51
|
The implications of the shared genetics of psychiatric disorders. Nat Med 2016; 22:1214-1219. [DOI: 10.1038/nm.4196] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022]
|
52
|
Ho TC, Sanders SJ, Gotlib IH, Hoeft F. Intergenerational Neuroimaging of Human Brain Circuitry. Trends Neurosci 2016; 39:644-648. [PMID: 27623194 DOI: 10.1016/j.tins.2016.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/16/2016] [Accepted: 08/19/2016] [Indexed: 12/13/2022]
Abstract
Neuroscientists are increasingly using advanced neuroimaging methods to elucidate the intergenerational transmission of human brain circuitry. This new line of work promises to shed light on the ontogeny of complex behavioral traits, including psychiatric disorders, and possible mechanisms of transmission. Here we highlight recent intergenerational neuroimaging studies and provide recommendations for future work.
Collapse
Affiliation(s)
- Tiffany C Ho
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Psychology, Stanford University, Stanford, CA, USA
| | - Stephan J Sanders
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA, USA; Neurosciences Program, Stanford University, Stanford, CA, USA
| | - Fumiko Hoeft
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
53
|
Geiger MJ, Domschke K, Homola GA, Schulz SM, Nowak J, Akhrif A, Pauli P, Deckert J, Neufang S. ADORA2A genotype modulates interoceptive and exteroceptive processing in a fronto-insular network. Eur Neuropsychopharmacol 2016; 26:1274-85. [PMID: 27262510 DOI: 10.1016/j.euroneuro.2016.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/07/2016] [Accepted: 05/18/2016] [Indexed: 01/18/2023]
Abstract
Facilitated processing of interoceptive and exteroceptive information in the salience network is suggested to promote the development of anxiety and anxiety disorders. Here, it was investigated whether the adenosine 2 A receptor gene (ADORA2A) 1976T/C (rs5751876) variant - previously associated with anxiety disorders and anxiety-related phenotypes as well as general attentional efficiency -was involved in the regulation of this network. In detail, fMRI recordings of 65 healthy participants (female=35) were analyzed regarding ADORA2A genotype effects on brain connectivity related to (1) interoceptive processing in terms of functional connectivity resting-state fMRI, and (2) exteroceptive processing using dynamic causal modeling in task-based fMRI. In a subsample, cardiac interoceptive accuracy was furthermore measured via the Mental Tracking Task. ADORA2A genotype was found to modulate a fronto-insular network at rest (interoceptive processing) and while performing an executive control task (exteroceptive processing). Across both modalities, the ADORA2A TT risk genotype was associated with increased connectivity between the insula and the prefrontal cortex. The strength in connectivity correlated with interoceptive accuracy. It is concluded that alterations in fronto-insular connectivity are modulated by both the adenosinergic system and interoceptive accuracy. Thus, fronto-insular connectivity in synopsis with ADORA2A genotypic information could serve as combined biomarkers for personalized treatment approaches in anxiety disorders targeting exteroceptive and interoceptive dysfunction.
Collapse
Affiliation(s)
- Maximilian J Geiger
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Germany
| | - Katharina Domschke
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Germany
| | - György A Homola
- Department of Neuroradiology, University of Wuerzburg, Germany
| | - Stefan M Schulz
- Department of Psychology I, University of Wuerzburg, Germany; Chronic Heart Failure Center Wuerzburg, University Hospital of Wuerzburg, Germany
| | - Johannes Nowak
- Department of Neuroradiology, University of Wuerzburg, Germany; Institute for Diagnostic and Interventional Radiology, University of Wuerzburg, Germany
| | - Atae Akhrif
- Department of Child and Adolescent Psychiatry, University of Wuerzburg, Germany
| | - Paul Pauli
- Department of Psychology I, University of Wuerzburg, Germany; Chronic Heart Failure Center Wuerzburg, University Hospital of Wuerzburg, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Germany
| | - Susanne Neufang
- Department of Child and Adolescent Psychiatry, University of Wuerzburg, Germany.
