51
|
Saeedi H, Reimer JD, Brandt MI, Dumais PO, Jażdżewska AM, Jeffery NW, Thielen PM, Costello MJ. Global marine biodiversity in the context of achieving the Aichi Targets: ways forward and addressing data gaps. PeerJ 2019; 7:e7221. [PMID: 31681508 PMCID: PMC6824330 DOI: 10.7717/peerj.7221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/31/2019] [Indexed: 01/13/2023] Open
Abstract
In 2010, the Conference of the Parties of the Convention on Biological Diversity agreed on the Strategic Plan for Biodiversity 2011–2020 in Aichi Prefecture, Japan. As this plan approaches its end, we discussed whether marine biodiversity and prediction studies were nearing the Aichi Targets during the 4th World Conference on Marine Biodiversity held in Montreal, Canada in June 2018. This article summarises the outcome of a five-day group discussion on how global marine biodiversity studies should be focused further to better understand the patterns of biodiversity. We discussed and reviewed seven fundamental biodiversity priorities related to nine Aichi Targets focusing on global biodiversity discovery and predictions to improve and enhance biodiversity data standards (quantity and quality), tools and techniques, spatial and temporal scale framing, and stewardship and dissemination. We discuss how identifying biodiversity knowledge gaps and promoting efforts have and will reduce such gaps, including via the use of new databases, tools and technology, and how these resources could be improved in the future. The group recognised significant progress toward Target 19 in relation to scientific knowledge, but negligible progress with regard to Targets 6 to 13 which aimed to safeguard and reduce human impacts on biodiversity.
Collapse
Affiliation(s)
- Hanieh Saeedi
- Senckenberg Research Institute and Natural History Museum, Frankfurt am Main, Germany.,FB 15 Biological Sciences Institute for Ecology, Diversity and Evolution Biologicum, Goethe University of Frankfurt, Frankfurt am Main, Germany.,Senckenberg Research Institute and Natural History Museum, OBIS Data Manager, Deep-sea Node, Frankfurt am Main, Germany
| | - James Davis Reimer
- Marine Invertebrate Systematics & Ecology Laboratory, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | | | | | - Anna Maria Jażdżewska
- Laboratory of Polar Biology and Oceanobiology, Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Nicholas W Jeffery
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
| | - Peter M Thielen
- Research and Exploratory Development Department, Johns Hopkins Applied Physics Laboratory, Laurel, MD, United States of America
| | - Mark John Costello
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
52
|
Queiroz-Sousa J, Keith SA, David GS, Brandão H, Nobile AB, Paes JVK, Souto AC, Lima FP, Silva RJ, Henry R, Richardson K. Species richness and functional structure of fish assemblages in three freshwater habitats: effects of environmental factors and management. JOURNAL OF FISH BIOLOGY 2019; 95:1125-1136. [PMID: 31355448 DOI: 10.1111/jfb.14109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
In this study, the inverted trophic hypothesis was tested in the freshwater fish communities of a reservoir. The distribution of fish species in three freshwater habitats in the Jurumirim Reservoir, Brazil, was examined using both species richness and the relative proportions of different trophic groups. These groups were used as a proxy for functional structure in an attempt to test the ability of these measures to assess fish diversity. Assemblage structures were first described using non-metric multidimensional scaling (NMDS). The influence of environmental conditions for multiple fish assemblage response variables (richness, total abundance and abundance per trophic group) was tested using generalised linear mixed models (GLMM). The metric typically employed to describe diversity; that is, species richness, was not related to environmental conditions. However, absolute species abundance was relatively well explained with up to 54% of the variation in the observed data accounted for. Differences in the dominance of trophic groups were most apparent in response to the presence of introduced fish species: the iliophagous and piscivorous trophic groups were positively associated, while detritivores and herbivores were negatively associated, with the alien species. This suggests that monitoring functional diversity might be more valuable than species diversity for assessing effects of disturbances and managements policies on the fish community.
Collapse
Affiliation(s)
- Jamile Queiroz-Sousa
- Institute of Biosciences, São Paulo State University, Botucatu, Brazil
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Sally A Keith
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | | - Heleno Brandão
- Paraná Federal Technology University, Santa Helena, Brazil
| | - André B Nobile
- Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Jaciara V K Paes
- Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Ana C Souto
- Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Felipe P Lima
- Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Reinaldo J Silva
- Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Raoul Henry
- Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Katherine Richardson
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
53
|
Johnson JD, Abrams DM. A coupled oscillator model for the origin of bimodality and multimodality. CHAOS (WOODBURY, N.Y.) 2019; 29:073120. [PMID: 31370422 DOI: 10.1063/1.5100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Perhaps because of the elegance of the central limit theorem, it is often assumed that distributions in nature will approach singly-peaked, unimodal shapes reminiscent of the Gaussian normal distribution. However, many systems behave differently, with variables following apparently bimodal or multimodal distributions. Here, we argue that multimodality may emerge naturally as a result of repulsive or inhibitory coupling dynamics, and we show rigorously how it emerges for a broad class of coupling functions in variants of the paradigmatic Kuramoto model.
