51
|
How is the acyl chain composition of phosphoinositides created and does it matter? Biochem Soc Trans 2020; 47:1291-1305. [PMID: 31657437 PMCID: PMC6824679 DOI: 10.1042/bst20190205] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
Abstract
The phosphoinositide (PIPn) family of signalling phospholipids are central regulators in membrane cell biology. Their varied functions are based on the phosphorylation pattern of their inositol ring, which can be recognized by selective binding domains in their effector proteins and be modified by a series of specific PIPn kinases and phosphatases, which control their interconversion in a spatial and temporal manner. Yet, a unique feature of PIPns remains largely unexplored: their unusually uniform acyl chain composition. Indeed, while most phospholipids present a range of molecular species comprising acyl chains of diverse length and saturation, PIPns in several organisms and tissues show the predominance of a single hydrophobic backbone, which in mammals is composed of arachidonoyl and stearoyl chains. Despite evolution having favoured this specific PIPn configuration, little is known regarding the mechanisms and functions behind it. In this review, we explore the metabolic pathways that could control the acyl chain composition of PIPns as well as the potential roles of this selective enrichment. While our understanding of this phenomenon has been constrained largely by the technical limitations in the methods traditionally employed in the PIPn field, we believe that the latest developments in PIPn analysis should shed light onto this old question.
Collapse
|
52
|
Blunsom NJ, Cockcroft S. CDP-Diacylglycerol Synthases (CDS): Gateway to Phosphatidylinositol and Cardiolipin Synthesis. Front Cell Dev Biol 2020; 8:63. [PMID: 32117988 PMCID: PMC7018664 DOI: 10.3389/fcell.2020.00063] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022] Open
Abstract
Cytidine diphosphate diacylglycerol (CDP-DAG) is a key intermediate in the synthesis of phosphatidylinositol (PI) and cardiolipin (CL). Both PI and CL have highly specialized roles in cells. PI can be phosphorylated and these phosphorylated derivatives play major roles in signal transduction, membrane traffic, and maintenance of the actin cytoskeletal network. CL is the signature lipid of mitochondria and has a plethora of functions including maintenance of cristae morphology, mitochondrial fission, and fusion and for electron transport chain super complex formation. Both lipids are synthesized in different organelles although they share the common intermediate, CDP-DAG. CDP-DAG is synthesized from phosphatidic acid (PA) and CTP by enzymes that display CDP-DAG synthase activities. Two families of enzymes, CDS and TAMM41, which bear no sequence or structural relationship, have now been identified. TAMM41 is a peripheral membrane protein localized in the inner mitochondrial membrane required for CL synthesis. CDS enzymes are ancient integral membrane proteins found in all three domains of life. In mammals, they provide CDP-DAG for PI synthesis and for phosphatidylglycerol (PG) and CL synthesis in prokaryotes. CDS enzymes are critical for maintaining phosphoinositide levels during phospholipase C (PLC) signaling. Hydrolysis of PI (4,5) bisphosphate by PLC requires the resynthesis of PI and CDS enzymes catalyze the rate-limiting step in the process. In mammals, the protein products of two CDS genes (CDS1 and CDS2) localize to the ER and it is suggested that CDS2 is the major CDS for this process. Expression of CDS enzymes are regulated by transcription factors and CDS enzymes may also contribute to CL synthesis in mitochondria. Studies of CDS enzymes in protozoa reveal spatial segregation of CDS enzymes from the rest of the machinery required for both PI and CL synthesis identifying a key gap in our understanding of how CDP-DAG can cross the different membrane compartments in protozoa and in mammals.