| |
Collapse
|
54
|
Exploiting aberrant mRNA expression in autism for gene discovery and diagnosis. Hum Genet 2016; 135:797-811. [DOI: 10.1007/s00439-016-1673-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/17/2016] [Indexed: 01/09/2023]
|
55
|
Zhao Y, Castellanos FX. Annual Research Review: Discovery science strategies in studies of the pathophysiology of child and adolescent psychiatric disorders--promises and limitations. J Child Psychol Psychiatry 2016; 57:421-39. [PMID: 26732133 PMCID: PMC4760897 DOI: 10.1111/jcpp.12503] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Psychiatric science remains descriptive, with a categorical nosology intended to enhance interobserver reliability. Increased awareness of the mismatch between categorical classifications and the complexity of biological systems drives the search for novel frameworks including discovery science in Big Data. In this review, we provide an overview of incipient approaches, primarily focused on classically categorical diagnoses such as schizophrenia (SZ), autism spectrum disorder (ASD), and attention-deficit/hyperactivity disorder (ADHD), but also reference convincing, if focal, advances in cancer biology, to describe the challenges of Big Data and discovery science, and outline approaches being formulated to overcome existing obstacles. FINDINGS A paradigm shift from categorical diagnoses to a domain/structure-based nosology and from linear causal chains to complex causal network models of brain-behavior relationship is ongoing. This (r)evolution involves appreciating the complexity, dimensionality, and heterogeneity of neuropsychiatric data collected from multiple sources ('broad' data) along with data obtained at multiple levels of analysis, ranging from genes to molecules, cells, circuits, and behaviors ('deep' data). Both of these types of Big Data landscapes require the use and development of robust and powerful informatics and statistical approaches. Thus, we describe Big Data analysis pipelines and the promise and potential limitations in using Big Data approaches to study psychiatric disorders. CONCLUSIONS We highlight key resources available for psychopathological studies and call for the application and development of Big Data approaches to dissect the causes and mechanisms of neuropsychiatric disorders and identify corresponding biomarkers for early diagnosis.
Collapse
Affiliation(s)
- Yihong Zhao
- Department of Child and Adolescent Psychiatry, NYU Child Study Center at NYU Langone Medical Center, New York, NY 10016, USA
| | - F. Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Child Study Center at NYU Langone Medical Center, New York, NY 10016, USA,Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| |
Collapse
|
56
|
Cognitive intermediate phenotype and genetic risk for psychosis. Curr Opin Neurobiol 2016; 36:23-30. [DOI: 10.1016/j.conb.2015.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/11/2015] [Accepted: 08/26/2015] [Indexed: 12/26/2022]
|
57
|
Abstract
Endophenotypes are quantitative, heritable traits that may help to elucidate the pathophysiologic mechanisms underlying complex disease syndromes, such as schizophrenia. They can be assessed at numerous levels of analysis; here, we review electrophysiological endophenotypes that have shown promise in helping us understand schizophrenia from a more mechanistic point of view. For each endophenotype, we describe typical experimental procedures, reliability, heritability, and reported gene and neurobiological associations. We discuss recent findings regarding the genetic architecture of specific electrophysiological endophenotypes, as well as converging evidence from EEG studies implicating disrupted balance of glutamatergic signaling and GABAergic inhibition in the pathophysiology of schizophrenia. We conclude that refining the measurement of electrophysiological endophenotypes, expanding genetic association studies, and integrating data sets are important next steps for understanding the mechanisms that connect identified genetic risk loci for schizophrenia to the disease phenotype.