Collapse
Affiliation(s)
- J D Johnson
- Department of Engineering Sciences and Applied Mathematics, McCormick School of Engineering and Applied Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - D M Abrams
- Department of Engineering Sciences and Applied Mathematics, McCormick School of Engineering and Applied Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| |
Collapse
|
54
|
Saeedi H, Costello MJ, Warren D, Brandt A. Latitudinal and bathymetrical species richness patterns in the NW Pacific and adjacent Arctic Ocean. Sci Rep 2019; 9:9303. [PMID: 31243329 PMCID: PMC6594967 DOI: 10.1038/s41598-019-45813-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/12/2019] [Indexed: 01/25/2023] Open
Abstract
Global scale analyses have recently revealed that the latitudinal gradient in marine species richness is bimodal, peaking at low-mid latitudes but with a dip at the equator; and that marine species richness decreases with depth in many taxa. However, these overall and independently studied patterns may conceal regional differences that help support or qualify the causes in these gradients. Here, we analysed both latitudinal and depth gradients of species richness in the NW Pacific and its adjacent Arctic Ocean. We analysed 324,916 distribution records of 17,414 species from 0 to 10,900 m depth, latitude 0 to 90°N, and longitude 100 to 180°N. Species richness per c. 50 000 km2 hexagonal cells was calculated as alpha (local average), gamma (regional total) and ES50 (estimated species for 50 records) per latitudinal band and depth interval. We found that average ES50 and gamma species richness decreased per 5° latitudinal bands and 100 m depth intervals. However, average ES50 per hexagon showed that the highest species richness peaked around depth 2,000 m where the highest total number of species recorded. Most (83%) species occurred in shallow depths (0 to 500 m). The area around Bohol Island in the Philippines had the highest alpha species richness (more than 8,000 species per 50,000 km2). Both alpha and gamma diversity trends increased from the equator to latitude 10°N, then further decreased, but reached another peak at higher latitudes. The latitudes 60–70°N had the lowest gamma and alpha diversity where there is almost no ocean in our study area. Model selection on Generalized Additive Models (GAMs) showed that the combined effects of all environmental predictors produced the best model driving species richness in both shallow and deep sea. The results thus support recent hypotheses that biodiversity, while highest in the tropics and coastal depths, is decreasing at the equator and decreases with depth below ~2000 m. While we do find the declines of species richness with latitude and depth that reflect temperature gradients, local scale richness proved poorly correlated with many environmental variables. This demonstrates that while regional scale patterns in species richness may be related to temperature, that local scale richness depends on a greater variety of variables.
Collapse
Affiliation(s)
- Hanieh Saeedi
- Department of Marine Zoology, Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325, Frankfurt am Main, Germany. .,FB 15 Biological Sciences, Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany. .,OBIS data manager, Deep-Sea Node, Frankfurt am Main, Germany.
| | - Mark J Costello
- Institute of Marine Science, University of Auckland, Auckland, 1142, New Zealand
| | - Dan Warren
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Angelika Brandt
- Department of Marine Zoology, Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,FB 15 Biological Sciences, Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| |
Collapse
|
55
|
Affiliation(s)
- Qianshuo Zhao
- Institute of Marine Science University of Auckland Auckland New Zealand
| | - Mark J. Costello
- Institute of Marine Science University of Auckland Auckland New Zealand
| |
Collapse
|
56
|
Hiebert LS, Vieira EA, Dias GM, Tiozzo S, Brown FD. Colonial ascidians strongly preyed upon, yet dominate the substrate in a subtropical fouling community. Proc Biol Sci 2019; 286:20190396. [PMID: 30914011 DOI: 10.1098/rspb.2019.0396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Higher diversity and dominance at lower latitudes has been suggested for colonial species. We verified this pattern in species richness of ascidians, finding that higher colonial-to-solitary species ratios occur in the tropics and subtropics. At the latitudinal region with the highest ratio, in southeastern Brazil, we confirmed that colonial species dominate space on artificial plates in two independent studies of five fouling communities. We manipulated settlement plates to measure effects of predation and competition on growth and survivorship of colonial versus solitary ascidians. Eight species were subjected to a predation treatment, i.e. caged versus exposed to predators, and a competition treatment, i.e. leaving versus removing competitors, to assess main and interactive effects. Predation had a greater effect on growth and survivorship of colonial compared to solitary species, whereas competition did not show consistent patterns. We hypothesize that colonial ascidians dominate at this subtropical site despite being highly preyed upon because they regrow when partially consumed and can adjust in shape and space to grow into refuges. We contend that these means of avoiding mortality from predation can have large influences on diversification patterns of colonial species at low latitudes, where predation intensity is greater.
