51
|
Stojanovic M, Waters AB, Kiselica AM, Benge JF. The impact of technology-based compensatory behaviors on subjective cognitive decline in older adults with a family history of dementia. APPLIED NEUROPSYCHOLOGY. ADULT 2023:1-9. [PMID: 37647340 DOI: 10.1080/23279095.2023.2247109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The current study examined whether greater use of technology to help with daily tasks is associated with less subjective cognitive decline (SCD), especially in individuals with a family history of Alzheimer's disease (AD). Individuals over the age of 50 (n = 102; age range 50-85) completed surveys about their digital and analog approaches to daily tasks, physical activity, and SCD. Participants with and without family histories of AD were matched on age, education, sex, and family history of AD using the R package MatchIt. There was no main effect of technology-based behavioral strategies on SCD (p = 0.259). However, a family history of AD moderated the association between technology use and SCD even when controlling for another protective lifestyle factor, physical activity. In individuals with a family history of AD, more reliance on technology-based behavioral strategies was associated with less SCD (p = 0.018), but this relationship was not significant in individuals without family history of AD (p = 0.511). Our findings suggest that technology-based behavioral strategies are associated with less SCD in individuals with a family history of AD, independent of another protective lifestyle factor. Future recommendations provided by healthcare providers to address SCD in cognitively unimpaired older adults might include focusing on technological assistance.
Collapse
Affiliation(s)
- Marta Stojanovic
- Department of Health Psychology, University of Missouri, Columbia, MO, USA
- Department of Psychological and Brain Sciences, Washington University in St. Louis, Saint Louis, MO, USA
| | - Abigail B Waters
- Department of Health Psychology, University of Missouri, Columbia, MO, USA
- Department of Psychology, Suffolk University, Boston, MA, USA
| | - Andrew M Kiselica
- Department of Health Psychology, University of Missouri, Columbia, MO, USA
| | - Jared F Benge
- Department of Neurology, University of Texas at Austin, Austin, TX, USA
- Mulva Clinic for the Neurosciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
52
|
Makhaeva GF, Kovaleva NV, Rudakova EV, Boltneva NP, Lushchekina SV, Astakhova TY, Timokhina EN, Serebryakova OG, Shchepochkin AV, Averkov MA, Utepova IA, Demina NS, Radchenko EV, Palyulin VA, Fisenko VP, Bachurin SO, Chupakhin ON, Charushin VN, Richardson RJ. Derivatives of 9-phosphorylated acridine as butyrylcholinesterase inhibitors with antioxidant activity and the ability to inhibit β-amyloid self-aggregation: potential therapeutic agents for Alzheimer's disease. Front Pharmacol 2023; 14:1219980. [PMID: 37654616 PMCID: PMC10466253 DOI: 10.3389/fphar.2023.1219980] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023] Open
Abstract
We investigated the inhibitory activities of novel 9-phosphoryl-9,10-dihydroacridines and 9-phosphorylacridines against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and carboxylesterase (CES). We also studied the abilities of the new compounds to interfere with the self-aggregation of β-amyloid (Aβ42) in the thioflavin test as well as their antioxidant activities in the ABTS and FRAP assays. We used molecular docking, molecular dynamics simulations, and quantum-chemical calculations to explain experimental results. All new compounds weakly inhibited AChE and off-target CES. Dihydroacridines with aryl substituents in the phosphoryl moiety inhibited BChE; the most active were the dibenzyloxy derivative 1d and its diphenethyl bioisostere 1e (IC50 = 2.90 ± 0.23 µM and 3.22 ± 0.25 µM, respectively). Only one acridine, 2d, an analog of dihydroacridine, 1d, was an effective BChE inhibitor (IC50 = 6.90 ± 0.55 μM), consistent with docking results. Dihydroacridines inhibited Aβ42 self-aggregation; 1d and 1e were the most active (58.9% ± 4.7% and 46.9% ± 4.2%, respectively). All dihydroacridines 1 demonstrated high ABTS•+-scavenging and iron-reducing activities comparable to Trolox, but acridines 2 were almost inactive. Observed features were well explained by quantum-chemical calculations. ADMET parameters calculated for all compounds predicted favorable intestinal absorption, good blood-brain barrier permeability, and low cardiac toxicity. Overall, the best results were obtained for two dihydroacridine derivatives 1d and 1e with dibenzyloxy and diphenethyl substituents in the phosphoryl moiety. These compounds displayed high inhibition of BChE activity and Aβ42 self-aggregation, high antioxidant activity, and favorable predicted ADMET profiles. Therefore, we consider 1d and 1e as lead compounds for further in-depth studies as potential anti-AD preparations.
Collapse
Affiliation(s)
- Galina F. Makhaeva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Yu Astakhova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Elena N. Timokhina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Olga G. Serebryakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Alexander V. Shchepochkin
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Maxim A. Averkov
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Irina A. Utepova
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Nadezhda S. Demina
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Eugene V. Radchenko
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir A. Palyulin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir P. Fisenko
- Department of Pharmacology of the Institute of Biodesign and Complex System Modeling of Biomedical Science & Technology Park of Sechenov I.M., First Moscow State Medical University, Moscow, Russia
| | - Sergey O. Bachurin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Oleg N. Chupakhin
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Valery N. Charushin
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Rudy J. Richardson
- Department of Pharmacology of the Institute of Biodesign and Complex System Modeling of Biomedical Science & Technology Park of Sechenov I.M., First Moscow State Medical University, Moscow, Russia
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
53
|
Mohapatra L, Mishra D, Shiomurti Tripathi A, Kumar Parida S. Immunosenescence as a convergence pathway in neurodegeneration. Int Immunopharmacol 2023; 121:110521. [PMID: 37385122 DOI: 10.1016/j.intimp.2023.110521] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Immunity refers to the body's defense mechanism to protect itself against illness or to produce antibodies against pathogens. Senescence is a cellular phenomenon that integrates a sustainable growth restriction, other phenotypic abnormalities and including a pro-inflammatory secretome. It is highly involved in regulating developmental stages, tissue homeostasis, and tumor proliferation monitoring. Contemporary experimental reports imply that abolition of senescent cells employing evolved genetic and therapeutic approaches augment the chances of survival and boosts the health span of an individual. Immunosenescence is considered as a process in which dysfunction of the immune system occurs with aging and greatly includes remodeling of lymphoid organs. This in turn causes fluctuations in the immune function of the elderly that has strict relation with the expansion of autoimmune diseases, infections, malignant tumors and neurodegenerative disorders. The interaction of the nervous and immune systems during aging is marked by bi-directional influence and mutual correlation of variations. The enhanced systemic inflammatory condition in the elderly, and the neuronal immune cell activity can be modulated by inflamm-aging and peripheral immunosenescence resulting in chronic low-grade inflammatory processes in the central Nervous system known as neuro-inflammaging. For example, glia excitation by cytokines and glia pro-inflammatory productions contribute significantly to memory injury as well as in acute systemic inflammation, which is associated with high levels of Tumor necrosis factor -α and a rise in cognitive decline. In recent years its role in the pathology of Alzheimer's disease has caught research interest to a large extent. This article reviews the connection concerning the immune and nervous systems and highlights how immunosenescence and inflamm-aging can affect neurodegenerative disorders.
Collapse
Affiliation(s)
- Lucy Mohapatra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh Sector-125, Noida, 201313, India.
| | - Deepak Mishra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh Sector-125, Noida, 201313, India
| | | | | |
Collapse
|
54
|
Gibbons GS, Gould H, Lee VMY, Crowe A, Brunden KR. Identification of small molecules and related targets that modulate tau pathology in a seeded primary neuron model. J Biol Chem 2023; 299:104876. [PMID: 37269953 PMCID: PMC10331484 DOI: 10.1016/j.jbc.2023.104876] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of tau protein inclusions and amyloid beta (Aβ) plaques in the brain, with Aβ peptides generated by cleavage of the amyloid precursor protein (APP) by BACE1 and γ-secretase. We previously described a primary rat neuron assay in which tau inclusions form from endogenous rat tau after seeding cells with insoluble tau isolated from the human AD brain. Here, we used this assay to screen an annotated library of ∼8700 biologically active small molecules for their ability to reduce immuno-stained neuronal tau inclusions. Compounds causing ≥30% inhibition of tau aggregates with <25% loss of DAPI-positive cell nuclei underwent further confirmation testing and assessment of neurotoxicity, and non-neurotoxic hits were subsequently analyzed for inhibitory activity in an orthogonal ELISA that quantified multimeric rat tau species. Of the 173 compounds meeting all criteria, a subset of 55 inhibitors underwent concentration-response testing and 46 elicited a concentration-dependent reduction of neuronal tau inclusions that were distinct from measures of toxicity. Among the confirmed inhibitors of tau pathology were BACE1 inhibitors, several of which, along with γ-secretase inhibitors/modulators, caused a concentration-dependent lowering of neuronal tau inclusions and a reduction of insoluble tau by immunoblotting, although they did not decrease soluble phosphorylated tau species. In conclusion, we have identified a diverse set of small molecules and related targets that reduce neuronal tau inclusions. Notably, these include BACE1 and γ-secretase inhibitors, suggesting that a cleavage product from a shared substrate, such as APP, might affect tau pathology.
Collapse
Affiliation(s)
- Garrett S Gibbons
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hailey Gould
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alex Crowe
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kurt R Brunden
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
55
|
Yao SY, Wang JF, Xu Z, Meng Y, Xue Y, Yang F, Yao WB, Gao XD, Chen S. A peptide rich in glycine-serine-alanine repeats ameliorates Alzheimer-type neurodegeneration. Br J Pharmacol 2023; 180:1878-1896. [PMID: 36727262 DOI: 10.1111/bph.16048] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/04/2022] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Repeated amino acid sequences in proteins are widely found, and the glycine-serine-alanine repeat is an element with a general propensity to form β-sheet aggregates as found in key pathological factors, in several neurodegenerative diseases. Such properties of this repeat may guide development of disease-modifying therapies for neurodegenerative disease. However, details of its role and underlying mechanism(s) remain largely unknown. EXPERIMENTAL APPROACH Actions of specific glycine-serine-alanine repeat peptides (SNPs), especially SNP-9, on Alzheimer's disease (AD)-like abnormalities were evaluated in transgenic mice and Caenorhabditis elegans, and in rat and cell models. Entry of SNPs into the brain, SNP activity in neuronal cells and peptide entry into cells were analysed in vivo and in vitro. Cell-free systems and the yeast two-hybrid system were also used to explore possible targets of SNP-9, and interactions of potential targets with SNP-9 were confirmed in cell-based systems. KEY RESULTS We first identified SNP-9 as a potent neuroprotective peptide with the activity to decrease oligomeric amyloid β (Aβ) via co-assembling with the toxic Aβ oligomer to form hetero-oligomers. Also, calcyclin-binding protein was found to act as a SNP-9-binding protein, by screening of a human brain cDNA library. Such binding showed that SNP-9 could regulate the abnormal hyperphosphorylation of tau via calcyclin-binding protein. CONCLUSION AND IMPLICATIONS Our study provides a foundation for development of SNPs, especially SNP-9, as potential therapeutic interventions for AD. We propose SNP-9 as a potential therapeutic agent for the treatment of AD.
Collapse
Affiliation(s)
- Si-Yuan Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jia-Fan Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zheng Xu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yue Meng
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yue Xue
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Fan Yang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wen-Bing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiang-Dong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Song Chen
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
56
|
Zhu J, Liu S, Zhang H, Zhao W, Ding J, Dai R, Xu K, He C, Liu J, Yang L, Meng H. Dynamic distribution of gut microbiota during Alzheimer's disease progression in a mice model. APMIS 2023. [PMID: 37365713 DOI: 10.1111/apm.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disease that affects more than 44 million people worldwide. The pathogenic mechanisms of AD still remain unclear. Currently, there are numerous studies investigating the microbiota-gut-brain axis in humans and rodents indicated that gut microbiota played a role in neurodegenerative diseases, including AD. However, the underlying relationship between the progress of AD disease and the dynamic distribution of gut microbiota is not well understood. In the present study, APPswe /PS1ΔE9 transgenic mice of different ages and sex were employed. After the evaluation of the AD mice model, gut metagenomic sequencing was conducted to reveal gut microbiota, moreover, probiotics intervention was treated in the AD mice. The results showed that (1) AD mice had reduced microbiota richness and a changed gut microbiota composition, and AD mice gut microbiota richness was correlated with cognitive performance. We have also found some potential AD-related microbes, for example, in AD-prone mice, the genus Mucispirillum was strongly associated with immune inflammation. (2) Probiotics intervention improved cognitive performance and changed gut microbiota richness and composition of AD mice. We revealed the dynamics distribution of gut microbiota and the effect of probiotics on AD in a mice model, which provides an important reference for the pathogenesis of AD, intestinal microbial markers associated with AD, and AD probiotic intervention.
