51
|
Van Parys A, Boyen F, Leyman B, Verbrugghe E, Haesebrouck F, Pasmans F. Tissue-specific Salmonella Typhimurium gene expression during persistence in pigs. PLoS One 2011; 6:e24120. [PMID: 21887378 PMCID: PMC3161100 DOI: 10.1371/journal.pone.0024120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 08/05/2011] [Indexed: 01/08/2023] Open
Abstract
Salmonellosis caused by Salmonella Typhimurium is one of the most important bacterial zoonotic diseases. The bacterium persists in pigs resulting in asymptomatic 'carrier pigs', generating a major source for Salmonella contamination of pork. Until now, very little is known concerning the mechanisms used by Salmonella Typhimurium during persistence in pigs. Using in vivo expression technology (IVET), a promoter-trap method based on ΔpurA attenuation of the parent strain, we identified 37 Salmonella Typhimurium genes that were expressed 3 weeks post oral inoculation in the tonsils, ileum and ileocaecal lymph nodes of pigs. Several genes were expressed in all three analyzed organs, while other genes were only expressed in one or two organs. Subsequently, the identified IVET transformants were pooled and reintroduced in pigs to detect tissue-specific gene expression patterns. We found that efp and rpoZ were specifically expressed in the ileocaecal lymph nodes during Salmonella peristence in pigs. Furthermore, we compared the persistence ability of substitution mutants for the IVET-identified genes sifB and STM4067 to that of the wild type in a mixed infection model. The ΔSTM4067::kanR was significantly attenuated in the ileum contents, caecum and caecum contents and faeces of pigs 3 weeks post inoculation, while deletion of the SPI-2 effector gene sifB did not affect Salmonella Typhimurium persistence. Although our list of identified genes is not exhaustive, we found that efp and rpoZ were specifically expressed in the ileocaecal lymph nodes of pigs and we identified STM4067 as a factor involved in Salmonella persistence in pigs. To our knowledge, our study is the first to identify Salmonella Typhimurium genes expressed during persistence in pigs.
Collapse
Affiliation(s)
- Alexander Van Parys
- Ghent University, Faculty of Veterinary Medicine, Department of Pathology, Bacteriology and Avian Diseases, Merelbeke, Belgium.
| | | | | | | | | | | |
Collapse
|
52
|
Ding X, Yin B, Qian L, Zeng Z, Yang Z, Li H, Lu Y, Zhou S. Screening for novel quorum-sensing inhibitors to interfere with the formation of Pseudomonas aeruginosa biofilm. J Med Microbiol 2011; 60:1827-1834. [PMID: 21852522 DOI: 10.1099/jmm.0.024166-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to screen for novel quorum-sensing inhibitors (QSIs) from traditional Chinese medicines (TCMs) that inhibit bacterial biofilm formation. Six of 46 active components found in TCMs were identified as putative QSIs based on molecular docking studies. Of these, three compounds inhibited biofilm formation by Pseudomonas aeruginosa and Stenotrophomonas maltophilia at a concentration of 200 µM. A fourth compound (emodin) significantly inhibited biofilm formation at 20 µM and induced proteolysis of the quorum-sensing signal receptor TraR in Escherichia coli at a concentration of 3-30 mM. Emodin also increased the activity of ampicillin against P. aeruginosa. Therefore, emodin might be suitable for development into an antivirulence and antibacterial agent.