Collapse
Affiliation(s)
- Laurel Sky Hiebert
- 1 Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo , 05508-090 São Paulo , Brazil.,2 Centro de Biologia Marinha (CEBIMar), Universidade de São Paulo , 11612-109 São Sebastião , Brazil
| | - Edson A Vieira
- 2 Centro de Biologia Marinha (CEBIMar), Universidade de São Paulo , 11612-109 São Sebastião , Brazil.,3 Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , Rua Arcturus 03 Jd Antares, São Bernardo do Campo, 09606-070 São Paulo , Brazil
| | - Gustavo M Dias
- 2 Centro de Biologia Marinha (CEBIMar), Universidade de São Paulo , 11612-109 São Sebastião , Brazil.,3 Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , Rua Arcturus 03 Jd Antares, São Bernardo do Campo, 09606-070 São Paulo , Brazil
| | - Stefano Tiozzo
- 4 Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV) , 06230 Villefranche-sur-Mer , France
| | - Federico D Brown
- 1 Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo , 05508-090 São Paulo , Brazil.,2 Centro de Biologia Marinha (CEBIMar), Universidade de São Paulo , 11612-109 São Sebastião , Brazil.,5 Instituto Nacional de Ciência e Tecnologia em Estudos Interdisciplinares e Transdisciplinares em Ecologia e Evolução (IN-TREE) , Salvador, BA , Brazil
| |
Collapse
|
57
|
Fenberg PB, Rivadeneira MM. On the importance of habitat continuity for delimiting biogeographic regions and shaping richness gradients. Ecol Lett 2019; 22:664-673. [PMID: 30734458 DOI: 10.1111/ele.13228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/29/2018] [Indexed: 12/31/2022]
Abstract
The formation and maintenance of biogeographic regions and the latitudinal gradient of species richness are thought to be influenced, in part, by the spatial distribution of physical habitat (habitat continuity). But the importance of habitat continuity in relation to other variables for shaping richness gradients and delimiting biogeographic regions has not been well established. Here, we show that habitat continuity is a top predictor of biogeographic structure and the richness gradient of eastern Pacific rocky shore gastropods (spanning c. 23 000 km, from 43°S to 48°N). Rocky shore habitat continuity is generally low within tropical/subtropical regions (compared to extratropical regions), but particularly at biogeographic boundaries where steep richness gradients occur. Regions of high rocky shore habitat continuity are located towards the centres of biogeographic regions where species turnover tends to be relatively low. Our study highlights the importance of habitat continuity to help explain patterns and processes shaping the biogeographic organisation of species.
Collapse
Affiliation(s)
- Phillip B Fenberg
- Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton, SO14 3ZH, UK.,Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK
| | - Marcelo M Rivadeneira
- Laboratorio de Paleobiología, Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Av. Bernardo Ossandón 877, C.P. 1781681, Coquimbo, Chile.,Departamento de Biología Marina, Universidad Católica del Norte, Av. Larrondo 1281, Coquimbo, Chile.,Departamento de Biología, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena, Chile
| |
Collapse
|
58
|
Saeedi H, Costello MJ. A world dataset on the geographic distributions of Solenidae razor clams (Mollusca: Bivalvia). Biodivers Data J 2019:e31375. [PMID: 30740024 PMCID: PMC6367310 DOI: 10.3897/bdj.7.e31375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/09/2019] [Indexed: 11/12/2022] Open
Abstract
Background Using this dataset, we examined the global geographical distributions of Solenidae species in relation to their endemicity, species richness and latitudinal ranges and then predicted their distributions under future climate change using species distribution modelling techniques (Saeedi et al. 2016a, Saeedi et al. 2016b). We found that the global latitudinal species richness in Solenidae is bi-modal, dipping at the equator most likely derived by high sea surface temperature (Saeedi et al. 2016b). We also found that most of the Solenidae species will shift their distribution ranges polewards due to global warming (Saeedi et al. 2016a). We also provided a comprehensive review of the taxon to test whether the latitudinal gradient in species richness was uni-modal with a peak in the tropics or northern hemisphere or asymmetric and bimodal as proposed previously (Chaudhary et al. 2016). New information This paper presents an integrated global geographic distribution dataset for 77 Solenidae taxa, including 3,034 geographic distribution records. This dataset was compiled after a careful data-collection and cleaning procedure over four years. Data were collected using field sampling, literature and from open-access databases. Then all the records went through quality control procedures such as validating the taxonomy of the species by examining and re-identifying the specimens in museum collections and using taxonomic and geographic data quality control tools in the World Register of Marine Species (WoRMS) and the r-OBIS package (Provoost and Bosch 2017). This dataset can thus be further used for taxonomical and biogeographical studies of Solenidae.
