51
|
Kowalkowski T, Sugajski M, Buszewski B. Impact of Ionic Strength of Carrier Liquid on Recovery in Flow Field-Flow Fractionation. Chromatographia 2018; 81:1213-1218. [PMID: 30220732 PMCID: PMC6132554 DOI: 10.1007/s10337-018-3551-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/28/2018] [Accepted: 06/06/2018] [Indexed: 12/17/2022]
Abstract
Asymmetrical flow field-flow fractionation (AF4) and hollow-fiber flow field-flow fractionation (HF5) are techniques widely used in analytical, industrial and biological analyses. The main problem in all AF4 and HF5 analyses is sample loss due to analyte–membrane interactions. In this work the impact of liquid carrier composition on latex nanoparticles (NPs) separation in water and two different concentrations of NH4NO3 was studied. In AF4, a constant trend of decreasing the size of 60 and 121.9 nm particles induced by the ionic strength of the carrier liquid has been observed. In contrast, an agglomeration effect of the biggest 356 nm particles was observed when increasing ionic strength, which induced a significant drop of recovery to 35%. H5F provides better resolution and intensified peaks of NPs, but careful optimisation of system parameters is mandatory to obtain good separation.
Collapse
Affiliation(s)
- Tomasz Kowalkowski
- 1Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland.,2Interdisciplinary Centre of Modern Technology, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Mateusz Sugajski
- 1Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland.,2Interdisciplinary Centre of Modern Technology, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Bogusław Buszewski
- 1Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland.,2Interdisciplinary Centre of Modern Technology, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| |
Collapse
|
52
|
Xiao Y, Tan Z, Yin Y, Guo X, Xu J, Wang B, Fan H, Liu J. Application of hollow fiber flow field-flow fractionation with UV–Vis detection in the rapid characterization and preparation of poly(vinyl acetate) nanoemulsions. Microchem J 2018. [DOI: 10.1016/j.microc.2017.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
53
|
Size Separation Techniques for the Characterisation of Cross-Linked Casein: A Review of Methods and Their Applications. SEPARATIONS 2018. [DOI: 10.3390/separations5010014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
54
|
Chetwynd AJ, Guggenheim EJ, Briffa SM, Thorn JA, Lynch I, Valsami-Jones E. Current Application of Capillary Electrophoresis in Nanomaterial Characterisation and Its Potential to Characterise the Protein and Small Molecule Corona. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E99. [PMID: 29439415 PMCID: PMC5853730 DOI: 10.3390/nano8020099] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/22/2018] [Accepted: 01/30/2018] [Indexed: 12/11/2022]
Abstract
Due to the increasing use and production of nanomaterials (NMs), the ability to characterise their physical/chemical properties quickly and reliably has never been so important. Proper characterisation allows a thorough understanding of the material and its stability, and is critical to establishing dose-response curves to ascertain risks to human and environmental health. Traditionally, methods such as Transmission Electron Microscopy (TEM), Field Flow Fractionation (FFF) and Dynamic Light Scattering (DLS) have been favoured for size characterisation, due to their wide-availability and well-established protocols. Capillary Electrophoresis (CE) offers a faster and more cost-effective solution for complex dispersions including polydisperse or non-spherical NMs. CE has been used to rapidly separate NMs of varying sizes, shapes, surface modifications and compositions. This review will discuss the literature surrounding the CE separation techniques, detection and NM characteristics used for the analysis of a wide range of NMs. The potential of combining CE with mass spectrometry (CE-MS) will also be explored to further expand the characterisation of NMs, including the layer of biomolecules adsorbed to the surface of NMs in biological or environmental compartments, termed the acquired biomolecule corona. CE offers the opportunity to uncover new/poorly characterised low abundance and polar protein classes due to the high ionisation efficiency of CE-MS. Furthermore, the possibility of using CE-MS to characterise the poorly researched small molecule interactions within the NM corona is discussed.
Collapse
Affiliation(s)
- Andrew J. Chetwynd
- AB Sciex UK Ltd., Phoenix House, Lakeside Drive, Warrington, Cheshire WA1 1RX, UK;
| | - Emily J. Guggenheim
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (E.J.G.); (S.M.B.); (E.V.-J.)
| | - Sophie M. Briffa
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (E.J.G.); (S.M.B.); (E.V.-J.)
| | - James A. Thorn
- AB Sciex UK Ltd., Phoenix House, Lakeside Drive, Warrington, Cheshire WA1 1RX, UK;
| | - Iseult Lynch
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (E.J.G.); (S.M.B.); (E.V.-J.)
| | - Eugenia Valsami-Jones
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (E.J.G.); (S.M.B.); (E.V.-J.)
| |
Collapse
|
55
|
Lai RWS, Yeung KWY, Yung MMN, Djurišić AB, Giesy JP, Leung KMY. Regulation of engineered nanomaterials: current challenges, insights and future directions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3060-3077. [PMID: 28639026 DOI: 10.1007/s11356-017-9489-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/07/2017] [Indexed: 05/25/2023]
Abstract
Substantial production and wide applications of engineered nanomaterials (ENMs) have raised concerns over their potential influences on the environment and humans. However, regulations of products containing ENMs are scarce, even in countries with the greatest volume of ENMs produced, such as the United States and China. After a comprehensive review of life cycles of ENMs, five major challenges to regulators posed by ENMs are proposed in this review: (a) ENMs exhibit variable physicochemical characteristics, which makes them difficult for regulators to establish regulatory definition; (b) Due to diverse sources and transport pathways for ENMs, it is difficult to monitor or predict their fates in the environment; (c) There is a lack of reliable techniques for quantifying exposures to ENMs; (d) Because of diverse intrinsic properties of ENMs and dynamic environmental conditions, it is difficult to predict bioavailability of ENMs on wildlife and the environment; and (e) There are knowledge gaps in toxicity and toxic mechanisms of ENMs from which to predict their hazards. These challenges are all related to issues in conventional assessments of risks that regulators rely on. To address the fast-growing nanotechnology market with limited resources, four ENMs (nanoparticles of Ag, TiO2, ZnO and Fe2O3) have been prioritized for research. Compulsory reporting schemes (registration and labelling) for commercial products containing ENMs should be adopted. Moreover, to accommodate their potential risks in time, an integrative use of quantitative structure-activity relationship and adverse outcome pathway (QSAR-AOP), together with qualitative alternatives to conventional risk assessment are proposed as tools for decision making of regulators.
Collapse
Affiliation(s)
- Racliffe W S Lai
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Katie W Y Yeung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mana M N Yung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - John P Giesy
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
56
|
Król A, Pomastowski P, Rafińska K, Railean-Plugaru V, Buszewski B. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Adv Colloid Interface Sci 2017; 249:37-52. [PMID: 28923702 DOI: 10.1016/j.cis.2017.07.033] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/24/2017] [Accepted: 07/29/2017] [Indexed: 02/02/2023]
Abstract
Zinc oxide (ZnO), as a material with attractive properties, has attracted great interest worldwide, particularly owing to the implementation of the synthesis of nano-sized particles. High luminescent efficiency, a wide band gap (3.36eV), and a large exciton binding energy (60meV) has triggered intense research on the production of nanoparticles using different synthesis methods and on their future applications. ZnO nanomaterials can be used in industry as nano-optical and nano-electrical devices, in food packaging and in medicine as antimicrobial and antitumor agents. The increasing focus on nano zinc oxide resulted in the invention and development of methods of nanoparticles synthesis. Recently, various approaches including physical, chemical and biological ("green chemistry") have been used to prepare ZnO nanocomposites with different morphologies. The obtained nanoparticles can be characterized with a broad range of analytical methods including dynamic light scattering (DLS), electron microscopy (TEM, SEM), UV-VIS spectroscopy, X-ray diffraction (XRD) or inductively coupled plasma with mass spectrometry (ICP-MS). With these it is possible to obtain information concerning the size, shape and optical properties of nanoparticles. ZnO NPs exhibit attractive antimicrobial properties against bacteria (Gram-positive and Gram-negative) and fungi. Zinc oxide nanocomposites show also selective toxicity toward normal and cancerous cells, which is explained by reactive oxygen formation (ROS). Yet despite the potentially interesting antitumor activity of ZnO nanoparticles, it has been proven that they can be also cytotoxic and genotoxic for multiple types of human cells (i.e. neuronal or epithelial cells). This paper reviews the methods of synthesizing zinc oxide nanocomposites as well as their characteristics, antimicrobial activity and cytotoxicity against normal and tumor cells.