Collapse
Affiliation(s)
- Jianshen Zhu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Shuyun Liu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Haoran Zhang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
- Shanghai Animal Disease Control Center, Shanghai, China
| | - Wenjing Zhao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Jinmei Ding
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Ronghua Dai
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Ke Xu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Chuan He
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Jiajia Liu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Lingyu Yang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - He Meng
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| |
Collapse
|
57
|
Boukhvalova MS, Kastrukoff L, Blanco JCG. Alzheimer's disease and multiple sclerosis: a possible connection through the viral demyelinating neurodegenerative trigger (vDENT). Front Aging Neurosci 2023; 15:1204852. [PMID: 37396655 PMCID: PMC10310923 DOI: 10.3389/fnagi.2023.1204852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Alzheimer's disease (AD) and multiple sclerosis (MS) are two CNS disorders affecting millions of people, for which no cure is available. AD is usually diagnosed in individuals age 65 and older and manifests with accumulation of beta amyloid in the brain. MS, a demyelinating disorder, is most commonly diagnosed in its relapsing-remitting (RRMS) form in young adults (age 20-40). The lack of success in a number of recent clinical trials of immune- or amyloid-targeting therapeutics emphasizes our incomplete understanding of their etiology and pathogenesis. Evidence is accumulating that infectious agents such as viruses may contribute either directly or indirectly. With the emerging recognition that demyelination plays a role in risk and progression of AD, we propose that MS and AD are connected by sharing a common environmental factor (a viral infection such as HSV-1) and pathology (demyelination). In the viral DEmyelinating Neurodegenerative Trigger (vDENT) model of AD and MS, the initial demyelinating viral (e.g., HSV-1) infection provokes the first episode of demyelination that occurs early in life, with subsequent virus reactivations/demyelination and associated immune/inflammatory attacks resulting in RRMS. The accumulating damage and/or virus progression deeper into CNS leads to amyloid dysfunction, which, combined with the inherent age-related defects in remyelination, propensity for autoimmunity, and increased blood-brain barrier permeability, leads to the development of AD dementia later in life. Preventing or diminishing vDENT event(s) early in life, thus, may have a dual benefit of slowing down the progression of MS and reducing incidence of AD at an older age.
Collapse
Affiliation(s)
| | - Lorne Kastrukoff
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
58
|
Molloy C, Choy EH, Arechavala RJ, Buennagel D, Nolty A, Spezzaferri MR, Sin C, Rising S, Yu J, Al-Ezzi A, Kleinman MT, Kloner RA, Arakaki X. Resting heart rate (variability) and cognition relationships reveal cognitively healthy individuals with pathological amyloid/tau ratio. FRONTIERS IN EPIDEMIOLOGY 2023; 3:1168847. [PMID: 37587981 PMCID: PMC10428767 DOI: 10.3389/fepid.2023.1168847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Introduction Resting heart rate (HR) and heart rate variability (HRV) have been linked with cognition in the general population and in older individuals. The knowledge of this aspect of heart-brain relationship is relatively absent in older individuals with early Alzheimer's disease (AD) pathology. This study explores relationships of the HR, HRV, and cognition in cognitively healthy individuals with pathological amyloid/tau ratio (CH-PATs) in cerebral spinal fluid (CSF) compared to those with normal ratio (CH-NATs). Methods We examined therelationshipsbetween1) resting HR and Mini-Mental State Examination (MMSE); 2) resting HR and brain processing during Stroop interference; and 3) resting vagally mediated HRV (vmHRV) and task switching performance. Results Our studies showed that compared to CH-NATs, those CH-PATs with higher resting HR presented with lower MMSE, and less brain activation during interference processing. In addition, resting vmHRV was significantly correlated with task switching accuracy in CH-NATs, but not in CH-PATs. Discussion Thesethreedifferenttestsindicatedysfunctionalheart-brainconnections in CH-PATs, suggesting a potential cardio-cerebral dysfunctional integration.
Collapse
Affiliation(s)
- Cathleen Molloy
- Cognition and Brain Integration Laboratory, Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Elizabeth H. Choy
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, United States
| | - Rebecca J. Arechavala
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, United States
| | - David Buennagel
- Clinical Neuroscience Laboratory, Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Anne Nolty
- Graduate School of Psychology & Marriage and Family Therapy, Fuller Theological Seminary, Pasadena, CA, United States
| | - Mitchell R. Spezzaferri
- Graduate School of Psychology & Marriage and Family Therapy, Fuller Theological Seminary, Pasadena, CA, United States
| | - Caleb Sin
- Graduate School of Psychology & Marriage and Family Therapy, Fuller Theological Seminary, Pasadena, CA, United States
| | - Shant Rising
- Graduate School of Psychology & Marriage and Family Therapy, Fuller Theological Seminary, Pasadena, CA, United States
| | - Jeremy Yu
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, United States
| | - Abdulhakim Al-Ezzi
- Cognition and Brain Integration Laboratory, Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Michael T. Kleinman
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, United States
| | - Robert A. Kloner
- Clinical Neuroscience Laboratory, Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
- Cardiovascular Research, Huntington Medical Research Institutes, Pasadena, CA, United States
- Cardiovascular Division, Department of Medicine, Keck School of Medicine at University of Southern California, Los Angeles, CA, United States
| | - Xianghong Arakaki
- Cognition and Brain Integration Laboratory, Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| |
Collapse
|
59
|
Susmitha G, Kumar R. Role of microbial dysbiosis in the pathogenesis of Alzheimer's disease. Neuropharmacology 2023; 229:109478. [PMID: 36871788 DOI: 10.1016/j.neuropharm.2023.109478] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the elderly and detected during the advanced stages where the chances of reversal are minimum. The gut-brain axis mediates a bidirectional communication between the gut and brain, which is dependent on bacterial products such as short chain fatty acids (SCFA) and neurotransmitters. Accumulating lines of evidence suggests that AD is associated with significant alteration in the composition of gut microbiota. Furthermore, transfer of gut microbiota from healthy individuals to patients can reshape the gut microbiota structure and thus holds the potential to be exploited for the treatment of various neurodegenerative disease. Moreover, AD-associated gut dysbiosis can be partially reversed by using probiotics, prebiotics, natural compounds and dietary modifications, but need further validations. Reversal of AD associated gut dysbiosis alleviate AD-associated pathological feature and therefore can be explored as a therapeutic approach in the future. The current review article will describe various studies suggesting that AD dysbiosis occurs with AD and highlights the causal role by focussing on the interventions that hold the potential to reverse the gut dysbiosis partially.
Collapse
Affiliation(s)
- Gudimetla Susmitha
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
| | - Rahul Kumar
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India.
| |
Collapse
|
60
|
Tomoto T, Tarumi T, Zhang R. Central arterial stiffness, brain white matter hyperintensity and total brain volume across the adult lifespan. J Hypertens 2023; 41:819-829. [PMID: 36883450 PMCID: PMC10079586 DOI: 10.1097/hjh.0000000000003404] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
OBJECTIVES Mounting evidence suggests that central arterial stiffening is associated with brain ageing in older adults. The purpose of this study was to determine the associations of age with carotid arterial stiffness and carotid-femoral pulse wave velocity (cfPWV), both measurements of central arterial stiffness, the relationship between age-related arterial stiffness, brain white matter hyperintensity (WMH) and total brain volume (TBV), and whether effects of central arterial stiffness on WMH volume and TBV are mediated by pulsatile cerebral blood flow (CBF). METHODS One hundred and seventy-eight healthy adults (21-80 years) underwent measurements of central arterial stiffness using tonometry and ultrasonography, WMH and TBV via MRI, and pulsatile CBF at the middle cerebral artery via transcranial Doppler. RESULTS Advanced age was associated with increases in both carotid arterial stiffness and cfPWV, increases in WMH volume and decreases in TBV (all P < 0.01). Multiple linear regression analysis showed that carotid β-stiffness was positively associated with WMH volume (B = 0.015, P = 0.017) and cfPWV negatively with TBV (B = -0.558, P < 0.001) after adjustment for age, sex and arterial pressure. Pulsatile CBF mediates the associations between carotid β-stiffness and WMH (95% confidence interval: 0.0001-0.0079). CONCLUSION These findings suggest that age-related central arterial stiffness is associated with increased WMH volume and decreased TBV, which is likely mediated by increased arterial pulsation.
Collapse
Affiliation(s)
- Tsubasa Tomoto
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology
| | - Takashi Tarumi
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
61
|
Wang M, Tang G, Zhou C, Guo H, Hu Z, Hu Q, Li G. Revisiting the intersection of microglial activation and neuroinflammation in Alzheimer's disease from the perspective of ferroptosis. Chem Biol Interact 2023; 375:110387. [PMID: 36758888 DOI: 10.1016/j.cbi.2023.110387] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by chronic neuroinflammation with amyloid beta-protein deposition and hyperphosphorylated tau protein. The typical clinical manifestation of AD is progressive memory impairment, and AD is considered a multifactorial disease with various etiologies (genetic factors, aging, lifestyle, etc.) and complicated pathophysiological processes. Previous research identified that neuroinflammation and typical microglial activation are significant mechanisms underlying AD, resulting in dysfunction of the nervous system and progression of the disease. Ferroptosis is a novel modality involved in this process. As an iron-dependent form of cell death, ferroptosis, characterized by iron accumulation, lipid peroxidation, and irreversible plasma membrane disruption, promotes AD by accelerating neuronal dysfunction and abnormal microglial activation. In this case, disturbances in brain iron homeostasis and neuronal ferroptosis aggravate neuroinflammation and lead to the abnormal activation of microglia. Abnormally activated microglia release various pro-inflammatory factors that aggravate the dysregulation of iron homeostasis and neuroinflammation, forming a vicious cycle. In this review, we first introduce ferroptosis, microglia, AD, and their relationship. Second, we discuss the nonnegligible role of ferroptosis in the abnormal microglial activation involved in the chronic neuroinflammation of AD to provide new ideas for the identification of potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Miaomiao Wang
- Queen Mary School, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Gan Tang
- Queen Mary School, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Congfa Zhou
- Department of Anatomy, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Hongmin Guo
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Zihui Hu
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Qixing Hu
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Guilin Li
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
62
|
Matziorinis AM, Flo BK, Skouras S, Dahle K, Henriksen A, Hausmann F, Sudmann TT, Gold C, Koelsch S. A 12-month randomised pilot trial of the Alzheimer's and music therapy study: a feasibility assessment of music therapy and physical activity in patients with mild-to-moderate Alzheimer's disease. Pilot Feasibility Stud 2023; 9:61. [PMID: 37076884 PMCID: PMC10114372 DOI: 10.1186/s40814-023-01287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/30/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND The Alzheimer's and Music Therapy (ALMUTH) study is the first randomised controlled trial (RCT) design with 12 months of active non-pharmacological therapy (NPT) implementing music therapy (MT) and physical activity (PA) for participants with Alzheimer's disease (AD). The aim of the present article is to retrospectively examine the inclusion of mild-to-moderate Alzheimer's Disease patients into the main ALMUTH study protocol and to determine if continued inclusion of AD patients is warranted. METHODS The randomised pilot trial was conducted as a parallel three-arm RCT, reflecting the experimental design of the ALMUTH study. The trial was conducted in Bergen, Norway, and randomisation (1:1:1) was performed by an external researcher. The study was open label and the experimental design features two active NPTs: MT and PA, and a passive control (no intervention, CON) in Norwegian speaking patients with AD who still live at home and could provide informed consent. Sessions were offered once per week (up to 90 min) up to 40 sessions over 12 months. Baseline and follow-up tests included a full neuropsychological test battery and three magnetic resonance imaging (MRI) measurements (structural, functional, and diffusion weighted imaging). Feasibility outcomes were assessed and were determined as feasible if they met the target criteria. RESULTS Eighteen participants with a diagnosis of mild-to-moderate AD were screened, randomised, and tested once at baseline and once after 12-months. Participants were divided into three groups: MT (n = 6), PA (n = 6), and CON (n = 6). Results of the study revealed that the ALMUTH protocol in patients with AD was not feasible. The adherence to the study protocol was poor (50% attended sessions), with attrition and retention rates at 50%. The recruitment was costly and there were difficulties acquiring participants who met the inclusion criteria. Issues with study fidelity and problems raised by staff were taken into consideration for the updated study protocol. No adverse events were reported by the patients or their caregivers. CONCLUSIONS The pilot trial was not deemed feasible in patients with mild-to-moderate AD. To mitigate this, the ALMUTH study has expanded the recruitment criteria to include participants with milder forms of memory impairment (pre-AD) in addition to expanding the neuropsychological test battery. The ALMUTH study is currently ongoing through 2023. TRIAL REGISTRATION Norsk Forskningsråd (NFR) funded. Regional Committees for Medical and Health Research Ethics (REC-WEST: reference number 2018/206). CLINICALTRIALS gov: NCT03444181 (registered retrospectively 23 February 2018, https://clinicaltrials.gov/ct2/show/NCT03444181 ).
