51
|
Zaidi SSEA, Shafiq M, Amin I, Scheffler BE, Scheffler JA, Briddon RW, Mansoor S. Frequent Occurrence of Tomato Leaf Curl New Delhi Virus in Cotton Leaf Curl Disease Affected Cotton in Pakistan. PLoS One 2016; 11:e0155520. [PMID: 27213535 PMCID: PMC4877078 DOI: 10.1371/journal.pone.0155520] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/29/2016] [Indexed: 11/18/2022] Open
Abstract
Cotton leaf curl disease (CLCuD) is the major biotic constraint to cotton production on the Indian subcontinent, and is caused by monopartite begomoviruses accompanied by a specific DNA satellite, Cotton leaf curl Multan betasatellite (CLCuMB). Since the breakdown of resistance against CLCuD in 2001/2002, only one virus, the "Burewala" strain of Cotton leaf curl Kokhran virus (CLCuKoV-Bur), and a recombinant form of CLCuMB have consistently been identified in cotton across the major cotton growing areas of Pakistan. Unusually a bipartite isolate of the begomovirus Tomato leaf curl virus was identified in CLCuD-affected cotton recently. In the study described here we isolated the bipartite begomovirus Tomato leaf curl New Delhi virus (ToLCNDV) from CLCuD-affected cotton. To assess the frequency and geographic occurrence of ToLCNDV in cotton, CLCuD-symptomatic cotton plants were collected from across the Punjab and Sindh provinces between 2013 and 2015. Analysis of the plants by diagnostic PCR showed the presence of CLCuKoV-Bur in all 31 plants examined and ToLCNDV in 20 of the samples. Additionally, a quantitative real-time PCR analysis of the levels of the two viruses in co-infected plants suggests that coinfection of ToLCNDV with the CLCuKoV-Bur/CLCuMB complex leads to an increase in the levels of CLCuMB, which encodes the major pathogenicity (symptom) determinant of the complex. The significance of these results are discussed.
Collapse
Affiliation(s)
- Syed Shan-e-Ali Zaidi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, P O Box 577, Jhang Road, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad Shafiq
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, P O Box 577, Jhang Road, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, P O Box 577, Jhang Road, Faisalabad, Pakistan
| | - Brian E. Scheffler
- Genomics and Bioinformatics Research Unit, 141 Experiment Station Rd., Stoneville, Mississippi, 38776, United States of America
| | - Jodi A. Scheffler
- Crop Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Stoneville, Mississippi, United States of America
| | - Rob W. Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, P O Box 577, Jhang Road, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, P O Box 577, Jhang Road, Faisalabad, Pakistan
| |
Collapse
|
52
|
Ndunguru J, De León L, Doyle CD, Sseruwagi P, Plata G, Legg JP, Thompson G, Tohme J, Aveling T, Ascencio-Ibáñez JT, Hanley-Bowdoin L. Two Novel DNAs That Enhance Symptoms and Overcome CMD2 Resistance to Cassava Mosaic Disease. J Virol 2016; 90:4160-4173. [PMID: 26865712 PMCID: PMC4810563 DOI: 10.1128/jvi.02834-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/03/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Cassava mosaic begomoviruses (CMBs) cause cassava mosaic disease (CMD) across Africa and the Indian subcontinent. Like all members of the geminivirus family, CMBs have small, circular single-stranded DNA genomes. We report here the discovery of two novel DNA sequences, designated SEGS-1 and SEGS-2 (forsequencesenhancinggeminivirussymptoms), that enhance symptoms and break resistance to CMD. The SEGS are characterized by GC-rich regions and the absence of long open reading frames. Both SEGS enhanced CMD symptoms in cassava (Manihot esculentaCrantz) when coinoculated withAfrican cassava mosaic virus(ACMV),East African cassava mosaic Cameroon virus(EACMCV), orEast African cassava mosaic virus-Uganda(EACMV-UG). SEGS-1 also overcame resistance of a cassava landrace carrying the CMD2 resistance locus when coinoculated with EACMV-UG. Episomal forms of both SEGS were detected in CMB-infected cassava but not in healthy cassava. SEGS-2 episomes were also found in virions and whiteflies. SEGS-1 has no homology to geminiviruses or their associated satellites, but the cassava genome contains a sequence that is 99% identical to full-length SEGS-1. The cassava genome also includes three sequences with 84 to 89% identity to SEGS-2 that together encompass all of SEGS-2 except for a 52-bp region, which includes the episomal junction and a 26-bp sequence related to alphasatellite replication origins. These results suggest that SEGS-1 is derived from the cassava genome and facilitates CMB infection as an integrated copy and/or an episome, while SEGS-2 was originally from the cassava genome but now is encapsidated into virions and transmitted as an episome by whiteflies. IMPORTANCE Cassava is a major crop in the developing world, with its production in Africa being second only to maize. CMD is one of the most important diseases of cassava and a serious constraint to production across Africa. CMD2 is a major CMD resistance locus that has been deployed in many cassava cultivars through large-scale breeding programs. In recent years, severe, atypical CMD symptoms have been observed occasionally on resistant cultivars, some of which carry the CMD2 locus, in African fields. In this report, we identified and characterized two DNA sequences, SEGS-1 and SEGS-2, which produce similar symptoms when coinoculated with cassava mosaic begomoviruses onto a susceptible cultivar or a CMD2-resistant landrace. The ability of SEGS-1 to overcome CMD2 resistance and the transmission of SEGS-2 by whiteflies has major implications for the long-term durability of CMD2 resistance and underscore the need for alternative sources of resistance in cassava.
Collapse
Affiliation(s)
- Joseph Ndunguru
- Mikocheni Agricultural Research Institute, Dar es Salaam, Tanzania
| | - Leandro De León
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Catherine D Doyle
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Peter Sseruwagi
- Mikocheni Agricultural Research Institute, Dar es Salaam, Tanzania
| | - German Plata
- Center for Computational Biology and Bioinformatics, Columbia University, New York, New York, USA
| | - James P Legg
- International Institute of Tropical Agriculture-Tanzania, Dar es Salaam, Tanzania
| | - Graham Thompson
- ARC-Institute for Industrial Crops, Rusternburg, South Africa
| | - Joe Tohme
- International Center for Tropical Agriculture, Cali, Colombia
| | - Theresa Aveling
- University of Pretoria, Department of Microbiology and Plant Pathology, Pretoria, South Africa
| | - Jose T Ascencio-Ibáñez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
53
|
Rosario K, Marr C, Varsani A, Kraberger S, Stainton D, Moriones E, Polston JE, Breitbart M. Begomovirus-Associated Satellite DNA Diversity Captured Through Vector-Enabled Metagenomic (VEM) Surveys Using Whiteflies (Aleyrodidae). Viruses 2016; 8:v8020036. [PMID: 26848679 PMCID: PMC4776191 DOI: 10.3390/v8020036] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/15/2016] [Accepted: 01/22/2016] [Indexed: 01/23/2023] Open
Abstract
Monopartite begomoviruses (Geminiviridae), which are whitefly-transmitted single-stranded DNA viruses known for causing devastating crop diseases, are often associated with satellite DNAs. Since begomovirus acquisition or exchange of satellite DNAs may lead to adaptation to new plant hosts and emergence of new disease complexes, it is important to investigate the diversity and distribution of these molecules. This study reports begomovirus-associated satellite DNAs identified during a vector-enabled metagenomic (VEM) survey of begomoviruses using whiteflies collected in various locations (California (USA), Guatemala, Israel, Puerto Rico, and Spain). Protein-encoding satellite DNAs, including alphasatellites and betasatellites, were identified in Israel, Puerto Rico, and Guatemala. Novel alphasatellites were detected in samples from Guatemala and Puerto Rico, resulting in the description of a phylogenetic clade (DNA-3-type alphasatellites) dominated by New World sequences. In addition, a diversity of small (~640-750 nucleotides) satellite DNAs similar to satellites associated with begomoviruses infecting Ipomoea spp. were detected in Puerto Rico and Spain. A third class of satellite molecules, named gammasatellites, is proposed to encompass the increasing number of reported small (<1 kilobase), non-coding begomovirus-associated satellite DNAs. This VEM-based survey indicates that, although recently recovered begomovirus genomes are variations of known genetic themes, satellite DNAs hold unexplored genetic diversity.