Collapse
|
57
|
Krebs G, Becker T, Gastl M. Characterization of polymeric substance classes in cereal-based beverages using asymmetrical flow field-flow fractionation with a multi-detection system. Anal Bioanal Chem 2017; 409:5723-5734. [DOI: 10.1007/s00216-017-0512-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/20/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
|
58
|
Choi S, Johnston MV, Wang GS, Huang CP. Looking for engineered nanoparticles (ENPs) in wastewater treatment systems: Qualification and quantification aspects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 590-591:809-817. [PMID: 28292607 DOI: 10.1016/j.scitotenv.2017.03.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
The current study developed a rationalized method for the quantification and identification of engineered nanoparticles (ENPs) in wastewaters. A review of current literature revealed that overall, presently available methods focused on single ENP mostly and were applicable mainly to samples of low organic loadings or under well-controlled laboratory conditions. In the present research, procedures including dialysis for desalting and low-temperature oxidation for organic removal were used to pretreat samples of high organic loadings, specifically, municipal wastewater and sludge. SEM mapping technique identified the presence of nanoparticles, which was followed by ICP-OES quantification of different engineering nanoparticles in wastewater and sludge samples collected from two major regional municipal wastewater treatment plants. Results showed successful identification and quantification of nano-size titanium and zinc oxides from wastewater treatment plants studied. Concentration profile was mapped out for the wastewater treatment plants (WWTPs) using the method developed in this research. Results also showed an overall 80% and 68% removal of titanium and zinc by primary and secondary sludge particulates, respectively. Mass flux of engineered nanoparticles (ENPs) was also calculated to estimate the daily flow of engineered nanoparticles in the system.
Collapse
Affiliation(s)
- Soohoon Choi
- Department of Civil and Environmental engineering, University of Delaware, Newark, DE 19711, United States
| | - Murray V Johnston
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19711, United States
| | - Gen-Suh Wang
- Institute of Environmental Health, National Taiwan University, Taipei 100, Taiwan
| | - C P Huang
- Department of Civil and Environmental engineering, University of Delaware, Newark, DE 19711, United States.
| |
Collapse
|
59
|
Cuss CW, Grant-Weaver I, Shotyk W. AF4-ICPMS with the 300 Da Membrane To Resolve Metal-Bearing “Colloids” < 1 kDa: Optimization, Fractogram Deconvolution, and Advanced Quality Control. Anal Chem 2017; 89:8027-8035. [DOI: 10.1021/acs.analchem.7b01427] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chad W. Cuss
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G
2H1, Canada
| | - Iain Grant-Weaver
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G
2H1, Canada
| | - William Shotyk
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G
2H1, Canada
| |
Collapse
|
60
|
Tolessa T, Zhou XX, Amde M, Liu JF. Development of reusable magnetic chitosan microspheres adsorbent for selective extraction of trace level silver nanoparticles in environmental waters prior to ICP-MS analysis. Talanta 2017; 169:91-97. [DOI: 10.1016/j.talanta.2017.03.064] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 01/05/2023]
|
61
|
Duncan TV, Singh G. Nanomaterials in Food Products: A New Analytical Challenge. NANOTECHNOLOGIES IN FOOD 2017. [DOI: 10.1039/9781782626879-00143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This chapter focuses on the problem of detecting, characterizing, and determining the concentration of nanomaterials in foods and other biological matrices. After providing an overview of the unique challenges associated with nanoparticle metrology in complex media, sample pretreatment methods (including extraction, digestion, and inline chromatographic separation), imaging analysis, and nanomaterial quantification methods are presented in detail. The chapter also addresses numerous methods under development, including atmospheric scanning electron microscopy, single-particle inductively coupled plasma mass spectrometry, immunological detection methods, and optical techniques such surface plasmon resonance. The chapter concludes with an overview of the research needs in this area.
Collapse
Affiliation(s)
- Timothy V. Duncan
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition Bedford Park Illinois USA
| | - Gurmit Singh
- Food Research Division, Bureau of Chemical Safety, Health Canada Ottawa Canada
| |
Collapse
|
62
|
Flow-field mitigation of membrane fouling (FMMF) via manipulation of the convective flow in cross-flow membrane applications. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.12.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
63
|
Wohlleben W, Kingston C, Carter J, Sahle-Demessie E, Vázquez-Campos S, Acrey B, Chen CY, Walton E, Egenolf H, Müller P, Zepp R. NanoRelease: Pilot interlaboratory comparison of a weathering protocol applied to resilient and labile polymers with and without embedded carbon nanotubes. CARBON 2017; 113:346-360. [PMID: 30147114 PMCID: PMC6104645 DOI: 10.1016/j.carbon.2016.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A major use of multi-walled carbon nanotubes (MWCNTs) is as functional fillers embedded in a solid matrix, such as plastics or coatings. Weathering and abrasion of the solid matrix during use can lead to environmental releases of the MWCNTs. Here we focus on a protocol to identify and quantify the primary release induced by weathering, and assess reproducibility, transferability, and sensitivity towards different materials and uses. We prepared 132 specimens of two polymer-MWCNT composites containing the same grade of MWCNTs used in earlier OECD hazard assessments but without UV stabilizer. We report on a pilot inter-laboratory comparison (ILC) with four labs (two US and two EU) aging by UV and rain, then shipping for analysis. Two labs (one US and one EU) conducted the release sampling and analysis by Transmission Electron Microscopy (TEM), Inductively Coupled Plasma- Mass Spectrometry (ICP-MS), UltravioleteVisible Spectroscopy (UVeVis), Analytical Ultracentrifugation (AUC), and Asymmetric Flow Field Flow Fractionation (AF4). We compare results between aging labs, between analysis labs and between materials. Surprisingly, we found quantitative agreement between analysis labs for TEM, ICP-MS, UVeVis; low variation between aging labs by all methods; and consistent rankings of release between TEM, ICP-MS, UVeVis, AUC. Significant disagreement was related primarily to differences in aging, but even these cases remained within a factor of two.