Collapse
Affiliation(s)
- Hanieh Saeedi
- Department of Marine Zoology, Crustaceans, Senckenberg Research Institute and Natural History Museum , 60325 Frankfurt am Main, Germany Department of Marine Zoology, Crustaceans, Senckenberg Research Institute and Natural History Museum 60325 Frankfurt am Main Germany.,Institute for Ecology, Diversity and Evolution, Goethe University Frankfurt, Frankfurt am Main, Germany Institute for Ecology, Diversity and Evolution, Goethe University Frankfurt Frankfurt am Main Germany.,OBIS data manager, deep-sea node, Frankfurt am Main, Germany OBIS data manager, deep-sea node Frankfurt am Main Germany
| | - Mark J Costello
- Institute of Marine Science, University of Auckland, Auckland 1142, New Zealand Institute of Marine Science, University of Auckland Auckland 1142 New Zealand
| |
Collapse
|
59
|
O'Hara TD, Hugall AF, Woolley SNC, Bribiesca-Contreras G, Bax NJ. Contrasting processes drive ophiuroid phylodiversity across shallow and deep seafloors. Nature 2019; 565:636-639. [PMID: 30675065 DOI: 10.1038/s41586-019-0886-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 12/14/2018] [Indexed: 11/09/2022]
Abstract
Our knowledge of the distribution and evolution of deep-sea life is limited, impeding our ability to identify priority areas for conservation1. Here we analyse large integrated phylogenomic and distributional datasets of seafloor fauna from the sea surface to the abyss and from equator to pole of the Southern Hemisphere for an entire class of invertebrates (Ophiuroidea). We find that latitudinal diversity gradients are assembled through contrasting evolutionary processes for shallow (0-200 m) and deep (>200 m) seas. The shallow-water tropical-temperate realm broadly reflects a tropical diversification-driven process that shows exchange of lineages in both directions. Diversification rates are reversed for the realm that contains the deep sea and Antarctica; the diversification rates are highest at polar and lowest at tropical latitudes, and net exchange occurs from high to low latitudes. The tropical upper bathyal (200-700 m deep), with its rich ancient phylodiversity, is characterized by relatively low diversification and moderate immigration rates. Conversely, the young, specialized Antarctic fauna is inferred to be rebounding from regional extinctions that are associated with the rapid cooling of polar waters during the mid-Cenozoic era.
Collapse
Affiliation(s)
| | | | - Skipton N C Woolley
- Museums Victoria, Melbourne, Victoria, Australia.,CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
| | - Guadalupe Bribiesca-Contreras
- Museums Victoria, Melbourne, Victoria, Australia.,Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Nicholas J Bax
- CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia.,Institute for Marine and Antarctic Science, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
60
|
Menegotto A, Rangel TF. Mapping knowledge gaps in marine diversity reveals a latitudinal gradient of missing species richness. Nat Commun 2018; 9:4713. [PMID: 30413710 PMCID: PMC6226500 DOI: 10.1038/s41467-018-07217-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/04/2018] [Indexed: 11/09/2022] Open
Abstract
A reliable description of any spatial pattern in species richness requires accurate knowledge about species geographical distribution. However, sampling bias may generate artefactual absences within species range and compromise our capacity to describe biodiversity patterns. Here, we analysed the spatial distribution of 35,000 marine species (varying from copepods to sharks) to identify missing occurrences (gaps) across their latitudinal range. We find a latitudinal gradient of species absence peaking near the equator, a pattern observed in both shallow and deep waters. The tropical gap in species distribution seems a consequence of reduced sampling effort at low latitudes. Overall, our results suggest that spatial gaps in species distribution are the main cause of the bimodal pattern of marine diversity. Therefore, only increasing sampling effort at low latitudes will reveal if the absence of species in the tropics, and the consequent dip in species richness, are artefacts of sampling bias or a natural phenomenon. Accurate understanding of species biogeographic patterns is contingent upon adequate sampling effort across space. Here, the authors analyse the distribution records for 35,000 marine species, highlighting data gaps caused by undersampling in the tropics.
Collapse
Affiliation(s)
- André Menegotto
- Programa de Pós-Graduação em Ecologia e Evolução, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil.
| | - Thiago F Rangel
- Departamento de Ecologia, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil
| |
Collapse
|
61
|
Passy SI, Larson CA, Jamoneau A, Budnick W, Heino J, Leboucher T, Tison-Rosebery J, Soininen J. Biogeographical Patterns of Species Richness and Abundance Distribution in Stream Diatoms Are Driven by Climate and Water Chemistry. Am Nat 2018; 192:605-617. [DOI: 10.1086/699830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
62
|
Abstract
The mesopelagic or 'twilight zone' of the oceans occurs too deep for photosynthesis, but is a major part of the world's carbon cycle. Depth boundaries for the mesopelagic have now been shown on a global scale using the distribution of pelagic animals detected by compiling echo-soundings from ships around the world, and been used to predict the effect of global warming on regional fish production.
Collapse
Affiliation(s)
- Mark J Costello
- Institute of Marine Science, University of Auckland, Auckland, 1142, New Zealand.