Collapse
Affiliation(s)
- Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA.
| | - Christian Marr
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA.
| | - Arvind Varsani
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Ilam, Christchurch 8041, New Zealand.
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.
| | - Simona Kraberger
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Ilam, Christchurch 8041, New Zealand.
| | - Daisy Stainton
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Ilam, Christchurch 8041, New Zealand.
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea ''La Mayora'' (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental ''La Mayora'', Algarrobo-Costa, Málaga 29750, Spain.
| | - Jane E Polston
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA.
| |
Collapse
|
54
|
Saeed M, Briddon RW, Dalakouras A, Krczal G, Wassenegger M. Functional Analysis of Cotton Leaf Curl Kokhran Virus/Cotton Leaf Curl Multan Betasatellite RNA Silencing Suppressors. BIOLOGY 2015; 4:697-714. [PMID: 26512705 PMCID: PMC4690014 DOI: 10.3390/biology4040697] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/13/2022]
Abstract
In South Asia, Cotton leaf curl disease (CLCuD) is caused by a complex of phylogenetically-related begomovirus species and a specific betasatellite, Cotton leaf curl Multan betasatellite (CLCuMuB). The post-transcriptional gene silencing (PTGS) suppression activities of the transcriptional activator protein (TrAP), C4, V2 and βC1 proteins encoded by Cotton leaf curl Kokhran virus (CLCuKoV)/CLCuMuB were assessed in Nicotiana benthamiana. A variable degree of local silencing suppression was observed for each viral protein tested, with V2 protein exhibiting the strongest suppression activity and only the C4 protein preventing the spread of systemic silencing. The CLCuKoV-encoded TrAP, C4, V2 and CLCuMuB-encoded βC1 proteins were expressed in Escherichia coli and purified. TrAP was shown to bind various small and long nucleic acids including single-stranded (ss) and double-stranded (ds) RNA and DNA molecules. C4, V2, and βC1 bound ssDNA and dsDNA with varying affinities. Transgenic expression of C4 under the constitutive 35S Cauliflower mosaic virus promoter and βC1 under a dexamethasone inducible promoter induced severe developmental abnormalities in N. benthamiana. The results indicate that homologous proteins from even quite closely related begomoviruses may differ in their suppressor activity and mechanism of action. The significance of these findings is discussed.
Collapse
Affiliation(s)
- Muhammad Saeed
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, Neustadt D-67435, Germany.
- National Institute for Biotechnology and Genetic Engineering, Jhang Road, PO Box 577, Faisalabad 38000, Pakistan.
| | - Rob W Briddon
- National Institute for Biotechnology and Genetic Engineering, Jhang Road, PO Box 577, Faisalabad 38000, Pakistan.
| | - Athanasios Dalakouras
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, Neustadt D-67435, Germany.
| | - Gabi Krczal
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, Neustadt D-67435, Germany.
| | - Michael Wassenegger
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, Neustadt D-67435, Germany.
- Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, Im Neuenheimer Feld 360, Heidelberg D-69120, Germany.
| |
Collapse
|
55
|
Kumar RV, Singh AK, Singh AK, Yadav T, Basu S, Kushwaha N, Chattopadhyay B, Chakraborty S. Complexity of begomovirus and betasatellite populations associated with chilli leaf curl disease in India. J Gen Virol 2015; 96:3143-3158. [PMID: 26251220 DOI: 10.1099/jgv.0.000254] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Chilli, which encompasses several species in the genus Capsicum, is widely consumed throughout the world. In the Indian subcontinent, production of chilli is constrained due to chilli leaf curl disease (ChiLCD) caused by begomoviruses. Despite the considerable economic consequences of ChiLCD on chilli cultivation in India, there have been scant studies of the genetic diversity and structure of the begomoviruses that cause this disease. Here we report on a comprehensive survey across major chilli-growing regions in India. Analysis of samples collected in the survey indicates that ChiLCD-infected plants are associated with a complex of begomoviruses (including one previously unreported species) with a diverse group of betasatellites found in crops and weeds. The associated betasatellites neither enhanced the accumulation of the begomovirus components nor reduced the incubation period in Nicotiana benthamiana. The ChiLCD-associated begomoviruses induced mild symptoms on Capsicum spp., but both the level of helper virus that accumulated and the severity of symptoms were increased in the presence of cognate betasatellites. Interestingly, most of the begomoviruses were found to be intra-species recombinants. The betasatellites possess high nucleotide variability, and recombination among them was also evident. The nucleotide substitution rates were determined for the AV1 gene of begomoviruses (2.60 × 10- 3 substitutions site- 1 year- 1) and the βC1 gene of betasatellites [chilli leaf curl betasatellite (ChiLCB), 2.57 × 10- 4 substitution site- 1 year- 1; tomato leaf curl Bangladesh betasatellite (ToLCBDB), 5.22 × 10- 4 substitution site- 1 year- 1]. This study underscores the current understanding of Indian ChiLCD-associated begomoviruses and also demonstrates the crucial role of betasatellites in severe disease development in Capsicum spp.
Collapse
Affiliation(s)
- R Vinoth Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi- 110 067, India
| | - Achuit Kumar Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi- 110 067, India
| | - Ashish Kumar Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi- 110 067, India
| | - Tribhuwan Yadav
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi- 110 067, India
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, USA
| | - Saumik Basu
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi- 110 067, India
- Department of Entomology, University of Nebraska, Lincoln, USA
| | - Nirbhay Kushwaha
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi- 110 067, India
| | - Brotati Chattopadhyay
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi- 110 067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi- 110 067, India
| |
Collapse
|
56
|
Li F, Xu X, Huang C, Gu Z, Cao L, Hu T, Ding M, Li Z, Zhou X. The AC5 protein encoded by Mungbean yellow mosaic India virus is a pathogenicity determinant that suppresses RNA silencing-based antiviral defenses. THE NEW PHYTOLOGIST 2015; 208:555-69. [PMID: 26010321 DOI: 10.1111/nph.13473] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 04/16/2015] [Indexed: 06/04/2023]
Abstract
It is generally accepted that begomoviruses in the family Geminiviridae encode four proteins (from AC1/C1 to AC4/C4) using the complementary-sense DNA as template. Although AC5/C5 coding sequences are increasingly annotated in databases for many begomoviruses, the evolutionary relationships and functions of this putative protein in viral infection are obscure. Here, we demonstrate several important functions of the AC5 protein of a bipartite begomovirus, Mungbean yellow mosaic India virus (MYMIV). Mutational analyses and transgenic expression showed that AC5 plays a critical role in MYMIV infection. Ectopic expression of AC5 from a Potato virus X (PVX) vector resulted in severe mosaic symptoms followed by a hypersensitive-like response in Nicotiana benthamiana. Furthermore, MYMIV AC5 effectively suppressed post-transcriptional gene silencing induced by single-stranded but not double-stranded RNA. AC5 was also able to reverse transcriptional gene silencing of a green fluorescent protein transgene by reducing methylation of promoter sequences, probably through repressing expression of a CHH cytosine methyltransferase (DOMAINS REARRANGED METHYLTRANSFERASE2) in N. benthamiana. Our results demonstrate that MYMIV AC5 is a pathogenicity determinant and a potent RNA silencing suppressor that employs novel mechanisms to suppress antiviral defenses, and suggest that the AC5 function may be conserved among many begomoviruses.