Collapse
Affiliation(s)
- Wendel Wohlleben
- BASF SE, Dept. Material Physics and Analytics, 67056, Ludwigshafen, Germany
| | | | - Janet Carter
- Occupational Safety and Health Administration (OSHA), USA
| | - E. Sahle-Demessie
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), National Risk Management Research Laboratory (NRMRL), Cincinnati, OH, USA
| | | | - Brad Acrey
- EPA, ORD, National Exposure Research Laboratory (NERL), 960 College Station Rd., Athens, GA, USA
- Student Services Associate
| | - Chia-Ying Chen
- EPA, ORD, National Exposure Research Laboratory (NERL), 960 College Station Rd., Athens, GA, USA
- National Research Council Associate
| | - Ernest Walton
- EPA, Region 4, Science and Ecosystem Support Division (SESD), Athens, GA, USA
| | - Heiko Egenolf
- BASF SE, Dept. Material Physics and Analytics, 67056, Ludwigshafen, Germany
| | - Philipp Müller
- BASF SE, Dept. Material Physics and Analytics, 67056, Ludwigshafen, Germany
| | - Richard Zepp
- EPA, ORD, National Exposure Research Laboratory (NERL), 960 College Station Rd., Athens, GA, USA
- Corresponding author. (R. Zepp)
| |
Collapse
|
64
|
Mudalige TK, Qu H, Linder SW. Rejection of Commonly Used Electrolytes in Asymmetric Flow Field Flow Fractionation: Effects of Membrane Molecular Weight Cutoff Size, Fluid Dynamics, and Valence of Electrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1442-1450. [PMID: 28098465 DOI: 10.1021/acs.langmuir.6b03749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Asymmetric flow field flow fractionation (AF4) is an efficient size-based separation technique for the characterization of submicron size particulates. In AF4, membranes having various molecular weight cutoff sizes are used as a barrier to retain particles while allowing the carrier fluid containing electrolytes to permeate. Here, we have hypothesized that electrolyte rejection by the barrier membrane leads to the accumulation of electrolytes in the channel during operation. Electrolyte accumulation can cause various adverse effects that can lead to membrane fouling. An instrument setup containing a conductivity detector was assembled, and the rejection of commonly used carrier electrolytes such as trisodium citrate, ethylenediaminetetraacetic acid, sodium chloride, and ammonium carbonate was evaluated by varying the concentration, cross-flow rate, focusing flow rate, membrane material type, and cutoff sizes. The results showed that electrolyte rejection increased with a decrease in the electrolyte concentration and the molecular weight cutoff size (pore size) or with an increase in the charge state of the anion in the carrier electrolytes. We proposed an electrostatic repulsion-based rejection mechanism and verified it with the measurement of the rejection rate while varying the electrolyte concentration in the running media.
Collapse
Affiliation(s)
- Thilak K Mudalige
- Office of Regulatory Affairs, Arkansas Regional Laboratory, U.S. Food and Drug Administration , 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Haiou Qu
- Office of Regulatory Affairs, Arkansas Regional Laboratory, U.S. Food and Drug Administration , 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Sean W Linder
- Office of Regulatory Affairs, Arkansas Regional Laboratory, U.S. Food and Drug Administration , 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| |
Collapse
|
65
|
Gigault J, Mignard E, Hadri HE, Grassl B. Measurement Bias on Nanoparticle Size Characterization by Asymmetric Flow Field-Flow Fractionation Using Dynamic Light-Scattering Detection. Chromatographia 2017. [DOI: 10.1007/s10337-017-3250-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
66
|
Frit inlet field-flow fractionation techniques for the characterization of polyion complex self-assemblies. J Chromatogr A 2017; 1481:101-110. [DOI: 10.1016/j.chroma.2016.12.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 01/15/2023]
|
67
|
Hadri HE, Hackley VA. Investigation of cloud point extraction for the analysis of metallic nanoparticles in a soil matrix. ENVIRONMENTAL SCIENCE. NANO 2017; 4:105-116. [PMID: 28507763 PMCID: PMC5427641 DOI: 10.1039/c6en00322b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The characterization of manufactured nanoparticles (MNPs) in environmental samples is necessary to assess their behavior, fate and potential toxicity. Several techniques are available, but the limit of detection (LOD) is often too high for environmentally relevant concentrations. Therefore, pre-concentration of MNPs is an important component in the sample preparation step, in order to apply analytical tools with a LOD higher than the ng kg-1 level. The objective of this study was to explore cloud point extraction (CPE) as a viable method to pre-concentrate gold nanoparticles (AuNPs), as a model MNP, spiked into a soil extract matrix. To that end, different extraction conditions and surface coatings were evaluated in a simple matrix. The CPE method was then applied to soil extract samples spiked with AuNPs. Total gold, determined by inductively coupled plasma mass spectrometry (ICP-MS) following acid digestion, yielded a recovery greater than 90 %. The first known application of single particle ICP-MS and asymmetric flow field-flow fractionation to evaluate the preservation of the AuNP physical state following CPE extraction is demonstrated.
Collapse
Affiliation(s)
- Hind El Hadri
- Materials Measurement Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8520
| | - Vincent A Hackley
- Materials Measurement Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8520
| |
Collapse
|
68
|
Jokar M, Pedersen GA, Loeschner K. Six open questions about the migration of engineered nano-objects from polymer-based food-contact materials: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 34:434-450. [DOI: 10.1080/19440049.2016.1271462] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Maryam Jokar
- Division of Food Technology, National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Gitte Alsing Pedersen
- Division for Risk Assessment and Nutrition, National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Katrin Loeschner
- Division of Food Technology, National Food Institute, Technical University of Denmark, Søborg, Denmark
| |
Collapse
|
69
|
Salafi T, Zeming KK, Zhang Y. Advancements in microfluidics for nanoparticle separation. LAB ON A CHIP 2016; 17:11-33. [PMID: 27830852 DOI: 10.1039/c6lc01045h] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanoparticles have been widely implemented for healthcare and nanoscience industrial applications. Thus, efficient and effective nanoparticle separation methods are essential for advancement in these fields. However, current technologies for separation, such as ultracentrifugation, electrophoresis, filtration, chromatography, and selective precipitation, are not continuous and require multiple preparation steps and a minimum sample volume. Microfluidics has offered a relatively simple, low-cost, and continuous particle separation approach, and has been well-established for micron-sized particle sorting. Here, we review the recent advances in nanoparticle separation using microfluidic devices, focusing on its techniques, its advantages over conventional methods, and its potential applications, as well as foreseeable challenges in the separation of synthetic nanoparticles and biological molecules, especially DNA, proteins, viruses, and exosomes.
Collapse
Affiliation(s)
- Thoriq Salafi
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), National University of Singapore, 05-01 28 Medical Drive, 117456 Singapore. and Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Block EA #03-12, 117576 Singapore
| | - Kerwin Kwek Zeming
- Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Block EA #03-12, 117576 Singapore
| | - Yong Zhang
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), National University of Singapore, 05-01 28 Medical Drive, 117456 Singapore. and Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Block EA #03-12, 117576 Singapore
| |
Collapse
|
70
|
Jiménez-Lamana J, Slaveykova VI. Silver nanoparticle behaviour in lake water depends on their surface coating. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:946-953. [PMID: 27599058 DOI: 10.1016/j.scitotenv.2016.08.181] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/26/2016] [Accepted: 08/26/2016] [Indexed: 06/06/2023]
Abstract
The present study examines the stability of silver nanoparticles (AgNPs) of three different coatings - citrate (CIT), polyvinyl pyrrolidone (PVP) and lipoic acid (LIP) and two sizes - 20 and 50nm in lake water (LW) over time. Using a combination of asymmetric flow field-flow fractionation (AsFlFFF), surface plasmon resonance (SPR), and single particle inductively coupled plasma mass spectrometry (SP-ICP-MS), the influence of size, surface coating, exposure time, as well as the presence and nature of dissolved organic matter (DOM) on the transformation of AgNPs at low environmental concentrations was thoroughly investigated. The results revealed that the AgNP stability in lake water are complex interplay between the surface coating characteristics, exposure time and presence and nature of DOM. Among the studied variables surface coating was found to play the major role of determining AgNPs behaviour in lake water. PVP-coated AgNPs agglomerated to a lesser extent as compared with the CIT- and LIP-AgNPs. For a given surface coating, DOM of pedogenic and aquagenic origin increased the stability of the AgNPs (LW+EPS>LW+SRHA>LW). Moreover, extracellular polymeric substances (EPS; aquagenic origin) stabilized lipoic acid-coated AgNPs more effectively than Suwannee River Humic Acids (SRHA; pedogenic origin), showing that DOM nature has to be also considered for improved understanding the AgNP stability in aquatic environment.