Collapse
Affiliation(s)
- A M Matziorinis
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.
| | - B K Flo
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - S Skouras
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - K Dahle
- Kompetansesenter for Demens, Bergen Kommune, Norway
| | - A Henriksen
- Department of Sport, Food, and Natural Sciences, Faculty of Education, Arts, and Sports, Western Norway University of Applied Sciences, Bergen, Norway
| | - F Hausmann
- Department of Sport, Food, and Natural Sciences, Faculty of Education, Arts, and Sports, Western Norway University of Applied Sciences, Bergen, Norway
| | - T T Sudmann
- Department of Health and Function, Western Norway University of Applied Sciences, Bergen, Norway
| | - C Gold
- NORCE Norwegian Research Centre AS, Bergen, Norway
- Grieg Academy Department of Music, University of Bergen, Bergen, Norway
- Department of Clinical and Health Psychology, University of Vienna, Vienna, Austria
| | - S Koelsch
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.
| |
Collapse
|
63
|
Lv L, Maimaitiming M, Huang Y, Yang J, Chen S, Sun Y, Zhang X, Li X, Xue C, Wang P, Wang CY, Liu Z. Discovery of quinazolin-4(3H)-one derivatives as novel AChE inhibitors with anti-inflammatory activities. Eur J Med Chem 2023; 254:115346. [PMID: 37043994 DOI: 10.1016/j.ejmech.2023.115346] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
A series of quinazolin-4(3H)-one derivatives was designed through scaffold-hopping strategy and synthesized as novel multifunctional anti-AD agents demonstrating both cholinesterase inhibition and anti-inflammatory activities. Their inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were evaluated, and the enzyme kinetics study as well as detailed binding mode via molecular docking were performed for selected compounds. MR2938 (B12) displayed promising AChE inhibitory activity with an IC50 value of 5.04 μM and suppressed NO production obviously (IC50 = 3.29 μM). Besides, it was able to decrease the mRNA levels of pro-inflammatory cytokines IL-1β, TNF-α, IL-6 and CCL2 at 1.25 μM. Further mechanism study suggested that MR2938 suppressed the neuroinflammation through blocking MAPK/JNK and NF-κB signaling pathways. All these results indicate that MR2938 is a good starting point to develop multifunctional anti-AD lead compounds.
Collapse
|
64
|
Azargoonjahromi A. Dual role of nitric oxide in Alzheimer's Disease. Nitric Oxide 2023; 134-135:23-37. [PMID: 37019299 DOI: 10.1016/j.niox.2023.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/02/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Nitric oxide (NO), an enzymatic product of nitric oxide synthase (NOS), has been associated with a variety of neurological diseases such as Alzheimer's disease (AD). NO has long been thought to contribute to neurotoxic insults caused by neuroinflammation in AD. This perception shifts as more attention is paid to the early stages before cognitive problems manifest. However, it has revealed a compensatory neuroprotective role for NO that protects synapses by increasing neuronal excitability. NO can positively affect neurons by inducing neuroplasticity, neuroprotection, and myelination, as well as having cytolytic activity to reduce inflammation. NO can also induce long-term potentiation (LTP), a process by which synaptic connections among neurons become more potent. Not to mention that such functions give rise to AD protection. Notably, it is unquestionably necessary to conduct more research to clarify NO pathways in neurodegenerative dementias because doing so could help us better understand their pathophysiology and develop more effective treatment options. All these findings bring us to the prevailing notion that NO can be used either as a therapeutic agent in patients afflicted with AD and other memory impairment disorders or as a contributor to the neurotoxic and aggressive factor in AD. In this review, after presenting a general background on AD and NO, various factors that have a pivotal role in both protecting and exacerbating AD and their correlation with NO will be elucidated. Following this, both the neuroprotective and neurotoxic effects of NO on neurons and glial cells among AD cases will be discussed in detail.
Collapse
|
65
|
Alamro H, Thafar MA, Albaradei S, Gojobori T, Essack M, Gao X. Exploiting machine learning models to identify novel Alzheimer’s disease biomarkers and potential targets. Sci Rep 2023; 13:4979. [PMID: 36973386 PMCID: PMC10043000 DOI: 10.1038/s41598-023-30904-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
AbstractWe still do not have an effective treatment for Alzheimer's disease (AD) despite it being the most common cause of dementia and impaired cognitive function. Thus, research endeavors are directed toward identifying AD biomarkers and targets. In this regard, we designed a computational method that exploits multiple hub gene ranking methods and feature selection methods with machine learning and deep learning to identify biomarkers and targets. First, we used three AD gene expression datasets to identify 1/ hub genes based on six ranking algorithms (Degree, Maximum Neighborhood Component (MNC), Maximal Clique Centrality (MCC), Betweenness Centrality (BC), Closeness Centrality, and Stress Centrality), 2/ gene subsets based on two feature selection methods (LASSO and Ridge). Then, we developed machine learning and deep learning models to determine the gene subset that best distinguishes AD samples from the healthy controls. This work shows that feature selection methods achieve better prediction performances than the hub gene sets. Beyond this, the five genes identified by both feature selection methods (LASSO and Ridge algorithms) achieved an AUC = 0.979. We further show that 70% of the upregulated hub genes (among the 28 overlapping hub genes) are AD targets based on a literature review and six miRNA (hsa-mir-16-5p, hsa-mir-34a-5p, hsa-mir-1-3p, hsa-mir-26a-5p, hsa-mir-93-5p, hsa-mir-155-5p) and one transcription factor, JUN, are associated with the upregulated hub genes. Furthermore, since 2020, four of the six microRNA were also shown to be potential AD targets. To our knowledge, this is the first work showing that such a small number of genes can distinguish AD samples from healthy controls with high accuracy and that overlapping upregulated hub genes can narrow the search space for potential novel targets.
Collapse
|
66
|
Leite JP, Figueira F, Mendes RF, Almeida Paz FA, Gales L. Metal-Organic Frameworks as Sensors for Human Amyloid Diseases. ACS Sens 2023; 8:1033-1053. [PMID: 36892002 PMCID: PMC10043940 DOI: 10.1021/acssensors.2c02741] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Metal-organic frameworks (MOFs) are versatile compounds with emergent applications in the fabrication of biosensors for amyloid diseases. They hold great potential in biospecimen protection and unprecedented probing capabilities for optical and redox receptors. In this Review, we summarize the main methodologies employed in the fabrication of MOF-based sensors for amyloid diseases and collect all available data in the literature related to their performance (detection range, limit of detection, recovery, time of analysis, among other parameters). Nowadays, MOF sensors have evolved to a point where they can, in some cases, outperform technologies employed in the detection of several amyloid biomarkers (amyloid β peptide, α-synuclein, insulin, procalcitonin, and prolactin) present in biological fluids, such as cerebrospinal fluid and blood. A special emphasis has been given by researchers on Alzheimer's disease monitoring to the detriment of other amyloidosis that are underexploited despite their societal relevance (e.g., Parkinson's disease). There are still important obstacles to overcome in order to selectively detect the various peptide isoforms and soluble amyloid species associated with Alzheimer's disease. Furthermore, MOF contrast agents for imaging peptide soluble oligomers in living humans are also scarce (if not nonexistent), and action in this direction is unquestionably required to clarify the contentious link between the amyloidogenic species and the disease, guiding research toward the most promising therapeutic strategies.
Collapse
Affiliation(s)
- José P Leite
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Flávio Figueira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo F Mendes
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipe A Almeida Paz
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luís Gales
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
67
|
Moreira DA, Santos SD, Leiro V, Pêgo AP. Dendrimers and Derivatives as Multifunctional Nanotherapeutics for Alzheimer's Disease. Pharmaceutics 2023; 15:pharmaceutics15041054. [PMID: 37111540 PMCID: PMC10140951 DOI: 10.3390/pharmaceutics15041054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. It affects more than 30 million people worldwide and costs over US$ 1.3 trillion annually. AD is characterized by the brain accumulation of amyloid β peptide in fibrillar structures and the accumulation of hyperphosphorylated tau aggregates in neurons, both leading to toxicity and neuronal death. At present, there are only seven drugs approved for the treatment of AD, of which only two can slow down cognitive decline. Moreover, their use is only recommended for the early stages of AD, meaning that the major portion of AD patients still have no disease-modifying treatment options. Therefore, there is an urgent need to develop efficient therapies for AD. In this context, nanobiomaterials, and dendrimers in particular, offer the possibility of developing multifunctional and multitargeted therapies. Due to their intrinsic characteristics, dendrimers are first-in-class macromolecules for drug delivery. They have a globular, well-defined, and hyperbranched structure, controllable nanosize and multivalency, which allows them to act as efficient and versatile nanocarriers of different therapeutic molecules. In addition, different types of dendrimers display antioxidant, anti-inflammatory, anti-bacterial, anti-viral, anti-prion, and most importantly for the AD field, anti-amyloidogenic properties. Therefore, dendrimers can not only be excellent nanocarriers, but also be used as drugs per se. Here, the outstanding properties of dendrimers and derivatives that make them excellent AD nanotherapeutics are reviewed and critically discussed. The biological properties of several dendritic structures (dendrimers, derivatives, and dendrimer-like polymers) that enable them to be used as drugs for AD treatment will be pointed out and the chemical and structural characteristics behind those properties will be analysed. The reported use of these nanomaterials as nanocarriers in AD preclinical research is also presented. Finally, future perspectives and challenges that need to be overcome to make their use in the clinic a reality are discussed.
Collapse
Affiliation(s)
- Débora A Moreira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP-Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sofia D Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Victoria Leiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana P Pêgo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
68
|
Tun X, Wang EJ, Gao Z, Lundberg K, Xu R, Hu D. Integrin β3-Mediated Cell Senescence Associates with Gut Inflammation and Intestinal Degeneration in Models of Alzheimer's Disease. Int J Mol Sci 2023; 24:5697. [PMID: 36982771 PMCID: PMC10052535 DOI: 10.3390/ijms24065697] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory loss and personality changes that ultimately lead to dementia. Currently, 50 million people worldwide suffer from dementia related to AD, and the pathogenesis underlying AD pathology and cognitive decline is unknown. While AD is primarily a neurological disease of the brain, individuals with AD often experience intestinal disorders, and gut abnormalities have been implicated as a major risk factor in the development of AD and relevant dementia. However, the mechanisms that mediate gut injury and contribute to the vicious cycle between gut abnormalities and brain injury in AD remain unknown. In the present study, a bioinformatics analysis was performed on the proteomics data of variously aged AD mouse colon tissues. We found that levels of integrin β3 and β-galactosidase (β-gal), two markers of cellular senescence, increased with age in the colonic tissue of mice with AD. The advanced artificial intelligence (AI)-based prediction of AD risk also demonstrated the association between integrin β3 and β-gal and AD phenotypes. Moreover, we showed that elevated integrin β3 levels were accompanied by senescence phenotypes and immune cell accumulation in AD mouse colonic tissue. Further, integrin β3 genetic downregulation abolished upregulated senescence markers and inflammatory responses in colonic epithelial cells in conditions associated with AD. We provide a new understanding of the molecular actions underpinning inflammatory responses during AD and suggest integrin β3 may function as novel target mediating gut abnormalities in this disease.
Collapse
Affiliation(s)
- Xin Tun
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Evan J. Wang
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Beachwood High School, Beachwood, OH 44122, USA
| | - Zhenxiang Gao
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kathleen Lundberg
- Proteomics Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Di Hu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
69
|
Nakatsu D, Kunishige R, Taguchi Y, Shinozaki-Narikawa N, Osaka K, Yokomizo K, Ishida M, Takei S, Yamasaki S, Hagiya K, Hattori K, Tsukamoto T, Murata M, Kano F. BMP4-SMAD1/5/9-RUNX2 pathway activation inhibits neurogenesis and oligodendrogenesis in Alzheimer's patients' iPSCs in senescence-related conditions. Stem Cell Reports 2023; 18:688-705. [PMID: 36764297 PMCID: PMC10031282 DOI: 10.1016/j.stemcr.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
In addition to increasing β-amyloid plaque deposition and tau tangle formation, inhibition of neurogenesis has recently been observed in Alzheimer's disease (AD). This study generated a cellular model that recapitulated neurogenesis defects observed in patients with AD, using induced pluripotent stem cell lines derived from sporadic and familial AD (AD iPSCs). AD iPSCs exhibited impaired neuron and oligodendrocyte generation when expression of several senescence markers was induced. Compound screening using these cellular models identified three drugs able to restore neurogenesis, and extensive morphological quantification revealed cell-line- and drug-type-dependent neuronal generation. We also found involvement of elevated Sma- and Mad-related protein 1/5/9 (SMAD1/5/9) phosphorylation and greater Runt-related transcription factor 2 (RUNX2) expression in neurogenesis defects in AD. Moreover, BMP4 was elevated in AD iPSC medium during neural differentiation and cerebrospinal fluid of patients with AD, suggesting a BMP4-SMAD1/5/9-RUNX2 signaling pathway contribution to neurogenesis defects in AD under senescence-related conditions.