| | | |
Collapse
|
63
|
Miloslavich P, Bax NJ, Simmons SE, Klein E, Appeltans W, Aburto-Oropeza O, Andersen Garcia M, Batten SD, Benedetti-Cecchi L, Checkley DM, Chiba S, Duffy JE, Dunn DC, Fischer A, Gunn J, Kudela R, Marsac F, Muller-Karger FE, Obura D, Shin YJ. Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. GLOBAL CHANGE BIOLOGY 2018; 24:2416-2433. [PMID: 29623683 DOI: 10.1111/gcb.14108] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 05/21/2023]
Abstract
Sustained observations of marine biodiversity and ecosystems focused on specific conservation and management problems are needed around the world to effectively mitigate or manage changes resulting from anthropogenic pressures. These observations, while complex and expensive, are required by the international scientific, governance and policy communities to provide baselines against which the effects of human pressures and climate change may be measured and reported, and resources allocated to implement solutions. To identify biological and ecological essential ocean variables (EOVs) for implementation within a global ocean observing system that is relevant for science, informs society, and technologically feasible, we used a driver-pressure-state-impact-response (DPSIR) model. We (1) examined relevant international agreements to identify societal drivers and pressures on marine resources and ecosystems, (2) evaluated the temporal and spatial scales of variables measured by 100+ observing programs, and (3) analysed the impact and scalability of these variables and how they contribute to address societal and scientific issues. EOVs were related to the status of ecosystem components (phytoplankton and zooplankton biomass and diversity, and abundance and distribution of fish, marine turtles, birds and mammals), and to the extent and health of ecosystems (cover and composition of hard coral, seagrass, mangrove and macroalgal canopy). Benthic invertebrate abundance and distribution and microbe diversity and biomass were identified as emerging EOVs to be developed based on emerging requirements and new technologies. The temporal scale at which any shifts in biological systems will be detected will vary across the EOVs, the properties being monitored and the length of the existing time-series. Global implementation to deliver useful products will require collaboration of the scientific and policy sectors and a significant commitment to improve human and infrastructure capacity across the globe, including the development of new, more automated observing technologies, and encouraging the application of international standards and best practices.
Collapse
Affiliation(s)
- Patricia Miloslavich
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
- Departamento de Estudios Ambientales, Universidad Simón Bolívar, Caracas, Venezuela
- Australian Institute of Marine Science, Townsville, Qld, Australia
- Oceans Institute, University of Western Australia, Crawley, WA, Australia
| | - Nicholas J Bax
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
- CSIRO, Oceans and Atmosphere, Hobart, Tas., Australia
| | | | - Eduardo Klein
- Departamento de Estudios Ambientales, Universidad Simón Bolívar, Caracas, Venezuela
| | - Ward Appeltans
- Intergovernmental Oceanographic Commission of UNESCO, IOC Project Office for IODE, Oostende, Belgium
| | - Octavio Aburto-Oropeza
- Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, CA, USA
| | - Melissa Andersen Garcia
- National Oceanic and Atmospheric Administration (NOAA), Office of International Affairs, Washington, DC, USA
| | - Sonia D Batten
- Sir Alister Hardy Foundation for Ocean Science (SAHFOS), Nanaimo, BC, Canada
| | | | | | - Sanae Chiba
- UN Environment-World Conservation Monitoring Centre, Cambridge, UK
- Research and Development Center for Global Change (RCGC), JAMSTEC, Yokohama, Japan
| | - J Emmett Duffy
- Tennenbaum Marine Observatories Network, Smithsonian Institution, Edgewater, MD, USA
| | - Daniel C Dunn
- Marine Geospatial Ecology Lab, Nicholas School of the Environment, Duke University, Beaufort, NC, USA
| | - Albert Fischer
- Intergovermental Oceanographic Commission IOC/UNESCO, Paris, France
| | - John Gunn
- Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Raphael Kudela
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Francis Marsac
- Institut de Recherche pour le Développement (IRD), UMR MARBEC 248, Université Montpellier, Montpellier, France
- Department of Oceanography, University of Cape Town, Rondebosch, South Africa
| | - Frank E Muller-Karger
- Institute for Marine Remote Sensing/IMaRS, College of Marine Science, University of South Florida, St. Petersburg, FL, USA
| | | | - Yunne-Jai Shin
- Institut de Recherche pour le Développement (IRD), UMR MARBEC 248, Université Montpellier, Montpellier, France
- Department of Biological Sciences, Ma-Re Institute, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
64
|
Hogg OT, Huvenne VAI, Griffiths HJ, Linse K. On the ecological relevance of landscape mapping and its application in the spatial planning of very large marine protected areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:384-398. [PMID: 29353784 DOI: 10.1016/j.scitotenv.2018.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/01/2018] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
In recent years very large marine protected areas (VLMPAs) have become the dominant form of spatial protection in the marine environment. Whilst seen as a holistic and geopolitically achievable approach to conservation, there is currently a mismatch between the size of VLMPAs, and the data available to underpin their establishment and inform on their management. Habitat mapping has increasingly been adopted as a means of addressing paucity in biological data, through use of environmental proxies to estimate species and community distribution. Small-scale studies have demonstrated environmental-biological links in marine systems. Such links, however, are rarely demonstrated across larger spatial scales in the benthic environment. As such, the utility of habitat mapping as an effective approach to the ecosystem-based management of VLMPAs remains, thus far, largely undetermined. The aim of this study was to assess the ecological relevance of broadscale landscape mapping. Specifically we test the relationship between broad-scale marine landscapes and the structure of their benthic faunal communities. We focussed our work at the sub-Antarctic island of South Georgia, site of one of the largest MPAs in the world. We demonstrate a statistically significant relationship between environmentally derived landscape mapping clusters, and the composition of presence-only species data from the region. To demonstrate this relationship required specific re-sampling of historical species occurrence data to balance biological rarity, biological cosmopolitism, range-restricted sampling and fine-scale heterogeneity between sampling stations. The relationship reveals a distinct biological signature in the faunal composition of individual landscapes, attributing ecological relevance to South Georgia's environmentally derived marine landscape map. We argue therefore, that landscape mapping represents an effective framework for ensuring representative protection of habitats in management plans. Such scientific underpinning of marine spatial planning is critical in balancing the needs of multiple stakeholders whilst maximising conservation payoff.