Collapse
Affiliation(s)
- Javier Jiménez-Lamana
- Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Faculty of Sciences, University of Geneva, Uni Carl Vogt, 66 Bvd. Carl Vogt, CH-1211 Geneva, Switzerland.
| | - Vera I Slaveykova
- Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Faculty of Sciences, University of Geneva, Uni Carl Vogt, 66 Bvd. Carl Vogt, CH-1211 Geneva, Switzerland.
| |
Collapse
|
71
|
|
72
|
Omar J, Boix A, Kerckhove G, von Holst C. Optimisation of asymmetric flow field-flow fractionation for the characterisation of nanoparticles in coated polydisperse TiO 2 with applications in food and feed. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:1775-1784. [PMID: 27650879 PMCID: PMC5214228 DOI: 10.1080/19440049.2016.1239031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Titanium dioxide (TiO2) has various applications in consumer products and is also used as an additive in food and feeding stuffs. For the characterisation of this product, including the determination of nanoparticles, there is a strong need for the availability of corresponding methods of analysis. This paper presents an optimisation process for the characterisation of polydisperse-coated TiO2 nanoparticles. As a first step, probe ultrasonication was optimised using a central composite design in which the amplitude and time were the selected variables to disperse, i.e., to break up agglomerates and/or aggregates of the material. The results showed that high amplitudes (60%) favoured a better dispersion and time was fixed in mid-values (5 min). In a next step, key factors of asymmetric flow field-flow fraction (AF4), namely cross-flow (CF), detector flow (DF), exponential decay of the cross-flow (CFexp) and focus time (Ft), were studied through experimental design. Firstly, a full-factorial design was employed to establish the statistically significant factors (p < 0.05). Then, the information obtained from the full-factorial design was utilised by applying a central composite design to obtain the following optimum conditions of the system: CF, 1.6 ml min–1; DF, 0.4 ml min–1; Ft, 5 min; and CFexp, 0.6. Once the optimum conditions were obtained, the stability of the dispersed sample was measured for 24 h by analysing 10 replicates with AF4 in order to assess the performance of the optimised dispersion protocol. Finally, the recovery of the optimised method, particle shape and particle size distribution were estimated.
Collapse
Affiliation(s)
- J Omar
- a European Commission , Joint Research Centre (EC-JRC) , Geel , Belgium
| | - A Boix
- a European Commission , Joint Research Centre (EC-JRC) , Geel , Belgium
| | - G Kerckhove
- a European Commission , Joint Research Centre (EC-JRC) , Geel , Belgium
| | - C von Holst
- a European Commission , Joint Research Centre (EC-JRC) , Geel , Belgium
| |
Collapse
|
73
|
Jochem AR, Ankah GN, Meyer LA, Elsenberg S, Johann C, Kraus T. Colloidal Mechanisms of Gold Nanoparticle Loss in Asymmetric Flow Field-Flow Fractionation. Anal Chem 2016; 88:10065-10073. [PMID: 27673742 DOI: 10.1021/acs.analchem.6b02397] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Flow field-flow fractionation is a powerful method for the analysis of nanoparticle size distributions, but its widespread use has been hampered by large analyte losses, especially of metal nanoparticles. Here, we report on the colloidal mechanisms underlying the losses. We systematically studied gold nanoparticles (AuNPs) during asymmetrical flow field-flow fractionation (AF4) by systematic variation of the particle properties and the eluent composition. Recoveries of AuNPs (core diameter 12 nm) stabilized by citrate or polyethylene glycol (PEG) at different ionic strengths were determined. We used online UV-vis detection and off-line elementary analysis to follow particle losses during full analysis runs, runs without cross-flow, and runs with parts of the instrument bypassed. The combination allowed us to calculate relative and absolute analyte losses at different stages of the analytic protocol. We found different loss mechanisms depending on the ligand. Citrate-stabilized particles degraded during analysis and suffered large losses (up to 74%). PEG-stabilized particles had smaller relative losses at moderate ionic strengths (1-20%) that depended on PEG length. Long PEGs at higher ionic strengths (≥5 mM) caused particle loss due to bridging adsorption at the membrane. Bulk agglomeration was not a relevant loss mechanism at low ionic strengths ≤5 mM for any of the studied particles. An unexpectedly large fraction of particles was lost at tubing and other internal surfaces. We propose that the colloidal mechanisms observed here are relevant loss mechanisms in many particle analysis protocols and discuss strategies to avoid them.
Collapse
Affiliation(s)
- Aljosha-Rakim Jochem
- INM - Leibniz Institute for New Materials , Campus D2 2, 66123 Saarbruecken, Germany
| | - Genesis Ngwa Ankah
- INM - Leibniz Institute for New Materials , Campus D2 2, 66123 Saarbruecken, Germany
| | - Lars-Arne Meyer
- INM - Leibniz Institute for New Materials , Campus D2 2, 66123 Saarbruecken, Germany
| | | | - Christoph Johann
- Wyatt Technology Europe GmbH , Hochstrasse 12a, 56307 Dernbach, Germany
| | - Tobias Kraus
- INM - Leibniz Institute for New Materials , Campus D2 2, 66123 Saarbruecken, Germany
| |
Collapse
|
74
|
Analytical approaches for the characterization and quantification of nanoparticles in food and beverages. Anal Bioanal Chem 2016; 409:63-80. [DOI: 10.1007/s00216-016-9946-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/29/2016] [Accepted: 09/14/2016] [Indexed: 11/28/2022]
|
75
|
Affiliation(s)
- Gaëtane Lespes
- Université de Pau et des Pays de l'Adour; Avenue de l'Université, BP 1155 64013 Pau Cedex France
| |
Collapse
|
76
|
Wang P, Lombi E, Zhao FJ, Kopittke PM. Nanotechnology: A New Opportunity in Plant Sciences. TRENDS IN PLANT SCIENCE 2016; 21:699-712. [PMID: 27130471 DOI: 10.1016/j.tplants.2016.04.005] [Citation(s) in RCA: 345] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/22/2016] [Accepted: 04/04/2016] [Indexed: 05/21/2023]
Abstract
The agronomic application of nanotechnology in plants (phytonanotechnology) has the potential to alter conventional plant production systems, allowing for the controlled release of agrochemicals (e.g., fertilizers, pesticides, and herbicides) and target-specific delivery of biomolecules (e.g., nucleotides, proteins, and activators). An improved understanding of the interactions between nanoparticles (NPs) and plant responses, including their uptake, localization, and activity, could revolutionize crop production through increased disease resistance, nutrient utilization, and crop yield. Herewith, we review potential applications of phytonanotechnology and the key processes involved in the delivery of NPs to plants. To ensure both the safe use and social acceptance of phytonanotechnology, the adverse effects, including the risks associated with the transfer of NPs through the food chain, are discussed.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; The University of Queensland, School of Agriculture and Food Sciences, St Lucia, QLD 4072, Australia.
| | - Enzo Lombi
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peter M Kopittke
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, QLD 4072, Australia
| |
Collapse
|
77
|
Baken S, Regelink IC, Comans RNJ, Smolders E, Koopmans GF. Iron-rich colloids as carriers of phosphorus in streams: A field-flow fractionation study. WATER RESEARCH 2016; 99:83-90. [PMID: 27140905 DOI: 10.1016/j.watres.2016.04.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/13/2016] [Accepted: 04/24/2016] [Indexed: 05/16/2023]
Abstract
Colloidal phosphorus (P) may represent an important fraction of the P in natural waters, but these colloids remain poorly characterized. In this work, we demonstrate the applicability of asymmetric flow field-flow fractionation (AF4) coupled to high resolution ICP-MS for the characterization of low concentrations of P-bearing colloids. Colloids from five streams draining catchments with contrasting properties were characterized by AF4-ICP-MS and by membrane filtration. All streams contain free humic substances (2-3 nm) and Fe-bearing colloids (3-1200 nm). Two soft water streams contain primary Fe oxyhydroxide-humic nanoparticles (3-6 nm) and aggregates thereof (up to 150 nm). In contrast, three harder water streams contain larger aggregates (40-1200 nm) which consist of diverse associations between Fe oxyhydroxides, humic substances, clay minerals, and possibly ferric phosphate minerals. Despite the diversity of colloids encountered in these contrasting streams, P is in most of the samples predominantly associated with Fe-bearing colloids (mostly Fe oxyhydroxides) at molar P:Fe ratios between 0.02 and 1.5. The molar P:Fe ratio of the waters explains the partitioning of P between colloids and truly dissolved species. Waters with a high P:Fe ratio predominantly contain truly dissolved species because the Fe-rich colloids are saturated with P, whereas waters with a low P:Fe ratio mostly contain colloidal P species. Overall, AF4-ICP-MS is a suitable technique to characterize the diverse P-binding colloids in natural waters. Such colloids may increase the mobility or decrease the bioavailability of P, and they therefore need to be considered when addressing the transport and environmental effects of P in catchments.