Collapse
Affiliation(s)
- Fangfang Li
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiongbiao Xu
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Changjun Huang
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zhouhang Gu
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Linge Cao
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tao Hu
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ming Ding
- Institute of Plant Protection, Yunnan Provincial Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
57
|
Csorba T, Kontra L, Burgyán J. viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virology 2015; 479-480:85-103. [DOI: 10.1016/j.virol.2015.02.028] [Citation(s) in RCA: 368] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/31/2015] [Accepted: 02/16/2015] [Indexed: 12/27/2022]
|
58
|
Molecular characterization of Chilli leaf curl viruses infecting new host plant Petunia hybrida in India. Virus Genes 2014; 50:58-62. [PMID: 25294775 DOI: 10.1007/s11262-014-1124-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/26/2014] [Indexed: 10/24/2022]
Abstract
Petunia hybrida is an important ornamental plant grown in many countries including India. It is a good model plant for the study of genetics and molecular biology. During a survey in 2013-2014, severe leaf curling was observed on most of the P. hybrida grown in the Sikar district, Rajasthan. The infected plants were analyzed for begomovirus infection by rolling circular amplification (RCA) and sequenced. Full length sequences confirmed the association of monopartite begomovirus with betasatellites. Phylogenetic analysis showed the highest percentage of identity with Chilli leaf curl virus (ChLCuV) and therefore considered to be an isolate of ChLCuV. Recombination analysis showed that ChLCuV has broadened its host range by recombination process. To the best our knowledge, this is the first report of natural occurrence of ChLCuV on P. hybrida in India.
Collapse
|
59
|
Wang Y, Dang M, Hou H, Mei Y, Qian Y, Zhou X. Identification of an RNA silencing suppressor encoded by a mastrevirus. J Gen Virol 2014; 95:2082-2088. [PMID: 24866851 DOI: 10.1099/vir.0.064246-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Wheat dwarf virus (WDV) is a DNA virus belonging to the genus Mastrevirus of the family Geminiviridae. In this study, we report that the Rep protein encoded by WDV is a RNA silencing supressor as determined by co-infiltration assays using transgenic Nicotiana benthamiana line 16c carrying the GFP reporter gene. The Rep protein was shown to inhibit both local and systemic RNA silencing of the GFP gene as well as the spread of systemic GFP RNA silencing signals. Gel mobility shift assays showed that the Rep protein binds 21 nt and 24 nt small interfering RNA (siRNA) duplexes and single-stranded (ss)-siRNA. To our knowledge, this is the first identification of an RNA silencing suppressor encoded by mastreviruses. Furthermore, deletion mutagenesis indicates that both the N- and C-terminal regions of the Rep protein are not critical for silencing suppression and self-interaction, but the N terminus of Rep is necessary for its pathogenicity.
Collapse
Affiliation(s)
- Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, PR China
| | - Mingqing Dang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, PR China
| | - Huwei Hou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, PR China
| | - Yuzhen Mei
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, PR China
| | - Yajuan Qian
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, PR China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
60
|
Tang YF, Du ZG, He ZF, Brown JK, She XM. Identification and molecular characterization of two begomoviruses from Pouzolzia zeylanica (L.) Benn. exhibiting yellow mosaic symptoms in adjacent regions of China and Vietnam. Arch Virol 2014; 159:2799-803. [PMID: 24838912 DOI: 10.1007/s00705-014-2049-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
Abstract
Two monopartite begomoviruses were isolated from Pouzolzia zeylanica (L.) Benn. plants showing yellow mosaic symptoms in Gaoyao, Guangdong Province, China (GD1) and in Phu Tho, Vietnam (VN), respectively. A comparison of the complete genome sequence of GD1 (2,739 nucleotides [nt]) with VN (2,741 nt) indicated that they shared 86.2 % nt sequence identity. GD1 and VN shared the highest nucleotide sequence identity at 86.7 % and 91.4 % respectively, with isolate TY01 of pouzolzia golden mosaic virus (PGMV-TY01), another begomovirus isolated from P. zeylanica. Phylogenetic analysis revealed that GD1, VN, and PGMV-TY01 were members of a distinct begomovirus clade. Based on the ICTV guidelines for begomoviral species demarcation, GD1 belongs to a new begomovirus species, for which the name Pouzolzia yellow mosaic virus is proposed. Likewise, VN represents a previously unreported strain of PGMV. Recombination analysis predicted that VN was a recombinant between PGMV-TY01 and ageratum yellow vein China virus isolate G13 (AYVCNV-G13), and that PGMV-TY01 and VN were likely the parents of GD1 through recombination with allamanda leaf curl virus isolate G10 (AlLCV-G10), a begomovirus endemic to Guangdong Province of China.
Collapse
Affiliation(s)
- Y F Tang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | | | | | | | | |
Collapse
|
61
|
Association of satellites with a mastrevirus in natural infection: complexity of Wheat dwarf India virus disease. J Virol 2014; 88:7093-104. [PMID: 24719407 DOI: 10.1128/jvi.02911-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In contrast to begomoviruses, mastreviruses have not previously been shown to interact with satellites. This study reports the first identification of the association of satellites with a mastrevirus in field-grown plants. Two alphasatellite species were detected in different field samples of wheat infected with Wheat Dwarf India Virus (WDIV), a Cotton leaf curl Multan alphasatellite (CLCuMA) and a Guar leaf curl alphasatellite (GLCuA). In addition to the alphasatellites, a betasatellite, Ageratum yellow leaf curl betasatellite (AYLCB), was also identified in the wheat samples. No begomovirus was detected in the wheat samples, thus establishing association of the above-named satellites with WDIV. Agrobacterium-mediated inoculation of WDIV in wheat, in the presence of either of the alphasatellites or the betasatellite, resulted in infections inducing more severe symptoms. WDIV efficiently maintained each of the alphasatellites and the betasatellite in wheat. The satellites enhanced the level of WDIV DNA in wheat. Inoculation of the satellites isolated from wheat with various begomoviruses into Nicotiana tabacum demonstrated that these remain capable of interacting with the viruses with which they were first identified. Virus-specific small RNAs accumulated in wheat upon infection with WDIV but were lower in abundance in plants coinfected with the satellites, suggesting that both the alphasatellites and the betasatellite suppress RNA silencing. These results suggest that the selective advantage for the maintenance of the alphasatellites and the betasatellite by WDIV in the field is in overcoming RNA silencing-mediated host defense. IMPORTANCE Wheat is the most widely cultivated cereal crop in the world. A number of viruses are important pathogens of wheat, including the viruses of the genus Mastrevirus, family Geminiviridae. This study reports the association of subgenomic components, called satellites (alpha- and betasatellites), with a mastrevirus, Wheat Dwarf India Virus (WDIV), isolated from two distant locations in India. This study reports the first identification of the satellites in a monocot plant. The satellites enhanced accumulation of WDIV and severity of disease symptoms. The satellites lowered the concentration of virus-specific small RNAs in wheat plants, indicating their silencing suppressor activity. The involvement of the satellites in symptom severity of the mastrevirus can have implications in the form of economic impact of the virus on crop yield. Understanding the role of the satellites in disease severity is important for developing disease management strategies.
Collapse
|
62
|
Association of an alphasatellite with tomato yellow leaf curl virus and ageratum yellow vein virus in Japan is suggestive of a recent introduction. Viruses 2014; 6:189-200. [PMID: 24424499 PMCID: PMC3917438 DOI: 10.3390/v6010189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/04/2013] [Accepted: 12/17/2013] [Indexed: 11/22/2022] Open
Abstract
Samples were collected in 2011 from tomato plants exhibiting typical tomato leaf curl disease symptoms in the vicinity of Komae, Japan. PCR mediated amplification, cloning and sequencing of all begomovirus components from two plants from different fields showed the plants to be infected by Tomatoyellowleafcurlvirus (TYLCV) and Ageratumyellowveinvirus (AYVV). Both viruses have previously been shown to be present in Japan, although this is the first identification of AYVV on mainland Japan; the virus previously having been shown to be present on the Okinawa Islands. The plant harboring AYVV was also shown to contain the betasatellite Tomato leaf curl Java betasatellite (ToLCJaB), a satellite not previously shown to be present in Japan. No betasatellite was associated with the TYLCV infected tomato plants analyzed here, consistent with earlier findings for this virus in Japan. Surprisingly both plants were also found to harbor an alphasatellite; no alphasatellites having previously been reported from Japan. The alphasatellite associated with both viruses was shown to be Sida yellow vein China alphasatellite which has previously only been identified in the Yunnan Province of China and Nepal. The results suggest that further begomoviruses, and their associated satellites, are being introduced to Japan. The significance of these findings is discussed.