Collapse
Affiliation(s)
| | - Shamshad Cockcroft
- Division of Biosciences, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
53
|
Veilleux A, Di Marzo V, Silvestri C. The Expanded Endocannabinoid System/Endocannabinoidome as a Potential Target for Treating Diabetes Mellitus. Curr Diab Rep 2019; 19:117. [PMID: 31686231 DOI: 10.1007/s11892-019-1248-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The endocannabinoid (eCB) system, i.e. the receptors that respond to the psychoactive component of cannabis, their endogenous ligands and the ligand metabolic enzymes, is part of a larger family of lipid signals termed the endocannabinoidome (eCBome). We summarize recent discoveries of the roles that the eCBome plays within peripheral tissues in diabetes, and how it is being targeted, in an effort to develop novel therapeutics for the treatment of this increasingly prevalent disease. RECENT FINDINGS As with the eCB system, many eCBome members regulate several physiological processes, including energy intake and storage, glucose and lipid metabolism and pancreatic health, which contribute to the development of type 2 diabetes (T2D). Preclinical studies increasingly support the notion that targeting the eCBome may beneficially affect T2D. The eCBome is implicated in T2D at several levels and in a variety of tissues, making this complex lipid signaling system a potential source of many potential therapeutics for the treatments for T2D.
Collapse
Affiliation(s)
- Alain Veilleux
- École de nutrition, Université Laval, Québec, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC, Canada
- Canadian Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Québec, Canada
| | - Vincenzo Di Marzo
- École de nutrition, Université Laval, Québec, QC, Canada
- Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC, Canada
- Canadian Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Québec, Canada
- Institut de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada
- Department de médecine, Université Laval, Québec, QC, Canada
| | - Cristoforo Silvestri
- Canadian Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Québec, Canada.
- Institut de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada.
- Department de médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
54
|
GPR55-mediated effects on brain microvascular endothelial cells and the blood-brain barrier. Neuroscience 2019; 414:88-98. [PMID: 31279825 DOI: 10.1016/j.neuroscience.2019.06.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/31/2022]
Abstract
GPR55, an atypical cannabinoid receptor activated by lysophosphatidylinositol (LPI) has been involved in various physiological and pathological processes. We examined the effect of GPR55 activation on rat brain microvascular endothelial cells (RBMVEC), an essential component of the blood-brain barrier (BBB). GPR55 was detected in RBMVEC by western blot and immunocytochemistry. Treatment of RBMVEC with LPI increased cytosolic Ca2+ concentration, [Ca2+]i, in a concentration-dependent manner; the effect was abolished by the GPR55 antagonist, ML-193. Repetitive application of LPI induced tachyphylaxis. LPI-induced increase in [Ca2+]i was not sensitive to U-73122, a phospholipase C inhibitor, but was abolished by the blockade of voltage-gated Ca2+ channels or in Ca2+-free saline, indicating that Ca2+ influx was involved in this response. LPI induced a biphasic change in RBMVEC membrane potential: a fast depolarization followed by a long-lasting hyperpolarization. The hyperpolarization phase was prevented by apamin and charibdotoxin, inhibitors of small- and intermediate-conductance Ca2+-activated K+ channels (KCa). Immunofluorescence studies indicate that LPI produced transient changes in tight and adherens junctions proteins and F-actin stress fibers. LPI decreased the electrical resistance of RBMVEC monolayer assessed with Electric Cell-Substrate Impedance Sensing (ECIS) in a dose-dependent manner. In vivo studies indicate that systemic administration of LPI increased the permeability of the BBB, assessed with Evans Blue method. Taken together, our results indicate that GPR55 activation modulates the function of endothelial cells of brain microvessels, produces a transient reduction in endothelial barrier function and increases BBB permeability.
Collapse
|
55
|
Blunsom NJ, Cockcroft S. Phosphatidylinositol synthesis at the endoplasmic reticulum. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158471. [PMID: 31173893 DOI: 10.1016/j.bbalip.2019.05.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/23/2022]
Abstract
Phosphatidylinositol (PI) is a minor phospholipid with a characteristic fatty acid profile; it is highly enriched in stearic acid at the sn-1 position and arachidonic acid at the sn-2 position. PI is phosphorylated into seven specific derivatives, and individual species are involved in a vast array of cellular functions including signalling, membrane traffic, ion channel regulation and actin dynamics. De novo PI synthesis takes place at the endoplasmic reticulum where phosphatidic acid (PA) is converted to PI in two enzymatic steps. PA is also produced at the plasma membrane during phospholipase C signalling, where hydrolysis of phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2) leads to the production of diacylglycerol which is rapidly phosphorylated to PA. This PA is transferred to the ER to be also recycled back to PI. For the synthesis of PI, CDP-diacylglycerol synthase (CDS) converts PA to the intermediate, CDP-DG, which is then used by PI synthase to make PI. The de novo synthesised PI undergoes remodelling to acquire its characteristic fatty acid profile, which is altered in p53-mutated cancer cells. In mammals, there are two CDS enzymes at the ER, CDS1 and CDS2. In this review, we summarise the de novo synthesis of PI at the ER and the enzymes involved in its subsequent remodelling to acquire its characteristic acyl chains. We discuss how CDS, the rate limiting enzymes in PI synthesis are regulated by different mechanisms. During phospholipase C signalling, the CDS1 enzyme is specifically upregulated by cFos via protein kinase C.