Collapse
Affiliation(s)
- Stijn Baken
- KU Leuven, Department of Earth and Environmental Sciences, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven, Belgium.
| | - Inge C Regelink
- Alterra, Wageningen University and Research Centre (WUR), P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Rob N J Comans
- Wageningen University, WUR, Department of Soil Quality, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Erik Smolders
- KU Leuven, Department of Earth and Environmental Sciences, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven, Belgium
| | - Gerwin F Koopmans
- Wageningen University, WUR, Department of Soil Quality, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
78
|
Helsper JPFG, Peters RJB, van Bemmel MEM, Rivera ZEH, Wagner S, von der Kammer F, Tromp PC, Hofmann T, Weigel S. Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry. Anal Bioanal Chem 2016; 408:6679-91. [PMID: 27469116 PMCID: PMC5012254 DOI: 10.1007/s00216-016-9783-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/28/2016] [Accepted: 07/08/2016] [Indexed: 12/26/2022]
Abstract
Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass spectrometry (ICPMS) for chemical characterization. The aF4-ICPMS conditions were optimised and validated for linearity, limit of detection, recovery, repeatability and reproducibility, all indicating good performance. Multi-element detection with aF4-ICPMS showed that some commercial pigments contained zirconium co-eluting with titanium in aF4. The other two TiMs, NM103 and NM104, contained aluminium as integral part of the titanium peak eluting in aF4. The materials were characterised using various size determination techniques: retention time in aF4, aF4 hyphenated with multi-angle laser light spectrometry (MALS), single particle ICPMS (spICPMS), scanning electron microscopy (SEM) and particle tracking analysis (PTA). PTA appeared inappropriate. For the other techniques, size distribution patterns were quite similar, i.e. high polydispersity with diameters from 20 to >700 nm, a modal peak between 200 and 500 nm and a shoulder at 600 nm. Number-based size distribution techniques as spICPMS and SEM showed smaller modal diameters than aF4-UV, from which mass-based diameters are calculated. With aF4-MALS calculated, light-scattering-based “diameters of gyration” (Øg) are similar to hydrodynamic diameters (Øh) from aF4-UV analyses and diameters observed with SEM, but much larger than with spICPMS. A Øg/Øh ratio of about 1 indicates that the TiMs are oblate spheres or fractal aggregates. SEM observations confirm the latter structure. The rationale for differences in modal peak diameter is discussed.
Collapse
Affiliation(s)
| | - Ruud J B Peters
- RIKILT Wageningen UR, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands.
| | | | | | - Stephan Wagner
- Department of Environmental Geosciences, University of Vienna, Althanstrasse 14, UZA II, 1090, Vienna, Austria.,Department Analytik, Helmholtz Zentrum für Umweltforschung-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Frank von der Kammer
- Department of Environmental Geosciences, University of Vienna, Althanstrasse 14, UZA II, 1090, Vienna, Austria
| | - Peter C Tromp
- TNO Earth, Life and Social Sciences, Princetonlaan 6, 3584 CB, Utrecht, The Netherlands
| | - Thilo Hofmann
- Department of Environmental Geosciences, University of Vienna, Althanstrasse 14, UZA II, 1090, Vienna, Austria
| | - Stefan Weigel
- RIKILT Wageningen UR, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands.,Bundesinstitut für Risikobewertung (BfR), Max-Dohrn-Straβe 8-10, 10589, Berlin, Germany
| |
Collapse
|
79
|
Gigault J, Budzinski H. Selection of an appropriate aqueous nano-fullerene (nC60) preparation protocol for studying its environmental fate and behavior. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
80
|
|
81
|
Grieger KD, Harrington J, Mortensen N. Prioritizing research needs for analytical techniques suited for engineered nanomaterials in food. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
82
|
Silver and gold nanoparticle separation using asymmetrical flow-field flow fractionation: Influence of run conditions and of particle and membrane charges. J Chromatogr A 2016; 1440:150-159. [DOI: 10.1016/j.chroma.2016.02.059] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 02/18/2016] [Accepted: 02/21/2016] [Indexed: 11/18/2022]
|
83
|
Wu Z, Chen Y, Wang M, Chung AJ. Continuous inertial microparticle and blood cell separation in straight channels with local microstructures. LAB ON A CHIP 2016; 16:532-42. [PMID: 26725506 DOI: 10.1039/c5lc01435b] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Fluid inertia which has conventionally been neglected in microfluidics has been gaining much attention for particle and cell manipulation because inertia-based methods inherently provide simple, passive, precise and high-throughput characteristics. Particularly, the inertial approach has been applied to blood separation for various biomedical research studies mainly using spiral microchannels. For higher throughput, parallelization is essential; however, it is difficult to realize using spiral channels because of their large two dimensional layouts. In this work, we present a novel inertial platform for continuous sheathless particle and blood cell separation in straight microchannels containing microstructures. Microstructures within straight channels exert secondary flows to manipulate particle positions similar to Dean flow in curved channels but with higher controllability. Through a balance between inertial lift force and microstructure-induced secondary flow, we deterministically position microspheres and cells based on their sizes to be separated downstream. Using our inertial platform, we successfully sorted microparticles and fractionized blood cells with high separation efficiencies, high purities and high throughputs. The inertial separation platform developed here can be operated to process diluted blood with a throughput of 10.8 mL min(-1)via radially arrayed single channels with one inlet and two rings of outlets.
Collapse
Affiliation(s)
- Zhenlong Wu
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute (RPI), 110 8th Street, Troy, NY 12180, USA. and School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| | - Yu Chen
- Department of Engineering Mechanics, School of Aerospace, Tsinghua University, Beijing 100084, China
| | - Moran Wang
- Department of Engineering Mechanics, School of Aerospace, Tsinghua University, Beijing 100084, China
| | - Aram J Chung
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute (RPI), 110 8th Street, Troy, NY 12180, USA.
| |
Collapse
|
84
|
Su CK, Hsieh MH, Sun YC. Three-dimensional printed knotted reactors enabling highly sensitive differentiation of silver nanoparticles and ions in aqueous environmental samples. Anal Chim Acta 2016; 914:110-6. [PMID: 26965333 DOI: 10.1016/j.aca.2016.01.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/29/2016] [Accepted: 01/30/2016] [Indexed: 11/16/2022]
Abstract
Whether silver nanoparticles (AgNPs) persist or release silver ions (Ag(+)) when discharged into a natural environment has remained an unresolved issue. In this study, we employed a low-cost stereolithographic three-dimensional printing (3DP) technology to fabricate the angle-defined knotted reactors (KRs) to construct a simple differentiation scheme for quantitative assessment of Ag(+) ions and AgNPs in municipal wastewater samples. We chose xanthan/phosphate-buffered saline as a dispersion medium for in situ stabilization of the two silver species, while also facilitating their extraction from complicated wastewater matrices. After method optimization, we measured extraction efficiencies of 54.5 and 32.3% for retaining Ag(+) ions and AgNPs, respectively, in the printed KR (768-turn), with detection limits (DLs) of 0.86 and 0.52 ng L(-1) when determining Ag(+) ions and AgNPs, respectively (sample run at pH 11 without a rinse solution), and 0.86 ng L(-1) when determining Ag(+) ions alone (sample run at pH 12 with a 1.5-mL rinse solution). The proposed scheme is tolerant of the wastewater matrix and provides more reliable differentiation between Ag(+)/AgNPs than does a conventional filtration method. The concept and applicability of adopting 3DP technology to renew traditional KR devices were evidently proven by means of these significantly improved analytical performance. Our analytical data suggested that the concentrations of Ag(+) ions and AgNPs in the tested industrial wastewater sample were both higher than those in domestic wastewater, implying that industrial activity might be a main source of environmental silver species, rather than domestic discharge from AgNP-containing products.