Collapse
|
63
|
George B, Kumar RV, Chakraborty S. Molecular characterization of Chilli leaf curl virus and satellite molecules associated with leaf curl disease of Amaranthus spp. Virus Genes 2013; 48:397-401. [PMID: 24368759 DOI: 10.1007/s11262-013-1027-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/13/2013] [Indexed: 12/01/2022]
Abstract
Amaranthus, collectively known as amaranth, is an annual or short-lived perennial plant used as leafy vegetables, cereals and for ornamental purposes in many countries including India. During 2011, leaf samples of Amaranthus plants displaying leaf curling, leaf distortion, leaf crinkling and yellow leaf margins were collected from Banswara district, Rajasthan in India. Full-length clones of a monopartite begomovirus, a betasatellite and an alphasatellite were characterized. The complete nucleotide sequence of the isolated begomovirus features as a typical 'Old World' begomovirus with the highest nucleotide per cent identity with Chilli leaf curl virus and hence, considered as an isolate of Chilli leaf curl virus. The complete nucleotide sequences of betasatellite and alphasatellite possess maximum nucleotide identity with Tomato yellow leaf curl Thailand betasatellite and Chilli leaf curl alphasatellite, respectively. This is the first report of the association of chilli-infecting begomovirus and satellite molecules infecting a new host, Amaranthus, causing leaf curl disease.
Collapse
Affiliation(s)
- B George
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
| | | | | |
Collapse
|
64
|
Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S. Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol 2013; 11:777-88. [DOI: 10.1038/nrmicro3117] [Citation(s) in RCA: 484] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
65
|
Venkataravanappa V, Lakshminarayana Reddy CN, Devaraju A, Jalali S, Krishna Reddy M. Association of a recombinant Cotton leaf curl Bangalore virus with yellow vein and leaf curl disease of okra in India. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2013; 24:188-98. [PMID: 24426275 PMCID: PMC3784899 DOI: 10.1007/s13337-013-0141-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
Abstract
A begomovirus isolate (OY136A) collected from okra plants showing upward leaf curling, vein clearing, vein thickening and yellowing symptoms from Bangalore rural district, Karnataka, India was characterized. The sequence comparisons revealed that, this virus isolate share highest nucleotide identity with isolates of Cotton leaf curl Bangalore virus (CLCuBV) (AY705380) (92.8 %) and Okra enation leaf curl virus (81.1-86.2 %). This is well supported by phylogentic analysis showing, close clustering of the virus isolate with CLCuBV. With this data, based on the current taxonomic criteria for the genus Begomovirus, the present virus isolate is classified as a new strain of CLCuBV, for which CLCuBV-[India: Bangalore: okra: 2006] additional descriptor is proposed. The betasatellite (KC608158) associated with the virus is having more than 95 % sequence similarity with the cotton leaf curl betasatellites (CLCuB) available in the GenBank.The recombination analysis suggested, emergence of this new strain of okra infecting begomovirus might have been from the exchange of genetic material between BYVMV and CLCuMuV. The virus was successfully transmitted by whitefly and grafting. The host range of the virus was shown to be very narrow and limited to two species in the family Malvaceae, okra (Abelmoschus esculentus) and hollyhock (Althaea rosea), and four in the family Solanaceae.
Collapse
Affiliation(s)
- V. Venkataravanappa
- />Division of Plant Pathology, Plant Virology Laboratory, Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, 560089 Karnataka India
- />Indian Institute of Vegetable Research, Varanasi, 221305 Uttar Pradesh India
- />Department of Plant Pathology, Agriculture College, GKVK Campus, University of Agricultural Sciences (B), Bangalore, 560065 Karnataka India
| | - C. N. Lakshminarayana Reddy
- />Department of Plant Pathology, College of Sericulture, University of Agricultural Sciences (B), Chintamani, 563125 Karnataka India
| | - A. Devaraju
- />Division of Plant Pathology, Plant Virology Laboratory, Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, 560089 Karnataka India
- />Phytopathology, Nunhems Pvt. Ltd., Bangalore, India
| | - Salil Jalali
- />Division of Plant Pathology, Plant Virology Laboratory, Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, 560089 Karnataka India
| | - M. Krishna Reddy
- />Division of Plant Pathology, Plant Virology Laboratory, Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, 560089 Karnataka India
| |
Collapse
|
66
|
Leke WN, Sattar MN, Ngane EB, Ngeve JM, Kvarnheden A, Brown JK. Molecular characterization of begomoviruses and DNA satellites associated with okra leaf curl disease in Cameroon. Virus Res 2013; 174:116-25. [DOI: 10.1016/j.virusres.2013.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/12/2013] [Accepted: 03/16/2013] [Indexed: 11/28/2022]
|
67
|
Molecular characterization of a novel monopartite begomovirus isolated from Pouzolzia zeylanica in China. Arch Virol 2013; 158:1617-20. [PMID: 23462887 DOI: 10.1007/s00705-013-1632-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
Abstract
The complete genome sequence of a monopartite begomovirus isolate TY01 was obtained from diseased Pouzolzia zeylanica plants exhibiting golden mosaic symptoms in Baise, Guangxi Province, China. It consisted of 2723 nucleotides (nt) and encoded two ORFs (CP and AV2) in the virion-sense DNA and five ORFs (AC1-AC5) in the complementary-sense DNA. Compared with the DNA-A sequences of other begomoviruses, it has the highest (78.5 %) nucleotide sequence identity with ageratum yellow vein virus (AYVV) isolate AFSP6D from Thailand, which is less than the 89 % identity in the complete genome that has been defined as the threshold value for demarcation of species in the genus Begomovirus, family Geminiviridae. Phylogenetic analysis showed that TY01 was grouped in a separate clade from the other 28 begomovirus isolates. These results indicate that isolate TY01 is a member of a novel Begomovirus species, for which the name "Pouzolzia golden mosaic virus" (PGMV) is proposed.
Collapse
|
68
|
Sattar MN, Kvarnheden A, Saeed M, Briddon RW. Cotton leaf curl disease - an emerging threat to cotton production worldwide. J Gen Virol 2013; 94:695-710. [PMID: 23324471 DOI: 10.1099/vir.0.049627-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cotton leaf curl disease (CLCuD) is a serious disease of cotton which has characteristic symptoms, the most unusual of which is the formation of leaf-like enations on the undersides of leaves. The disease is caused by whitefly-transmitted geminiviruses (family Geminiviridae, genus Begomovirus) in association with specific, symptom-modulating satellites (betasatellites) and an evolutionarily distinct group of satellite-like molecules known as alphasatellites. CLCuD occurs across Africa as well as in Pakistan and north-western India. Over the past 25 years, Pakistan and India have experienced two epidemics of the disease, the most recent of which involved a virus and satellite that are resistance breaking. Loss of this conventional host-plant resistance, which saved the cotton growers from ruin in the late 1990s, leaves farmers with only relatively poor host plant tolerance to counter the extensive losses the disease causes. There has always been the fear that CLCuD could spread from the relatively limited geographical range it encompasses at present to other cotton-growing areas of the world where, although the disease is not present, the environmental conditions are suitable for its establishment and the whitefly vector occurs. Unfortunately recent events have shown this fear to be well founded, with CLCuD making its first appearance in China. Here, we outline recent advances made in understanding the molecular biology of the components of the disease complex, their interactions with host plants, as well as efforts being made to control CLCuD.
Collapse
Affiliation(s)
- M Naeem Sattar
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, SE-750 07 Uppsala, Sweden
| | - Anders Kvarnheden
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, SE-750 07 Uppsala, Sweden
| | - Muhammad Saeed
- National Institute for Biotechnology and Genetic Engineering, PO Box 577, Jhang Road, Faisalabad, Pakistan
| | - Rob W Briddon
- National Institute for Biotechnology and Genetic Engineering, PO Box 577, Jhang Road, Faisalabad, Pakistan
| |
Collapse
|
69
|
Abstract
Begomoviruses are numerous and geographically widespread viruses that cause devastating diseases in many crops. Monopartite begomoviruses are frequently associated with betasatellites or alphasatellites. Both betasatellite and alphasatellite DNA genomes are approximately half the size of begomovirus DNA genomes. Betasatellites are essential for induction of typical disease symptoms. The βC1 genes encoded by the betasatellites have important roles in symptom induction, in suppression of transcriptional and posttranscriptional gene silencing, and they can affect jasmonic acid responsive genes. Host plants of begomoviruses have evolved diverse innate defense mechanisms against the βC1 protein to counter these challenges. Alphasatellites have been identified mainly in monopartite begomoviruses that associate with betasatellites and have no known contributions to pathogenesis of begomovirus-betasatellite disease complexes. Applications of current molecular tools are facilitating viral diagnosis and the discovery of novel species of geminiviruses and satellite DNAs and are also advancing our understanding of the global diversity and evolution of satellite DNAs.