Collapse
Affiliation(s)
- Nicholas J Blunsom
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK
| | - Shamshad Cockcroft
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK.
| |
Collapse
|
56
|
Buisseret B, Alhouayek M, Guillemot-Legris O, Muccioli GG. Endocannabinoid and Prostanoid Crosstalk in Pain. Trends Mol Med 2019; 25:882-896. [PMID: 31160168 DOI: 10.1016/j.molmed.2019.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022]
Abstract
Interfering with endocannabinoid (eCB) metabolism to increase their levels is a proven anti-nociception strategy. However, because the eCB and prostanoid systems are intertwined, interfering with eCB metabolism will affect the prostanoid system and inversely. Key to this connection is the production of the cyclooxygenase (COX) substrate arachidonic acid upon eCB hydrolysis as well as the ability of COX to metabolize the eCBs anandamide (AEA) and 2-arachidonoylglycerol (2-AG) into prostaglandin-ethanolamides (PG-EA) and prostaglandin-glycerol esters (PG-G), respectively. Recent studies shed light on the role of PG-Gs and PG-EAs in nociception and inflammation. Here, we discuss the role of these complex systems in nociception and new opportunities to alleviate pain by interacting with them.
Collapse
Affiliation(s)
- Baptiste Buisseret
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium
| | - Owein Guillemot-Legris
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium.
| |
Collapse
|
57
|
The Endocannabinoid System Is Present in Rod Outer Segments from Retina and Is Modulated by Light. Mol Neurobiol 2019; 56:7284-7295. [PMID: 31016476 DOI: 10.1007/s12035-019-1603-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 10/27/2022]
Abstract
The aim of the present research was to evaluate if the endocannabinoid system (enzymes and receptors) could be modulated by light in rod outer segment (ROS) from bovine retina. First, we analyzed endocannabinoid 2-arachidonoylglycerol (2-AG) metabolism in purified ROS obtained from dark-adapted (DROS) or light-adapted (LROS) retinas. To this end, diacylglycerol lipase (DAGL), monoacylglycerol lipase (MAGL), and lysophosphatidate phosphohydrolase (LPAP) enzymatic activities were analyzed using radioactive substrates. The protein content of these enzymes and of the receptors to which cannabinoids bind was determined by immunoblotting under light stimulus. Our results indicate that whereas DAGL and MAGL activities were stimulated in retinas exposed to light, no changes were observed in LPAP activity. Interestingly, the protein content of the main enzymes involved in 2-AG metabolism, phospholipase C β1 (PLCβ1), and DAGLα (synthesis), and MAGL (hydrolysis), was also modified by light. PLCβ1 content was increased, while that of lipases was decreased. On the other hand, light produced an increase in the cannabinoid receptors CB1 and CB2 and a decrease in GPR55 protein levels. Taken together, our results indicate that the endocannabinoid system (enzymes and receptors) depends on the illumination state of the retina, suggesting that proteins related to phototransduction phenomena could be involved in the effects observed.