Collapse
Affiliation(s)
- Daiki Nakatsu
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Rina Kunishige
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Multimodal Cell Analysis Collaborative Research Cluster, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Yuki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Multimodal Cell Analysis Collaborative Research Cluster, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Naeko Shinozaki-Narikawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Kishiko Osaka
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Kayo Yokomizo
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Mami Ishida
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Shunsuke Takei
- System Development Department, Technology Solutions Sector, Healthcare Business Unit, Nikon Corporation, 471, Nagaodai-cho, Sakae-ku, Yokohama, Kanagawa 244-8533, Japan
| | - Shoko Yamasaki
- Mathematical Sciences Research Laboratory, Research & Development Division, Nikon Corporation, 471, Nagaodai-cho, Sakae-ku, Yokohama, Kanagawa 244-8533, Japan
| | - Keita Hagiya
- Fujifilm Corporation, 7-3 Akasaka 9, Minato-ku, Tokyo 107-0052, Japan
| | - Kotaro Hattori
- Department of Bioresources, Medical Genome Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Tadashi Tsukamoto
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Masayuki Murata
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Multimodal Cell Analysis Collaborative Research Cluster, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Fumi Kano
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.
| |
Collapse
|
70
|
Marshall LJ, Bailey J, Cassotta M, Herrmann K, Pistollato F. Poor Translatability of Biomedical Research Using Animals - A Narrative Review. Altern Lab Anim 2023; 51:102-135. [PMID: 36883244 DOI: 10.1177/02611929231157756] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The failure rate for the translation of drugs from animal testing to human treatments remains at over 92%, where it has been for the past few decades. The majority of these failures are due to unexpected toxicity - that is, safety issues revealed in human trials that were not apparent in animal tests - or lack of efficacy. However, the use of more innovative tools, such as organs-on-chips, in the preclinical pipeline for drug testing, has revealed that these tools are more able to predict unexpected safety events prior to clinical trials and so can be used for this, as well as for efficacy testing. Here, we review several disease areas, and consider how the use of animal models has failed to offer effective new treatments. We also make some suggestions as to how the more human-relevant new approach methodologies might be applied to address this.
Collapse
Affiliation(s)
- Lindsay J Marshall
- Animal Research Issues, 94219The Humane Society of the United States, Gaithersburg, MD, USA
| | - Jarrod Bailey
- 380235Cruelty Free International, London, UK; 542332Animal Free Research UK, London, UK
| | | | - Kathrin Herrmann
- Johns Hopkins Bloomberg School of Public Health, 457389Center for Alternatives to Animal Testing, Baltimore, MD, USA; Senate Department for the Environment, Urban Mobility, Consumer Protection and Climate Action, Berlin, Germany
| | | |
Collapse
|
71
|
Caputo A, Racine A, Paule I, Tariot PN, Langbaum JB, Coello N, Riviere ME, Ryan JM, Lopez CL, Graf A. Rationale for the selection of dual primary endpoints in prevention studies of cognitively unimpaired individuals at genetic risk for developing symptoms of Alzheimer's disease. Alzheimers Res Ther 2023; 15:45. [PMID: 36879340 PMCID: PMC9987044 DOI: 10.1186/s13195-023-01183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND There is a critical need for novel primary endpoints designed to detect early and subtle changes in cognition in clinical trials targeting the asymptomatic (preclinical) phase of Alzheimer's disease (AD). The Alzheimer's Prevention Initiative (API) Generation Program, conducted in cognitively unimpaired individuals at risk of developing AD (e.g., enriched by the apolipoprotein E (APOE) genotype), used a novel dual primary endpoints approach, whereby demonstration of treatment effect in one of the two endpoints is sufficient for trial success. The two primary endpoints were (1) time to event (TTE)-with an event defined as a diagnosis of mild cognitive impairment (MCI) due to AD and/or dementia due to AD-and (2) change from baseline to month 60 in the API Preclinical Composite Cognitive (APCC) test score. METHODS Historical observational data from three sources were used to fit models to describe the TTE and the longitudinal APCC decline, both in people who do and do not progress to MCI or dementia due to AD. Clinical endpoints were simulated based on the TTE and APCC models to assess the performance of the dual endpoints versus each of the two single endpoints, with the selected treatment effect ranging from a hazard ratio (HR) of 0.60 (40% risk reduction) to 1 (no effect). RESULTS A Weibull model was selected for TTE, and power and linear models were selected to describe the APCC score for progressors and non-progressors, respectively. Derived effect sizes in terms of reduction of the APCC change from baseline to year 5 were low (0.186 for HR = 0.67). The power for the APCC alone was consistently lower compared to the power of TTE alone (58% [APCC] vs 84% [TTE] for HR = 0.67). Also, the overall power was higher for the 80%/20% distribution (82%) of the family-wise type 1 error rate (alpha) between TTE and APCC compared to 20%/80% (74%). CONCLUSIONS Dual endpoints including TTE and a measure of cognitive decline perform better than the cognitive decline measure as a single primary endpoint in a cognitively unimpaired population at risk of AD (based on the APOE genotype). Clinical trials in this population, however, need to be large, include older age, and have a long follow-up period of at least 5 years to be able to detect treatment effects.
Collapse
Affiliation(s)
| | - Amy Racine
- Novartis Pharma AG, PostfachCH-4002, Basel, Switzerland
| | - Ines Paule
- Novartis Pharma AG, PostfachCH-4002, Basel, Switzerland
| | | | | | - Neva Coello
- Novartis Pharma AG, PostfachCH-4002, Basel, Switzerland
| | | | | | | | - Ana Graf
- Novartis Pharma AG, PostfachCH-4002, Basel, Switzerland
| |
Collapse
|
72
|
Ehtezazi T, Rahman K, Davies R, Leach AG. The Pathological Effects of Circulating Hydrophobic Bile Acids in Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:173-211. [PMID: 36994114 PMCID: PMC10041467 DOI: 10.3233/adr-220071] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Recent clinical studies have revealed that the serum levels of toxic hydrophobic bile acids (deoxy cholic acid, lithocholic acid [LCA], and glycoursodeoxycholic acid) are significantly higher in patients with Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) when compared to control subjects. The elevated serum bile acids may be the result of hepatic peroxisomal dysfunction. Circulating hydrophobic bile acids are able to disrupt the blood-brain barrier and promote the formation of amyloid-β plaques through enhancing the oxidation of docosahexaenoic acid. Hydrophobic bile acid may find their ways into the neurons via the apical sodium-dependent bile acid transporter. It has been shown that hydrophobic bile acids impose their pathological effects by activating farnesoid X receptor and suppressing bile acid synthesis in the brain, blocking NMDA receptors, lowering brain oxysterol levels, and interfering with 17β-estradiol actions such as LCA by binding to E2 receptors (molecular modelling data exclusive to this paper). Hydrophobic bile acids may interfere with the sonic hedgehog signaling through alteration of cell membrane rafts and reducing brain 24(S)-hydroxycholesterol. This article will 1) analyze the pathological roles of circulating hydrophobic bile acids in the brain, 2) propose therapeutic approaches, and 3) conclude that consideration be given to reducing/monitoring toxic bile acid levels in patients with AD or aMCI, prior/in combination with other treatments.
Collapse
Affiliation(s)
- Touraj Ehtezazi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Rhys Davies
- The Walton Centre, NHS Foundation Trust, Liverpool, UK
| | - Andrew G Leach
- School of Pharmacy, University of Manchester, Manchester, UK
| |
Collapse
|
73
|
Sun Y, Zhang H, Zhang X, Wang W, Chen Y, Cai Z, Wang Q, Wang J, Shi Y. Promotion of astrocyte-neuron glutamate-glutamine shuttle by SCFA contributes to the alleviation of Alzheimer's disease. Redox Biol 2023; 62:102690. [PMID: 37018970 PMCID: PMC10122027 DOI: 10.1016/j.redox.2023.102690] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 03/29/2023] Open
Abstract
The brain is particularly susceptible to oxidative damage which is a key feature of several neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease. The shuttling of glutathione (GSH) precursors from astrocytes to neurons has been shown to be instrumental for the neuroprotective activity. Here, we revealed that short chain fatty acids (SCFA), which have been related to AD and PD, could promote glutamate-glutamine shuttle to potentially resist oxidative damage in neurons at cellular level. Furthermore, we performed nine-month-long dietary SCFA supplementations in APPswe/PS1dE9 (APP/PS1) mice, and showed that it reshaped the homeostasis of microbiota and alleviated the cognitive impairment by reducing Aβ deposition and tau hyperphosphorylation. Single-cell RNA sequencing analysis of the hippocampus revealed SCFA can enhance astrocyte-neuron communication including glutamate-glutamine shuttle, mainly by acting on astrocyte in vivo. Collectively, our findings indicate that long-term dietary SCFA supplementations at early aging stage can regulate the neuroenergetics to alleviate AD, providing a promising direction for the development of new AD drug.
Collapse
|
74
|
Eitan E, Thornton-Wells T, Elgart K, Erden E, Gershun E, Levine A, Volpert O, Azadeh M, Smith DG, Kapogiannis D. Synaptic proteins in neuron-derived extracellular vesicles as biomarkers for Alzheimer's disease: novel methodology and clinical proof of concept. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:133-150. [PMID: 37842184 PMCID: PMC10568955 DOI: 10.20517/evcna.2023.13] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Aims Blood biomarkers can improve drug development for Alzheimer's disease (AD) and its treatment. Neuron-derived extracellular vesicles (NDEVs) in plasma offer a minimally invasive platform for developing novel biomarkers that may be used to monitor the diverse pathogenic processes involved in AD. However, NDEVs comprise only a minor fraction of circulating extracellular vesicles (EVs). Most published studies have leveraged the L1 cell adhesion molecule (L1CAM) for NDEV immunocapture. We aimed to develop and optimize an alternative, highly specific immunoaffinity method to enrich blood NDEVs for biomarker development. Methods After screening multiple neuronal antigens, we achieved NDEV capture with high affinity and specificity using antibodies against Growth-Associated Protein (GAP) 43 and Neuroligin 3 (NLGN3). The EV identity of the captured material was confirmed by electron microscopy, western blotting, and proteomics. The specificity for neuronal origin was demonstrated by showing enrichment for neuronal markers (proteins, mRNA) and recovery of spiked neuronal EVs. We performed NDEV isolation retrospectively from plasma samples from two cohorts of early AD patients (N = 19 and N = 40) and controls (N = 20 and N = 19) and measured p181-Tau, amyloid-beta (Aβ) 42, brain-derived neurotrophic factor (BDNF), precursor brain-derived neurotrophic factor (proBDNF), glutamate receptor 2 (GluR2), postsynaptic density protein (PSD) 95, GAP43, and syntaxin-1. Results p181-Tau, Aβ42, and NRGN were elevated in AD samples, whereas proBDNF, GluR2, PSD95, GAP43, and Syntaxin-1 were reduced. Differences for p181-Tau, proBDNF, and GluR2 survived multiple-comparison correction and were correlated with cognitive scores. A model incorporating biomarkers correctly classified 94.7% of AD participants and 61.5% of control participants. The observed differences in NDEVs-associated biomarkers are consistent with previous findings. Conclusion NDEV isolation by GAP43 and NLGN3 immunocapture offers a robust novel platform for biomarker development in AD, suitable for large-scale validation.