Collapse
Affiliation(s)
- Cheng-Kuan Su
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan, ROC.
| | - Meng-Hsuan Hsieh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, 30013, Taiwan, ROC
| | - Yuh-Chang Sun
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, 30013, Taiwan, ROC.
| |
Collapse
|
85
|
Barahona F, Ojea-Jimenez I, Geiss O, Gilliland D, Barrero-Moreno J. Multimethod approach for the detection and characterisation of food-grade synthetic amorphous silica nanoparticles. J Chromatogr A 2016; 1432:92-100. [DOI: 10.1016/j.chroma.2015.12.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/16/2015] [Accepted: 12/20/2015] [Indexed: 01/08/2023]
|
86
|
Enferadi Kerenkan A, Béland F, Do TO. Chemically catalyzed oxidative cleavage of unsaturated fatty acids and their derivatives into valuable products for industrial applications: a review and perspective. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01118c] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent catalytic systems reported for the oxidative cleavage of UFAs have been investigated in three classes; homogeneous, heterogeneous, and semi-heterogeneous catalysts.
Collapse
Affiliation(s)
| | - François Béland
- Department of Chemical Engineering
- Laval University
- Québec
- G1V 0A6 Canada
| | - Trong-On Do
- Department of Chemical Engineering
- Laval University
- Québec
- G1V 0A6 Canada
| |
Collapse
|
87
|
Laborda F, Bolea E, Cepriá G, Gómez MT, Jiménez MS, Pérez-Arantegui J, Castillo JR. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples. Anal Chim Acta 2016; 904:10-32. [DOI: 10.1016/j.aca.2015.11.008] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/07/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
|
88
|
Improved production efficiency of mesoporous silicon nanoparticles by pulsed electrochemical etching. POWDER TECHNOL 2016. [DOI: 10.1016/j.powtec.2015.11.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
89
|
A framework to measure the availability of engineered nanoparticles in soils: Trends in soil tests and analytical tools. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.07.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
90
|
Kühn M, Ivleva NP, Klitzke S, Niessner R, Baumann T. Investigation of coatings of natural organic matter on silver nanoparticles under environmentally relevant conditions by surface-enhanced Raman scattering. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 535:122-130. [PMID: 25554386 DOI: 10.1016/j.scitotenv.2014.12.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/05/2014] [Accepted: 12/05/2014] [Indexed: 06/04/2023]
Abstract
The widespread use of engineered inorganic nanoparticles (EINP) leads to a growing risk for an unintended release into the environment. Despite the good characterization of EINP in regard to their function scale and the application areas, there is still a gap of knowledge concerning their behaviour in the different environmental compartments. Due to their high surface to volume ratio, surface properties and existence or development of a coating are of high importance for their stability and transport behaviour. However, analytical methods to investigate organic coatings on nanoparticles in aqueous media are scarce. We used Raman microspectroscopy in combination with surface-enhanced Raman scattering (SERS) to investigate humic acid coatings on silver nanoparticles under environmentally relevant conditions and in real world samples. This setup is more challenging than previous mechanistic studies using SERS to characterize the humic acids in tailored settings where only one type of organic matter is present and the concentrations of the nanoparticles can be easily adjusted to the experimental needs. SERS offers the unique opportunity to work with little sample preparation directly with liquid samples, thus significantly reducing artefacts. SERS spectra of different natural organic matter brought into contact with silver nanoparticles indicate humic acid in close proximity to the nanoparticles. This coating was also present after several washing steps by centrifugation and resuspension in deionized water and after an increase in ionic strength.
Collapse
Affiliation(s)
- Melanie Kühn
- Technische Universität München, Institute of Hydrochemistry, Marchioninistr. 17, D-81377 Munich, Germany.
| | - Natalia P Ivleva
- Technische Universität München, Institute of Hydrochemistry, Marchioninistr. 17, D-81377 Munich, Germany.
| | - Sondra Klitzke
- University of Freiburg, Institute of Forest Sciences, Chair of Soil Ecology, D-79085 Freiburg, Germany; Technische Universität Berlin, Department of Soil Science, Ernst-Reuter-Platz 1, 10587 Berlin, Germany.
| | - Reinhard Niessner
- Technische Universität München, Institute of Hydrochemistry, Marchioninistr. 17, D-81377 Munich, Germany.
| | - Thomas Baumann
- Technische Universität München, Institute of Hydrochemistry, Marchioninistr. 17, D-81377 Munich, Germany.
| |
Collapse
|
91
|
Jiang X, Bol R, Nischwitz V, Siebers N, Willbold S, Vereecken H, Amelung W, Klumpp E. Phosphorus Containing Water Dispersible Nanoparticles in Arable Soil. JOURNAL OF ENVIRONMENTAL QUALITY 2015; 44:1772-1781. [PMID: 26641329 DOI: 10.2134/jeq2015.02.0085] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Due to the limited solubility of phosphorus (P) in soil, understanding its binding in fine colloids is vital to better forecast P dynamics and losses in agricultural systems. We hypothesized that water-dispersible P is present as nanoparticles and that iron (Fe) plays a crucial role for P binding to these nanoparticles. To test this, we isolated water-dispersible fine colloids (WDFC) from an arable topsoil (Haplic Luvisol, Germany) and assessed colloidal P forms after asymmetric flow field-flow fractionation coupled with ultraviolet and an inductively coupled plasma mass spectrometer, with and without removal of amorphous and crystalline Fe oxides using oxalate and dithionite, respectively. We found that fine colloidal P was present in two dominant sizes: (i) in associations of organic matter and amorphous Fe (Al) oxides in nanoparticles <20 nm, and (ii) in aggregates of fine clay, organic matter and Fe oxides (more crystalline Fe oxides) with a mean diameter of 170 to 225 nm. Solution P-nuclear magnetic resonance spectra indicated that the organically bound P predominantly comprised orthophosphate-monoesters. Approximately 65% of P in the WDFC was liberated after the removal of Fe oxides (especially amorphous Fe oxides). The remaining P was bound to larger-sized WDFC particles and Fe bearing phyllosilicate minerals. Intriguingly, the removal of Fe by dithionite resulted in a disaggregation of the nanoparticles, evident in higher portions of organically bound P in the <20 nm nanoparticle fraction, and a widening of size distribution pattern in larger-sized WDFC fraction. We conclude that the crystalline Fe oxides contributed to soil P sequestration by (i) acting as cementing agents contributing to soil fine colloid aggregation, and (ii) binding not only inorganic but also organic P in larger soil WDFC particles.
Collapse
|
92
|
Malysheva A, Lombi E, Voelcker NH. Bridging the divide between human and environmental nanotoxicology. NATURE NANOTECHNOLOGY 2015; 10:835-44. [PMID: 26440721 DOI: 10.1038/nnano.2015.224] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 08/28/2015] [Indexed: 05/17/2023]
Abstract
The need to assess the human and environmental risks of nanoscale materials has prompted the development of new metrological tools for their detection, quantification and characterization. Some of these methods have tremendous potential for use in various scenarios of nanotoxicology. However, in some cases, the limited dialogue between environmental scientists and human toxicologists has hampered the full exploitation of these resources. Here we review recent progress in the development of methods for nanomaterial analysis and discuss the use of these methods in environmental and human toxicology. We highlight the opportunities for collaboration between these two research areas.