Collapse
Affiliation(s)
- Emily Owens
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA
| | - Peter Bachman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - David C Glahn
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford, CT,Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
58
|
Schulze-Rauschenbach S, Lennertz L, Ruhrmann S, Petrovsky N, Ettinger U, Pukrop R, Dreher J, Klosterkötter J, Maier W, Wagner M. Neurocognitive functioning in parents of schizophrenia patients: Attentional and executive performance vary with genetic loading. Psychiatry Res 2015; 230:885-91. [PMID: 26619916 DOI: 10.1016/j.psychres.2015.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/06/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
Neuropsychological deficits are candidate endophenotypes of schizophrenia which can assist to explain the neurocognitive impact of genetic risk variants. The identification of endophenotypes is often based on the familiality of these phenotypes. Several studies demonstrate neuropsychological deficits in unaffected biological relatives of schizophrenia patients without differentiating between genetic and non-genetic factors underlying these deficits. We assessed N=129 unaffected biological parents of schizophrenia patients, N=28 schizophrenia patients (paranoid subtype), and N=143 controls without a family history of schizophrenia with an extensive neuropsychological test battery. Direct comparison of N=22 parents with an ancestral history of schizophrenia (more likely carriers, MLC) and N=17 of their spouses without such a history (less likely carriers, LLC) allowed the separation of genetic and non-genetic aspects in cognition. Overall, parents showed significant deficits in neuropsychological tasks from all cognitive domains with medium effect sizes. Direct comparisons of MLC- and LLC-parents showed that attentional and executive tasks were most strongly affected by genetic loading. To conclude, unaffected parents of schizophrenia patients showed modest yet significant impairments in attention, memory, and executive functioning. In particular, attentional and executive impairments varied most strongly with genetic loading for schizophrenia, prioritising these dysfunctions for genotype-endophenotype analyses.
Collapse
Affiliation(s)
| | - Leonhard Lennertz
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Stephan Ruhrmann
- Department of Psychiatry and Psychotherapy, University of Cologne, Germany
| | | | | | - Ralf Pukrop
- Department of Psychiatry and Psychotherapy, University of Cologne, Germany
| | - Jan Dreher
- Department of Psychiatry and Psychotherapy, University of Cologne, Germany; Department of Psychiatry, Neurology, and Psychotherapy, Clinic Königshof Krefeld, Germany
| | | | - Wolfgang Maier
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany; DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Michael Wagner
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany; DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany.
| |
Collapse
|
59
|
Hnrnph1 Is A Quantitative Trait Gene for Methamphetamine Sensitivity. PLoS Genet 2015; 11:e1005713. [PMID: 26658939 PMCID: PMC4675533 DOI: 10.1371/journal.pgen.1005713] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/09/2015] [Indexed: 11/19/2022] Open
Abstract
Psychostimulant addiction is a heritable substance use disorder; however its genetic basis is almost entirely unknown. Quantitative trait locus (QTL) mapping in mice offers a complementary approach to human genome-wide association studies and can facilitate environment control, statistical power, novel gene discovery, and neurobiological mechanisms. We used interval-specific congenic mouse lines carrying various segments of chromosome 11 from the DBA/2J strain on an isogenic C57BL/6J background to positionally clone a 206 kb QTL (50,185,512–50,391,845 bp) that was causally associated with a reduction in the locomotor stimulant response to methamphetamine (2 mg/kg, i.p.; DBA/2J < C57BL/6J)—a non-contingent, drug-induced behavior that is associated with stimulation of the dopaminergic reward circuitry. This chromosomal region contained only two protein coding genes—heterogeneous nuclear ribonucleoprotein, H1 (Hnrnph1) and RUN and FYVE domain-containing 1 (Rufy1). Transcriptome analysis via mRNA sequencing in the striatum implicated a neurobiological mechanism involving a reduction in mesolimbic innervation and striatal neurotransmission. For instance, Nr4a2 (nuclear receptor subfamily 4, group A, member 2), a transcription factor crucial for midbrain dopaminergic neuron development, exhibited a 2.1-fold decrease in expression (DBA/2J < C57BL/6J; p 4.2 x 10−15). Transcription activator-like effector nucleases (TALENs)-mediated introduction of