Collapse
Affiliation(s)
| | - Tricia Thornton-Wells
- Alkermes, Inc., Department of Translational Medicine and Early-Stage Clinical Development, Waltham, MA 02451-1420, USA
| | | | - Eren Erden
- National Institute on Aging (NIA/NIH), Human Neuroscience Section, Intramural Research Program, Baltimore, MD 21224, USA
| | | | - Amir Levine
- Columbia University, Division of Child and Adolescent Psychiatry, Department of Psychiatry, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | - Mitra Azadeh
- Alkermes, Inc., Department of Translational Medicine and Early-Stage Clinical Development, Waltham, MA 02451-1420, USA
| | - Daniel G. Smith
- Alkermes, Inc., Department of Translational Medicine and Early-Stage Clinical Development, Waltham, MA 02451-1420, USA
| | - Dimitrios Kapogiannis
- National Institute on Aging (NIA/NIH), Human Neuroscience Section, Intramural Research Program, Baltimore, MD 21224, USA
| |
Collapse
|
75
|
Anti-Alzheimer's Natural Products Derived from Plant Endophytic Fungi. Molecules 2023; 28:molecules28052259. [PMID: 36903506 PMCID: PMC10005758 DOI: 10.3390/molecules28052259] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's is the most common cause of dementia worldwide and seriously affects patients' daily tasks. Plant endophytic fungi are known for providing novel and unique secondary metabolites with diverse activities. This review focuses primarily on the published research regarding anti-Alzheimer's natural products derived from endophytic fungi between 2002 and 2022. Following a thorough review of the literature, 468 compounds with anti-Alzheimer's-related activities are reviewed and classified based on their structural skeletons, primarily including alkaloids, peptides, polyketides, terpenoids, and sterides. The classification, occurrences, and bioactivities of these natural products from endophytic fungi are summarized in detail. Our results provide a reference on endophytic fungi natural products that may assist in the development of new anti-Alzheimer's compounds.
Collapse
|
76
|
Yoon JH, Hwang J, Son SU, Choi J, You SW, Park H, Cha SY, Maeng S. How Can Insulin Resistance Cause Alzheimer's Disease? Int J Mol Sci 2023; 24:3506. [PMID: 36834911 PMCID: PMC9966425 DOI: 10.3390/ijms24043506] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with cognitive decline. Despite worldwide efforts to find a cure, no proper treatment has been developed yet, and the only effective countermeasure is to prevent the disease progression by early diagnosis. The reason why new drug candidates fail to show therapeutic effects in clinical studies may be due to misunderstanding the cause of AD. Regarding the cause of AD, the most widely known is the amyloid cascade hypothesis, in which the deposition of amyloid beta and hyperphosphorylated tau is the cause. However, many new hypotheses were suggested. Among them, based on preclinical and clinical evidence supporting a connection between AD and diabetes, insulin resistance has been pointed out as an important factor in the development of AD. Therefore, by reviewing the pathophysiological background of brain metabolic insufficiency and insulin insufficiency leading to AD pathology, we will discuss how can insulin resistance cause AD.
Collapse
Affiliation(s)
- Ji Hye Yoon
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - JooHyun Hwang
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Sung Un Son
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Junhyuk Choi
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Seung-Won You
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Hyunwoo Park
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
- Health Park Co., Ltd., Seoul 02447, Republic of Korea
| | - Seung-Yun Cha
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Sungho Maeng
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| |
Collapse
|
77
|
Jutten RJ, Papp KV, Hendrix S, Ellison N, Langbaum JB, Donohue MC, Hassenstab J, Maruff P, Rentz DM, Harrison J, Cummings J, Scheltens P, Sikkes SAM. Why a clinical trial is as good as its outcome measure: A framework for the selection and use of cognitive outcome measures for clinical trials of Alzheimer's disease. Alzheimers Dement 2023; 19:708-720. [PMID: 36086926 PMCID: PMC9931632 DOI: 10.1002/alz.12773] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/29/2022] [Accepted: 07/22/2022] [Indexed: 11/11/2022]
Abstract
A crucial aspect of any clinical trial is using the right outcome measure to assess treatment efficacy. Compared to the rapidly evolved understanding and measurement of pathophysiology in preclinical and early symptomatic stages of Alzheimer's disease (AD), relatively less progress has been made in the evolution of clinical outcome assessments (COAs) for those stages. The current paper aims to provide a benchmark for the design and evaluation of COAs for use in early AD trials. We discuss lessons learned on capturing cognitive changes in predementia stages of AD, including challenges when validating novel COAs for those early stages and necessary evidence for their implementation in clinical trials. Moving forward, we propose a multi-step framework to advance the use of more effective COAs to assess clinically meaningful changes in early AD, which will hopefully contribute to the much-needed consensus around more appropriate outcome measures to assess clinical efficacy of putative treatments. HIGHLIGHTS: We discuss lessons learned on capturing cognitive changes in predementia stages of AD. We propose a framework for the design and evaluation of performance based cognitive tests for use in early AD trials. We provide recommendations to facilitate the implementation of more effective cognitive outcome measures in AD trials.
Collapse
Affiliation(s)
- Roos J. Jutten
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kathryn V. Papp
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Michael C. Donohue
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, San Diego, California, USA
| | - Jason Hassenstab
- Knight Alzheimer Disease Research Center, Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Paul Maruff
- Cogstate Ltd., Melbourne, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Dorene M. Rentz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John Harrison
- Metis Cognition Ltd., Kilmington, UK
- Department of Psychiatry, Psychology & Neuroscience, King’s College London, UK
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, location VUmc, VU University, Amsterdam, The Netherlands
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, location VUmc, VU University, Amsterdam, The Netherlands
| | - Sietske A. M. Sikkes
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, location VUmc, VU University, Amsterdam, The Netherlands
- Department of Clinical, Neuro and Developmental Psychology, Faculty of Movement and Behavioral Sciences, VU University, Amsterdam, The Netherlands
| |
Collapse
|
78
|
Guo ZH, Khattak S, Rauf MA, Ansari MA, Alomary MN, Razak S, Yang CY, Wu DD, Ji XY. Role of Nanomedicine-Based Therapeutics in the Treatment of CNS Disorders. Molecules 2023; 28:1283. [PMID: 36770950 PMCID: PMC9921752 DOI: 10.3390/molecules28031283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/31/2023] Open
Abstract
Central nervous system disorders, especially neurodegenerative diseases, are a public health priority and demand a strong scientific response. Various therapy procedures have been used in the past, but their therapeutic value has been insufficient. The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier is two of the barriers that protect the central nervous system (CNS), but are the main barriers to medicine delivery into the CNS for treating CNS disorders, such as brain tumors, Parkinson's disease, Alzheimer's disease, and Huntington's disease. Nanotechnology-based medicinal approaches deliver valuable cargos targeting molecular and cellular processes with greater safety, efficacy, and specificity than traditional approaches. CNS diseases include a wide range of brain ailments connected to short- and long-term disability. They affect millions of people worldwide and are anticipated to become more common in the coming years. Nanotechnology-based brain therapy could solve the BBB problem. This review analyzes nanomedicine's role in medication delivery; immunotherapy, chemotherapy, and gene therapy are combined with nanomedicines to treat CNS disorders. We also evaluated nanotechnology-based approaches for CNS disease amelioration, with the intention of stimulating the immune system by delivering medications across the BBB.
Collapse
Affiliation(s)
- Zi-Hua Guo
- Department of Neurology, Kaifeng Hospital of Traditional Chinese Medicine, No. 54 East Caizhengting St., Kaifeng 475000, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Sufyan Razak
- Dow Medical College, John Hopkins Medical Center, School of Medicine, Baltimore, MD 21205, USA
| | - Chang-Yong Yang
- School of Nursing and Health, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- School of Stomatology, Henan University, Kaifeng 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
79
|
Chen HY, Zhao Y, Xie YZ. Immunosenescence of brain accelerates Alzheimer's disease progression. Rev Neurosci 2023; 34:85-101. [PMID: 35791032 DOI: 10.1515/revneuro-2022-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/04/2022] [Indexed: 01/07/2023]
Abstract
Most of Alzheimer's disease (AD) cases are sporadic and occur after age 65. With prolonged life expectancy and general population aging, AD is becoming a significant public health concern. The immune system supports brain development, plasticity, and homeostasis, yet it is particularly vulnerable to aging-related changes. Aging of the immune system, called immunosenescence, is the multifaceted remodeling of the immune system during aging. Immunosenescence is a contributing factor to various age-related diseases, including AD. Age-related changes in brain immune cell phenotype and function, crosstalk between immune cells and neural cells, and neuroinflammation work together to promote neurodegeneration and age-related cognitive impairment. Although numerous studies have confirmed the correlation between systemic immune changes and AD, few studies focus on the immune state of brain microenvironment in aging and AD. This review mainly addresses the changes of brain immune microenvironment in aging and AD. Specifically, we delineate how various aspects of the brain immune microenvironment, including immune gateways, immune cells, and molecules, and the interplay between immune cells and neural cells, accelerate AD pathogenesis during aging. We also propose a theoretical framework of therapeutic strategies selectively targeting the different mechanisms to restore brain immune homeostasis.
Collapse
Affiliation(s)
- Hou-Yu Chen
- Department of Abdominal Surgery, Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangdong 510095, China
| | - Yan Zhao
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan 410011, China
| | - Yong-Zhi Xie
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
80
|
Johnson TO, Akinsanmi AO, Ejembi SA, Adeyemi OE, Oche JR, Johnson GI, Adegboyega AE. Modern drug discovery for inflammatory bowel disease: The role of computational methods. World J Gastroenterol 2023; 29:310-331. [PMID: 36687123 PMCID: PMC9846937 DOI: 10.3748/wjg.v29.i2.310] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/02/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) comprising ulcerative colitis, Crohn’s disease and microscopic colitis are characterized by chronic inflammation of the gastrointestinal tract. IBD has spread around the world and is becoming more prevalent at an alarming rate in developing countries whose societies have become more westernized. Cell therapy, intestinal microecology, apheresis therapy, exosome therapy and small molecules are emerging therapeutic options for IBD. Currently, it is thought that low-molecular-mass substances with good oral bio-availability and the ability to permeate the cell membrane to regulate the action of elements of the inflammatory signaling pathway are effective therapeutic options for the treatment of IBD. Several small molecule inhibitors are being developed as a promising alternative for IBD therapy. The use of highly efficient and time-saving techniques, such as computational methods, is still a viable option for the development of these small molecule drugs. The computer-aided (in silico) discovery approach is one drug development technique that has mostly proven efficacy. Computational approaches when combined with traditional drug development methodology dramatically boost the likelihood of drug discovery in a sustainable and cost-effective manner. This review focuses on the modern drug discovery approaches for the design of novel IBD drugs with an emphasis on the role of computational methods. Some computational approaches to IBD genomic studies, target identification, and virtual screening for the discovery of new drugs and in the repurposing of existing drugs are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Jane-Rose Oche
- Department of Biochemistry, University of Jos, Jos 930222, Plateau, Nigeria
| | - Grace Inioluwa Johnson
- Faculty of Clinical Sciences, College of Health Sciences, University of Jos, Jos 930222, Plateau, Nigeria
| | | |
Collapse
|
81
|
Barber K, Mendonca P, Soliman KFA. The Neuroprotective Effects and Therapeutic Potential of the Chalcone Cardamonin for Alzheimer's Disease. Brain Sci 2023; 13:145. [PMID: 36672126 PMCID: PMC9856590 DOI: 10.3390/brainsci13010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Neurodegenerative diseases (ND) include a wide range of conditions that result from progressive damage to the neurons. Alzheimer's disease (AD) is one of the most common NDs, and neuroinflammation and oxidative stress (OS) are the major factors in the development and progression of the disease. Many naturally occurring phytochemical compounds exhibit antioxidant and anti-inflammatory activities with potential neuroprotective effects. Several plant species, including Alpinia katsumadai and Alpinia conchigera, contain cardamonin (CD). CD (2',4'-dihydroxy-6'methoxychalcone) has many therapeutic properties, including anticancer, anti-inflammatory, antioxidant, antiviral, and antibiotic activities. CD is a potent compound that can reduce OS and modulate the inflammatory processes that play a significant part in developing neurodegenerative diseases. CD has been shown to modulate a variety of signaling molecules involved in the development and progression of ND, including transcription factors (NF-kB and STAT3), cytokines (TNF-α, IL-1, and IL-6), enzymes (COX-2, MMP-9, and ALDH1), and other proteins and genes (Bcl-2, XIAP, and cyclin D1). Additionally, CD effectively modulates miRNA levels and autophagy-related CD-protective mechanisms against neurodegeneration. In summary, this review provides mechanistic insights into CD's ability to modify multiple oxidative stress-antioxidant system pathways, Nrf2, and neuroinflammation. Additionally, it points to the possible therapeutic potential and preventive utilization of CD in neurodegenerative diseases, most specifically AD.