Collapse
Affiliation(s)
- Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
70
|
Luna AP, Morilla G, Voinnet O, Bejarano ER. Functional analysis of gene-silencing suppressors from tomato yellow leaf curl disease viruses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1294-306. [PMID: 22712505 DOI: 10.1094/mpmi-04-12-0094-r] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Tomato yellow leaf curl disease (TYLCD) is caused by a complex of phylogenetically related Begomovirus spp. that produce similar symptoms when they infect tomato plants but have different host ranges. In this work, we have evaluated the gene-silencing-suppression activity of C2, C4, and V2 viral proteins isolated from the four main TYLCD-causing strains in Spain in Nicotiana benthamiana. We observed varying degrees of local silencing suppression for each viral protein tested, with V2 proteins from all four viruses exhibiting the strongest suppression activity. None of the suppressors were able to avoid the spread of the systemic silencing, although most produced a delay. In order to test the silencing-suppression activity of Tomato yellow leaf curl virus (TYLCV) and Tomato yellow leaf curl Sardinia virus (TYLCSV) proteins in a shared (tomato) and nonshared (bean) host, we established novel patch assays. Using these tools, we found that viral proteins from TYLCV were able to suppress silencing in both hosts, whereas TYLCSV proteins were only effective in tomato. This is the first time that viral suppressors from a complex of disease-causing geminiviruses have been subject to a comprehensive analysis using two economically important crop hosts, as well as the established N. benthamiana plant model.
Collapse
Affiliation(s)
- Ana P Luna
- Departamento de Genetica, Universidad de Malaga, Malaga, Spain
| | | | | | | |
Collapse
|
71
|
Nawaz-ul-Rehman MS, Briddon RW, Fauquet CM. A melting pot of Old World begomoviruses and their satellites infecting a collection of Gossypium species in Pakistan. PLoS One 2012; 7:e40050. [PMID: 22899988 PMCID: PMC3416816 DOI: 10.1371/journal.pone.0040050] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 05/31/2012] [Indexed: 11/19/2022] Open
Abstract
CLCuD in southern Asia is caused by a complex of multiple begomoviruses (whitefly transmitted, single-stranded [ss]DNA viruses) in association with a specific ssDNA satellite; Cotton leaf curl Multan betasatellite (CLCuMuB). A further single ssDNA molecule, for which the collective name alphasatellites has been proposed, is also frequently associated with begomovirus-betasatellite complexes. Multan is in the center of the cotton growing area of Pakistan and has seen some of the worst problems caused by CLCuD. An exhaustive analysis of the diversity of begomoviruses and their satellites occurring in 15 Gossypium species (including G. hirsutum, the mainstay of Pakistan's cotton production) that are maintained in an orchard in the vicinity of Multan has been conducted using φ29 DNA polymerase-mediated rolling-circle amplification, cloning and sequence analysis. The non-cultivated Gossypium species, including non-symptomatic plants, were found to harbor a much greater diversity of begomoviruses and satellites than found in the cultivated G. hirsutum. Furthermore an African cassava mosaic virus (a virus previously only identified in Africa) DNA-A component and a Jatropha curcas mosaic virus (a virus occurring only in southern India) DNA-B component were identified. Consistent with earlier studies of cotton in southern Asia, only a single species of betasatellite, CLCuMuB, was identified. The diversity of alphasatellites was much greater, with many previously unknown species, in the non-cultivated cotton species than in G. hirsutum. Inoculation of newly identified components showed them to be competent for symptomatic infection of Nicotiana benthamiana plants. The significance of the findings with respect to our understanding of the role of host selection in virus diversity in crops and the geographical spread of viruses by human activity are discussed.
Collapse
Affiliation(s)
| | - Rob W. Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | - Claude M. Fauquet
- Danforth Plant Science Center, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
72
|
Iqbal Z, Sattar MN, Kvarnheden A, Mansoor S, Briddon RW. Effects of the mutation of selected genes of cotton leaf curl Kokhran virus on infectivity, symptoms and the maintenance of cotton leaf curl Multan betasatellite. Virus Res 2012; 169:107-16. [PMID: 22871297 DOI: 10.1016/j.virusres.2012.07.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/13/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
Abstract
Cotton leaf curl Kokhran virus (CLCuKoV) is a cotton-infecting monopartite begomovirus (family Geminiviridae). The effects of mutation of the coat protein (CP), V2, C2 and C4 genes of CLCuKoV on infectivity and symptoms in Nicotiana benthamiana were investigated. Each mutation introduced a premature stop codon which would lead to premature termination of translation of the gene. Mutation of the CP gene abolished infectivity. However, transient expression of the CLCuKoV CP gene under the control of the Cauliflower mosaic virus 35S promoter (35S-Ko(CP)), at the point of inoculation, led to a small number of plants in which viral DNA could be detected by PCR in tissues distal to the inoculation site. Mutations of the V2, C2 and C4 genes reduced infectivity. The V2 and C2 mutants did not induce symptoms, whereas the C4 mutation was associated with attenuated symptoms. Infections of plants with the C4 mutant were associated with viral DNA levels equivalent to the wild-type virus, whereas viral DNA levels for the V2 mutant were low, detectable by Southern blot hybridisation, and for the C2 mutant were detectable only by PCR. Significantly, transient expression of the CLCuKoV C2 gene at the point of inoculation, raised virus DNA levels in tissues distal to the inoculation site such that they could be detected by Southern hybridisation, although they remained at well below the levels seen for the wild-type virus, but reduced the infectivity of the virus. These findings are consistent with earlier mutation studies of monopartite begomoviruses and our present knowledge concerning the functions of the four genes suggesting that the CP is essential for long distance spread of the virus in plants, the C4 is involved in modulating symptoms, the C2 interferes with host defence and the V2 is involved in virus movement. The results also suggest that the V2, C2 and C4 may be pathogenicity determinants. Additionally the effects of the mutations of CLCuKoV genes on infections of the virus in the presence of its cognate betasatellite, Cotton leaf curl Multan betasatellite (CLCuMuB), were investigated. Mutation of the C4 gene had no effect on maintenance of the betasatellite, although the betasatellite enhanced symptoms. Inoculation of the C2 mutant with CLCuMuB raised the infectivity of the virus to near wild-type levels, although the numbers of plants in which the betasatellite was maintained was reduced, in comparison to wild-type virus infections with CLCuMuB, and viral DNA could not be detected by Southern hybridisation. Transient expression of the C2 gene at the point of inoculation raised virus DNA levels in tissues distal to the inoculation site but also reduced the infectivity of the virus and the numbers of plants in which the betasatellite was maintained. CLCuMuB restored the infectivity of the V2 mutant to wild-type levels but only in a small number of plants was the satellite maintained and infections were non-symptomatic. Although inoculation of the CP mutant with CLCuMuB did not restore infectivity, co-inoculation with 35S-Ko(CP) increased the number of plants in which the virus could be detected, in comparison to plants inoculated with the mutant and 35S-Ko(CP), and also resulted in two plants (out of 15 inoculated) in which the betasatellite could be detected by PCR. This indicates that the V2, C2 and almost certainly the CP are important for the maintenance of betasatellites by monopartite begomoviruses. The significance of these findings is discussed.