Collapse
Affiliation(s)
- Xian Ding
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
- State Key Laboratory for Biocontrol, School of Life Sciences, Zhongshan (Sun Yat-sen) University, Guangzhou 510275, PR China
| | - Bo Yin
- LED, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, PR China
| | - Li Qian
- School of Chemistry and Chemical Engineering, Zhongshan (Sun Yat-sen) University, Guangzhou 510275, PR China
| | - Zhirui Zeng
- State Key Laboratory for Biocontrol, School of Life Sciences, Zhongshan (Sun Yat-sen) University, Guangzhou 510275, PR China
| | - Zeliang Yang
- State Key Laboratory for Biocontrol, School of Life Sciences, Zhongshan (Sun Yat-sen) University, Guangzhou 510275, PR China
| | - Huixian Li
- State Key Laboratory for Biocontrol, School of Life Sciences, Zhongshan (Sun Yat-sen) University, Guangzhou 510275, PR China
| | - Yongjun Lu
- State Key Laboratory for Biocontrol, School of Life Sciences, Zhongshan (Sun Yat-sen) University, Guangzhou 510275, PR China
| | - Shining Zhou
- State Key Laboratory for Biocontrol, School of Life Sciences, Zhongshan (Sun Yat-sen) University, Guangzhou 510275, PR China
| |
Collapse
|
53
|
McDermott JE, Yoon H, Nakayasu ES, Metz TO, Hyduke DR, Kidwai AS, Palsson BO, Adkins JN, Heffron F. Technologies and approaches to elucidate and model the virulence program of salmonella. Front Microbiol 2011; 2:121. [PMID: 21687430 PMCID: PMC3108385 DOI: 10.3389/fmicb.2011.00121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/15/2011] [Indexed: 11/13/2022] Open
Abstract
Salmonella is a primary cause of enteric diseases in a variety of animals. During its evolution into a pathogenic bacterium, Salmonella acquired an elaborate regulatory network that responds to multiple environmental stimuli within host animals and integrates them resulting in fine regulation of the virulence program. The coordinated action by this regulatory network involves numerous virulence regulators, necessitating genome-wide profiling analysis to assess and combine efforts from multiple regulons. In this review we discuss recent high-throughput analytic approaches used to understand the regulatory network of Salmonella that controls virulence processes. Application of high-throughput analyses have generated large amounts of data and necessitated the development of computational approaches for data integration. Therefore, we also cover computer-aided network analyses to infer regulatory networks, and demonstrate how genome-scale data can be used to construct regulatory and metabolic systems models of Salmonella pathogenesis. Genes that are coordinately controlled by multiple virulence regulators under infectious conditions are more likely to be important for pathogenesis. Thus, reconstructing the global regulatory network during infection or, at the very least, under conditions that mimic the host cellular environment not only provides a bird's eye view of Salmonella survival strategy in response to hostile host environments but also serves as an efficient means to identify novel virulence factors that are essential for Salmonella to accomplish systemic infection in the host.
Collapse
Affiliation(s)
- Jason E. McDermott
- Computational Biology and Bioinformatics Group, Pacific Northwest National LaboratoryRichland, WA, USA
| | - Hyunjin Yoon
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences UniversityPortland, OR, USA
| | - Ernesto S. Nakayasu
- Biological Separations and Mass Spectroscopy Group, Pacific Northwest National LaboratoryRichland WA, USA
| | - Thomas O. Metz
- Biological Separations and Mass Spectroscopy Group, Pacific Northwest National LaboratoryRichland WA, USA
| | - Daniel R. Hyduke
- Systems Biology, University of California San DiegoSan Diego, CA, USA
| | - Afshan S. Kidwai
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences UniversityPortland, OR, USA
| | | | - Joshua N. Adkins
- Biological Separations and Mass Spectroscopy Group, Pacific Northwest National LaboratoryRichland WA, USA
| | - Fred Heffron
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences UniversityPortland, OR, USA
| |
Collapse
|
54
|
Abstract
Bacterial biofilms are structured communities of bacterial cells enclosed in a self-produced polymer matrix that is attached to a surface. Biofilms protect and allow bacteria to survive and thrive in hostile environments. Bacteria within biofilms can withstand host immune responses, and are much less susceptible to antibiotics and disinfectants when compared with their planktonic counterparts. The ability to form biofilms is now considered a universal attribute of micro-organisms. Diseases associated with biofilms require novel methods for their prevention, diagnosis and treatment; this is largely due to the properties of biofilms. Surprisingly, biofilm formation by bacterial pathogens of veterinary importance has received relatively little attention. Here, we review the current knowledge of bacterial biofilms as well as studies performed on animal pathogens.