frameshift deletions in the first coding exon of Hnrnph1, but not Rufy1, recapitulated the reduced methamphetamine behavioral response, thus identifying Hnrnph1 as a quantitative trait gene for methamphetamine sensitivity. These results define a novel contribution of Hnrnph1 to neurobehavioral dysfunction associated with dopaminergic neurotransmission. These findings could have implications for understanding the genetic basis of methamphetamine addiction in humans and the development of novel therapeutics for prevention and treatment of substance abuse and possibly other psychiatric disorders. Both genetic and environmental factors can powerfully modulate susceptibility to substance use disorders. Quantitative trait locus (QTL) mapping is an unbiased discovery-based approach that is used to identify novel genetic factors and provide new mechanistic insight into phenotypic variation associated with disease. In this study, we focused on the genetic basis of variation in sensitivity to the acute locomotor stimulant response to methamphetamine which is a behavioral phenotype in rodents that is associated with stimulated dopamine release and activation of the brain reward circuitry involved in addiction. Using brute force monitoring of recombination events associated with changes in behavior, we fortuitously narrowed the genotype-phenotype association down to just two genes that we subsequently targeted using a contemporary genome editing approach. The gene that we validated–Hnrnph1 –is an RNA binding protein that did not have any previously known function in psychostimulant behavior or psychostimulant addiction. Our behavioral data combined with our gene expression results provide a compelling rationale for a new line of investigation regarding Hnrnph1 and its role in neural development and plasticity associated with the addictions and perhaps other dopamine-dependent psychiatric disorders.
Collapse
|
60
|
Abstract
Among the common mental illnesses in childhood and adolescence, the unipolar depressions are the most concerning. These mental illnesses are aetiologically and clinically heterogeneous and little is known about their pathophysiology. This selected review considers the contribution of genetic and environmental factors in the emergence of these illnesses in the second decade of life.
Collapse
|
61
|
Bruining H, Matsui A, Oguro-Ando A, Kahn RS, Van't Spijker HM, Akkermans G, Stiedl O, van Engeland H, Koopmans B, van Lith HA, Oppelaar H, Tieland L, Nonkes LJ, Yagi T, Kaneko R, Burbach JPH, Yamamoto N, Kas MJ. Genetic Mapping in Mice Reveals the Involvement of Pcdh9 in Long-Term Social and Object Recognition and Sensorimotor Development. Biol Psychiatry 2015; 78:485-95. [PMID: 25802080 DOI: 10.1016/j.biopsych.2015.01.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND Quantitative genetic analysis of basic mouse behaviors is a powerful tool to identify novel genetic phenotypes contributing to neurobehavioral disorders. Here, we analyzed genetic contributions to single-trial, long-term social and nonsocial recognition and subsequently studied the functional impact of an identified candidate gene on behavioral development. METHODS Genetic mapping of single-trial social recognition was performed in chromosome substitution strains, a sophisticated tool for detecting quantitative trait loci (QTL) of complex traits. Follow-up occurred by generating and testing knockout (KO) mice of a selected QTL candidate gene. Functional characterization of these mice was performed through behavioral and neurological assessments across developmental stages and analyses of gene expression and brain morphology. RESULTS Chromosome substitution strain 14 mapping studies revealed an overlapping QTL related to long-term social and object recognition harboring Pcdh9, a cell-adhesion gene previously associated with autism spectrum disorder. Specific long-term social and object recognition deficits were confirmed in homozygous (KO) Pcdh9-deficient mice, while heterozygous mice only showed long-term social recognition impairment. The recognition deficits in KO mice were not associated with alterations in perception, multi-trial discrimination learning, sociability, behavioral flexibility, or fear memory. Rather, KO mice showed additional impairments in sensorimotor development reflected by early touch-evoked biting, rotarod performance, and sensory gating deficits. This profile emerged with structural changes in deep layers of sensory cortices, where Pcdh9 is selectively expressed. CONCLUSIONS This behavior-to-gene study implicates Pcdh9 in cognitive functions required for long-term social and nonsocial recognition. This role is supported by the involvement of Pcdh9 in sensory cortex development and sensorimotor phenotypes.