Collapse
|
58
|
Badolato M, Carullo G, Caroleo MC, Cione E, Aiello F, Manetti F. Discovery of 1,4-Naphthoquinones as a New Class of Antiproliferative Agents Targeting GPR55. ACS Med Chem Lett 2019; 10:402-406. [PMID: 30996770 DOI: 10.1021/acsmedchemlett.8b00333] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
A new series of 1,4-naphthoquinones, bearing various cyclic and aliphatic amines on C2, was designed and synthesized to identify antiproliferative agents for triple-negative breast cancer, which represents a clinical challenge without targeted therapies. Among naphthoquinones, 2a and 3a inhibited the proliferation of MDA-MB-231 cells (EC50 = 1.6 and 2.7 μM, respectively), compared to primary human breast cells MCF10A. Furthermore, they did not affect the viability of peripheral blood mononuclear cells (PBMC), suggesting their potential safer use for cancer treatment. Recently, correlations have emerged between the expression of G protein-coupled receptor 55 (GPR55) and both triple-negative breast cancer development and invasion, making it a promising target for the development of targeted therapies. Based on this evidence, molecular docking studies supported the hypothesis of binding to GPR55, and pharmacological tests suggested that compound 3a could exert its antiproliferative activity acting as a GPR55 inverse agonist.
Collapse
Affiliation(s)
- Mariateresa Badolato
- Department of Pharmacy, Health and Nutritional Sciences − Department of Excellence 2018-2022, University of Calabria, Ed. Polifunzionale, 87036 Arcavacata di Rende (CS), Italy
| | - Gabriele Carullo
- Department of Pharmacy, Health and Nutritional Sciences − Department of Excellence 2018-2022, University of Calabria, Ed. Polifunzionale, 87036 Arcavacata di Rende (CS), Italy
| | - Maria Cristina Caroleo
- Department of Pharmacy, Health and Nutritional Sciences − Department of Excellence 2018-2022, University of Calabria, Ed. Polifunzionale, 87036 Arcavacata di Rende (CS), Italy
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences − Department of Excellence 2018-2022, University of Calabria, Ed. Polifunzionale, 87036 Arcavacata di Rende (CS), Italy
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences − Department of Excellence 2018-2022, University of Calabria, Ed. Polifunzionale, 87036 Arcavacata di Rende (CS), Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy − Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
59
|
Bottemanne P, Paquot A, Ameraoui H, Alhouayek M, Muccioli GG. The α/β–hydrolase domain 6 inhibitor WWL70 decreases endotoxin‐induced lung inflammation in mice, potential contribution of 2‐arachidonoylglycerol, and lysoglycerophospholipids. FASEB J 2019; 33:7635-7646. [DOI: 10.1096/fj.201802259r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pauline Bottemanne
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Adrien Paquot
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Hafsa Ameraoui
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de Louvain (UCLouvain)BrusselsBelgium
| |
Collapse
|
60
|
Hasenoehrl C, Feuersinger D, Kienzl M, Schicho R. GPR55-Mediated Effects in Colon Cancer Cell Lines. Med Cannabis Cannabinoids 2019; 2:22-28. [PMID: 34676330 DOI: 10.1159/000496356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/17/2018] [Indexed: 11/19/2022] Open
Abstract
The cannabinoid-responsive G protein-coupled receptor GPR55 and its endogenous ligand L-α-lysophosphatidyl-inositol (LPI) have been reported to play a role in several cancers. A proliferation-enhancing effect of GPR55 has been described for several cancer cell lines and LPI has been found elevated in cancer patients. The aim of this study was to investigate whether GPR55 signaling had an effect on the proliferation of colon cancer cell lines. Using cell viability assays and Western blotting, we show that stable overexpression of the GPR55 receptor led to a growth advantage of SW480 cells per se. Proliferation of native colon cancer cell lines, however, was not affected by pharmacological manipulation of GPR55. Interestingly though, GPR55 signaling was responsive to treatment with both the GPR55 agonist LPI and the antagonist CID16020046 in the overexpressing cancer cell lines. This was evident through significantly increased or decreased levels of phosphorylated ERK1/2, respectively. Taken together, our findings suggest that GPR55 is constitutively activated in overexpressing colon cancer cells affecting ERK1/2 phosphorylation and cell proliferation.