Collapse
Affiliation(s)
- Kimberly Barber
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
82
|
Karima S, Aghamollaii V, Mahmoodi Baram S, Balenci L, Lanctôt KL, Kiss A, Tafakhori A, Mahdavi M, Rajaei S, Shateri S, Yarhoseini A, Mokhtari F, Fotouhi A, Riazi A. Boswellic Acids Improve Clinical Cognitive Scores and Reduce Systemic Inflammation in Patients with Mild to Moderate Alzheimer's Disease. J Alzheimers Dis 2023; 94:359-370. [PMID: 37248896 DOI: 10.3233/jad-221026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Recent therapeutic approaches for Alzheimer's disease (AD) have had limited success. Considering the association of neuroinflammation with AD symptoms as demonstrated in multiple studies, assessment of the clinical efficacy of molecules that reduce systemic or brain inflammation is warranted. OBJECTIVE This clinical trial assessed whether boswellic acids can improve cognitive and neuropsychiatric symptoms while reducing inflammation in AD patients. METHODS A double-blind, placebo-controlled, study was conducted on 85 AD patients randomized to boswellic acids (K-Vie™ as the main ingredient in Memowell™) or placebo for 6 months. Clinical Dementia Rating-Sum of Boxes (CDR-SOB) and Mini-Mental State Examination (MMSE) scores were compared to baseline and between groups and constituted the co-primary clinical efficacy endpoints. Secondary outcomes included neuropsychiatric assessment (Neuropsychiatric Inventory-Questionnaire, NPI-Q) and assessment of AD and inflammation biomarkers. RESULTS Patients on K-Vie™ showed a 3.1- and 1.6-unit improvement in MMSE and CDR-SOB scores, respectively, when compared to patients on placebo. NPI-Q analysis revealed significant improvement in the K-Vie™ but not in the placebo group. Only mild gastrointestinal side effects were reported in a few patients. Patients on K-Vie™ showed improvement in plasma AD biomarkers and reduction of key inflammatory cytokines including IL-6 and TNF. CONCLUSION Our results support the positive cognitive effects of boswellic acids by reducing the systemic inflammation.
Collapse
Affiliation(s)
- Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vajiheh Aghamollaii
- Neurology Department, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Krista L Lanctôt
- Departments of Psychiatry and Pharmacology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Alex Kiss
- Department of Research Design and Biostatistics, Sunnybrook Research Institute, Toronto, Canada
| | - Abbas Tafakhori
- Department of Neurology, School of Medicine, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Meisam Mahdavi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Rajaei
- Clinical Trial Department, Behbalin Inc., Tehran, Iran
| | - Somayeh Shateri
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Yarhoseini
- Neurology Department, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Akbar Fotouhi
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Riazi
- Kondor Pharma Inc. Mississauga, Ontario, Canada
| |
Collapse
|
83
|
Chuang IC, Chiau HY, Liao WW, Wu YR, Chang CH, Wu CY. Effects of computer-based cognitive training combined with physical training for older adults with cognitive impairment: A four-arm randomized controlled trial. Digit Health 2023; 9:20552076231203633. [PMID: 37744745 PMCID: PMC10515553 DOI: 10.1177/20552076231203633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Objective Combined physical (PHY) and cognitive (COG) training in sequential (SEQ) and simultaneous (SIMUL) sessions may delay the progression of cognitive impairment. To date, no study has directly compared in older adults with cognitive impairment the effects of COG training, PHY training, SEQ motor-cognitive training and SIMUL motor-cognitve training on specific indices of cognitive performance and activities of daily living (ADL). The purpose of this study was to determine whether SEQ and SIMUL motor-cognitive training can improve treatment outcomes compared with PHY or COG training alone. We also aimed to compare the effects of SEQ versus SIMUL motor-cognitive training on cognitive functions and instrumental ADL (IADL) in older adults with cognitive impairment. Methods A cluster randomized controlled trial was conducted. Eighty older adults with cognitive impairment were randomly assigned to COG, PHY, SEQ or SIMUL training groups. The intervention consisted of 90-min training sessions, totaling 36 sessions. Outcome measures were the Montreal Cognitive Assessment, three subtests of the Wechsler Memory Scale (WMS) and the Lawton IADL scale. Results Significant interaction effects between group and time were found in WMS-spatial span (p = 0.04) and WMS-word lists (p = 0.041). For WMS-spatial span, the SIMUL group showed outperformed the COG (p = 0.039), PHY (p = 0.010) and SEQ groups (p = 0.017). For WMS-word lists, the SEQ group improve more than COG (p = 0.013), PHY (p = 0.030) and SIMUL (p = 0.019) groups. No significant differences were found in IADL performance among four groups (p = 0.645). Conclusions Our study showed SEQ and SIMUL motor-cognitive training led to more pronounced improvements in visuospatial working memory or verbal memory compared with isolated COG or PHY training for community-based older adults with cognitive impairment. For enhancing effects on IADL, we suggest the use of sensitive measurement tools and context-enriched cognitive training involving real-life task demands.
Collapse
Affiliation(s)
- I-Ching Chuang
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan
| | - Hui-Yan Chiau
- Institute of Cognitive Neuroscience, National Central University, Taoyuan
| | - Wan-Wen Liao
- Department of Gerontological Health Care, National Taipei University of Nursing and Health Sciences, Taipei City
| | - Yih-Ru Wu
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan
- College of Medicine, Chang Gung University, Taoyuan
| | - Chih-Hung Chang
- Program in Occupational Therapy, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Department of Medicine, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Department of Orthopaedic Surgery, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Ching-Yi Wu
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan
- Healthy Aging Research Center, Chang Gung University, Taoyuan
- Department of Physical Medicine and Rehabilitation, Linkou Chang Gung Memorial Hospital, Taoyuan
| |
Collapse
|
84
|
Iliyasu MO, Musa SA, Oladele SB, Iliya AI. Amyloid-beta aggregation implicates multiple pathways in Alzheimer's disease: Understanding the mechanisms. Front Neurosci 2023; 17:1081938. [PMID: 37113145 PMCID: PMC10128090 DOI: 10.3389/fnins.2023.1081938] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition characterized by tau pathology and accumulations of neurofibrillary tangles (NFTs) along with amyloid-beta (Aβ). It has been associated with neuronal damage, synaptic dysfunction, and cognitive deficits. The current review explained the molecular mechanisms behind the implications of Aβ aggregation in AD via multiple events. Beta (β) and gamma (γ) secretases hydrolyzed amyloid precursor protein (APP) to produce Aβ, which then clumps together to form Aβ fibrils. The fibrils increase oxidative stress, inflammatory cascade, and caspase activation to cause hyperphosphorylation of tau protein into neurofibrillary tangles (NFTs), which ultimately lead to neuronal damage. Acetylcholine (Ach) degradation is accelerated by upstream regulation of the acetylcholinesterase (AChE) enzyme, which leads to a deficiency in neurotransmitters and cognitive impairment. There are presently no efficient or disease-modifying medications for AD. It is necessary to advance AD research to suggest novel compounds for treatment and prevention. Prospectively, it might be reasonable to conduct clinical trials with unclean medicines that have a range of effects, including anti-amyloid and anti-tau, neurotransmitter modulation, anti-neuroinflammatory, neuroprotective, and cognitive enhancement.
Collapse
Affiliation(s)
- Musa O. Iliyasu
- Department of Anatomy, Kogi State University, Anyigba, Nigeria
- *Correspondence: Musa O. Iliyasu, ;
| | - Sunday A. Musa
- Department of Human Anatomy, Ahmadu Bello University, Zaria, Nigeria
| | - Sunday B. Oladele
- Department of Veterinary Pathology, Ahmadu Bello University, Zaria, Nigeria
| | | |
Collapse
|
85
|
Kipkemoi DJ, Ireri AM, Ngugi MP. Cognition Enhancing Potential of Aqueous Leaf Extract of Amaranthus dubius in Mice. J Evid Based Integr Med 2023; 28:2515690X231211661. [PMID: 37960857 PMCID: PMC10644747 DOI: 10.1177/2515690x231211661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/08/2023] [Accepted: 10/15/2023] [Indexed: 11/15/2023] Open
Abstract
Amaranthus dubius is a vegetable consumed for its nutritional content in Kenya. In herbal medicine, A. dubius is utilized to relief fever, anemia and hemorrhage. Additionally, it is utilized to manage cognitive dysfunction and is considered to augment brain function, but there is no empirical evidence to support this claim. The contemporary study investigated cognitive enhancing potential of A. dubius in mice model of Alzheimer's disease (AD)-like dementia induced with ketamine. Cognitively damaged mice were treated with aqueous extract of A. dubius leaf upon which passive avoidance task (PAT) was used to assess the cognitive performance. At the end of passive avoidance test, brains of the mice were dissected to evaluate the possibility of the extract to inhibit hallmarks that propagate AD namely oxidative stress and acetylcholinesterase activity. Additionally, characterization of secondary metabolites was done using liquid chromatograph- mass spectrometry analysis. During PAT test, extract-treated mice showed significantly increased step-through latencies than AD mice, depicting ability of A. dubius to reverse ketamine-induced cognitive decline. Further, the extract remarkably lowered malondialdehyde levels to normal levels and effectively inhibited acetylcholinesterase enzyme. The study showed that A. dubius extract is endowed with phytoconstituents that possess anti-oxidant and anticholinesterase activities. Thus, this study confirmed promising therapeutic effects of 200, 300 and 400 mg/kg bw of A. dubius extract with potential to alleviate cognitive disarray observed in AD.
Collapse
Affiliation(s)
- Daisy Jepkosgei Kipkemoi
- Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, Nairobi, Kenya
| | - Anthony Murithi Ireri
- Department of Educational Psychology, School of Education, Kenyatta University, Nairobi, Kenya
| | - Mathew Piero Ngugi
- Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, Nairobi, Kenya
| |
Collapse
|
86
|
Multipharmacophore strategy in medicinal chemistry for the design of drugs for the treatment of Alzheimer’s and some other neurodegenerative diseases. Russ Chem Bull 2023. [DOI: 10.1007/s11172-023-3718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
87
|
Kumagai R, Osaki T, Oki Y, Murata S, Uchida K, Encho H, Ono R, Kowa H. The Japan-Multimodal Intervention Trial for Prevention of Dementia PRIME Tamba (J-MINT PRIME Tamba): Study protocol of a randomised controlled multi-domain intervention trial. Arch Gerontol Geriatr 2023; 104:104803. [PMID: 36088747 DOI: 10.1016/j.archger.2022.104803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 02/07/2023]
Abstract
The Japan-Multimodal Intervention Trial for Prevention of Dementia PRIME Tamba (J-MINT PRIME Tamba) is a randomised controlled trial to prevent cognitive decline in community-dwelling cognitively ordinary older people at risk of dementia. Participants are aged 65-85 years living in a rural area in Japan, aware of very mild decline in cognitive function or abilities of activities of daily living, have at least one vascular risk (e.g. hypertension or diabetes), and have a Mini-Mental State Examination score of 24 or higher. Approximately 200 participants are randomly divided into two groups, with the intervention group receiving a multi-modal intervention, including lifestyle-related disease management, physical exercise, cognitive training, and nutritional counselling, over 18 months. The primary outcome is change in the composite score of seven neuropsychological tests, including the Free and Cued Selective Reminding Test, Logical Memory I and II subsets of the Wechsler Memory Scale-Revised, and Digit Symbol Substitution Test of the Wechsler Adult Intelligence Scale. In addition, changes in a wide range of other parameters such as physical function, blood test results, sleep, and frailty are also analysed as secondary outcomes. We believe that this study's results will contribute significantly to the development of dementia prevention measures in Japan. Clinical trial registration number: UMIN000041938.