Collapse
Affiliation(s)
- Hilgo Bruining
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Asuka Matsui
- Neuroscience Laboratories, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Asami Oguro-Ando
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - René S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Heleen M Van't Spijker
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Guus Akkermans
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Oliver Stiedl
- Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam
| | - Herman van Engeland
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Hein A van Lith
- Division of Animal Welfare & Laboratory Animal Science, Department of Animals in Science and Society, Program Emotion and Cognition, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Hugo Oppelaar
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Liselotte Tieland
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lourens J Nonkes
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Takeshi Yagi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Ryosuke Kaneko
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nobuhiko Yamamoto
- Neuroscience Laboratories, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Martien J Kas
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
62
|
Yamasue H. Using endophenotypes to examine molecules related to candidate genes as novel therapeutics: The “endophenotype-associated surrogate endpoint (EASE)” concept. Neurosci Res 2015; 99:1-7. [DOI: 10.1016/j.neures.2015.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/25/2015] [Accepted: 05/25/2015] [Indexed: 01/16/2023]
|
63
|
McAdams CJ, Lohrenz T, Montague PR. Neural responses to kindness and malevolence differ in illness and recovery in women with anorexia nervosa. Hum Brain Mapp 2015; 36:5207-19. [PMID: 26416161 DOI: 10.1002/hbm.23005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/26/2015] [Accepted: 09/16/2015] [Indexed: 11/12/2022] Open
Abstract
In anorexia nervosa, problems with social relationships contribute to illness, and improvements in social support are associated with recovery. Using the multiround trust game and 3T MRI, we compare neural responses in a social relationship in three groups of women: women with anorexia nervosa, women in long-term weight recovery from anorexia nervosa, and healthy comparison women. Surrogate markers related to social signals in the game were computed each round to assess whether the relationship was improving (benevolence) or deteriorating (malevolence) for each subject. Compared with healthy women, neural responses to benevolence were diminished in the precuneus and right angular gyrus in both currently-ill and weight-recovered subjects with anorexia, but neural responses to malevolence differed in the left fusiform only in currently-ill subjects. Next, using a whole-brain regression, we identified an office assessment, the positive personalizing bias, that was inversely correlated with neural activity in the occipital lobe, the precuneus and posterior cingulate, the bilateral temporoparietal junctions, and dorsal anterior cingulate, during benevolence for all groups of subjects. The positive personalizing bias is a self-report measure that assesses the degree with which a person attributes positive experiences to other people. These data suggest that problems in perceiving kindness may be a consistent trait related to the development of anorexia nervosa, whereas recognizing malevolence may be related to recovery. Future work on social brain function, in both healthy and psychiatric populations, should consider positive personalizing biases as a possible marker of neural differences related to kindness perception.
Collapse
Affiliation(s)
- Carrie J McAdams
- Department of Psychiatry, University of Texas at Southwestern Medical School, Dallas, Texas.,Psychiatry, Texas Health Presbyterian Hospital of Dallas, Dallas, Texas
| | - Terry Lohrenz
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia
| | - P Read Montague
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia.,Computational Psychiatry Unit, Virginia Tech, Roanoke, Virginia.,Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom.,Department of Physics, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
64
|
Acevedo SF, Valencia C, Lutter M, McAdams CJ. Severity of eating disorder symptoms related to oxytocin receptor polymorphisms in anorexia nervosa. Psychiatry Res 2015; 228:641-8. [PMID: 26106053 PMCID: PMC4532594 DOI: 10.1016/j.psychres.2015.05.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/21/2015] [Accepted: 05/05/2015] [Indexed: 12/11/2022]
Abstract
Oxytocin is a peptide hormone important for social behavior and differences in psychological traits have been associated with variants of the oxytocin receptor gene in healthy people. We examined whether single nucleotide polymorphisms (SNPs) of the oxytocin receptor gene (OXTR) correlated with clinical symptoms in women with anorexia nervosa, bulimia nervosa, and healthy comparison (HC) women. Subjects completed clinical assessments and provided DNA for analysis. Subjects were divided into four groups: HC, subjects currently with anorexia nervosa (AN-C), subjects with a history of anorexia nervosa but in long-term weight recovery (AN-WR), and subjects with bulimia nervosa (BN). Five SNPs of the oxytocin receptor were examined. Minor allele carriers showed greater severity in most of the psychiatric symptoms. Importantly, the combination of having had anorexia and carrying either of the A alleles for two SNPS in the OXTR gene (rs53576, rs2254298) was associated with increased severity specifically for ED symptoms including cognitions and behaviors associated both with eating and appearance. A review of psychosocial data related to the OXTR polymorphisms examined is included in the discussion. OXTR polymorphisms may be a useful intermediate endophenotype to consider in the treatment of patients with anorexia nervosa.
