from approximately the mid-1970s. In the latter two cases, comparisons against parent and sibling cell lines were used in order that a rapid determination of potential natural product “hits” could be made. Obviously, all of these assay systems could also be, and were, used for synthetic molecules. These methods and their results have led to a change in what the term “screening for bioactivity” means. In practice, versions of phenotypic screening are returning, but in a dramatically different scientific environment from the 1970s, as I hope to demonstrate in the short article that follows.
Collapse
|