Collapse
Affiliation(s)
- Ryoko Kumagai
- Division of Cognitive and Psychiatric Rehabilitation, Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, Hyogo 654-0142, Japan
| | - Tohmi Osaki
- Centre for Preventing Dementia, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, Hyogo 654-0142, Japan; Department of Occupational Therapy, Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe, Hyogo 651-2180, Japan.
| | - Yutaro Oki
- Centre for Preventing Dementia, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, Hyogo 654-0142, Japan
| | - Shunsuke Murata
- Centre for Preventing Dementia, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, Hyogo 654-0142, Japan; Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibeshimmachi, Suita, Osaka 564-8565, Japan
| | - Kazuaki Uchida
- Division of Community Health Sciences, Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, Hyogo 654-0142, Japan; Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka, Obu, Aichi 474-8511, Japan
| | - Haruhi Encho
- Division of Community Health Sciences, Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, Hyogo 654-0142, Japan
| | - Rei Ono
- Division of Community Health Sciences, Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, Hyogo 654-0142, Japan; Department of Physical Activity Research, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1, Toyama, Shinjyuku, Tokyo 162-8636, Japan
| | - Hisatomo Kowa
- Division of Cognitive and Psychiatric Rehabilitation, Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, Hyogo 654-0142, Japan.
| |
Collapse
|
88
|
Gao X, Wang S, Dong J, Li J, Zhang Y, Wu Y, Ba X. Effect of mono- and diketone group in curcumin analogues on amyloid fibrillation of hen egg white lysozyme. Biophys Chem 2023; 292:106913. [PMID: 36330890 DOI: 10.1016/j.bpc.2022.106913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/23/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Curcumin has attracted more attention because of its inhibition efficacy on protein amyloid fibrillation. However, the inhibition mechanism was still ambiguous and the clinical application of curcumin was greatly limited because of its poor stability at physiological conditions for the presence of β-diketone moiety. In this paper, a new mono-ketone-containing curcumin analogue (MDHC) was designed and synthesized to realize the possible inhibition mechanism and unveil the important role of β-diketone moiety of curcumin in the inhibition process of amyloid fibrillation using hen egg white lysozyme (HEWL) as model protein. Although all experiment results (ThT, CR, ANS and TEM) showed that the inhibitory capacity of curcumin was better than MDHC, MDHC still could show obvious inhibition effect. Molecular docking showed that both curcumin and MDHC could bind with HEWL by hydrogen bond of phenloic hydroxyl and the binding energy of MDHC was higher than that of curcumin. All the findings inferred that β-diketone group was one of great important groups in the inhibition process of HEWL amyloid fibrillation, which provided more room to construct novel inhibition reagents.
Collapse
Affiliation(s)
- Xuejiao Gao
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Sujuan Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China.
| | - Jiawei Dong
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Jie Li
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Yuangong Zhang
- School of Basic Medical Sciences, Hebei University, Baoding 071002, PR China
| | - Yuxia Wu
- Department of Computer Teaching, Hebei University, Baoding 071002, PR China
| | - Xinwu Ba
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China; Affiliated Hospital of Hebei University, Baoding 071000, PR China
| |
Collapse
|
89
|
Relationship of Cognition and Alzheimer's Disease with Gastrointestinal Tract Disorders: A Large-Scale Genetic Overlap and Mendelian Randomisation Analysis. Int J Mol Sci 2022; 23:ijms232416199. [PMID: 36555837 PMCID: PMC9784325 DOI: 10.3390/ijms232416199] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Emerging observational evidence suggests links between cognitive impairment and a range of gastrointestinal tract (GIT) disorders; however, the mechanisms underlying their relationships remain unclear. Leveraging large-scale genome-wide association studies’ summary statistics, we comprehensively assessed genetic overlap and potential causality of cognitive traits and Alzheimer’s disease (AD) with several GIT disorders. We demonstrate a strong and highly significant inverse global genetic correlation between cognitive traits and GIT disorders—peptic ulcer disease (PUD), gastritis-duodenitis, diverticulosis, irritable bowel syndrome, and gastroesophageal reflux disease (GERD), but not inflammatory bowel disease (IBD). Further analysis detects 35 significant (p < 4.37 × 10−5) bivariate local genetic correlations between cognitive traits, AD, and GIT disorders (including IBD). Mendelian randomisation analysis suggests a risk-decreasing causality of educational attainment, intelligence, and other cognitive traits on PUD and GERD, but not IBD, and a putative association of GERD with cognitive function decline. Gene-based analysis reveals a significant gene-level genetic overlap of cognitive traits with AD and GIT disorders (IBD inclusive, pbinomial-test = 1.18 × 10−3−2.20 × 10−16). Our study supports the protective roles of genetically-influenced educational attainments and other cognitive traits on the risk of GIT disorders and highlights a putative association of GERD with cognitive function decline. Findings from local genetic correlation analysis provide novel insights, indicating that the relationship of IBD with cognitive traits (and AD) will depend largely on their local effects across the genome.
Collapse
|
90
|
Charpignon ML, Vakulenko-Lagun B, Zheng B, Magdamo C, Su B, Evans K, Rodriguez S, Sokolov A, Boswell S, Sheu YH, Somai M, Middleton L, Hyman BT, Betensky RA, Finkelstein SN, Welsch RE, Tzoulaki I, Blacker D, Das S, Albers MW. Causal inference in medical records and complementary systems pharmacology for metformin drug repurposing towards dementia. Nat Commun 2022; 13:7652. [PMID: 36496454 PMCID: PMC9741618 DOI: 10.1038/s41467-022-35157-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Metformin, a diabetes drug with anti-aging cellular responses, has complex actions that may alter dementia onset. Mixed results are emerging from prior observational studies. To address this complexity, we deploy a causal inference approach accounting for the competing risk of death in emulated clinical trials using two distinct electronic health record systems. In intention-to-treat analyses, metformin use associates with lower hazard of all-cause mortality and lower cause-specific hazard of dementia onset, after accounting for prolonged survival, relative to sulfonylureas. In parallel systems pharmacology studies, the expression of two AD-related proteins, APOE and SPP1, was suppressed by pharmacologic concentrations of metformin in differentiated human neural cells, relative to a sulfonylurea. Together, our findings suggest that metformin might reduce the risk of dementia in diabetes patients through mechanisms beyond glycemic control, and that SPP1 is a candidate biomarker for metformin's action in the brain.
Collapse
Affiliation(s)
- Marie-Laure Charpignon
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Bang Zheng
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
| | - Colin Magdamo
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Bowen Su
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Kyle Evans
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Steve Rodriguez
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Artem Sokolov
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Sarah Boswell
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Yi-Han Sheu
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Melek Somai
- Inception Labs, Collaborative for Health Delivery Sciences, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Lefkos Middleton
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
- Public Health Directorate, Imperial College London NHS Healthcare Trust, London, UK
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Rebecca A Betensky
- Department of Biostatistics, School of Global Public Health, New York University, New York, NY, USA
| | - Stan N Finkelstein
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Clinical Informatics, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Roy E Welsch
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
- Dementia Research Institute, Imperial College London, London, UK.
- Department of Hygiene and Epidemiology, University of Ioannina, Ioannina, Greece.
| | - Deborah Blacker
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
| | - Mark W Albers
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
91
|
Shan G, Ritter A, Miller J, Bernick C. Effects of dose change on the success of clinical trials. Contemp Clin Trials Commun 2022; 30:100988. [PMID: 36117568 PMCID: PMC9478360 DOI: 10.1016/j.conctc.2022.100988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 07/18/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
The search for disease modifying therapies in Alzheimers disease (AD) has recently led to promising results but also revealed design issues in clinical trials themselves. Of particular importance is the potential statistical challenges that can arise when dosages change after an interim analysis, which is not uncommon in contemporary AD trials. Following the recent Aducanumab trials, we sought to study the implications of dose changes on the statistical power of an AD trial. We conducted extensive simulations to calculate statistical power when the relationship between treatment effect size and time is linear or non-linear, and the investigated drug has delayed treatment effect or not. Statistical power depends on many design factors including the dose change time, correlation, population homogeneity, and treatment effect time. We recommend that researchers conduct simulation studies at the interim analysis to justify the modified sample size and/or follow-up time modification meanwhile the type I and II error rates are controlled.
Collapse
Affiliation(s)
- Guogen Shan
- Department of Biostatistics, University of Florida, Gainesville, FL 32611, United States of America
| | - Aaron Ritter
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, 89106, United States of America
| | - Justin Miller
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, 89106, United States of America
| | - Charles Bernick
- Department of Neurology, University of Washington, Seattle, WA, 98195, United States of America
| |
Collapse
|
92
|
Alhazmi HA, Albratty M. An update on the novel and approved drugs for Alzheimer disease. Saudi Pharm J 2022; 30:1755-1764. [PMID: 36601504 PMCID: PMC9805975 DOI: 10.1016/j.jsps.2022.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/04/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Given the severity of the condition and the increasing number of patients, developing effective therapies for Alzheimer's disease has become a significant necessity. Aggregation of Amyloid-Beta (Aβ) plaques and Tau Protein Tangles in the brain's nerve tissue are two of the most histopathological/pathophysiological symptoms. Another important element involved in the etiology of Alzheimer's disease is the reduction in acetylcholine (ACh) levels in the brain. Currently available medications for Alzheimer's disease treatment, such as cholinesterase inhibitors and an antagonist of the N-methyl-d-aspartate receptor, can temporarily reduce dementia symptoms but not stop or reverse disease development. In addition, several medicinal plants have been shown to diminish the degenerative characteristics associated with Alzheimer's disease, either in its crude form or as isolated chemicals. Aim This review summarises the results from previous studies that reflect an array of novel therapies underway in various phases of clinical trials. Many are discontinued due to non-adherence to the designed endpoints or the surfacing of unavoidable side effects. The present piece of article focuses on the approved drugs for the treatment of Alzheimer's disease and their related mode of action as well as the promising therapies for the treatment of the said disease. Special attention has been placed on the researched herbal drugs, with the pipeline of novel therapies underway in various phases of clinical trials. Result The current article includes a list of approved pharmaceuticals for treating Alzheimer's disease, prospective therapies for the illness's treatment, and a pipeline of novel therapies in various stages of clinical trials. Conclusion The results suggest that the drugs under clinical trials may open new pathways for the effective treatment of patients with Alzheimer's disease while improving their quality of life.
Collapse
Affiliation(s)
- Hassan Ahmad Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia,Substance Abuse and Toxicology Research Centre, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia,Corresponding author at: Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia.
| |
Collapse
|
93
|
Valsdóttir V, Magnúsdóttir BB, Chang M, Sigurdsson S, Gudnason V, Launer LJ, Jónsdóttir MK. Cognition and brain health among older adults in Iceland: the AGES-Reykjavik study. GeroScience 2022; 44:2785-2800. [PMID: 35978066 PMCID: PMC9768066 DOI: 10.1007/s11357-022-00642-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/05/2022] [Indexed: 01/07/2023] Open
Abstract
The paper aimed to compare how factors previously identified as predictive factors for cognitive decline and dementia related to cognitive performance on the one hand and brain health on the other. To that aim, multiple linear regression was applied to the AGES-Reykjavik study epidemiological data. Additionally, a regression analysis was performed for change in cognition over 5 years, using the same exposure factors. The study ran from 2002 to 2011, and the sample analyzed included 1707 participants between the ages of 66 and 90. The data contains MR imaging, cognitive testing, background data, and physiological measurements. Overall, we conclude that risk factors linked to dementia relate differently to cognition and brain health. Mobility, physical strength, alcohol consumption, coronary artery disease, and hypertension were associated with cognition and brain volume. Smoking, depression, diabetes, and body fat percentage were only associated with brain volume, not cognitive performance. Modifiable factors previously linked to cognitive reserve, such as educational attainment, participation in leisure activities, multilingualism and good self-reported health, were associated with cognitive function but did not relate to brain volume. These findings show that, within the same participant pool, cognitive reserve proxy variables have a relationship with cognitive performance but have no association with relative brain volume measured simultaneously.