Collapse
Affiliation(s)
- Summer F. Acevedo
- University of Texas at Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas TX 75390-8828
| | - Celeste Valencia
- University of Texas at Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas TX 75390-8828
| | - Michael Lutter
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA, USA. 52242
| | - Carrie J. McAdams
- University of Texas at Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas TX 75390-8828
| |
Collapse
|
65
|
McCammon JM, Sive H. Addressing the Genetics of Human Mental Health Disorders in Model Organisms. Annu Rev Genomics Hum Genet 2015; 16:173-97. [DOI: 10.1146/annurev-genom-090314-050048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jasmine M. McCammon
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142;
| | - Hazel Sive
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
66
|
Stewart AM, Nguyen M, Song C, Kalueff AV. Understanding the genetic architectonics of complex CNS traits: Lost by the association, but found in the interaction? J Psychopharmacol 2015; 29:872-7. [PMID: 26156859 DOI: 10.1177/0269881115593904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent evidence supports the value of endophenotypes and genome-wide association studies in psychiatric genetics, and their importance for dissecting the neural pathways and molecular mechanisms of complex neuropsychiatric disorders. Continuing this important discussion, here we outline three new mechanisms by which novel classes of genes may facilitate CNS pathogenesis without directly worsening its individual 'established' endophenotypes. These putative genetic mechanisms can apply to other human disorders in general, and may also be used for designing novel effective CNS drug treatments.
Collapse
Affiliation(s)
| | - Michael Nguyen
- ZENEREI Institute, Slidell, LA, USA Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College for Food Science and Technology, Guangdong Ocean University, Zhanjiang, China Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Allan V Kalueff
- ZENEREI Institute, Slidell, LA, USA Research Institute for Marine Drugs and Nutrition, College for Food Science and Technology, Guangdong Ocean University, Zhanjiang, China Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
67
|
Moeller SJ, Beebe-Wang N, Schneider KE, Konova AB, Parvaz MA, Alia-Klein N, Hurd YL, Goldstein RZ. Effects of an opioid (proenkephalin) polymorphism on neural response to errors in health and cocaine use disorder. Behav Brain Res 2015; 293:18-26. [PMID: 26164485 DOI: 10.1016/j.bbr.2015.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/16/2015] [Accepted: 07/02/2015] [Indexed: 10/23/2022]
Abstract
Chronic exposure to drugs of abuse perturbs the endogenous opioid system, which plays a critical role in the development and maintenance of addictive disorders. Opioid genetics may therefore play an important modulatory role in the expression of substance use disorders, but these genes have not been extensively characterized, especially in humans. In the current imaging genetics study, we investigated a single nucleotide polymorphism (SNP) of the protein-coding proenkephalin gene (PENK: rs2609997, recently shown to be associated with cannabis dependence) in 55 individuals with cocaine use disorder and 37 healthy controls. Analyses tested for PENK associations with fMRI response to error (during a classical color-word Stroop task) and gray matter volume (voxel-based morphometry) as a function of Diagnosis (cocaine, control). Results revealed whole-brain Diagnosis×PENK interactions on the neural response to errors (fMRI error>correct contrast) in the right putamen, left rostral anterior cingulate cortex/medial orbitofrontal cortex, and right inferior frontal gyrus; there was also a significant Diagnosis×PENK interaction on right inferior frontal gyrus gray matter volume. These interactions were driven by differences between individuals with cocaine use disorders and controls that were accentuated in individuals carrying the higher-risk PENK C-allele. Taken together, the PENK polymorphism-and potentially opioid neurotransmission more generally-modulates functioning and structural integrity of brain regions previously implicated in error-related processing. PENK could potentially render a subgroup of individuals with cocaine use disorder (i.e., C-allele carriers) more sensitive to mistakes or other related challenges; in future studies, these results could contribute to the development of individualized genetics-informed treatments.