Collapse
|
55
|
|
56
|
The inflammatory cytokine tumor necrosis factor modulates the expression of Salmonella typhimurium effector proteins. JOURNAL OF INFLAMMATION-LONDON 2010; 7:42. [PMID: 20704730 PMCID: PMC2925363 DOI: 10.1186/1476-9255-7-42] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 08/12/2010] [Indexed: 01/26/2023]
Abstract
Tumor necrosis factor alpha (TNF-alpha)is a host inflammatory factor. Bacteria increase TNF-alpha expression in a variety of human diseases including infectious diseases, inflammatory bowel diseases, and cancer. It is unknown, however, how TNF-alpha directly modulates bacterial protein expression during intestinal infection and chronic inflammation. In the current study, we hypothesize that Salmonella typhimurium senses TNF-alpha and show that TNF-alpha treatment modulates Salmonella virulent proteins (called effectors), thus changing the host-bacterial interaction in intestinal epithelial cells. We investigated the expression of 23 Salmonella effectors after TNF-alpha exposure. We found that TNF-alpha treatment led to differential effector expression: effector SipA was increased by TNF-alpha treatment, whereas the expression levels of other effectors, including gogB and spvB, decreased in the presence of TNF-alpha. We verified the protein expression of Salmonella effectors AvrA and SipA by Western blots. Furthermore, we used intestinal epithelial cells as our experimental model to explore the response of human intestinal cells to TNF-alpha pretreated Salmonella. More bacterial invasion was found in host cells colonized with Salmonella strains pretreated with TNF-alpha compared to Salmonella without TNF-alpha treatment. TNF-alpha pretreated Salmonella induced higher proinflammatory JNK signalling responses compared to the Salmonella strains without TNF-alpha exposure. Exposure to TNF-alpha made Salmonella to induce more inflammatory cytokine IL-8 in intestinal epithelial cells. JNK inhibitor treatment was able to suppress the effects of TNF-pretreated-Salmonella in enhancing expressions of phosphorylated-JNK and c-jun and secretion of IL-8. Overall, our study provides new insights into Salmonella-host interactions in intestinal inflammation.
Collapse
|
57
|
Van Parys A, Boyen F, Volf J, Verbrugghe E, Leyman B, Rychlik I, Haesebrouck F, Pasmans F. Salmonella Typhimurium resides largely as an extracellular pathogen in porcine tonsils, independently of biofilm-associated genes csgA, csgD and adrA. Vet Microbiol 2010; 144:93-9. [DOI: 10.1016/j.vetmic.2009.12.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 12/11/2009] [Accepted: 12/16/2009] [Indexed: 11/28/2022]
|
58
|
Chiers K, De Waele T, Pasmans F, Ducatelle R, Haesebrouck F. Virulence factors of Actinobacillus pleuropneumoniae involved in colonization, persistence and induction of lesions in its porcine host. Vet Res 2010; 41:65. [PMID: 20546697 PMCID: PMC2899255 DOI: 10.1051/vetres/2010037] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Accepted: 06/10/2010] [Indexed: 12/17/2022] Open
Abstract
Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia. The virulence factors of this microorganism involved in colonization and the induction of lung lesions have been thoroughly studied and some have been well characterized. A. pleuropneumoniae binds preferentially to cells of the lower respiratory tract in a process involving different adhesins and probably biofilm formation. Apx toxins and lipopolysaccharides exert pathogenic effects on several host cells, resulting in typical lung lesions. Lysis of host cells is essential for the bacterium to obtain nutrients from the environment and A. pleuropneumoniae has developed several uptake mechanisms for these nutrients. In addition to persistence in lung lesions, colonization of the upper respiratory tract – and of the tonsils in particular – may also be important for long-term persistent asymptomatic infection. Information on virulence factors involved in tonsillar and nasal cavity colonization and persistence is scarce, but it can be speculated that similar features as demonstrated for the lung may play a role.
Collapse
Affiliation(s)
- Koen Chiers
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.
| | | | | | | | | |
Collapse
|
59
|
Catheter-related bacteremia caused by Staphylococcus pseudintermedius refractory to antibiotic-lock therapy in a hemophilic child with dog exposure. J Clin Microbiol 2010; 48:1497-8. [PMID: 20164279 DOI: 10.1128/jcm.02033-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe a case of catheter-related bacteremia due to Staphylococcus pseudintermedius in a child with dog exposure. The organism was confirmed as S. pseudintermedius based on 16S rRNA gene sequence analysis and positive PCR-restriction fragment length polymorphism of the pta gene.
Collapse
|
60
|
Abstract
This chapter provides an overview of our current understanding of the mechanisms associated with the development of antimicrobial drug resistance, international differences in definitions of resistance, ongoing efforts to track shifts in drug susceptibility, and factors that can influence the selection of therapeutic intervention. The latter presents a matrix of complex variables that includes the mechanism of drug action, the pharmacokinetics (PK) of the antimicrobial agent in the targeted patient population, the pharmacodynamics (PD) of the bacterial response to the antimicrobial agent, the PK/PD relationship that will influence dose selection, and the integrity of the host immune system. Finally, the differences between bacterial tolerance and bacterial resistance are considered, and the potential for non-traditional anti-infective therapies is discussed.
Collapse
Affiliation(s)
- Marilyn Martinez
- Office of New Animal Drug Evaluation (HFV-130), Center for Veterinary Medicine Food and Drug Administration, 7500 Standish Place, Rockville, MD 20855, USA.
| | | |
Collapse
|