Collapse
Affiliation(s)
- Zafar Iqbal
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan.
| | | | | | | | | |
Collapse
|
73
|
Morozov SY, Solovyev AG. Did silencing suppression counter-defensive strategy contribute to origin and evolution of the triple gene block coding for plant virus movement proteins? FRONTIERS IN PLANT SCIENCE 2012; 3:136. [PMID: 22783263 PMCID: PMC3390553 DOI: 10.3389/fpls.2012.00136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/05/2012] [Indexed: 05/25/2023]
Affiliation(s)
- Sergey Y. Morozov
- Belozersky Institute of Physico-Chemical Biology, Moscow State UniversityMoscow, Russia
| | - Andrey G. Solovyev
- Belozersky Institute of Physico-Chemical Biology, Moscow State UniversityMoscow, Russia
| |
Collapse
|
74
|
Bi H, Zhang P. Molecular characterization of two sweepoviruses from China and evaluation of the infectivity of cloned SPLCV-JS in Nicotiana benthamiana. Arch Virol 2012; 157:441-54. [PMID: 22179901 DOI: 10.1007/s00705-011-1194-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 12/01/2011] [Indexed: 11/25/2022]
Abstract
Sweepoviruses are important begomoviruses that infect Ipomoea plants worldwide and cause sweet potato yield losses and cultivar decline. Two sweepoviruses, sweet potato leaf curl virus-Jiangsu (SPLCV-JS) and sweet potato leaf curl China virus-Zhejiang (SPLCCNV-ZJ), were cloned from diseased sweet potato plants collected in the Jiangsu and Zhejiang provinces of China. Sequence characterization and phylogenetic analysis demonstrated that both are typical monopartite begomoviruses and have close relationships to several reported SPLCV and SPLCCNV isolates, respectively, from Asian countries. Analysis of the protein alignments and subcellular localizations of the six SPLCV-JS proteins was also conducted to verify their putative functions. In Nicotiana benthamiana, an infectivity assay of the infectious SPLCV-JS clone resulted in mild symptoms and weak viral DNA accumulation. Interestingly, SPLCV-JS, together with a heterologous betasatellite DNA (tomato yellow leaf curl China virus isolate Y10 [TYLCCNV-Y10] DNA-β), showed a synergistic effect on enhanced symptom severity and viral DNA accumulation. This is the first reported infectious SPLCV clone.
Collapse
Affiliation(s)
- Huiping Bi
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | | |
Collapse
|
75
|
Rajagopalan PA, Naik A, Katturi P, Kurulekar M, Kankanallu RS, Anandalakshmi R. Dominance of resistance-breaking cotton leaf curl Burewala virus (CLCuBuV) in northwestern India. Arch Virol 2012; 157:855-68. [PMID: 22307170 DOI: 10.1007/s00705-012-1225-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/06/2011] [Indexed: 11/30/2022]
Abstract
Cotton leaf curl disease (CLCuD) is a major limitation to cotton production on the Indian subcontinent. A survey for viruses causing CLCuD was conducted during the 2009 and 2010 cropping seasons in the northwestern Indian cotton-growing belt in the states of Punjab, Haryana and Rajasthan. Partial sequences of 258 and full-length sequences of 22 virus genomes were determined. This study shows that the resistance-breaking cotton leaf curl Burewala virus (CLCuBuV) is now the dominant virus in many fields. The spread and establishment of the mutant CLCuBuV in northwestern India, the variation in its genomic sequence, its virulence and infectivity, and the implications for cotton breeding are discussed.
Collapse
Affiliation(s)
- Prem A Rajagopalan
- Plant-Virus Interactions Lab, Mahyco Research Center, Maharashtra Hybrid Seeds Company Limited, Dawalwadi, Post Box no-76, Jalna, Maharashtra 431 203, India
| | | | | | | | | | | |
Collapse
|
76
|
Leke WN, Brown JK, Ligthart ME, Sattar N, Njualem DK, Kvarnheden A. Ageratum conyzoides: A host to a unique begomovirus disease complex in Cameroon. Virus Res 2012; 163:229-37. [DOI: 10.1016/j.virusres.2011.09.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/27/2011] [Accepted: 09/29/2011] [Indexed: 11/17/2022]
|
77
|
Venkataravanappa V, Lakshminarayana Reddy CN, Swaranalatha P, Jalali S, Briddon RW, Reddy MK. Diversity and phylogeography of Begomovirus-associated beta satellites of Okra in India. Virol J 2011; 8:555. [PMID: 22188644 PMCID: PMC3267694 DOI: 10.1186/1743-422x-8-555] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 12/21/2011] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Okra (Abelmoschus esculentus; family Malvaceae) is grown in temperate as well as subtropical regions of the world, both for human consumption as a vegetable and for industrial uses. Okra yields are affected by the diseases caused by phyopathogenic viruses. India is the largest producer of okra and in this region a major biotic constraint to production are viruses of the genus Begomovirus. Begomoviruses affecting okra across the Old World are associated with specific, symptom modulating satellites (beta satellites). We describe a comprehensive analysis of the diversity of beta satellites associated with okra in India. RESULTS The full-length sequences of 36 beta satellites, isolated from okra exhibiting typical begomovirus symptoms (leaf curl and yellow vein), were determined. The sequences segregated in to four groups. Two groups correspond to the beta satellites Okra leaf curl beta satellite (OLCuB) and Bhendi yellow vein beta satellite (BYVB) that have previously been identified in okra from the sub-continent. One sequence was distinct from all other, previously isolated beta satellites and represents a new species for which we propose the name Bhendi yellow vein India beta satellite (BYVIB). This new beta satellite was nevertheless closely related to BYVB and OLCuB. Most surprising was the identification of Croton yellow vein mosaic beta satellite (CroYVMB) in okra; a beta satellite not previously identified in a malvaceous plant species. The okra beta satellites were shown to have distinct geographic host ranges with BYVB occurring across India whereas OLCuB was only identified in northwestern India. Okra infections with CroYVMB were only identified across the northern and eastern central regions of India. A more detailed analysis of the sequences showed that OLCuB, BYVB and BYVIB share highest identity with respect βC1 gene. βC1 is the only gene encoded by beta satellites, the product of which is the major pathogenicity determinant of begomovirus-beta satellite complexes and is involved in overcoming host defenses based on RNAi. CONCLUSION The diversity of beta satellites in okra across the sub-continent is higher than previously realized and is higher than for any other malvaceous plant species so far analyzed. The beta satellites identified in okra show geographic segregation, which has implications for the development and introduction of resistant okra varieties. However, the finding that the βC1 gene of the major okra beta satellites (OLCuB, BYVB and BYVIB) share high sequence identity and provides a possible avenue to achieve a broad spectrum resistance.
Collapse
Affiliation(s)
- V Venkataravanappa
- Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, India
- Indian Vegetable Research Institute, Varanasi 221305, Uttar Pradesh, India
| | - CN Lakshminarayana Reddy
- Department of Plant Pathology, College of Sericulture, University of Agricultural Sciences, Chintamani, Karnataka, India
| | - P Swaranalatha
- Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, India
| | - Salil Jalali
- Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, India
| | - Rob W Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, P.O. Box 577, Jhang Road, Faisalabad, Pakistan
| | - M Krishna Reddy
- Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, India
- Division of Plant Pathology, Plant Virology Laboratory, Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore 560 089, India
| |
Collapse
|
78
|
Tahir MN, Mansoor S. βC1 of chili leaf curl betasatellite is a pathogenicity determinant. Virol J 2011; 8:509. [PMID: 22067326 PMCID: PMC3224789 DOI: 10.1186/1743-422x-8-509] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/08/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cotton leaf curl disease in the Indian subcontinent is associated with several distinct begomoviruses that interact with a disease-specific DNA satellite named Cotton leaf curl Multan betasatellite (CLCuMB). However, we have recently reported that Chili leaf curl betasatellite (ChLCB) is also occasionally found associated with the disease in Pakistan. The question as to whether ChLCB contributes to the development of disease symptoms such as leaf curling and enations remain to be answered. We have previously shown that the expression of βC1 of CLCuMB develops all symptoms of cotton leaf curl disease in Nicotiana benthamiana when expressed from PVX vector. FINDINGS The role of ChLCB in the induction of typical disease symptoms was studied by its expression from PVX vector in N. benthamiana. The expression of βC1 from PVX vector developed severe leaf curl symptoms and leaf-like enations that resemble the phenotype induced by βC1 of CLCuMB. CONCLUSIONS The results presented here show that the expression of βC1 of ChLCB from PVX vector exhibit phenotype typical of cotton leaf curl and therefore ChLCB may contribute to the disease symptoms.