Collapse
Affiliation(s)
- Oliver T Hogg
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK; National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, Southampton, UK; University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK.
| | - Veerle A I Huvenne
- National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, Southampton, UK
| | - Huw J Griffiths
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK
| | - Katrin Linse
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK
| |
Collapse
|
65
|
Patterns of species richness and the center of diversity in modern Indo-Pacific larger foraminifera. Sci Rep 2018; 8:8189. [PMID: 29844498 PMCID: PMC5974165 DOI: 10.1038/s41598-018-26598-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/15/2018] [Indexed: 11/13/2022] Open
Abstract
Symbiont-bearing Larger Benthic Foraminifera (LBF) are ubiquitous components of shallow tropical and subtropical environments and contribute substantially to carbonaceous reef and shelf sediments. Climate change is dramatically affecting carbonate producing organisms and threatens the diversity and structural integrity of coral reef ecosystems. Recent invertebrate and vertebrate surveys have identified the Coral Triangle as the planet’s richest center of marine life delineating the region as a top priority for conservation. We compiled and analyzed extensive occurrence records for 68 validly recognized species of LBF from the Indian and Pacific Ocean, established individual range maps and applied Minimum Convex Polygon (MCP) and Species Distribution Model (SDM) methodologies to create the first ocean-wide species richness maps. SDM output was further used for visualizing latitudinal and longitudinal diversity gradients. Our findings provide strong support for assigning the tropical Central Indo-Pacific as the world’s species-richest marine region with the Central Philippines emerging as the bullseye of LBF diversity. Sea surface temperature and nutrient content were identified as the most influential environmental constraints exerting control over the distribution of LBF. Our findings contribute to the completion of worldwide research on tropical marine biodiversity patterns and the identification of targeting centers for conservation efforts.
Collapse
|
66
|
Dencker TS, Pecuchet L, Beukhof E, Richardson K, Payne MR, Lindegren M. Temporal and spatial differences between taxonomic and trait biodiversity in a large marine ecosystem: Causes and consequences. PLoS One 2017; 12:e0189731. [PMID: 29253876 PMCID: PMC5734758 DOI: 10.1371/journal.pone.0189731] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/30/2017] [Indexed: 11/19/2022] Open
Abstract
Biodiversity is a multifaceted concept, yet most biodiversity studies have taken a taxonomic approach, implying that all species are equally important. However, species do not contribute equally to ecosystem processes and differ markedly in their responses to changing environments. This recognition has led to the exploration of other components of biodiversity, notably the diversity of ecologically important traits. Recent studies taking into account both taxonomic and trait diversity have revealed that the two biodiversity components may exhibit pronounced temporal and spatial differences. These apparent incongruences indicate that the two components may respond differently to environmental drivers and that changes in one component might not affect the other. Such incongruences may provide insight into the structuring of communities through community assembly processes, and the resilience of ecosystems to change. Here we examine temporal and spatial patterns and drivers of multiple marine biodiversity indicators using the North Sea fish community as a case study. Based on long-term spatially resolved survey data on fish species occurrences and biomasses from 1983 to 2014 and an extensive trait dataset we: (i) investigate temporal and spatial incongruences between taxonomy and trait-based indicators of both richness and evenness; (ii) examine the underlying environmental drivers and, (iii) interpret the results in the context of assembly rules acting on community composition. Our study shows that taxonomy and trait-based biodiversity indicators differ in time and space and that these differences are correlated to natural and anthropogenic drivers, notably temperature, depth and substrate richness. Our findings show that trait-based biodiversity indicators add information regarding community composition and ecosystem structure compared to and in conjunction with taxonomy-based indicators. These results emphasize the importance of examining and monitoring multiple indicators of biodiversity in ecological studies as well as for conservation and ecosystem-based management purposes.