Collapse
Affiliation(s)
- Vaka Valsdóttir
- Department of Psychology, Reykjavik University, Menntavegur 1, 102 Reykjavik, Iceland
- RHLÖ – Icelandic Gerontological Research Center, Landspitali University Hospital, Reykjavik, Iceland
| | - Brynja Björk Magnúsdóttir
- Department of Psychology, Reykjavik University, Menntavegur 1, 102 Reykjavik, Iceland
- Mental Health Services, Landspitali University Hospital, Reykjavik, Iceland
| | - Milan Chang
- RHLÖ – Icelandic Gerontological Research Center, Landspitali University Hospital, Reykjavik, Iceland
| | | | - Vilmundur Gudnason
- The Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Sciences, National Institute On Aging, National Institutes of Health (NIH), Bethesda, MD USA
| | - María K. Jónsdóttir
- Department of Psychology, Reykjavik University, Menntavegur 1, 102 Reykjavik, Iceland
- Mental Health Services, Landspitali University Hospital, Reykjavik, Iceland
| |
Collapse
|
94
|
Wu T, Lin D, Cheng Y, Jiang S, Riaz MW, Fu N, Mou C, Ye M, Zheng Y. Amyloid Cascade Hypothesis for the Treatment of Alzheimer's Disease: Progress and Challenges. Aging Dis 2022; 13:1745-1758. [PMID: 36465173 PMCID: PMC9662281 DOI: 10.14336/ad.2022.0412] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/12/2022] [Indexed: 07/29/2023] Open
Abstract
The amyloid cascade hypothesis has always been a research focus in the therapeutic field of Alzheimer's disease (AD) since it was put forward. Numerous researchers attempted to find drugs for AD treatment based on this hypothesis. To promote the research of anti-AD drugs development, the current hypothesis and pathogenesis were reviewed with expounding of β-amyloid generation from its precursor protein and related transformations. Meanwhile, the present drug development strategies aimed at each stage in this hypothesis were also summarized. Several strategies especially immunotherapy showed the optimistic results in clinical trials, but only a small percentage of them eventually succeeded. In this review, we also tried to point out some common problems of drug development in preclinical and clinical studies which might be settled through multidisciplinary cooperation as well as the understanding that reinforces the amyloid cascade hypothesis.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Ding Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yaqian Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Senze Jiang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Muhammad Waheed Riaz
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Nina Fu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Chenhao Mou
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Menglu Ye
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Ying Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
95
|
Hajjo R, Sabbah DA, Abusara OH, Al Bawab AQ. A Review of the Recent Advances in Alzheimer's Disease Research and the Utilization of Network Biology Approaches for Prioritizing Diagnostics and Therapeutics. Diagnostics (Basel) 2022; 12:diagnostics12122975. [PMID: 36552984 PMCID: PMC9777434 DOI: 10.3390/diagnostics12122975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is a polygenic multifactorial neurodegenerative disease that, after decades of research and development, is still without a cure. There are some symptomatic treatments to manage the psychological symptoms but none of these drugs can halt disease progression. Additionally, over the last few years, many anti-AD drugs failed in late stages of clinical trials and many hypotheses surfaced to explain these failures, including the lack of clear understanding of disease pathways and processes. Recently, different epigenetic factors have been implicated in AD pathogenesis; thus, they could serve as promising AD diagnostic biomarkers. Additionally, network biology approaches have been suggested as effective tools to study AD on the systems level and discover multi-target-directed ligands as novel treatments for AD. Herein, we provide a comprehensive review on Alzheimer's disease pathophysiology to provide a better understanding of disease pathogenesis hypotheses and decipher the role of genetic and epigenetic factors in disease development and progression. We also provide an overview of disease biomarkers and drug targets and suggest network biology approaches as new tools for identifying novel biomarkers and drugs. We also posit that the application of machine learning and artificial intelligence to mining Alzheimer's disease multi-omics data will facilitate drug and biomarker discovery efforts and lead to effective individualized anti-Alzheimer treatments.
Collapse
Affiliation(s)
- Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carlina at Chapel Hill, Chapel Hill, NC 27599, USA
- National Center for Epidemics and Communicable Disease Control, Amman 11118, Jordan
- Correspondence:
| | - Dima A. Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Osama H. Abusara
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Abdel Qader Al Bawab
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| |
Collapse
|
96
|
Akarsu GD, Çetin A. The Effect of Thymoquinone on Oxidative Stress Parameters and Apolipoprotein E in Alzheimer Model in Rats. Dement Geriatr Cogn Disord 2022; 51:297-309. [PMID: 36273456 DOI: 10.1159/000525617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/14/2022] [Indexed: 01/31/2023] Open
Abstract
INTRODUCTION In this study, it was aimed to investigate the effect of thymoquinone (TQ) on oxidative stress and apolipoprotein E (ApoE) in an experimental Alzheimer's model created with AlCl3 and D-galactose in rats. METHODS Thirty-six Wistar Albino male rats saline group (Group 1), aluminum chloride (AlCl3) + D-galactose (D-Gal) group (Group 2), AlCl3 + D-Gal + TQ group (Group 3) were divided into 3 groups. The study was completed with 33 rats. Group 1 was given saline intraperitoneally (i.p) for 28 days. 2nd group; D-Gal at a dose of 60 mg/kg/day and AlCl3 at a dose of 40 mg/kg/day were given i.p. daily for 28 days. 3rd group; D-Gal at a dose of 60 mg/kg/day and AlCl3 at a dose of 40 mg/kg/day were given i.p. daily for 28 days. Group 3 rats were given 20 mg/kg/day TQ in corn oil by gavage for 14 days. Malonyl dialdehyde (MDA), superoxide dismutase (SOD), total antioxidant capacity (TAS), total oxidant capacity (TOS), glutathione peroxidase (GsH-Px), and ApoE levels were determined in the blood and brain tissues of rats in all three groups. One-way ANOVA test was used in the statistical analysis of the data. RESULTS Means of TAS, TOS, GSH-Px, SOD, MDA, and ApoE in blood and brain tissue of all three groups (excluding ApoE in brain tissue) were different from each other and this difference was statistically significant (p < 0.05). CONCLUSION In this study, TQ, it was determined that all oxidative stress parameters examined had positively affected and decreased blood tissue ApoE levels. TQ can be used as an antioxidant and curative in Alzheimer's disease.
Collapse
Affiliation(s)
| | - Aysun Çetin
- Department of Biochemistry and Clinical Biochemistry, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
97
|
Minaki K, Amano H, Masumoto T, Otani S, Urakami K, Kurozawa Y. Association between frequency of going out and mild cognitive impairment in community-dwelling older adults: a pilot study in frailty prevention groups. Psychogeriatrics 2022; 22:833-842. [PMID: 36075581 DOI: 10.1111/psyg.12890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/29/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Clarifying the role of physical limitations in the relationship between frequency of going out and mild cognitive impairment (MCI) may be useful in supporting early detection and prevention of MCI. However, few studies have explored relatively active populations that are continuously active throughout the year. This study aimed to determine the relationship between frequency of going out and MCI among non-homebound older adults who participated in group activities to prevent frailty. METHODS This prospective cohort study used frequency of going out as the exposure and MCI as the outcome. The Touch Panel-type Dementia Assessment Scale and questionnaires about daily life were completed by 153 community-dwelling older adults aged ≥65 years participating in frailty prevention groups in a rural town. The baseline survey was conducted from December 2017 to March 2018 and analysed cross-sectionally. Follow-up surveys were conducted at 1- and 2-years and analysed longitudinally. RESULTS Univariate and binomial logistic regression analyses at baseline showed no association between MCI and frequency of going out in older adults with physical limitations. However, there was a significant association in older adults without physical limitations. A binomial logistic regression analysis of the frequency of going out at baseline and cognitive function at the 2-year follow-up showed no association between MCI and frequency of going out in older adults with physical limitations, but there was a significant association in those without physical limitations. CONCLUSION Our results suggest that frequency of going out may not be a useful indicator of MCI in older adults with physical limitations, although low frequency of going out may be an indicator of MCI in older adults without physical limitations.
Collapse
Affiliation(s)
- Kazuma Minaki
- Division of Health Administration and Promotion, Department of Social Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Hiroki Amano
- Division of Health Administration and Promotion, Department of Social Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Toshio Masumoto
- Division of Health Administration and Promotion, Department of Social Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Shinji Otani
- International Platform for Dryland Research and Education, Tottori University, Tottori, Japan
| | - Katsuya Urakami
- Department of Dementia Prevention, School of Health Science, Tottori University Faculty of Medicine, Yonago, Japan
| | - Youichi Kurozawa
- Division of Health Administration and Promotion, Department of Social Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| |
Collapse
|
98
|
Bloomingdale P, Karelina T, Ramakrishnan V, Bakshi S, Véronneau‐Veilleux F, Moye M, Sekiguchi K, Meno‐Tetang G, Mohan A, Maithreye R, Thomas VA, Gibbons F, Cabal A, Bouteiller J, Geerts H. Hallmarks of neurodegenerative disease: A systems pharmacology perspective. CPT Pharmacometrics Syst Pharmacol 2022; 11:1399-1429. [PMID: 35894182 PMCID: PMC9662204 DOI: 10.1002/psp4.12852] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Age-related central neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, are a rising public health concern and have been plagued by repeated drug development failures. The complex nature and poor mechanistic understanding of the etiology of neurodegenerative diseases has hindered the discovery and development of effective disease-modifying therapeutics. Quantitative systems pharmacology models of neurodegeneration diseases may be useful tools to enhance the understanding of pharmacological intervention strategies and to reduce drug attrition rates. Due to the similarities in pathophysiological mechanisms across neurodegenerative diseases, especially at the cellular and molecular levels, we envision the possibility of structural components that are conserved across models of neurodegenerative diseases. Conserved structural submodels can be viewed as building blocks that are pieced together alongside unique disease components to construct quantitative systems pharmacology (QSP) models of neurodegenerative diseases. Model parameterization would likely be different between the different types of neurodegenerative diseases as well as individual patients. Formulating our mechanistic understanding of neurodegenerative pathophysiology as a mathematical model could aid in the identification and prioritization of drug targets and combinatorial treatment strategies, evaluate the role of patient characteristics on disease progression and therapeutic response, and serve as a central repository of knowledge. Here, we provide a background on neurodegenerative diseases, highlight hallmarks of neurodegeneration, and summarize previous QSP models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Peter Bloomingdale
- Quantitative Pharmacology and PharmacometricsMerck & Co., Inc.BostonMassachusettsUSA
| | | | | | - Suruchi Bakshi
- Certara QSPOssThe Netherlands,Certara QSPPrincetonNew JerseyUSA
| | | | - Matthew Moye
- Quantitative Pharmacology and PharmacometricsMerck & Co., Inc.BostonMassachusettsUSA
| | - Kazutaka Sekiguchi
- Shionogi & Co., Ltd.OsakaJapan,SUNY Downstate Medical CenterNew YorkNew YorkUSA
| | | | | | | | | | - Frank Gibbons
- Clinical Pharmacology and PharmacometricsBiogenCambridgeMassachusettsUSA
| | | | - Jean‐Marie Bouteiller
- Center for Neural EngineeringDepartment of Biomedical Engineering at the Viterbi School of EngineeringLos AngelesCaliforniaUSA,Institute for Technology and Medical Systems Innovation, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | |
Collapse
|
99
|
Ganguly D, Thomas JA, Ali A, Kumar R. Mechanistic and therapeutic implications of EphA-4 receptor tyrosine kinase in the pathogenesis of Alzheimer's disease. Eur J Neurosci 2022; 56:5532-5546. [PMID: 34989046 DOI: 10.1111/ejn.15591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/14/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022]
Abstract
Erythropoietin-producing hepatoma (Eph) receptors belong to a family of tyrosine kinase receptors that plays a pivotal role in the development of the brain. Eph can be divided broadly into two groups, namely, EphA and EphB, comprising nine and five members, respectively. In recent years, the role of EphA-4 has become increasingly apparent in the onset of Alzheimer's disease (AD). Emerging evidence suggests that EphA-4 results in synaptic dysfunction, which in turn promotes the progression of AD. Moreover, pharmacological or genetic ablation of EphA-4 in the murine model of AD can alleviate the symptoms. The current review summarizes different pathways by which EphA-4 can influence pathogenesis. Since, majority of the studies had reported the protective effect of EphA-4 inhibition during AD, designing therapeutics based on decreasing its enzymatic activity might be necessary for introducing the novel interventions. Therefore, the review described peptide and nanobodies inhibitors of EphA-4 that exhibit the potential to modulate EphA-4 and could be used as lead molecules for the targeted therapy of AD.
Collapse
Affiliation(s)
- Devargya Ganguly
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
| | - Joshua Abby Thomas
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
| | - Abid Ali
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rahul Kumar
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
| |
Collapse
|
100
|
Bera A, Lavanya G, Reshmi R, Dev K, Kumar R. Mechanistic and therapeutic role of Drp1 in the pathogenesis of Alzheimer's disease. Eur J Neurosci 2022; 56:5516-5531. [PMID: 35078269 DOI: 10.1111/ejn.15611] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, has emerged as the most common form of dementia in the elderly. Two major pathological hallmarks have been identified for AD: extracellular amyloid plaques and intracellular neurofibrillary tangles (NFT). Recently, dynamin-related protein 1 (Drp1) was recognized to contribute significantly towards the pathogenesis of AD. Drp1 is primarily located in the cytosol, from where it translocates to the mitochondrial outer membrane and drives the mitochondrial fission via GTP hydrolysis. Drp1 interacts with Aβ and phosphorylated tau, leading to excessive mitochondrial fragmentation, which in turn results in synaptic dysfunction, neuronal damage and cognitive decline. Several studies suggest an increase in the level of Drp1 in the post-mortem brain specimen collected from the AD patients and murine models of AD. Interestingly, heterozygous deletion of Drp1 in the transgenic murine model of AD ameliorates the mitochondrial dysfunction, improving learning and memory. The current review article discusses the possible mechanistic pathways by which Drp1 can influence the pathogenesis of AD. Besides, it will describe various inhibitors for Drp1 and their potential role as therapeutics for AD in the future.
Collapse
Affiliation(s)
- Arpita Bera
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Visakhapatnam, India
| | - Gantyada Lavanya
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Visakhapatnam, India
| | - Ravada Reshmi
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Visakhapatnam, India
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Rahul Kumar
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Visakhapatnam, India
| |
Collapse
|