Collapse
Affiliation(s)
- Muhammad N Tahir
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
79
|
Zulfiqar A, Zhang J, Cui X, Qian Y, Zhou X, Xie Y. A new begomovirus associated with alpha- and betasatellite molecules isolated from Vernonia cinerea in China. Arch Virol 2011; 157:189-91. [PMID: 22006044 DOI: 10.1007/s00705-011-1137-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 09/28/2011] [Indexed: 10/16/2022]
Abstract
A begomovirus disease complex associated with Vernonia cinerea showing yellow vein symptoms was studied. The full-length genomic DNA was comprised of 2739 nucleotides (nt) and contained the typical genome structure of begomoviruses. Comparison analysis showed that it shared the highest (78.9%) nucleotide sequence identity with recently characterized Vernonia yellow vein virus (VeYVV) from India. For associated satellites, betasatellite showed the highest nucleotide sequence identity (52.1%) with Vernonia yellow vein virus betasatellite (VeYVVB) and alphasatellite shared the highest sequence identity (70.7%) with Gossypium mustelinium symptomless alphasatellite (GMusSLA). It is a member of a distinct species with cognate alpha- and betasatellites for which the name Vernonia yellow vein Fujian virus (VeYVFjV) is proposed.
Collapse
Affiliation(s)
- Awais Zulfiqar
- Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China
| | | | | | | | | | | |
Collapse
|
80
|
Mubin M, Akhtar S, Amin I, Briddon RW, Mansoor S. Xanthium strumarium: a weed host of components of begomovirus-betasatellite complexes affecting crops. Virus Genes 2011; 44:112-9. [PMID: 21969121 DOI: 10.1007/s11262-011-0662-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 08/18/2011] [Indexed: 11/25/2022]
Abstract
Xanthium strumarium is a common weed that often shows symptoms typical of begomovirus infection, such as leaf curling and vein thickening. The virus complex isolated from the weed consisted of two begomoviruses along with a betasatellite and an alphasatellite. The first begomovirus was shown to be an isolate of Cotton leaf curl Burewala virus, a new recombinant begomovirus species that is associated with resistance breaking in previously resistant cotton varieties in Pakistan, whereas the second was shown to be an isolate of Tomato leaf curl Gujarat virus (ToLCGV), a begomovirus previously reported to be bipartite. However, there was no evidence for the presence of the second genomic component, DNA B, of ToLCGV in X. strumarium. The betasatellite was shown to be an isolate of Tomato yellow leaf curl Thailand betasatellite, the first time this satellite has been identified in Pakistan. The alphasatellite associated with infection of X. strumarium was shown to be a species recently identified in potato and various weeds; Potato leaf curl alphasatellite. Although each component has been identified previously, this is the first time they have been identified in a single host. These findings reinforce the hypothesis that weeds are reservoirs of crop-infecting begomoviruses that may contribute to virus diversity by virtue of harboring multiple viruses and virus associated components, which may lead to interspecific recombination and component exchange.
Collapse
Affiliation(s)
- M Mubin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | | | | | | | | |
Collapse
|
81
|
Amin I, Hussain K, Akbergenov R, Yadav JS, Qazi J, Mansoor S, Hohn T, Fauquet CM, Briddon RW. Suppressors of RNA silencing encoded by the components of the cotton leaf curl begomovirus-betasatellite complex. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:973-83. [PMID: 21751853 DOI: 10.1094/mpmi-01-11-0001] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Begomoviruses (family Geminiviridae) are single-stranded DNA viruses transmitted by the whitefly Bemisia tabaci. Many economically important diseases in crops are caused by begomoviruses, particularly in tropical and subtropical environments. These include the betasatellite-associated begomoviruses causing cotton leaf curl disease (CLCuD) that causes significant losses to a mainstay of the economy of Pakistan, cotton. RNA interference (RNAi) or gene silencing is a natural defense response of plants against invading viruses. In counter-defense, viruses encode suppressors of gene silencing that allow them to effectively invade plants. Here, we have analyzed the ability of the begomovirus Cotton leaf curl Multan virus (CLCuMV) and its associated betasatellite, Cotton leaf curl Multan β-satellite (CLCuMB) which, together, cause CLCuD, and the nonessential alphasatellite (Cotton leaf curl Multan alphasatellite [CLCuMA]) for their ability to suppress gene silencing in Nicotiana benthamiana. The results showed that CLCuMV by itself was unable to efficiently block silencing. However, in the presence of the betasatellite, gene silencing was entirely suppressed. Silencing was not affected in any way when infections included CLCuMA, although the alphasatellite was, for the first time, shown to be a target of RNA silencing, inducing the production in planta of specific small interfering RNAs, the effectors of silencing. Subsequently, using a quantitative real-time polymerase chain reaction assay and Northern blot analysis, the ability of all proteins encoded by CLCuMV and CLCuMB were assessed for their ability to suppress RNAi and the relative strengths of their suppression activity were compared. The analysis showed that the V2, C2, C4, and βC1 proteins exhibited suppressor activity, with the V2 showing the strongest activity. In addition, V2, C4, and βC1 were examined for their ability to bind RNA and shown to have distinct specificities. Although each of these proteins has, for other begomoviruses or betasatellites, been previously shown to have suppressor activity, this is the first time all proteins encoded by a geminiviruses (or begomovirus-betasatellite complex) have been examined and also the first for which four separate suppressors have been identified.
Collapse
Affiliation(s)
- Imran Amin
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Hohn T, Vazquez F. RNA silencing pathways of plants: silencing and its suppression by plant DNA viruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:588-600. [PMID: 21683815 DOI: 10.1016/j.bbagrm.2011.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 02/02/2023]
Abstract
RNA silencing refers to processes that depend on small (s)RNAs to regulate the expression of eukaryotic genomes. In plants, these processes play critical roles in development, in responses to a wide array of stresses, in maintaining genome integrity and in defense against viral and bacterial pathogens. We provide here an updated view on the array of endogenous sRNA pathways, including microRNAs (miRNAs), discovered in the model plant Arabidopsis, which are also the basis for antiviral silencing. We emphasize the current knowledge as well as the recent advances made on understanding the defense and counter-defense strategies evolved in the arms race between plants and DNA viruses on both the nuclear and the cytoplasmic front. This article is part of a Special Issue entitled: MicroRNA's in viral gene regulation.
Collapse
Affiliation(s)
- Thomas Hohn
- Institute of Botany, University of Basel, Basel, Switzerland.
| | | |
Collapse
|
83
|
Tahir MN, Amin I, Briddon RW, Mansoor S. The merging of two dynasties--identification of an African cotton leaf curl disease-associated begomovirus with cotton in Pakistan. PLoS One 2011; 6:e20366. [PMID: 21637815 PMCID: PMC3102712 DOI: 10.1371/journal.pone.0020366] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 04/19/2011] [Indexed: 11/19/2022] Open
Abstract
Cotton leaf curl disease (CLCuD) is a severe disease of cotton that occurs in Africa and Pakistan/northwestern India. The disease is caused by begomoviruses in association with specific betasatellites that differ between Africa and Asia. During survey of symptomatic cotton in Sindh (southern Pakistan) Cotton leaf curl Gezira virus (CLCuGV), the begomovirus associated with CLCuD in Africa, was identified. However, the cognate African betasatellite (Cotton leaf curl Gezira betasatellite) was not found. Instead, two Asian betasatellites, the CLCuD-associated Cotton leaf curl Multan betasatellite (CLCuMB) and Chilli leaf curl betasatellite (ChLCB) were identified. Inoculation of the experimental plant species Nicotiana benthamiana showed that CLCuGV was competent to maintain both CLCuMB and ChLCB. Interestingly, the enations typical of CLCuD were only induced by CLCuGV in the presence of CLCuMB. Also in infections involving both CLCuMB and ChLCB the enations typical of CLCuMB were less evident. This is the first time an African begomovirus has been identified on the Indian sub-continent, highlight the growing threat of begomoviruses and particularly the threat of CLCuD causing viruses to cotton cultivation in the rest of the world.