Collapse
Affiliation(s)
- Tim Spaanheden Dencker
- Centre for Ocean Life, National Institute of Aquatic Resources (DTU-Aqua), Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Laurene Pecuchet
- Centre for Ocean Life, National Institute of Aquatic Resources (DTU-Aqua), Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Esther Beukhof
- Centre for Ocean Life, National Institute of Aquatic Resources (DTU-Aqua), Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Katherine Richardson
- Centre for Macroecology, Evolution and Climate, Danish Natural History Museum, University of Copenhagen, Copenhagen, Denmark
| | - Mark R. Payne
- Centre for Ocean Life, National Institute of Aquatic Resources (DTU-Aqua), Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Martin Lindegren
- Centre for Ocean Life, National Institute of Aquatic Resources (DTU-Aqua), Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
67
|
Ryo M, Rillig MC. Statistically reinforced machine learning for nonlinear patterns and variable interactions. Ecosphere 2017. [DOI: 10.1002/ecs2.1976] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Masahiro Ryo
- Institute of Biology; Freie Universität Berlin; D-14195 Berlin Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research; D-14195 Berlin Germany
| | - Matthias C. Rillig
- Institute of Biology; Freie Universität Berlin; D-14195 Berlin Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research; D-14195 Berlin Germany
| |
Collapse
|
68
|
Edgar GJ, Alexander TJ, Lefcheck JS, Bates AE, Kininmonth SJ, Thomson RJ, Duffy JE, Costello MJ, Stuart-Smith RD. Abundance and local-scale processes contribute to multi-phyla gradients in global marine diversity. SCIENCE ADVANCES 2017; 3:e1700419. [PMID: 29057321 PMCID: PMC5647131 DOI: 10.1126/sciadv.1700419] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 09/20/2017] [Indexed: 05/08/2023]
Abstract
Among the most enduring ecological challenges is an integrated theory explaining the latitudinal biodiversity gradient, including discrepancies observed at different spatial scales. Analysis of Reef Life Survey data for 4127 marine species at 2406 coral and rocky sites worldwide confirms that the total ecoregion richness peaks in low latitudes, near +15°N and -15°S. However, although richness at survey sites is maximal near the equator for vertebrates, it peaks at high latitudes for large mobile invertebrates. Site richness for different groups is dependent on abundance, which is in turn correlated with temperature for fishes and nutrients for macroinvertebrates. We suggest that temperature-mediated fish predation and herbivory have constrained mobile macroinvertebrate diversity at the site scale across the tropics. Conversely, at the ecoregion scale, richness responds positively to coral reef area, highlighting potentially huge global biodiversity losses with coral decline. Improved conservation outcomes require management frameworks, informed by hierarchical monitoring, that cover differing site- and regional-scale processes across diverse taxa, including attention to invertebrate species, which appear disproportionately threatened by warming seas.
Collapse
Affiliation(s)
- Graham J. Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001 Australia
- Corresponding author.
| | - Timothy J. Alexander
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047 Kastanienbaum, Switzerland
| | - Jonathan S. Lefcheck
- Department of Biological Sciences, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062–1346, USA
| | - Amanda E. Bates
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton SO14 3ZH, UK
| | - Stuart J. Kininmonth
- Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, Stockholm SE-106 91 Sweden
- School of Marine Studies, University of the South Pacific, Suva, Fiji Islands
| | - Russell J. Thomson
- Centre for Research in Mathematics, School of Computing, Engineering and Mathematics, Western Sydney University, Penrith, New South Wales 2751, Australia
| | - J. Emmett Duffy
- Tennenbaum Marine Observatories Network, Smithsonian Institution, 647 Contees Wharf Road, Edgewater, MD 21037, USA
| | - Mark J. Costello
- Institute of Marine Science, University of Auckland, Auckland 1142, New Zealand
| | - Rick D. Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001 Australia
| |
Collapse
|
69
|
Abstract
About half of the world's animal species are arthropods associated with plants, and the ability to consume plant material has been proposed to be an important trait associated with the spectacular diversification of terrestrial insects. We review the phylogenetic distribution of plant feeding in the Crustacea, the other major group of arthropods that commonly consume plants, to estimate how often plant feeding has arisen and to test whether this dietary transition is associated with higher species numbers in extant clades. We present evidence that at least 31 lineages of marine, freshwater, and terrestrial crustaceans (including 64 families and 185 genera) have independently overcome the challenges of consuming plant material. These plant-feeding clades are, on average, 21-fold more speciose than their sister taxa, indicating that a shift in diet is associated with increased net rates of diversification. In contrast to herbivorous insects, most crustaceans have very broad diets, and the increased richness of taxa that include plants in their diet likely results from access to a novel resource base rather than host-associated divergence.