Collapse
Affiliation(s)
- Anzhela Malysheva
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Enzo Lombi
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Nicolas H Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Mawson Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
93
|
Liao H, Jiang C, Liu W, Vera JM, Seni OD, Demera K, Yu C, Tan M. Fluorescent Nanoparticles from Several Commercial Beverages: Their Properties and Potential Application for Bioimaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8527-8533. [PMID: 26372844 DOI: 10.1021/acs.jafc.5b04216] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The presence of nanoparticles in beverages has raised great concern in terms of potential impacts to consumer health. Herein, carbon dots in beverages kvass, pony malta, pilsner beer, Vivant Storm, and Profit were identified. They were shown to have a strong fluorescence under the excitation of ultraviolet light. The emission peaks shift to longer wavelengths accompanied by a remarkable fluorescence intensity decrease. The carbon dots are in the nanosized range and roughly spherical in appearance. Elemental analysis by X-ray photoelectron spectroscopy demonstrated the composition of Kvass carbon dots to be C 83.17%, O 13.83%, and N 3.00%. No cytotoxicity was found at concentrations up to 20 mg/mL for human tongue squamous carcinoma cells, and they can be directly applied in both carcinoma and onion epidermal cell imaging. This work represents the first report of the carbon dots present in beverages, providing valuable insights into these nanoparticles for future biological imaging.
Collapse
Affiliation(s)
- Han Liao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Chengkun Jiang
- Liaoning Key Laboratory of Food Biological Technology, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University , 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Wenqiang Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Juan Manuel Vera
- Instituto de Investigación Cientı́fica, Universidad Técnica de Manabı́ , Portoviejo, Ecuador
| | - Oscar David Seni
- Instituto de Investigación Cientı́fica, Universidad Técnica de Manabı́ , Portoviejo, Ecuador
| | - Kevin Demera
- Instituto de Investigación Cientı́fica, Universidad Técnica de Manabı́ , Portoviejo, Ecuador
| | - Chenxu Yu
- Liaoning Key Laboratory of Food Biological Technology, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University , 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China
- Department of Agricultural and Biosystems Engineering, Iowa State University , Ames, Iowa 50011, United States
| | - Mingqian Tan
- Liaoning Key Laboratory of Food Biological Technology, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University , 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China
- Instituto de Investigación Cientı́fica, Universidad Técnica de Manabı́ , Portoviejo, Ecuador
| |
Collapse
|
94
|
Synthetic Smectite Colloids: Characterization of Nanoparticles after Co-Precipitation in the Presence of Lanthanides and Tetravalent Elements (Zr, Th). CHROMATOGRAPHY 2015. [DOI: 10.3390/chromatography2030545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
95
|
Braakhuis HM, Kloet SK, Kezic S, Kuper F, Park MVDZ, Bellmann S, van der Zande M, Le Gac S, Krystek P, Peters RJB, Rietjens IMCM, Bouwmeester H. Progress and future of in vitro models to study translocation of nanoparticles. Arch Toxicol 2015; 89:1469-95. [PMID: 25975987 PMCID: PMC4551544 DOI: 10.1007/s00204-015-1518-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/01/2015] [Indexed: 10/28/2022]
Abstract
The increasing use of nanoparticles in products likely results in increased exposure of both workers and consumers. Because of their small size, there are concerns that nanoparticles unintentionally cross the barriers of the human body. Several in vivo rodent studies show that, dependent on the exposure route, time, and concentration, and their characteristics, nanoparticles can cross the lung, gut, skin, and placental barrier. This review aims to evaluate the performance of in vitro models that mimic the barriers of the human body, with a focus on the lung, gut, skin, and placental barrier. For these barriers, in vitro models of varying complexity are available, ranging from single-cell-type monolayer to multi-cell (3D) models. Only a few studies are available that allow comparison of the in vitro translocation to in vivo data. This situation could change since the availability of analytical detection techniques is no longer a limiting factor for this comparison. We conclude that to further develop in vitro models to be used in risk assessment, the current strategy to improve the models to more closely mimic the human situation by using co-cultures of different cell types and microfluidic approaches to better control the tissue microenvironments are essential. At the current state of the art, the in vitro models do not yet allow prediction of absolute transfer rates but they do support the definition of relative transfer rates and can thus help to reduce animal testing by setting priorities for subsequent in vivo testing.
Collapse
Affiliation(s)
- Hedwig M. Braakhuis
- />Department of Toxicogenomics, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
- />Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Samantha K. Kloet
- />Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - Sanja Kezic
- />AMC, Coronel Institute of Occupational Health, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Frieke Kuper
- />TNO, Utrechtseweg 48, 3704 HE Zeist, The Netherlands
| | - Margriet V. D. Z. Park
- />Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands
| | | | | | - Séverine Le Gac
- />UT BIOS, Lab on a Chip Group, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Petra Krystek
- />Philips Innovation Services, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| | - Ruud J. B. Peters
- />RIKILT- Wageningen UR, PO Box 230, 6700 AE Wageningen, The Netherlands
| | - Ivonne M. C. M. Rietjens
- />Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - Hans Bouwmeester
- />RIKILT- Wageningen UR, PO Box 230, 6700 AE Wageningen, The Netherlands
| |
Collapse
|
96
|
Part F, Zecha G, Causon T, Sinner EK, Huber-Humer M. Current limitations and challenges in nanowaste detection, characterisation and monitoring. WASTE MANAGEMENT (NEW YORK, N.Y.) 2015; 43:407-420. [PMID: 26117420 DOI: 10.1016/j.wasman.2015.05.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 06/04/2023]
Abstract
Engineered nanomaterials (ENMs) are already extensively used in diverse consumer products. Along the life cycle of a nano-enabled product, ENMs can be released and subsequently accumulate in the environment. Material flow models also indicate that a variety of ENMs may accumulate in waste streams. Therefore, a new type of waste, so-called nanowaste, is generated when end-of-life ENMs and nano-enabled products are disposed of. In terms of the precautionary principle, environmental monitoring of end-of-life ENMs is crucial to allow assessment of the potential impact of nanowaste on our ecosystem. Trace analysis and quantification of nanoparticulate species is very challenging because of the variety of ENM types that are used in products and low concentrations of nanowaste expected in complex environmental media. In the framework of this paper, challenges in nanowaste characterisation and appropriate analytical techniques which can be applied to nanowaste analysis are summarised. Recent case studies focussing on the characterisation of ENMs in waste streams are discussed. Most studies aim to investigate the fate of nanowaste during incineration, particularly considering aerosol measurements; whereas, detailed studies focusing on the potential release of nanowaste during waste recycling processes are currently not available. In terms of suitable analytical methods, separation techniques coupled to spectrometry-based methods are promising tools to detect nanowaste and determine particle size distribution in liquid waste samples. Standardised leaching protocols can be applied to generate soluble fractions stemming from solid wastes, while micro- and ultrafiltration can be used to enrich nanoparticulate species. Imaging techniques combined with X-ray-based methods are powerful tools for determining particle size, morphology and screening elemental composition. However, quantification of nanowaste is currently hampered due to the problem to differentiate engineered from naturally-occurring nanoparticles. A promising approach to face these challenges in nanowaste characterisation might be the application of nanotracers with unique optical properties, elemental or isotopic fingerprints. At present, there is also a need to develop and standardise analytical protocols regarding nanowaste sampling, separation and quantification. In general, more experimental studies are needed to examine the fate and transport of ENMs in waste streams and to deduce transfer coefficients, respectively to develop reliable material flow models.