Collapse
Affiliation(s)
- Muhammad Nouman Tahir
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Rob W. Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
84
|
Mubin M, Hussain M, Briddon RW, Mansoor S. Selection of target sequences as well as sequence identity determine the outcome of RNAi approach for resistance against cotton leaf curl geminivirus complex. Virol J 2011; 8:122. [PMID: 21410988 PMCID: PMC3315792 DOI: 10.1186/1743-422x-8-122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 03/16/2011] [Indexed: 11/11/2022] Open
Abstract
Cotton leaf curl disease is caused by a geminivirus complex that involves multiple distinct begomoviruses and a disease-specific DNA satellite, cotton leaf curl Multan betasatellite (CLCuMB), which is essential to induce disease symptoms. Here we have investigated the use of RNA interference (RNAi) for obtaining resistance against one of the viruses, Cotton leaf curl Multan virus (CLCuMV), associated with the disease. Three hairpin RNAi constructs were produced containing either complementary-sense genes essential for replication/pathogenicity or non-coding regulatory sequences of CLCuMV. In transient assays all three RNAi constructs significantly reduced the replication of the virus in inoculated tissues. However, only one of the constructs, that targeting the overlapping genes involved in virus replication and pathogenicity (the replication-associated protein (Rep), the transcriptional activator protein and the replication enhancer protein) was able to prevent systemic movement of the virus, although the other constructs significantly reduced the levels of virus in systemic tissues. In the presence of CLCuMB, however, a small number of plants co-inoculated with even the most efficient RNAi construct developed symptoms of virus infection, suggesting that the betasatellite may compromise resistance. Further analyses, using Rep gene sequences of distinct begomoviruses expressed from a PVX vector as the target, are consistent with the idea that the success of the RNAi approach depends on sequence identity to the target virus. The results show that selection of both the target sequence, as well as the levels of identity between the construct and target sequence, determine the outcome of RNAi-based resistance against geminivirus complexes.
Collapse
Affiliation(s)
- Muhammad Mubin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | - Mazhar Hussain
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | - Rob W Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| |
Collapse
|
85
|
Idris AM, Shahid MS, Briddon RW, Khan AJ, Zhu JK, Brown JK. An unusual alphasatellite associated with monopartite begomoviruses attenuates symptoms and reduces betasatellite accumulation. J Gen Virol 2011; 92:706-17. [PMID: 21084498 DOI: 10.1099/vir.0.025288-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The Oman strain of Tomato yellow leaf curl virus (TYLCV-OM) and its associated betasatellite, an isolate of Tomato leaf curl betasatellite (ToLCB), were previously reported from Oman. Here we report the isolation of a second, previously undescribed, begomovirus [Tomato leaf curl Oman virus (ToLCOMV)] and an alphasatellite from that same plant sample. This alphasatellite is closely related (90 % shared nucleotide identity) to an unusual DNA-2-type Ageratum yellow vein Singapore alphasatellite (AYVSGA), thus far identified only in Singapore. ToLCOMV was found to have a recombinant genome comprising sequences derived from two extant parents, TYLCV-OM, which is indigenous to Oman, and Papaya leaf curl virus from the Indian subcontinent. All possible combinations of ToLCOMV, TYLCV-OM, ToLCB and AYVSGA were used to agro-inoculate tomato and Nicotiana benthamiana. Infection with ToLCOMV yielded mild leaf-curl symptoms in both hosts; however, plants inoculated with TYLCV-OM developed more severe symptoms. Plants infected with ToLCB in the presence of either helper begomovirus resulted in more severe symptoms. Surprisingly, symptoms in N. benthamiana infected with the alphasatellite together with either of the helper viruses and the betasatellite were attenuated and betasatellite DNA accumulation was substantially reduced. However, in the latter plants no concomitant reduction in the accumulation of helper virus DNA was observed. This is the first example of an attenuation of begomovirus-betasatellite symptoms by this unusual class of alphasatellites. This observation suggests that some DNA-2 alphasatellites encode a pathogenicity determinant that may modulate begomovirus-betasatellite infection by reducing betasatellite DNA accumulation.
Collapse
Affiliation(s)
- Ali M Idris
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | |
Collapse
|
86
|
Genetic diversity of sweet potato begomoviruses in the United States and identification of a natural recombinant between sweet potato leaf curl virus and sweet potato leaf curl Georgia virus. Arch Virol 2011; 156:955-68. [PMID: 21302123 DOI: 10.1007/s00705-011-0930-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
Abstract
In the United States, two sweet potato begomoviruses, sweet potato leaf curl virus (SPLCV) and sweet potato leaf curl Georgia virus (SPLCGV), were previously identified in Louisiana. In recent years, at least seven additional sweet potato begomoviruses have been identified in other parts of the world. In an effort to determine the genetic diversity and distribution of sweet potato begomoviruses in the U.S., we focused our efforts on molecular characterization of field-collected begomovirus isolates in two states: Mississippi and South Carolina. Using rolling-circle amplification, a total of 52 clones of the full genome were obtained. Initial inspection of alignments of the end sequences in these clones revealed a strong genetic diversity. Overall, 10 genotypes could be assigned. A majority of the isolates (50/52) in eight genotypes were shown to be closely related to SPLCV. A representative clone of each genotype was fully sequenced and analyzed. Among them, four genotypes from South Carolina with 91-92% sequence identity to the type member of SPLCV were considered a new strain, whereas four other genotypes from Mississippi with >95% sequence identity to SPLCV were considered variants. In addition, a member of a proposed new begomovirus species was identified after comparative sequence analysis of the isolate [US:SC:646B-9] from South Carolina with less than 89% sequence identity to any known begomovirus. Hence, the provisional name Sweet potato leaf curl South Carolina virus (SPLCSCV) is proposed. Moreover, a natural recombinant consisting of two distinct parental genomic sequences from SPLCV and SPLCGV was identified in the sample [US:MS:1B-3] from Mississippi. Two recombinant breakpoints were identified, one in the origin of replication and the other between C2 and C4. This knowledge about the genetic diversity of begomoviruses infecting sweet potato will likely have a major impact on PCR-based virus detection and on disease management practice through breeding for virus resistance.
Collapse
|
87
|
Tahir M, Haider MS, Briddon RW. Complete nucleotide sequences of a distinct bipartite begomovirus, bitter gourd yellow vein virus, infecting Momordica charantia. Arch Virol 2010; 155:1901-5. [PMID: 20924621 DOI: 10.1007/s00705-010-0819-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 09/21/2010] [Indexed: 11/25/2022]
Abstract
Momordica charantia (Cucurbitaceae), a vegetable crop commonly cultivated throughout Pakistan, and begomoviruses, a serious threat to crop plants, are natives of tropical and subtropical regions of the world. Leaf samples of M. charantia with yellow vein symptoms typical of begomovirus infections and samples from apparently healthy plants were collected from areas around Lahore in 2004. Full-length clones of a bipartite begomovirus were isolated from symptomatic samples. The complete nucleotide sequences of the components of one isolate were determined, and these showed the arrangement of genes typical of Old World begomoviruses. The complete nucleotides sequence of DNA A showed the highest nucleotide sequence identity (86.9%) to an isolate of Tomato leaf curl New Delhi virus (ToLCNDV), confirming it to belong to a distinct species of begomovirus, for which the name Bitter gourd yellow vein virus (BGYVV) is proposed. Sequence comparisons showed that BGYVV likely emerged as a result of inter-specific recombination between ToLCNDV and tomato leaf curl Bangladesh virus (ToLCBDV). The complete nucleotide sequence of DNA B showed 97.2% nucleotide sequence identity to that of an Indian strain of Squash leaf curl China virus.
Collapse
Affiliation(s)
- Muhammad Tahir
- NUST Centre of Virology and Immunology, National University of Sciences and Technology, Islamabad, Pakistan.
| | | | | |
Collapse
|