Collapse
Affiliation(s)
- Scott J Moeller
- Departments of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | | | - Kristin E Schneider
- Departments of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna B Konova
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Muhammad A Parvaz
- Departments of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nelly Alia-Klein
- Departments of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yasmin L Hurd
- Departments of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pharmacology & Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rita Z Goldstein
- Departments of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
68
|
Lin HY, Hwang-Gu SL, Gau SSF. Intra-individual reaction time variability based on ex-Gaussian distribution as a potential endophenotype for attention-deficit/hyperactivity disorder. Acta Psychiatr Scand 2015; 132:39-50. [PMID: 25612058 DOI: 10.1111/acps.12393] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/29/2014] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Intra-individual variability in reaction time (IIV-RT), defined by standard deviation of RT (RTSD), is considered as an endophenotype for attention-deficit/hyperactivity disorder (ADHD). Ex-Gaussian distributions of RT, rather than RTSD, could better characterize moment-to-moment fluctuations in neuropsychological performance. However, data of response variability based on ex-Gaussian parameters as an endophenotypic candidate for ADHD are lacking. METHOD We assessed 411 adolescents with clinically diagnosed ADHD based on the DSM-IV-TR criteria as probands, 138 unaffected siblings, and 138 healthy controls. The output parameters, mu, sigma, and tau, of an ex-Gaussian RT distribution were derived from the Conners' continuous performance test. Multi-level models controlling for sex, age, comorbidity, and use of methylphenidate were applied. RESULTS Compared with unaffected siblings and controls, ADHD probands had elevated sigma value, omissions, commissions, and mean RT. Unaffected siblings formed an intermediate group in-between probands and controls in terms of tau value and RTSD. There was no between-group difference in mu value. Conforming to a context-dependent nature, unaffected siblings still had an intermediate tau value in-between probands and controls across different interstimulus intervals. CONCLUSION Our findings suggest IIV-RT represented by tau may be a potential endophenotype for inquiry into genetic underpinnings of ADHD in the context of heterogeneity.
Collapse
Affiliation(s)
- H-Y Lin
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - S-L Hwang-Gu
- Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - S S-F Gau
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Department of Psychology, Graduate Institute of Brain and Mind Sciences, Graduate Institute of Epidemiology and Preventive Medicine, Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
69
|
The importance of endophenotypes in schizophrenia research. Schizophr Res 2015; 163:1-8. [PMID: 25795083 DOI: 10.1016/j.schres.2015.02.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 11/21/2022]
Abstract
Endophenotypes provide a powerful neurobiological platform from which we can understand the genomic and neural substrates of schizophrenia and other common complex neuropsychiatric disorders. The Consortium on the Genetics of Schizophrenia (COGS) has conducted multisite studies on carefully selected key neurocognitive and neurophysiological endophenotypes in 300 families (COGS-1) and then in a follow up multisite case-control study of 2471 subjects (COGS-2). Endophenotypes are neurobiologically informed quantitative measures that show deficits in probands and their first degree relatives. They are more amenable to statistical analysis than are "fuzzy" qualitative clinical traits or confoundingly heterogeneous diagnostic categories. Endophenotypes are also viewed as uniquely informative in traditional diagnosis-based as well as emerging NIMH Research Domain (RDoC) contexts, offering a bridge between the two approaches to psychopathology classification and research. Endo- or intermediate phenotypes are heritable, and in the COGS-1 cohort their level of heritability is in the same range as is the heritability of schizophrenia itself, using the same statistical methods and subjects to assess both. Because we can demonstrate endophenotypes link to both gene networks and neural circuits on the one hand and also to real-life function, endophenotypes provide a critically important bridge for "connecting the dots" between genes, cells, circuits, information processing, neurocognition and functional impairment and personalized treatment selection in schizophrenia patients. By connecting schizophrenia risk genes with neurobiologically informed endophenotypes, and via the use of association, linkage, sequencing, stem cell and other strategies, we can provide our field with new neurobiologically informed information in our efforts to understand and treat schizophrenia. Evolving views, data and new analytic strategies about schizophrenia risk, pathology and treatment are described in this Viewpoint and in the accompanying Special Issue reports.