Collapse
|
70
|
Bohlin L, Cárdenas P, Backlund A, Göransson U. 35 Years of Marine Natural Product Research in Sweden: Cool Molecules and Models from Cold Waters. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 55:1-34. [PMID: 28238034 DOI: 10.1007/978-3-319-51284-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Currents efforts in marine biodiscovery have essentially focused on temperate to tropical shallow water organisms. With more than 6000 species of marine plants and animals, the Kosterfjord area has the richest marine biodiversity in Swedish waters, but it remains understudied. The overall objective of our marine pharmacognosy research is to explore and reveal the pharmacological potential of organisms from this poorly explored region. More generally, we wish to understand aspects of structure-activity relationships of chemical interactions in cold-water marine environment (shallow and deep). Our strategy is based on ecologically guided search for compounds through studies of physiology and organism interactions coupled to identification of bioactive molecules guided by especially in vivo assays. The research programme originated in the beginning of the 1980s with a broad screening of Swedish marine organisms using both in vitro and in vivo assays, resulting in isolation and identification of several different bioactive molecules. Two congenerous cyclopeptides, i.e. barettin and 8,9-dihydrobarettin, were isolated from the deep-sea sponge Geodia barretti, and structurally elucidated, guided by their antifouling activity and their affinity to a selection of human serotonin receptors. To optimize the activity a number of analogues of barettin were synthezised and tested for antifouling activity. Within the EU project BlueGenics, two larger homologous peptides, barrettides A and B, were isolated from G. baretti. Also, metabolic fingerprinting combined with sponge systematics was used to further study deep-sea natural product diversity in the genus Geodia. Finally, the chemical property space model 'ChemGPS-NP' has been developed and used in our research group, enabling a more efficient use of obtained compounds and exploration of possible biological activities and targets. Another approach is the broad application of phylogenetic frameworks, which can be used in prediction of where-in which organisms-to search for novel molecules or better sources of known molecules in marine organisms. In a further perspective, the deeper understanding of evolution and development of life on Earth can also provide answers to why marine organisms produce specific molecules.
Collapse
Affiliation(s)
- Lars Bohlin
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Center, Uppsala University, Box 574, 751 23, Uppsala, Sweden.
| | - Paco Cárdenas
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Center, Uppsala University, Box 574, 751 23, Uppsala, Sweden
| | - Anders Backlund
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Center, Uppsala University, Box 574, 751 23, Uppsala, Sweden
| | - Ulf Göransson
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Center, Uppsala University, Box 574, 751 23, Uppsala, Sweden.
| |
Collapse
|
71
|
Costello MJ, Chaudhary C. Marine Biodiversity, Biogeography, Deep-Sea Gradients, and Conservation. Curr Biol 2017; 27:R511-R527. [DOI: 10.1016/j.cub.2017.04.060] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
72
|
Chaudhary C, Saeedi H, Costello MJ. Marine Species Richness Is Bimodal with Latitude: A Reply to Fernandez and Marques. Trends Ecol Evol 2017; 32:234-237. [DOI: 10.1016/j.tree.2017.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 01/11/2023]
|
73
|
Diversity of Diversities: A Response to Chaudhary, Saeedi, and Costello. Trends Ecol Evol 2017; 32:232-234. [DOI: 10.1016/j.tree.2016.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/27/2016] [Indexed: 11/19/2022]
|
74
|
Poulin R, Pérez-Ponce de León G. Global analysis reveals that cryptic diversity is linked with habitat but not mode of life. J Evol Biol 2017; 30:641-649. [DOI: 10.1111/jeb.13034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 01/23/2023]
Affiliation(s)
- R. Poulin
- Department of Zoology; University of Otago; Dunedin New Zealand
| | - G. Pérez-Ponce de León
- Departamento de Zoología; Instituto de Biología; Universidad Nacional Autónoma de México, Ciudad Universitaria; México D.F. México
| |
Collapse
|
75
|
Fenton IS, Pearson PN, Dunkley Jones T, Farnsworth A, Lunt DJ, Markwick P, Purvis A. The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150224. [PMID: 26977064 PMCID: PMC4810817 DOI: 10.1098/rstb.2015.0224] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Cenozoic planktonic foraminifera (PF) (calcareous zooplankton) have arguably the most detailed fossil record of any group. The quality of this record allows models of environmental controls on macroecology, developed for Recent assemblages, to be tested on intervals with profoundly different climatic conditions. These analyses shed light on the role of long-term global cooling in establishing the modern latitudinal diversity gradient (LDG)--one of the most powerful generalizations in biogeography and macroecology. Here, we test the transferability of environment-diversity models developed for modern PF assemblages to the Eocene epoch (approx. 56-34 Ma), a time of pronounced global warmth. Environmental variables from global climate models are combined with Recent environment-diversity models to predict Eocene richness gradients, which are then compared with observed patterns. The results indicate the modern LDG--lower richness towards the poles--developed through the Eocene. Three possible causes are suggested for the mismatch between statistical model predictions and data in the Early Eocene: the environmental estimates are inaccurate, the statistical model misses a relevant variable, or the intercorrelations among facets of diversity--e.g. richness, evenness, functional diversity--have changed over geological time. By the Late Eocene, environment-diversity relationships were much more similar to those found today.
Collapse
Affiliation(s)
- Isabel S Fenton
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Paul N Pearson
- School of Earth and Ocean Sciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Tom Dunkley Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alexander Farnsworth
- School of Geographical Sciences and Cabot Institute, University of Bristol, Bristol BS8 1SS, UK
| | - Daniel J Lunt
- School of Geographical Sciences and Cabot Institute, University of Bristol, Bristol BS8 1SS, UK
| | - Paul Markwick
- Getech Group plc. Elmete Hall, Elmete Lane, Leeds LS8 2LJ, UK
| | - Andy Purvis
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| |
Collapse
|
76
|
Tintinnid ciliates of the marine microzooplankton in Arctic Seas: a compilation and analysis of species records. Polar Biol 2016. [DOI: 10.1007/s00300-016-2049-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|