Collapse
Affiliation(s)
- Carina Hasenoehrl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - David Feuersinger
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Melanie Kienzl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria.,BioTechMed, Graz, Austria
| | - Rudolf Schicho
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria.,BioTechMed, Graz, Austria
| |
Collapse
|
61
|
Ogasawara D, Ichu TA, Jing H, Hulce JJ, Reed A, Ulanovskaya OA, Cravatt BF. Discovery and Optimization of Selective and in Vivo Active Inhibitors of the Lysophosphatidylserine Lipase α/β-Hydrolase Domain-Containing 12 (ABHD12). J Med Chem 2019; 62:1643-1656. [PMID: 30720278 DOI: 10.1021/acs.jmedchem.8b01958] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ABHD12 is a membrane-bound hydrolytic enzyme that acts on the lysophosphatidylserine (lyso-PS) and lysophosphatidylinositol (lyso-PI) classes of immunomodulatory lipids. Human and mouse genetic studies point to a key role for the ABHD12-(lyso)-PS/PI pathway in regulating (neuro)immunological functions in both the central nervous system and periphery. Selective inhibitors of ABHD12 would offer valuable pharmacological probes to complement genetic models of ABHD12-regulated (lyso)-PS/PI metabolism and signaling. Here, we provide a detailed description of the discovery and activity-based protein profiling (ABPP) guided optimization of reversible thiourea inhibitors of ABHD12 that culminated in the identification of DO264 as a potent, selective, and in vivo active ABHD12 inhibitor. We also show that DO264, but not a structurally related inactive control probe (S)-DO271, augments inflammatory cytokine production from human THP-1 macrophage cells. The in vitro and in vivo properties of DO264 designate this compound as a suitable chemical probe for studying the biological functions of ABHD12-(lyso)-PS/PI pathways.
Collapse
Affiliation(s)
- Daisuke Ogasawara
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Taka-Aki Ichu
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Hui Jing
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Jonathan J Hulce
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Alex Reed
- Abide Therapeutics , 10835 Road to the Cure , San Diego , California 92121 , United States
| | - Olesya A Ulanovskaya
- Abide Therapeutics , 10835 Road to the Cure , San Diego , California 92121 , United States
| | - Benjamin F Cravatt
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
62
|
Ogasawara D, Ichu TA, Vartabedian VF, Benthuysen J, Jing H, Reed A, Ulanovskaya OA, Hulce JJ, Roberts A, Brown S, Rosen H, Teijaro JR, Cravatt BF. Selective blockade of the lyso-PS lipase ABHD12 stimulates immune responses in vivo. Nat Chem Biol 2018; 14:1099-1108. [PMID: 30420694 PMCID: PMC6263940 DOI: 10.1038/s41589-018-0155-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/19/2018] [Indexed: 11/09/2022]
Abstract
ABHD12 metabolizes bioactive lysophospholipids, including lysophosphatidylserine (lyso-PS). Deleterious mutations in human ABHD12 cause the neurological disease PHARC, and ABHD12-/- mice display PHARC-like phenotypes, including hearing loss, along with elevated brain lyso-PS and features of stimulated innate immune cell function. Here, we develop a selective and in vivo-active inhibitor of ABHD12 termed DO264 and show that this compound elevates lyso-PS in mouse brain and primary human macrophages. Unlike ABHD12-/- mice, adult mice treated with DO264 exhibited minimal perturbations in auditory function. On the other hand, both DO264-treated and ABHD12-/- mice displayed heightened immunological responses to lymphocytic choriomeningitis virus (LCMV) clone 13 infection that manifested as severe lung pathology with elevated proinflammatory chemokines. These results reveal similarities and differences in the phenotypic impact of pharmacological versus genetic blockade of ABHD12 and point to a key role for this enzyme in regulating immunostimulatory lipid pathways in vivo.
Collapse
Affiliation(s)
- Daisuke Ogasawara
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Taka-Aki Ichu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Vincent F Vartabedian
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Hui Jing
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Alex Reed
- Abide Therapeutics, San Diego, CA, USA
| | | | - Jonathan J Hulce
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Amanda Roberts
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Steven Brown
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Hugh Rosen
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Teijaro
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA, USA.