Collapse
Affiliation(s)
- Florian Part
- Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Institute of Waste Management, Muthgasse 107, 1190 Vienna, Austria
| | - Gudrun Zecha
- Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Institute of Waste Management, Muthgasse 107, 1190 Vienna, Austria
| | - Tim Causon
- Department of Chemistry, Division of Analytical Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Eva-Kathrin Sinner
- Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Muthgasse 11/II, 1190 Vienna, Austria
| | - Marion Huber-Humer
- Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Institute of Waste Management, Muthgasse 107, 1190 Vienna, Austria.
| |
Collapse
|
97
|
Galyean AA, Vreeland WN, Filliben JJ, Holbrook RD, Ripple DC, Weinberg HS. Using light scattering to evaluate the separation of polydisperse nanoparticles. Anal Chim Acta 2015; 886:207-13. [PMID: 26320655 DOI: 10.1016/j.aca.2015.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/03/2015] [Accepted: 06/07/2015] [Indexed: 11/17/2022]
Abstract
The analysis of natural and otherwise complex samples is challenging and yields uncertainty about the accuracy and precision of measurements. Here we present a practical tool to assess relative accuracy among separation protocols for techniques using light scattering detection. Due to the highly non-linear relationship between particle size and the intensity of scattered light, a few large particles may obfuscate greater numbers of small particles. Therefore, insufficiently separated mixtures may result in an overestimate of the average measured particle size. Complete separation of complex samples is needed to mitigate this challenge. A separation protocol can be considered improved if the average measured size is smaller than a previous separation protocol. Further, the protocol resulting in the smallest average measured particle size yields the best separation among those explored. If the differential in average measured size between protocols is less than the measurement uncertainty, then the selected protocols are of equivalent precision. As a demonstration, this assessment metric is applied to optimization of cross flow (V(x)) protocols in asymmetric flow field flow fractionation (AF(4)) separation interfaced with online quasi-elastic light scattering (QELS) detection using mixtures of polystyrene beads spanning a large size range. Using this assessment metric, the V(x) parameter was modulated to improve separation until the average measured size of the mixture was in statistical agreement with the calculated average size of particles in the mixture. While we demonstrate this metric by improving AF(4) V(x) protocols, it can be applied to any given separation parameters for separation techniques that employ dynamic light scattering detectors.
Collapse
Affiliation(s)
- Anne A Galyean
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Wyatt N Vreeland
- Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA.
| | - James J Filliben
- Statistical Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA.
| | - R David Holbrook
- Materials Measurement Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA.
| | - Dean C Ripple
- Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA.
| | - Howard S Weinberg
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
98
|
Contado C. Nanomaterials in consumer products: a challenging analytical problem. Front Chem 2015; 3:48. [PMID: 26301216 PMCID: PMC4527077 DOI: 10.3389/fchem.2015.00048] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/13/2015] [Indexed: 01/10/2023] Open
Abstract
Many products used in everyday life are made with the assistance of nanotechnologies. Cosmetic, pharmaceuticals, sunscreen, powdered food are only few examples of end products containing nano-sized particles (NPs), generally added to improve the product quality. To evaluate correctly benefits vs. risks of engineered nanomaterials and consequently to legislate in favor of consumer's protection, it is necessary to know the hazards connected with the exposure levels. This information implies transversal studies and a number of different competences. On analytical point of view the identification, quantification and characterization of NPs in food matrices and in cosmetic or personal care products pose significant challenges, because NPs are usually present at low concentration levels and the matrices, in which they are dispersed, are complexes and often incompatible with analytical instruments that would be required for their detection and characterization. This paper focused on some analytical techniques suitable for the detection, characterization and quantification of NPs in food and cosmetics products, reports their recent application in characterizing specific metal and metal-oxide NPs in these two important industrial and market sectors. The need of a characterization of the NPs as much as possible complete, matching complementary information about different metrics, possible achieved through validate procedures, is what clearly emerges from this research. More work should be done to produce standardized materials and to set-up methodologies to determine number-based size distributions and to get quantitative date about the NPs in such a complex matrices.
Collapse
Affiliation(s)
- Catia Contado
- Department of Chemical and Pharmaceutical Sciences, University of FerraraFerrara, Italy
| |
Collapse
|
99
|
Bouwmeester H, Hollman PCH, Peters RJB. Potential Health Impact of Environmentally Released Micro- and Nanoplastics in the Human Food Production Chain: Experiences from Nanotoxicology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8932-47. [PMID: 26130306 DOI: 10.1021/acs.est.5b01090] [Citation(s) in RCA: 624] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
High concentrations of plastic debris have been observed in the oceans. Much of the recent concern has focused on microplastics in the marine environment. Recent studies of the size distribution of the plastic debris suggested that continued fragmenting of microplastics into nanosized particles may occur. In this review we assess the current literature on the occurrence of environmentally released micro- and nanoplastics in the human food production chain and their potential health impact. The currently used analytical techniques introduce a great bias in the knowledge, since they are only able to detect plastic particles well above the nanorange. We discuss the potential use of the very sensitive analytical techniques that have been developed for the detection and quantification of engineered nanoparticles. We recognize three possible toxic effects of plastic particles: first due to the plastic particles themselves, second to the release of persistent organic pollutant adsorbed to the plastics, and third to the leaching of additives of the plastics. The limited data on microplastics in foods do not predict adverse effect of these pollutants or additives. Potential toxic effects of microplastic particles will be confined to the gut. The potential human toxicity of nanoplastics is poorly studied. Based on our experiences in nanotoxicology we prioritized future research questions.
Collapse
Affiliation(s)
- Hans Bouwmeester
- RIKILT Wageningen University and Research Center, P.O. Box 230, Akkermaalsbos 2, 6700 AE, Wageningen, The Netherlands
| | - Peter C H Hollman
- RIKILT Wageningen University and Research Center, P.O. Box 230, Akkermaalsbos 2, 6700 AE, Wageningen, The Netherlands
| | - Ruud J B Peters
- RIKILT Wageningen University and Research Center, P.O. Box 230, Akkermaalsbos 2, 6700 AE, Wageningen, The Netherlands
| |
Collapse
|
100
|
Adam V, Loyaux-Lawniczak S, Quaranta G. Characterization of engineered TiO₂ nanomaterials in a life cycle and risk assessments perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:11175-92. [PMID: 25994264 DOI: 10.1007/s11356-015-4661-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/04/2015] [Indexed: 04/16/2023]
Abstract
For the last 10 years, engineered nanomaterials (ENMs) have raised interest to industrials due to their properties. They are present in a large variety of products from cosmetics to building materials through food additives, and their value on the market was estimated to reach $3 trillion in 2014 (Technology Strategy Board 2009). TiO2 NMs represent the second most important part of ENMs production worldwide (550-5500 t/year). However, a gap of knowledge remains regarding the fate and the effects of these, and consequently, impact and risk assessments are challenging. This is due to difficulties in not only characterizing NMs but also in selecting the NM properties which could contribute most to ecotoxicity and human toxicity. Characterizing NMs should thus rely on various analytical techniques in order to evaluate several properties and to crosscheck the results. The aims of this review are to understand the fate and effects of TiO2 NMs in water, sediment, and soil and to determine which of their properties need to be characterized, to assess the analytical techniques available for their characterization, and to discuss the integration of specific properties in the Life Cycle Assessment and Risk Assessment calculations. This study underlines the need to take into account nano-specific properties in the modeling of their fate and effects. Among them, crystallinity, size, aggregation state, surface area, and particle number are most significant. This highlights the need for adapting ecotoxicological studies to NP-specific properties via new methods of measurement and new metrics for ecotoxicity thresholds.
Collapse
Affiliation(s)
- Véronique Adam
- Laboratoire d'Hydrologie et de Géochimie de Strasbourg/EOST/UDS, 1, rue Blessig, 67084, Strasbourg Cedex, France,
| | | | | |
Collapse
|