Collapse
|
70
|
Kalueff AV, Stewart AM, Song C, Gottesman II. Targeting dynamic interplay among disordered domains or endophenotypes to understand complex neuropsychiatric disorders: Translational lessons from preclinical models. Neurosci Biobehav Rev 2015; 53:25-36. [PMID: 25813308 DOI: 10.1016/j.neubiorev.2015.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 12/15/2022]
Abstract
Contemporary biological psychiatry uses clinical and experimental (animal) models to increase our understanding of brain pathogenesis. Modeling psychiatric disorders is currently performed by targeting various key neurobehavioral clusters of phenotypic traits (domains), including affective, cognitive, social, motor and reward. Analyses of such domains and their 'smaller units' - individual endophenotypes - are critical for the study of complex brain disorders and their neural underpinnings. The spectrum nature of brain disorders and the importance of pathogenetic linkage among various disordered domains or endophenotypes have also been recognized as an important strategic direction of translational research. Here, we discuss cross-domain analyses of animal models, and focus on their value for mimicking the clinical overlap between disordered neurobehavioral domains in humans. Based on recent experimental evidence, we argue that understanding of brain pathogenesis requires modeling the clinically relevant inter-relationships between various individual endophenotypes (or their domains).
Collapse
Affiliation(s)
- Allan V Kalueff
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524025, Guangdong, China; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA.
| | - Adam Michael Stewart
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524025, Guangdong, China; Department of Psychology and Neuroscience, Dalhousie University, 1355 Oxford St, Halifax, NS B3H 4R2, Canada
| | - Irving I Gottesman
- Department of Psychology, University of Minnesota, Elliot Hall, Minneapolis, MN 55455, USA
| |
Collapse
|
71
|
Salvatore JE, Gottesman II, Dick DM. Endophenotypes for Alcohol Use Disorder: An Update on the Field. CURRENT ADDICTION REPORTS 2015; 2:76-90. [PMID: 26236574 DOI: 10.1007/s40429-015-0046-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The endophenotype concept was first proposed as a strategy to use (purportedly) genetically simpler phenotypes in gene identification studies for psychiatric disorders, and is distinct from the closely related concept of intermediate phenotypes. In the area of alcohol use disorder (AUD) research, two candidate endophenotypes have produced replicable genetic associations: level of response to alcohol and neurophysiology markers (e.g., event-related oscillations and event-related potentials). Additional candidate endophenotypes from the cognitive, sensory, and neuroimaging literatures show promise, although more evidence is needed to fully evaluate their potential utility. Translational approaches to AUD endophenotypes have helped characterize the underlying neurobiology and genetics of AUD endophenotypes and identified relevant pharmacological interventions. Future research that capitalizes on the polygenic nature of endophenotypes and emphasizes endophenotypes that may change across development will enhance the usefulness of this concept to understand the genetically-influenced pathways toward AUD.
Collapse
Affiliation(s)
- Jessica E Salvatore
- Department of Psychiatry, Virginia Commonwealth University, PO Box 980126, Richmond, VA 23298-0126
| | - Irving I Gottesman
- Department of Psychology, University of Minnesota, N231 Elliott Hall, 75 East River Road, Minneapolis, MN 55455
| | - Danielle M Dick
- Department of Psychiatry, Virginia Commonwealth University, PO Box 980126, Richmond, VA 23298-0126
| |
Collapse
|