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
63
|
Cruz SL, Sánchez-Miranda E, Castillo-Arellano JI, Cervantes-Villagrana RD, Ibarra-Sánchez A, González-Espinosa C. Anandamide inhibits FcεRI-dependent degranulation and cytokine synthesis in mast cells through CB 2 and GPR55 receptor activation. Possible involvement of CB 2-GPR55 heteromers. Int Immunopharmacol 2018; 64:298-307. [PMID: 30243065 DOI: 10.1016/j.intimp.2018.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 11/25/2022]
Abstract
Activation of high affinity receptor for IgE (FcεRI) by IgE/antigen complexes in mast cells (MCs) leads to the release of preformed pro-inflammatory mediators stored in granules by a Ca2+-dependent process known as anaphylactic degranulation. Degranulation inhibition has been proposed as a strategy to control allergies and chronic inflammation conditions. Cannabinoids are important inhibitors of inflammatory reactions but their effects on IgE/Ag-mediated MCs responses are not well described. In this study, we analyzed the effect of the endocannabinoid anandamide (AEA), the selective CB2 receptor agonist HU308, and the GPR55 receptor agonist lysophosphatidylinositol (LPI) on FcεRI-induced activation in murine bone marrow-derived mast cells (BMMCs). Our results show that AEA, HU380 and LPI inhibited FcεRI-induced degranulation in a concentration-dependent manner. This effect was mediated by CB2 and GPR55 receptor activation through a mechanism insensitive to pertussis toxin. Degranulation inhibition was prevented by CB2 and GPR55 antagonism, but not by CB1 receptor blockage. AEA also inhibited calcium-dependent cytokine mRNA synthesis induced by FcεRI crosslinking, without affecting early phosphorylation events. In addition, AEA, HU308 and LPI inhibited intracellular Ca2+ rise in response to IgE/Ag. CB2 and GPR55 receptor antagonism could not prevent the inhibition produced by AEA and HU308, but partially blocked the one caused by LPI. These results indicate that AEA inhibits IgE/Ag-induced degranulation through a mechanism that includes the participation of CB2 and GPR55 receptors acting in close crosstalk, and show that CB2-GPR55 heteromers are important negative regulators of FcεRI-induced responses in MCs.
Collapse
Affiliation(s)
- Silvia L Cruz
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Sede Sur, Mexico.
| | - Elizabeth Sánchez-Miranda
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Sede Sur, Mexico; Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Xochimilco, Mexico City, Mexico
| | - Jorge Ivan Castillo-Arellano
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Sede Sur, Mexico
| | - Rodolfo Daniel Cervantes-Villagrana
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Sede Sur, Mexico
| | - Alfredo Ibarra-Sánchez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Sede Sur, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Sede Sur, Mexico.
| |
Collapse
|
64
|
Lysophosphatidylinositols in inflammation and macrophage activation: Altered levels and anti-inflammatory effects. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1458-1468. [PMID: 30251703 DOI: 10.1016/j.bbalip.2018.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/26/2018] [Accepted: 09/09/2018] [Indexed: 02/08/2023]
Abstract
Lysophosphatidylinositols (LPI) are bioactive lipids that are implicated in several pathophysiological processes such as cell proliferation, migration and tumorigenesis and were shown to play a role in obesity and metabolic disorders. Often, these effects of LPI were due to activation of the G protein-coupled receptor GPR55. However, the role of LPI and GPR55 in inflammation and macrophage activation remains unclear. Therefore, we thought to study the effect of macrophage activation and inflammation on LPI levels and metabolism. To do so, we used J774 and BV2 cells in culture activated with lipopolysaccharides (LPS, 100 ng/mL) as well as primary mouse alveolar and peritoneal macrophages. We also quantified LPI levels in the cerebellum, lung, liver, spleen and colon of mice with a systemic inflammation induced by LPS (300 μg/kg) and in the colon of mice with acute colitis induced by dextran sulfate sodium (DSS) or trinitrobenzene sulfonic acid (TNBS) and chronic DSS-induced colitis. Our data show that LPS-induced macrophage activation leads to altered LPI levels in both the cells and culture medium. We also show that cytosolic phospholipase A2α (cPLA2α) and α/β‑hydrolase domain 6 (ABHD6) are among the enzymes implicated in LPI metabolism in J774 macrophages. Indeed, ABHD6 and cPLA2α inhibition increased 20:4-LPI levels in LPS-activated macrophages. Furthermore, incubation of LPS-activated cells with LPI decreased J774 activation in a GPR55-dependent manner. In vivo, LPI levels were altered by inflammation in the liver, spleen and colon. These alterations are tissue dependent and could highlight a potential role for LPI in inflammatory processes.
Collapse
|